

Temperature-Aware
Operating System Scheduling

A Thesis
in STS 402

by

Eugene Otto

Mar. 31, 2006

Technical Advisor: Kevin Skadron
STS Advisor: Professor Helen Benet-Goodman

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for Papers in Science,

Technology, and Society Courses.

LIST OF FIGURES

Figure 1, The Effect of Processor Throttling, Pg. 2

Figure 2, Comparison of Processor Clock Cycles, Throttled and Unthrottled, Pg. 3

Figure 3, Multitasking, Pg. 4

Figure 4, Selective Throttling, Pg. 5

Figure 5, Change in Temperature as Frames are Decoded, Pg. 19

Figure 6, Change in Fan Speed as Frames are Decoded, Pg. 19

Table 1, Benchmark 1 Results, Pg. 18

Table 2, Benchmark 2 Results, Pg. 20

 ii

ABSTRACT

 The goal of my research was to implement and test an operating system scheduler

modified to selectively throttle the processor clock frequency depending on the active

task. Throttling refers to lowering the processor clock speed and is generally invoked to

reduce processor temperature. This process, however, inherently reduces the

performance of the system which can create dangerous conditions in some cases and is

generally undesirable.

 My work reduces the penalty caused by throttling by allowing the user to specify

tasks for which throttling is not invoked. When throttling is invoked and a user specifies

that a task should not be throttled, the system runs that task at full speed while throttling

all of the other non-critical tasks. This arrangement allows the system to cool down

while still providing high responsiveness for critical tasks.

 I tested my system by playing DVD video files. This test was chosen because it

relates to an everyday situation and would cause the system temperature to elevate

significantly, resulting in unwanted fan noise. My goal was to demonstrate that my

modifications to the scheduler allow DVD playback at lower temperatures with less fan

noise.

 My work was successful: I demonstrated that my modifications would allow a

task to perform well while the rest of system was throttled. This paves the way for

research into more sophisticated temperature-aware scheduling algorithms that can be

applied to a wider swath of workloads.

 iii

TABLE OF CONTENTS

List of Figures ii

Abstract iii

Chapter 1: The Case for Selective Thermal Throttling 1

Chapter 2: Foundations of Temperature-aware Scheduling 6

Chapter 3: Society’s Need for Cooler Computers 9

Chapter 4: Development Toolchain and Framework 12

Chapter 5: Conclusion 20

Sources Cited 22

Bibliography 24

CHAPTER 1: THE CASE FOR SELECTIVE THERMAL THROTTLING

Modern computer processors are extremely powerful tools, but this functionality

comes at a price: they operate at temperatures almost high enough to cause themselves

irreparable damage. Of the various cooling techniques, clock throttling (lowering

processor clock speed to reduce heat generation) has seen the most development in recent

years. Unfortunately, when throttling is invoked, it affects every active task

indiscriminately, impairing tasks that require high responsiveness such as an application

that plays DVD video. I have modified the throttling cooling procedure in Linux to be

selective so that high-priority tasks can run at their normal clock speeds while the

processor’s temperature is still safely regulated.

THERMAL THROTTLING

Processor cooling techniques are grouped into the two general categories: active

and passive. Active cooling techniques, such as fans, use power and generally cause

noise. Passive cooling techniques, such as clock throttling, do not use power and operate

silently. The current trend in mobile computing is toward silent operation, which means

that passive cooling techniques are becoming more important.

Recent Intel processors, like the Pentium M, automatically shut off when the

temperature reaches a point beyond which it might be damaged. Although this saves the

chip from burning out, it can result in data loss, corruption, and inconvenience to the

 1

user. Thermal throttling exists as a middle ground between this jarring shutoff and

normal operation. Because processor activity is directly correlated with processor

temperature, reducing the amount of processor activity will cause the temperature to fall.

As shown in Figure 1, when the processor’s temperature reaches the throttling trip-point,

throttling is invoked to reduce the temperature. Once it drops, throttling is disengaged

which allows the processor to operate again at full speed.

Figure 1 –The Effect of Processor Throttling – Processor throttling can be used to maintain a safe,
steady processor temperature level. Image taken from [11].

Clock throttling, illustrated in Figure 2, works because it decreases the amount of

activity occurring on the processor. Computer code is broken down from a human-

readable language like C++ into the smaller instructions of a language called assembly

language. A varying number of assembly instructions are executed each clock cycle. By

reducing the number of clock cycles occurring during a given amount of time, the

number of instructions that are executed are likewise reduced, which lowers the amount

of activity on the processor and hence the temperature, as well. This, however, impacts

performance – running fewer instructions means tasks take longer to execute.

 2

Figure 2 – Comparison of Processor Clock Cycles, Throttled and Unthrottled -- Computer code is

broken down into small assembly instructions. Notice that in the bottom throttled timeline, only one

fourth as many clock cycles occur, thus the number of instructions executed is cut down 75%. So, for

example, when unthrottled, the processor might be operating at 1GHz, whereas when throttled as

shown in the figure, it would be operating at 250MHz. Note that for ease of presentation, I am

assuming that exactly one instruction executes per cycle. Image adapted from Intel spec sheet [10].

SCHEDULING AND MULTITASKING EXPLAINED

Modern operating systems, such as Windows and Linux, have a scheduling

component that manages task execution. It is common, for instance, to be listening to a

CD, writing a paper, and browsing the web all at the same time. Although it is physically

impossible to run more than one task simultaneously on a single processor (except for the

most advanced), the illusion of multitasking is created by maintaining a list of active

 3

tasks, executing the task at the top of the list for a very brief amount of time (30ms, for

example), sending it to the back of the list, and then repeating the procedure for the next

task. As new tasks start and active tasks finish, they are added and removed from the

active task list. This continues for as long as the computer is running [12]. In Figure 3, I

illustrate the process of multitasking. Notice that although the three applications,

MPlayer, AbiWord, and Firefox are never really running at the same time, they execute at

such small increments that to the user it feels as if they are running concurrently. High

priority tasks that require a large amount of processing power, such as multimedia

applications, are allotted longer timeslices and low-priority tasks, like a word processor,

are allotted shorter timeslices [1].

Figure 3 – Multitasking -- The processor runs three tasks (MPlayer, AbiWord, and Firefox) one at a

time, but the amount of time allotted to each task (the task’s timeslice) is so small that the illusion of

simultaneous execution is created. Notice that timeslices can vary in length. (Source: Author)

 The problem with the way that throttling is currently implemented is that the

priority of the active tasks is never considered. For example, if the processor were

throttled down to 50% of full speed from time 5ms to time 75ms in the scenario shown

above in Figure 3, it would affect the three tasks equally, with no regard for MPlayer’s

high priority.

 4

RESEARCH GOAL

I have modified the Linux operating system’s scheduler so that high-priority tasks

are executed at full speed and low-priority tasks are executed at lower-than-normal

speeds to compensate. Figure 4 illustrates this achievement. Notice that although

throttling has been invoked, MPlayer still operates at full speed while Firefox operates at

about half speed and AbiWord is barely given any clock speed at all.

Figure 4 – Selective Throttling -- My changes to the Linux operating system make it possible for

tasks to be throttled based on their responsiveness requirements: MPlayer, a video decoder, requires

a large amount of processor power, so it is not throttled at all; however, AbiWord needs very little

processor power, so it is throttled almost the entire way. Firefox ends up in-between. (Source:

Author)

 5

CHAPTER 2: FOUNDATIONS OF TEMPERATURE-AWARE SCHEDULING

This section describes previous research in reducing thermal/power density and in

temperature-aware system scheduling.

THERMAL RESEARCH

As previously mentioned, modern processors can run at temperatures high enough

to cause system instability, and even catastrophic failure, if left unchecked. Finding ways

to deal with this problem at the software and hardware level has been an intense research

subject. In Reducing Power through Activity Migration [9], Heo, Barr, and Asanović

describe a thermal model to help exploit spatial granularity in chips by shifting

computations to other areas of the die when components overheat. Powell, Gomaa, and

Vijaykumar describe a similar technique in their paper Heat-and-Run: Leveraging SMT

and CMP to Manage Power Density Through the Operating System [13]. These papers

describe methods of software-based processor heat management that parallel my research

in temperature-aware operating system scheduling.

In their paper Potential Thermal Security Risks [7], Dadvar and Skadron describe

the possibility of a malicious program causing processor damage or at the least, user

inconvenience, by making the processor overheat and thus throttle down its speed for

protection. This subtly underlines the fact that because processor temperature is highly

correlated with the programs being run, it should be possible to reduce processor

 6

temperature by altering the manners in which these programs are run -- this fact is the

underlying principle behind my work.

TEMPERATURE-AWARE SYSTEM SCHEDULING

In OS-Directed Throttling of Processor Activity for Dynamic Power Management

[4], Bellosa describes a technique for improved temperature management by modifying

the operating system scheduler to change the processor frequency based on certain

characteristics of a program. This paper reflects my goals closely but it seems to be the

extent of his research on this specific topic. I have made the necessary modifications to

the Linux kernel to allow selective throttling and have implemented a simple algorithm to

throttle and dethrottle processor frequency depending on the active task. In Power Aware

Operating Systems: Task-Specific CPU Throttling [8], an unpublished project, Sunny

Gleason, a University of Pittsburgh graduate student, describes a method of modifying

the Linux scheduler to throttle tasks to different levels. Although my investigations

began long before I stumbled across this paper, my research will in effect build directly

on his work. The similarities between his work and my own give me confidence that I

made the correct design decisions in my project. The difference between my research

and his is that although I implement a similar means of incorporating throttling into the

Linux scheduler, I have benchmarked my changes and shown this technique to be

effective, a necessary step before additional research can take place to build on this idea.

Gleason’s paper describes the first step in attacking the problem, a step I have moved

beyond with my own work.

 7

In Dynamic Thermal Management for Distributed Systems [15], Weissel and

Bellosa describe a way for datacenters (facilities that operate large numbers of servers),

to balance the heat generated by their servers. Datacenters are the focus of a lot of

thermal research because of the large amount of money spent on cooling solutions in

these environments. This topic is further described in Schedulability Analysis and

Utilization Bounds for Highly Scalable Real-Time Services [2], Web Search for a Planet:

the Google Cluster Architecture [3], and Managing Server Energy and Operational Costs

in Hosting Centers [6]. Although my research is not specific to datacenter thermal

management, it will help to guarantee set service levels. These papers helped me to

frame my research against the work being done to optimize a particular market.

The papers above illustrate the amount and diversity of thermal research being

conducted. Because the scheduler is an essential component to any operating system, my

work will likely have some impact on all of the research described above. The next

section will extend the context of my work from the research community to society in

describing ways it is relevant to the ordinary user.

 8

CHAPTER 3: SOCIETY’S NEED FOR COOLER COMPUTERS

This chapter will explain how my work benefits society. The different application

domains will give a sense for the complexity of the problem and the different metrics by

which computer performance is measured.

CONSUMER ELECTRONICS

Most laptop users have undoubtedly experienced the discomfort caused by the

heat generated by a laptop placed on one’s lap. A recent study found that laptop use

causes significantly elevated scrotal temperature [14]. While it is unclear how damaging

this raised temperature actually is, the researchers recommend that men of reproductive

age avoid scrotal heat exposure. By implementing selective thermal throttling, laptop

temperatures can be reduced, lowering the impact of laptop temperature on sperm health

while allowing the user to remain productive. The mere fact that this study exists shows

that the consumer base is aware of rising device temperatures which places the results of

my thermal optimizations in a genuine social context.

COOLING IN DATA CENTERS

The current trend in web-services like those offered by Google, is to use a large

number of clustered low-cost commodity-class computers instead of a few expensive

 9

servers [3]. These computers run processors like the Pentium 4 which are capable (or at

risk, one might say) of throttling. If companies can run these clustered computers at

close to maximum temperatures while being confident that throttling will be applied

intelligently across running tasks, then they can reduce the amount of money invested in

air cooling solutions or elect to purchase fewer servers knowing that they can push a

smaller number of servers to the same limit without risk of lowered performance. This

technique would be useful for a stock-trading company that guarantees that trades will be

processed within a second. The particular program responsible for transactions would

only be throttled if it had no unprocessed transactions; other less-prioritized tasks would

be throttled at higher levels to compensate.

AMBIENT TEMPERATURE

Another area my work might impact is in military applications. Imagine, for

example, an officer’s personnel tracking application used in the Iraqi Desert where it

regularly reaches temperatures in excess of 100oF. The application uses 3D graphics to

display terrain, buildings, and the locations of the members of the officer’s unit. The

officer needs to know exactly where his unit is so that he can coordinate their movements

with other officers and direct them around obstacles and potential attacks. This

application is run on a laptop powered by battery. Thermal safety was a big design

consideration when it was built, but now, just as importantly so is high performance. The

officer needs the tracking application to run at full performance and with full detail and

 10

high responsiveness when his troops are on the ground. He does not want his tracking

application to be throttled when it starts to overheat when, for instance, his computer’s

search indexer starts up. My work will allow the user to specify the thermal priority of

different tasks in order to prevent situations like this from occurring. The tracking

application would be given the highest thermal priority, and all other applications would

be given very low thermal priorities.

 To test my system, I wanted to use a benchmark (a program that measures

performance) that fit in the context of normal everyday use. The scenario I decided to

replicate was DVD video playback. DVD video playback requires a large amount of

processing power which inevitably leads to elevated CPU temperatures. Additionally,

when a user plays a DVD he does not want outside distractions, such as the noise that

would be caused by a fan cooling system but, of course, with increased temperatures

come increased fan speeds. I will discuss my implementation and benchmarks in the next

chapter.

 11

CHAPTER 4: DEVELOPMENT TOOLCHAIN AND FRAMEWORK

This chapter will describe my tools and methodology with the goal of allowing a

reader to replicate and verify my work. I will describe in-detail my changes to the Linux

kernel, my development process, and the benchmarks I created to test my system.

TOOLS

My work was software-based so I did not need any physical tools besides a laptop

with throttling capability. The software I used is all open source and freely available via

the internet. I will briefly list the hardware I used and then describe the main software

tools I used.

Hardware

I did all of my research on a Dell Inspiron 4150 laptop with a 1.60 GHz Pentium

4-M processor. The only thing special about this computer is that its processor has

throttling capabilities, a property now commonplace in most laptop processors.

Software

I made my changes to the scheduler component of a Linux 2.6.13 kernel running

under the Ubuntu 4.0.1 Linux distribution. I used the C compiler, gcc version 4.0.2 to

recompile my changes after every modification I made to the kernel.

I wrote my benchmarks in Perl because its powerful text processing capabilities

made it ideal for extracting system performance statistics. I used the MPEG decoder

 12

mpeg2dec in one benchmark to stress my system as much as possible and the media

player mplayer in another benchmark to simulate a realistic workload. My kernel

modifications and testing framework are discussed in detail below.

KERNEL MODIFICATIONS

The kernel is the core of an operating system, responsible for managing resources,

facilitating communication between software and hardware, and scheduling tasks, among

many other things [5]. I made a number of infrastructural changes to the kernel in order

to facilitate my main goal of modifying the kernel’s scheduler component to take into

account throttling priority and throttling level.

Infrastructural Changes

The Linux scheduler maintains a list of running tasks, each one represented by a

structure called task_struct (a structure is a collection of variables grouped together into

one entity). The task_struct structure contains about 150 variables describing various

properties of a task such as task ID and task owner. I added a variable to the task_struct

structure called throttle_level to describe the amount of throttling a task is willing to

endure. throttle_level can take any integer value, 0 to 7; a throttle_level of 0 means that

the task is willing to be throttled any amount up to the maximum while a throttle_level of

7 means that the task is not willing to be throttled at all. The default throttle_level value

is 0.

 13

To make the throttle_level value useful to a user, I needed to provide a way to set

it outside the kernel. I did this by writing a utility named “ice” that would allow a user to

start a program with a specific throttle_level value. To start mplayer with a throttle_level

value of 7, for example, one would execute the following command:

 $ ice -n 7 mplayer

 A user mode program such as ice, however, cannot modify kernel level

parameters like throttle_level without some extra help – this help comes in the form of

system calls.

System Calls

The Linux operating system has two modes of operation: user mode and kernel

mode. In general, different tasks will be active under each mode. The key difference

between the two modes is the amount of privilege: user mode is given very little privilege

while kernel mode is given the highest privileges. For example, the system scheduler

operates in kernel mode because it needs knowledge of minute system details whereas a

media player runs in user mode because all it needs is a video file [5].

Sometimes, user mode tasks need to execute kernel mode operations. An

example of this is when a task wants to read a file. Reading a file is a privileged

operation that can only happen in kernel mode. But, reading files is a common operation

that most user mode tasks need to be able to do. The solution to this problem is for the

kernel to provide system calls.

A system call allows a user mode program to execute a privileged kernel mode

operation; the kernel currently provides about 200 system calls, each of which providing

 14

a different capability. I added two system calls, set_throt_level and get_throt_level, to

allow user mode programs to set and retrieve a task’s throttle_level value.

Scheduler Changes

The changes I made to the scheduler were relatively minor, a fact I attribute to the

infrastructural changes I made to the rest of the kernel and the supporting utilities I wrote

to facilitate user mode access. During a context switch (when the scheduler sets a new

task to be active and puts the current task to sleep), the scheduler checks the new task’s

throttle_level value. If throttle_level is not equal to 0, that is, if the task is set to be

resistant to throttling, and if throttling is currently invoked, then the scheduler reduces the

throttling level for the duration of the task’s timeslice. If throttle_level is equal to 0, then

the scheduler makes sure that the throttling level is set to the level last set outside the

scheduler.

BENCHMARKS AND RESULTS

I made two benchmark programs to measure how well my scheduler

modifications worked. My first benchmark involved decoding 190 DVD video files (a

total of about 50,000 video frames), approximately 1.3 MB in size each. After decoding

each file, the benchmark would log the amount of time it took and take a snapshot of

system statistics. The idea was to simulate a component of DVD video playback

(decoding) and to put continuous stress on my system. In addition to the video decoding,

I ran a continuous compile in the background for the duration of the benchmark to put

 15

additional stress on the system. I will discuss my second benchmark after I explain the

results of this first benchmark.

I ran the two benchmarks on each of the following three system configurations:

1. Original kernel, no throttling

2. Original kernel, maximum throttling

3. Modified kernel, maximum throttling

Benchmarking the original kernel without any throttling would give a sense of the

system’s maximum performance. It would also most likely push the system to the

highest temperatures and fan speeds. Benchmarking the original kernel with maximum

throttling would give a sense for the type of performance to expect on a normal system

with throttling invoked. Performance here was expected to be poor but temperatures and

fan speeds would also be at a minimum. Benchmarking the modified kernel with

maximum throttling would give a sense of how well my changes worked. I would expect

the benchmarked program to have good performance and for the system to have low

temperature and fan speed.

Listed in Table 1 are the results of the first benchmark. As expected, when the

benchmark was run on the original kernel with throttling disabled, temperatures and fan

speeds were much higher than for the other two. Also, the time to decode all 190 video

files was only 359s, a fraction of the time it took for the two throttled benchmarks to

complete. Notice, however, that it took close to one forth the amount of time for the

throttled modified kernel to decode all 190 video files that it took for the original

throttled kernel to do so. And notice also, that the average temperatures and fan speeds

for the modified and original kernels, when throttled, are very comparable.

 16

Table 1 – Benchmark 1 Results -- Statistics for decoding 50,000 frames of DVD video

Temp (°C) Fan Speed (RPMs) Time
(s) Max Min Avg. Max Min Avg.

Original, Unthrottled 359 80 51 72.78 5940 3780 4958.947
Original, Throttled 6749 56 53 55.11 3840 3780 3808.684
Modified, Throttled 1885 56 48 54.41 4080 4020 4079.842

Figure 5 gives a visual representation of the temperature differences as the

number of decoded frames progresses. Notice that for the throttled systems, although the

modified kernel runs at about the same temperature as the original kernel, the modified

kernel finishes decoded the video files in about one forth the time. The same goes for

Figure 6 – the modified kernel decodes the video files in a fraction of the time that the

original kernel takes, but its fan speed is barely greater than the original kernel’s.

Change in Temperature as Frames are Decoded

0
10
20
30
40
50
60
70
80
90

0 10000 20000 30000 40000 50000

Frames

Te
m

pe
ra

tu
re

 (°
C

)

Original, Unthrottled

Original, Throttled

Modified, Throttled

Figure 5 – Change in Temperature as Frames are Decoded – This shows the difference in
temperatures for the three different system configurations. (Source: Author)

 17

Change in Fan Speed as Frames are
Decoded

0
1000
2000
3000
4000
5000
6000
7000

0 10000 20000 30000 40000 50000

Frames

Fa
n

Sp
ee

d
(R

PM
s) Original, Unthrottled

Modified, Throttled Original, Throttled

Figure 6 – Change in Fan Speed as Frames are Decoded—This figure shows that difference in fan
speeds for each of the three system configurations. (Source: Author)

Having seen that the modified kernel does provide better performance in

throttling mode but that it does not provide the same level of performance as the original

kernel when unthrottled, I wanted to know if the system was efficiently enough to play

DVD video. So, I created a second benchmark.

Second Benchmark

 My second benchmark was meant to simulate a more realistic workload, so I

decided to actually play a DVD video file rather than simply decode it. I wanted to see

how much I could throttle my computer running the original kernel before DVD video

playback became unfeasible. At the point that DVD playback would not work, I wanted

 18

to see if running the modified kernel would improve performance and whether it would

allow me to throttle the system to an even greater extent.

Table 2 – Benchmark 2 Results – DVD video playback at different throttling levels.
Throttling Level Original Kernel Modified Kernel

0.0% Yes -
12.5% Yes -
25.0% Yes -
37.5% No Yes
50.0% - Yes
62.5% - No
75% - -

87.5% - -

As shown in Table 2 above, the original kernel could not play DVD video beyond

throttling level 25% whereas the modified kernel could play DVD video when the system

was throttled as high as 50%.

 19

CHAPTER 5: CONCLUSION

The purpose of my project was to implement and test a scheduler that selectively

varies the amount of processor throttling, depending on the active task. My results,

described in the previous chapter, were very encouraging, and suggest that more research

into this technique would be valuable. I will summarize my work and suggest future

avenues for research here.

SUMMARY

My data show that selective throttling can reduce system temperature and thus fan

speed while still allowing high performance of certain tasks. Further, it shows that

processor-intensive applications can be run at lower throttling levels on a modified kernel

through selective throttling.

INTERPRETATION

My work has shown that system performance can be improved in the following

ways: IO-Bound tasks, such as games and DVD playback, can be executed in near

realtime even when the system is throttled and that fan noise can be limited for

multimedia applications that generally create a large amount of heat.

One limitation to my work is the limited applicability it might have to real

workloads. My tests were limited to a narrow application field and they do not show how

well selective throttling would perform in critical situations. Also, I have not tested

throttling levels between maximum and minimum throttling which would most likely

 20

provide many opportunities for optimization. Another major limitation is the limited

likeliness that my modifications will be adopted into the mainstream Linux kernel. Even

though this is the case, however, it is possible that independent vendors, such as portable

electronics manufacturers, would see value in my work and adopt it.

RECOMMENDATIONS

There is much room for future research. One thing that could be done is to

automate the process of throttling and dethrottling certain programs. Currently, to change

the throttling level of a task, a user must explicitly set the throttling level of that task. I

believe that this process is too reliant on the end-user and can be improved so that user

input is minimized. A solution might be to use the existing priority levels to infer what

type of throttling to use for a task. An input-bound task such as a game or movie would

need to be responsive and would require to be throttled lower than a CPU-bound task

such as a compile or download. Another improvement would be the use of feedback to

change continuously tasks’ throttling levels to optimize system performance with respect

to operating temperature.

I believe that my work has paved the way for more sophisticated temperature-

aware scheduling algorithms which can be generalized to apply to a wider variety of

applications such as the military and e-commerce sectors.

 21

SOURCES CITED

[1] Aas, J. (Feb. 17, 2005). Understanding the Linux 2.6.8.1 CPU scheduler.

 Retrieved Oct. 16, 2005 from http://josh.trancesoftware.com/linux/

[2] Abdelzaher, T.F., Lu, C. Schedulability analysis and utilization bounds for highly

 scalable real-time services. Presented at Proceedings of the Seventh Real-Time

 Technology and Applications Symposium (2001).

[3] Barroso, L.A., Dean, J., Hölzle, Urs. Web search for a planet: the Google cluster

 architecture. IEEE Micro, March/April, 2003.

[4] Bellosa, F. OS-directed throttling of processor activity for dynamic power

 management. (1999). Technical Report TR-I4-99-03, Department of Computer

 Science, University of Erlangen.

[5] Bovet, B.P., Cesati, M. Understanding the linux kernel, third edition. O’Reilly

 Media Inc. Sebastopol, CA (2005).

[6] Chen., Yiyu, Das, A., Qin, W., et al. Managing server energy and operational costs in

 hosting centers. Presented at Proceedings of ACM SIGMETRICS International

 Conference on Measurement and Modeling of Computer Systems, 2005.

[7] Dadvar, P., Skadron, K. Potential thermal security risks. 21st IEEE SEMI-THERM

 Symposium, 2005.

[8] Gleason, S. Power aware operating systems: task-specific CPU throttling. Retrieved

 Nov. 23, 2005 from http://oldwww.cs.pitt.edu/PARTS/implementation/sunny-

 paos.pdf

 22

http://josh.trancesoftware.com/linux/
http://oldwww.cs.pitt.edu/PARTS/implementation/sunny-paos.pdf
http://oldwww.cs.pitt.edu/PARTS/implementation/sunny-paos.pdf

[9] Heo, S., Barr, K., Asanović, K. Reducing power density through activity

 migration. Presented at The International Symposium on Low Power

 Electronics and Design (ISLPED), 2003.

[10] Intel Corporation. IA-32 Intel® architecture software developer’s manual,

 volume 3: System programming guide. Denver, CO (2005).

[11] Intel Corporation. Intel centrino mobile technology. Intel Technology

 Journal, Volume 7. May 2003. Denver, CO (2005).

[12] Love, R. Linux kernel development, second edition. Novell Press.

 Indianapolis, IN (2005).

[13] Powell, M.., Gomaa, M., Vijaykumar, T.N. Heat-and-run: Leveraging SMT and

 CMP to manage power density through the operating system. Presented at

 The Tenth International Conference on Architectural Support for

 Programming Languages and Operating Systems, 2004.

[14] Sheynkin, Y., Jung, M., Yoo, P., Schulsinger, D., Komaroff, E. Increase in scrotal

 temperature in laptop computer users. Human Reproduction (Advance

 Access), Dec. 2004.

[15] Weissel, A., Bellosa, F. Dynamic thermal management for distributed systems.

 Presented at The Proceedings of the First Workshop on Temperature-

 Aware Computer Systems, 2004.

 23

BIBLIOGRAPHY

Aas, J. (Feb. 17, 2005). Understanding the Linux 2.6.8.1 CPU scheduler. Retrieved Oct.

 16, 2005 from http://josh.trancesoftware.com/linux/

Abdelzaher, T.F., Lu, C. Schedulability analysis and utilization bounds for highly

 scalable real-time services. Presented at Proceedings of the Seventh Real-Time

 Technology and Applications Symposium (2001).

Barroso, L.A., Dean, J., Hölzle, Urs. Web search for a planet: the Google cluster

 architecture. IEEE Micro, March/April, 2003.

Bellosa, F. OS-directed throttling of processor activity for dynamic power management.

 (1999). Technical Report TR-I4-99-03, Department of Computer Science,

 University of Erlangen.

Bovet, B.P., Cesati, M. (2005). Understanding the linux kernel, third edition. Sebastopol,

 CA: O’Reilly Media Inc.

Chen., Yiyu, Das, A., Qin, W., et al. Managing server energy and operational costs in

 hosting centers. Presented at Proceedings of ACM SIGMETRICS International

 Conference on Measurement and Modeling of Computer Systems, 2005.

Corbet, J., Rubini, A., Kroah-Hartman, G. (2005). Linux device drivers, third edition.

 Sebastopol, CA: O’Reilly Media, Inc.

Dadvar, P., Skadron, K. Potential thermal security risks. 21st IEEE SEMI-THERM

 Symposium, 2005.

Gleason, S. Power aware operating systems: task-specific CPU throttling. Retrieved

 Nov. 23, 2005 from http://oldwww.cs.pitt.edu/PARTS/implementation/sunny-

 paos.pdf

 24

http://josh.trancesoftware.com/linux/
http://oldwww.cs.pitt.edu/PARTS/implementation/sunny-paos.pdf
http://oldwww.cs.pitt.edu/PARTS/implementation/sunny-paos.pdf

Heo, S., Barr, K., Asanović, K. Reducing power density through activity migration.

 Presented at The International Symposium on Low Power Electronics and Design

 (ISLPED), 2003.

Intel Corporation. IA-32 Intel® architecture software developer’s manual, volume 3:

 System programming guide. Denver, CO (2005).

Intel Corporation. Intel centrino mobile technology. Intel Technology Journal, Volume 7.

 May 2003. Denver, CO (2005).

Love, R. (2005). Linux kernel development, second edition.. Indianapolis, IN: Novell

 Press.

Powell, M.., Gomaa, M., Vijaykumar, T.N. Heat-and-run: Leveraging SMT and CMP to

 manage power density through the operating system. Presented at The Tenth

 International Conference on Architectural Support for Programming Languages

 and Operating Systems, 2004.

Sheynkin, Y., Jung, M., Yoo, P., Schulsinger, D., Komaroff, E. Increase in scrotal

 temperature in laptop computer users. Human Reproduction (Advance Access),

 Dec. 2004.

Weissel, A., Bellosa, F. Dynamic thermal management for distributed systems. Presented

 at The Proceedings of the First Workshop on Temperature-Aware Computer

 Systems, 2004.

 25

