
Procrastinating Voltage Scheduling with Discrete Frequency Sets∗

Zhijian Lu, Yan Zhang, Mircea Stan, John Lach, Kevin Skadron§

Department of Electrical and Computer Engineering, §Department of Computer Science

University of Virginia

Charlottesville, VA 22904

{zl4j, zhangyan, mircea, jlach}@virginia.edu, skadron@cs.virginia.edu

Abstract

This paper presents an efficient method to find the opti-

mal intra-task voltage/frequency scheduling for single tasks

in practical real-time systems using statistical workload in-

formation. Our method is analytic in nature and proved to

be optimal. Simulation results verify our theoretical analy-

sis and show significant energy savings over previous meth-

ods. In addition, in contrast to the previous techniques in

which all available frequencies are used in a schedule, we

find that, by carefully selecting a subset of a small num-

ber of frequencies, one can still design a reasonably good

schedule while avoiding unnecessary transition overheads.

1. Introduction
With the scaling of semiconductor technology, power

consumption has become a serious issue for both high per-

formance and embedded systems. Dynamic voltage scaling

(DVS) has become an efficient technique for power reduc-

tion due to the quadratic dependence of circuit switching

energy on operating voltage.

However, DVS trades off energy with performance.

Many researchers propose various voltage scheduling tech-

niques such that energy is minimized while performance is

still guaranteed. One of the major difference among these

techniques lies in their workload assumptions. For ex-

ample, Rao and Vrudhula [8] assume the exact amount

of computation is known in advance. In reality, differ-

ent instances of the same task might have various com-

putation requirements. Therefore some work such as [10]

uses the worst-case execution time (WCET) to sched-

ule the voltage profile offline and reclaim the slacks on run-

time, while others [6] use formal feedback controller

to adapt the system to the workload variations in run-

time. On the other hand, the amount of computation for the

same task could be well characterized by probability den-

sity functions. This observation inspires probabilistic ap-

proaches in DVS studies [2, 5, 11, 12, 13].

∗ This work is supported in part by the National Science Foundation un-
der grant Nos. EHS-0410526, CCF-0429765, CCR-0133634 (Career)
and CCR-0306404.

Lorch and Smith [5] show that using statistical informa-

tion in DVS is superior to other heuristic DVS techniques

whose performances are strongly dependent on the work-

load distribution. In DVS with probabilistic workload infor-

mation, a good strategy is to begin with a low frequency,

and increase the frequency gradually as the task progresses,

such that the task can be finished before deadline even in

the worst-case. In other words, high voltage (power) operat-

ing points are procrastinated during task execution. Follow-

ing [13], we call this form of voltage scheduling procrasti-

nating DVS in the rest of the paper. Jejurikar et al. [4] intro-

duce the concept of “procrastination scheduling” which is

different from the subject studied here. They focus on inter-

task scheduling policies and look for opportunities to de-

lay the execution of tasks such that system shutdown inter-

vals can be increased, thus minimizing leakage energy con-

sumption, while we study intra-task scheduling technique.

The optimal procrastinating DVS for single task is de-

rived in [2, 5, 12] using an ideal processor model. Our pre-

vious work [13] extends their solutions to deal with multiple

tasks. However, there are several limitations on these prior

works. First they assume voltage/frequency can be continu-

ously scaled, and have to round their solutions to the avail-

able frequencies in the real system. The rounding could re-

sult in energy-inefficient design when the number of avail-

able frequency is relatively small [10]. Second, the over-

head of frequency/voltage transition is ignored, which is

dangerous for real-time systems and leads to non-optimality

in practical systems [1, 7]. Third, system-wide power con-

sumption is not explicitly modeled. In this work, we try to

address these practical issues. Recently, Xu et al. [11] try

to solve the same problem. They adopt a search-based ap-

proach to find the optimal scheme, while our solution is an-

alytic in nature and solves the problem very efficiently.

Specifically, we make the following contributions. First,

we derive an analytical solution for systems with non-

ideal processors when using procrastinating DVS, enabling

fast voltage scheduling with arbitrary workload distribu-

tion. Our analysis does not assume any specific frequency-

voltage relationship (i.e. analytic models), making it suit-

3-9810801-0-6/DATE06 © 2006 EDAA

456

able for various systems and different voltage scaling tech-

niques, such as combined supply voltage and body bias

scaling [1]. Second, our solutions minimize the total sys-

tem energy consumption by including both dynamic and

static on-chip power as well as off-chip component power.

Third, our results indicate that all efficient operating points

(i.e. voltage/frequency pairs) in procrastinating DVS must

lie on a convex energy-delay curve. This interesting obser-

vation is helpful in low power system design by avoiding

inefficient frequency sets. Finally, we find that, for a given

deadline, a small number of frequencies are sufficient for

forming a schedule to maintain energy savings comparable

to that of using all frequencies while avoiding unnecessary

transition overheads.

The rest of the paper is structured as follows. In Sec-

tion 2, the system model is described and the optimization

problem is formulated. We solve the problem in Section 3,

and extend it to account for frequency switching overheads

in Section 4. We present simulation results in Section 5 and

conclude the paper in Section 6.

2. System Model and Problem Formulation

2.1. Energy Model

In many low-power systems, there are usually two power

states: active state and idle state. In the idle state, the sys-

tem is in a low-power mode with zero clock frequency, and

no useful work can be done. Therefore, we model the sys-

tem power by Psys = Pf + P0, where P0 is the idle power

which is a constant and exists whenever the system is pow-

ered on, and Pf is the power used for computation in ac-

tive state, which is the sum of on-chip and off-chip power

consumption, including both leakage and dynamic power.

In general, Pf is dependent both on supply voltage and

clock frequency. We define energy efficiency e(f) =
Pf

f
,

which represents the energy spent on each cycle for com-

putation. It is obvious that energy efficiency is also volt-

age/frequency dependent. If a task with X cycles is finished

before its deadline D, the total energy spent in the period D

is Esys =
∫ X

0
e(f)dx + P0D. The second term in the to-

tal energy is independent on voltage/frequency scaling. In

the following discussion, we will ignore P0 as if it is zero.

The system is capable of operating on variable volt-

ages/frequencies. Let {f1, f2, f3, . . . , fr} denotes the set of

available frequencies, with total number equal to r, and we

have f1 < f2 < f3, · · · < fr. For each frequency point,

there is a voltage and power consumption associated with

it, and thus a corresponding energy efficiency under that

frequency. Therefore, we have a set of energy efficiencies

e1, e2, e3, . . . , er, with e1 < e2 < e3 < · · · < er. That

is true because if fi < fj and ei≥ej , fj can finish tasks

faster while spend less energy than fi, and fi becomes inef-

ficient and never used. Therefore, in a usable frequency set,

energy efficiency should be an increasing function of clock

frequency, or decreasing function of clock period.

2.2. Procrastinating DVS

A task executed on the system has a deadline D and its

actual amount of computation (clock cycles) is randomly

distributed between 0 and Xmax and governed by a prob-

ability density function (PDF)1, which can be obtained,

for example, from online profiling. Furthermore, we as-

sume frequency/voltage switching points can be inserted

anywhere during task execution. Figure 1 gives an exam-

ple of procrastinating DVS along with its workload distri-

bution.

Theorem 1. In the optimal procrastinating DVS, the op-

erating frequency is non-decreasing as the number of exe-

cuted cycles increases.

We omit the proof for Theorem 1 here due to space lim-

itations. Xu et al. [11] presented a similar theorem in their

paper. Theorem 1 indicates that in a system with r operat-

ing points, the optimal procrastinating DVS scheduling has

at most r frequency/voltage transitions, as shown in Fig-

ure 1(b) for a system with 4 usable frequency/voltage lev-

els. Therefore the key for the optimal scheduling with dis-

crete frequency sets is to identify the positions where tran-

sitions from low frequency to high frequency occur.

(a)

X
max

f(X)

X
4
'X

3
'X

2
'

Cycles

(b)

V
4

V
3

V
2

V
1

X
4
'X

3
'X

2
'

D

X
max

 - X
4
' - X

3
' - X

2
'

Time

V
o

lt
a

g
e

 /
F

re
q

u
e

n
c
y

Figure 1. (a) PDF of task execution cycles. (b)
Procrastinating DVS with 4 operating points.

Xu et al. [11] assume that frequency transitions can only

happen at some fixed points (e.g. every 10K cycles) and try

to find the optimal scheduling by searching a space com-

posed of those transition points. We take a different ap-

proach. Observing that a task usually has millions of cycles

while the number of frequency transitions is much smaller

1 We assume the number of cycles executed in each task instance is in-
variable in spite of the operating frequency. This is a reasonable as-
sumption for CPU-bounded applications. How to model the frequency
dependence of clock cycles in memory-bounded applications is left
for future investigation.

457

(i.e. equal to the number of the operating points, which is

usually less than 50), the number of cycles executed on each

frequency has much finer granularity and can be approxi-

mated as continuous. For example, in Figure 1, we use real

variables Xmax −X ′

4 −X ′

3 −X ′

2, X ′

2, X ′

3 and X ′

4 to repre-

sent the number of cycles executed at f1, f2, f3 and f4 re-

spectively. And the expected energy consumption could be

modeled as:

E(X ′

2,X
′

3,X
′

4)

= e1

Xmax−X′

2−X′

3−X′

4
∫

0

(1 − F (y)) dy

+e2

X′

2
∫

0

(1 − F (Xmax − X ′

4 − X ′

3 − X ′

2 + y)) dy

+e3

X′

3
∫

0

(1 − F (Xmax − X ′

4 − X ′

3 + y)) dy

+e4

X′

4
∫

0

(1 − F (Xmax − X ′

4 + y)) dy

(1)

where ei is the energy efficiency (i.e. energy/cycle) associ-

ated with frequency fi, as defined at the beginning of this

section. F (x) is the cumulative distribution function (CDF)

of task execution cycles. Therefore, the optimal procrasti-

nating DVS problem can be formulated as a mathematical

optimization problem:

Minimize E(X ′

2,X
′

3,X
′

4)

Subject to
Xmax−(X′

2+X′

3+X′

4)
f1

+
X′

2

f2
+

X′

3

f3
+

X′

4

f4
≤ D

For simplicity, in the following, we use this example in our

calculations, but the results are readily generalizable to sys-

tems with r operating points.

3. Solutions for Discrete Frequency Sets
In this section, the optimal procrastinating DVS with

discrete frequency sets is solved without considering fre-

quency transition overheads. In the next section, we extend

our discussion to account for those overheads.

3.1. Optimal Procrastinating DVS

We apply the Lagrange Multiplier Method to find the

number of cycles executed with each operating points. Let

L(X ′

2,X
′

3,X
′

4, λ)
= E(X ′

2,X
′

3,X
′

4)

+λ(
X′

4

f4
+

X′

2

f2
+

X′

3

f3
+

Xmax−(X′

2+X′

3+X′

4)
f1

− D)

We have

∂L
∂λ

=
X′

4

f4
+

X′

2

f2
+

X′

3

f3
+

Xmax−(X′

2+X′

3+X′

4)
f1

− D = 0
∂L

∂X′

4
=

∂E(X′

2,X′

3,X′

4)
∂X′

4
+ λ(1

f4
− 1

f1
) = 0

∂L
∂X′

2
=

∂E(X′

2,X′

3,X′

4)
∂X′

2
+ λ(1

f2
− 1

f1
) = 0

∂L
∂X′

3
=

∂E(X′

2,X′

3,X′

4)
∂X′

3
+ λ(1

f3
− 1

f1
) = 0

(2)

By substituting Equation (1) into (2) and after some simpli-

fications, we obtain:

(1−F (Xmax−X′

4−X′

3−X′

2)) = λ

(

1
f1

− 1
f2

)

(e2 − e1)
(3)

(1−F (Xmax−X′

4−X′

3)) = λ

(

1
f2

− 1
f3

)

(e3 − e2)
(4)

(1−F (Xmax−X′

4)) = λ

(

1
f3

− 1
f4

)

(e4 − e3)
(5)

Xmax−(X′

2+X′

3+X′

4)

f1
+

X′

2
f2

+
X′

3
f3

+
X′

4
f4

= D (6)

Therefore, given a deadline D, the optimal procrastinat-

ing DVS schedule can be found by solving Equations (3-

6). Transformations of Equations (3-5) reveal an interest-

ing property of the optimal solution, as illustrated in Fig-

ure 2. The frequency transition points partition the area of

the probability density function such that

area(II + III + IV) : area(III + IV) : area(III + IV)
= (1−F (Xmax−X′

4−X′

3−X′

2))
:(1−F (Xmax−X′

4−X′

3))

:(1−F (Xmax−X′

4))

=

“

1
f1

−
1

f2

”

(e2−e1)
:

“

1
f2

−
1

f3

”

(e3−e2)
:

“

1
f3

−
1

f4

”

(e4−e3)

Though it might not be straightforward to solve Equa-

tions (3-6) for any given deadline, once the value of λ is

determined, solutions can be readily obtained. Here we dis-

cuss several special cases for λ, which will be helpful for

finding the value of λ for a given deadline.

λ1 = 0. It follows that X ′

2 = X ′

3 = X ′

4 = 0. Let D1 =
Xmax

f1
. The deadline D in this case is equal to D1, and

the areas of region (II–IV) are equal to 0.

λ2 = (e2−e1)
“

1
f1

−
1

f2

” . As the deadline shrinks from D1, higher

operating points have to be applied. The area of re-

gions (II–IV) will increase from 0 and keep a constant

ratio among them. Finally, the sum of these three re-

gions becomes equal to the total area of the PDF. When

this happens, there will be no cycles assigned to f1. Let

D2 denote the deadline in this case.

λ3 = (e3−e2)
“

1
f2

−
1

f3

” . As the deadline reduces further from D2,

regions (III and IV) keep increasing and finally occupy

the whole area of the PDF. In this case, no cycles are

allocated to f1 and f2. Let D3 denote the deadline in

this case.

λ4 = (e4−e3)
“

1
f3

−
1

f4

” . When the deadline shrinks more from D3,

the area of region (IV) increases and finally occupies

the whole PDF. In this case, only f4 is scheduled. Let

D4 = Xmax

f4
, which is the minimum deadline this sys-

tem can satisfy.

458

In other words, when D1 ≤ D, the whole task is executed

with f1, and λ(D) = λ1 = 0. When D2 < D < D1,

all four frequencies are scheduled along task execution, and

λ1 < λ(D) < λ2. When D3 < D ≤ D2, only f2, f3 and f4

are scheduled, and λ2 ≤ λ(D) < λ3..., and so on. Finally

when D = D4, only f4 is used to execute the whole task.

The value of λ increases from its minimum λmin = 0 to its

maximum λmax = (e4−e3)
“

1
f3

−
1

f4

” as the deadline decreases. In

fact, it can be shown that dλ
dD

≤ 0. We will know the numer-

ical range of λ when a deadline is given, by comparing the

actual deadline to D1 through D4, as well as the operating

points to be used in the schedule. In practice, we can rep-

resent this numerical range of λ by a set of constant num-

bers (samples of this range) and find the approximate nu-

merical value of λ very efficiently by the bisection method.

Thus, the complexity of our method is O(1) with respect to

the number of bins in the workload distribution histogram

and linear to the number of available frequencies/voltages.

X
3
'X

2
' X

4
'

f
1

f
2

f
3

f
4

II III IV

X
max

f(x)

Cycles

Figure 2. Graphical interpretations of Equa-

tions (3), (4) and (5).

3.2. Efficient Operating Points

As shown in Figure 2, Equations (3-5) implicitly require

that, for fi−1 < fi < fi+1,

(ei−ei−1)
„

1
fi−1

−
1
fi

« <
(ei+1−ei)

„

1
fi

−
1

fi+1

« (7)

In fact, we have the following theorem.

Theorem 2. In a system with a set of usable operating

points {f1/e1, f2/e2, f3/e3, . . . , fr/er}, where f1 < f2 <
f3, · · · < fr and e1 < e2 < e3, · · · < er, if there exists

an operating point fi/ei such that Equation (7) is not hold,

there will be no cycles allocated to this operating point in

the optimal procrastinating DVS.

Due to the space constraint, the proof is not presented

here. Theorem (2) says that a usable operating point is not

necessarily an efficient one. As an example, in Figure 3,

we plot the energy (per cycle) vs. delay (1/f) curves for

some existing processors with DVS capability including

IBM PPC405LP ([11]), Intel Xscale ([11]), ARM8 ([3]),

AMD Mobile Athlon (our own measurements), and an ideal

processor using the “α current model” [9].
(ei−ei−1)

“

1
fi−1

−
1
fi

” rep-

resents the slope between two consecutive operating points

in the curves. Equation (7) specifies that, in order for all op-

erating points to be efficient, the slope of the energy–delay

curve should decrease as the delay increases, or, all operat-

ing points should lie on a convex curve.

As one may expect, the energy efficiency decreases as

the delay increases for all processor models, as illustrated

by the curves in Figure 3. In the ideal processor model, we

also include the static power by assuming that it is about

one third of the dynamic power. Figure 3 shows that the op-

erating points of the ideal processor are strictly on a con-

vex curve. Xscale and ARM8 processors follow a similar

trend with all operating points being efficient. While Pow-

erPC and Mobile Athlon have some operating points that

will never be used in the optimal procrastinating DVS, as

indicated in the figure.

1 1.5 2 2.5 3 3.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Delay (normalized clock period)

E
n
e
rg

y
/c

y
c
le

 (
n
o
rm

a
liz

e
d
)

IBM PowerPC 405LP
Intel Xscale
ARM8
AMD Mobile Athlon
Ideal processor

Inefficient operating point

Inefficient operating point

Figure 3. Energy–delay curves for different

processors with DVS capability (The values for

each processor are normalized to its energy and

delay at the full speed.).

4. Considering Transition Overheads

4.1. Modeling Energy Overheads

As pointed out in [7], the energy overhead due to fre-

quency switching includes idle energy and capacitance

charging energy. The idle energy part is already cap-

tured by P0 in Section 2. For capacitance charging energy,

it is true that Eij = Eik+Ekj , where Eij is the energy over-

head when switching from fi to fj and fi < fk < fj . Let

Etotal denote the average energy consumption with the ex-

istence of energy overheads, and, using a 4-frequency

system as an example, it follows

Etotal = Eideal + E12[1 − F (Xm − X ′

4 − X ′

3 − X ′

2)]
+E23[1 − F (Xm − X ′

4 − X ′

3)] + E34[1 − F (Xm − X ′

4)]
+E34[1 − F (Xm − X ′

4)]

where Eideal is the expression for expected energy with-

out overheads (i.e. Equation (1)). Again, using the Lagrange

Multiplier Method, the energy-optimal voltage scheduling

459

is obtained by
(1−F (Xmax−X′

4−X′

3−X′

2))+
E12

e2−e1
f(Xmax−X′

4−X′

3−X′

2)

= λ

“

1
f1

−
1

f2

”

(e2−e1)

(1−F (Xmax−X′

4−X′

3))+
E23

e3−e2
f(Xmax−X′

4−X′

3)=λ
(1

f2
−

1
f3

)
(e3−e2)

(1−F (Xmax−X′

4))+
E34

e4−e3
f(Xmax−X′

4)=λ
(1

f3
−

1
f4

)
(e4−e3)

Xmax−(X′

2+X′

3+X′

4)
f1

+
X′

2

f2
+

X′

3

f3
+

X′

4

f4
= D

(8)
Usually the energy overhead Eij is small, e.g., using the

data in [7],
Eij

ej−ei
≈ 7K(cycles), thus

Eij

ej−ei
f(x) ≈

F (x) − F
(

x −
Eij

ej−ei

)

. Letting φ(x) = F (x −
Eij

ej−ei
),

Equation (8) can be reduced to the same form as Equations

(3–6) by substituting F (x) with φ(x).

4.2. Combined Overheads

Transition time overheads are hard to model using con-

tinuous functions. Eliminating an operating point in the

scheduling might increase the energy, but it also increases

the allowed execution time by releasing the transition time,

thus reducing energy. When the number of available oper-

ating points is small. We can adopt a brute-force approach.

Using the 4-frequency system as an example, we first as-

sume all frequencies are applied and the actual deadline is

adjusted by Dactual = D − 3to, where to is the time over-

head for one transition. We can find the optimal scheduling

in this case by Equation (8). Then we allow only two transi-

tions to happen in task execution, and we solve Equation (8)

for all combinations of three operating points, similarly for

one transition or even no transitions. Finally we choose the

schedule with the lowest energy consumption. This brute-

force approach requires O(2r) (r is the number of poten-

tial operating points) iterations of solving Equation (8) and

is therefore not effective when r is large.

When the number of efficient operating points is large,

we propose a heuristic search algorithm based on dy-

namic programming. The detailed algorithm is not pre-

sented here due to space limitation. We explain the key

ideas behind our algorithm. First, we find a schedule us-

ing all frequencies by Equation (8), with the deadline

adjusted by the transition times. This is the baseline sched-

ule. Second, we define energy reduction(fi) as the en-

ergy reduction after the elimination of fi from the baseline

schedule. When fi and fj are not consecutive in the base-

line, it is approximated that energy reduction(fi, fj) =
energy reduction(fi) + energy reduction(fj). There-

fore, if energy reduction(fi) < energy reduction(fk),
it is established that energy reduction(fi, fj) <
energy reduction(fk, fj) when fj is not next to ei-

ther fi or fk in the baseline schedule. Thereby, we can

reduce the search space without examining the elimina-

tion of both fi and fj from the baseline. The complexity of

our algorithm is O(r3). In the next section, we use this al-

gorithm to find schedules with a subset of frequencies when

the number of transitions is fixed.

5. Experimental Results
In this section, we compare the proposed method with

previous techniques. Since transition overheads were not

considered in most prior work, in our experiments, we also

ignore energy/time overheads for all schemes in compari-

son. The simulations use a processor model that provides

finite frequencies linearly spaced between 500MHz and

1.5GHz, and a power model P = af3
op. We assume the

maximum number of cycles in a task is 1, 000, 000, and gen-

erate 5000 task instances for each different workload distri-

bution. The PDFs for the voltage scheduling are obtained

from profiling those 5000 task instances using a histogram

with 10K cycles in each bins.

0

0.005

0.01

0.015

0.02

0.025

0.03

in
ve

rs
e

ex
p

ex
p

un
ifo

rm
no

rm

lo
gn

or
m

E
n

e
rg

y
 (

J
)

Continuous DVS

Continuous Roundup
(15 freqs.)

Continuous Roundup
(10 freqs.)

Continuous Roundup (5
freqs.)

Discrete (15 freqs.)

Discrete (10 freqs.)

Discrete (5 freqs.)

Figure 4. Energy consumption by different
scheduling techniques for workloads with

different cycle count distributions.

Figure 4 presents the average task energy of different

task types (distributions) by simulating the execution of

each task with different scheduling techniques. The dead-

line for all tasks is set to 0.00125s. Three techniques are

compared: 1) DVS with continuous voltage scaling between

the maximum and minimum frequencies [2, 5], 2) Continu-

ous scaling rounded up to the available frequencies, used in

prior work [12, 13] to apply procrastinating DVS in practi-

cal systems, 3) Optimal procrastinating DVS with discrete

frequency sets as proposed in this paper. As indicated by

Figure 4, the performance of simple rounding method de-

grades very quickly as the number of available frequencies

is reduced. On the other hand, our solution is quite robust

across different numbers of available frequencies. On aver-

age, the energy savings brought by our method over the pre-

vious rounding method range between 10% and 24% from

a 15-frequency set system to a 5-frequency set system.

For a processor with r efficient operating points, the op-

timal procrastinating DVS will use by default all frequen-

cies if necessary. A heuristic way to account for switching

overheads is to limit the number of frequencies used in the

schedule by, say, i frequencies. Figure 5 plots the average

energy consumption for tasks of normal distributions at dif-

ferent deadlines with the number of frequencies used in a

schedule being fixed to 6, 4, 3, and 1, respectively, though

460

the processor is capable of 10 different frequencies. This

figure implies that, for a given deadline, a small number of

carefully selected frequencies can form a schedule achiev-

ing energy savings very close to that of a schedule con-

sisting of the full frequency set (as shown by the right y–

axis). Similar results are observed for other workload distri-

butions.

0.6 1.2 1.4 1.6 1.8 2

x 10
3

0

0.01

0.02

0.03

0.04

0.05

0.06

E
n
e
rg

y
(a

b
so

lu
te

)

Deadline (s)

10 fs
6 fs
4 fs
3 fs
1 f

0.6 0.80.8 11 1.2 1.4 1.6 1.8 2

x 10
 3

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

E
n
e
rg

y
(n

o
rm

a
liz

e
d
)

Figure 5. Average task energy consumption
at various deadlines when the number of fre-

quencies in a schedule is fixed (The y–axis on

the right shows the energy values normalized to

those of using the full frequency set (10 fs).).

When the total number of efficient frequencies is large,

it is computationally expensive to find a good subset of fre-

quencies for scheduling when the allowed number of transi-

tions is fixed. We compare our dynamic programming based

heuristic method (subsection 4.2) to a brute-force approach.

For a system model with 10 total frequencies, experimental

results show that our heuristic method is 5 times faster to

find “good” schedules for different numbers of allowed fre-

quencies. The average task energy consumption using the

schedules found by our method is very close to that found

by the brute-force method, and the maximum deviation we

observed is within 2%. In fact, the data presented in Figure 5

are based on the schedules found by our heuristic method.

6. Conclusion
In this paper, we introduced the optimal procrastinating

DVS for systems with discrete frequency sets. Our tech-

niques efficiently solve the practical issues encountered by

previous techniques. The complexity of our method is O(1)

with respect to the number of bins in the task workload his-

togram, and linear to the number of operating points in-

volved in the schedule. We also find that not all available

operating points are necessarily efficient even though they

consume less power. We extend our method to deal with

transition overheads and find that, for a given deadline, a

small number of carefully selected frequencies may be suf-

ficient to form a good schedule achieving energy savings

comparable to that using all efficient operating points. We

develop an efficient heuristic algorithm to find good sched-

ules composed of only a subset of available frequencies,

thereby avoiding unnecessary transition overheads. Thus,

our techniques are readily applicable to various practical

systems.

References

[1] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. Al-

Hashimi. Overhead-conscious voltage selection for dynamic

and leakage power reduction of time-constraint systems. In

Proc. of Design, Automation and Test Europe Conference

(DATE2004), 2004.

[2] F. Gruian. Hard real-time scheduling for low-energy using

stochastic data and dvs processors. In Proceedings of Inter-

national Symposium on Low Power Electronics and Design

2001 (ISLPED’01), August 2001.

[3] C. Im and S. Ha. Dynamic voltage scheduling with buffers

in low- power multimedia applications. ACM Transactions

on Embedded Computing Systems (TECS), 3(4):686–705,

November 2004.

[4] R. Jejurikar and R. Gupta. Procrastination scheduling in

fixed priority real-time systems. In Proc. of the 2004 ACM

conference on Languages, compilers, and tools for embed-

ded systems (LCTES’04), June 2004.

[5] J. R. Lorch and A. J. Smith. PACE: A new approach

to dynamic voltage scaling. IEEE Tran. on Computers,

53(7):856–869, July 2004.

[6] Z. Lu, J. Lach, M. Stan, and K. Skadron. Reducing multi-

media decode power using feedback control. In Proc. of In-

ternational Conference on Computer Design, pages 489–96,

October 2003.

[7] B. Mochocki, X. Hu, and G. Quan. A unified approach

to variable voltage scheduling for nonideal dvs processors.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 23(9):1370– 1377, September 2004.

[8] R. Rao and S. Vrudhula. Energy optimal speed control of

devices with discrete speed sets. In Proc. of the 42nd annual

conference on Design automation, June 2005.

[9] T. Sakurai and A. Newton. Alpha-power law MOSFET

model and its applications to CMOS inverter delay and other

formulas. IEEE Journal of Solid-State Circuits, 25(2):584–

594, April 1990.

[10] V. Swaminathan and K. Chakrabarty. Network flow tech-

niques for dynamic voltage scaling in hard real-time systems.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 23:1385–1398, October 2004.

[11] R. Xu, C. Xi, R. Melhem, and D. Moss. Practical pace for

embedded systems. In Proc. of the 4th ACM International

Conference on Embedded Software(EMSOFT ’04), 2004.

[12] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time

CPU scheduling for mobile multimedia systems. In Proc.

of the 19th ACM Symposium on Operating Systems Princi-

ples (SOSP’03), October 2003.

[13] Y. Zhang, Z. Lu, J. Lach, K. Skadron, and M. R. Stan. Op-

timal procrastinating voltage scheduling for hard real-time

systems. In Proc. of the 42nd annual conference on Design

automation, June 2005.

461

