
Supporting Higher-Order Controllers for Magnetic Bearings
in a High-Speed, Real-Time Platform Using

General-Purpose Computers ∗∗∗∗

Kevin Skadron1, Marty Humphrey1, Bin Huang1, Edgar Hilton2, Jihao Luo3, and Paul Allaire1

1University of Virginia, Charlottesville, VA 22904
2FSM Labs, 3466 Hyde Park Way, Tallahassee, FL 32309

3AFS Trinity Power, Inc., Charlottesville, VA 22901

∗ This work supported in part with a grant from AFS Trinity Power.

Abstract

One approach for implementing a control system for a
magnetic bearing suspension system for high-speed
rotating machinery is to use embedded DSP boards.Yet
control systems based on DSP boards often require
specialized programming and development tools, lack
interoperability with standardized architectures and tools,
and lack flexibility when computational requirements
change. For reasons of cost and upgrade capabilities, it is
instead desirable to implement these control systems with
general-purpose, commodity PCs. Achieving adequate
computational throughput is a major challenge however,
even with the most advanced computer systems available
today. This paper describes several improvements we make
on a previous, uniprocessor version of our real-time
controls platform in order to support more
computationally-intensive, higher-order magnetic bearing
controllers. First, the controls platform is made
multiprocessor-capable and gain-scheduled controllers are
computed asynchronously on the second processor in the
dual-CPU system. Second, new floating-point computation
instructions supported by the Pentium III and Pentium 4
are used to speed up the matrix calculation. Finally, other
performance-tuning techniques are used in combination
with increases in commodity processor computing speeds
to optimize the controller. The results show a tremendous
improvement in the overall throughput of this real time
control platform, without sacrificing predictability. This
improvement makes it feasible to implement these high-
order magnetic bearing controllers which in turn push the
performance of rotating machinery to a higher level.

1. Introduction

One important application of magnetic bearing
suspension is in the area of high-speed rotating
machinery. Unfortunately, magnetic bearing
suspension systems are open loop unstable, making

feedback controllers necessary to achieve stability.
Improvements in control design are improving the
system performance in the sense of disturbance
rejection, damping, and robustness for use in high-
speed rotating machinery. Yet these modern control
techniques frequently result in high-order state space
controllers, which, to make the problem worse, often
require a high sampling rate to implement them.
Furthermore, for reasons of cost and upgrade
capabilities, it is desirable to implement these control
systems with general-purpose, commodity PCs.

The first phase of this project successfully used
RT-Linux and a commodity PC to implement a
controller for a high-speed magnetic bearing
[1][2][3]. A 700 MHz Intel Pentium III with a single
A/D card with 5 channels and a single D/A card with
5 channels was used to implement a Mu-Synthesis
controller and an anti-imbalance controller. A general
graphical user interface (GUI) was implemented to
allow controls engineers to both test new controls
algorithms and view graphical output from running
systems. Most importantly, RT-Linux provided the
predictabilty necessary to implement a robust
controller, at a significantly reduced hardware cost.

The second phase of the project is significantly
more challenging. The plant will be controlled via a
44th order LPV (Linear Parameter Varying) controller
running at 40KHz, which easily overwhelms the
hardware capacity of the computer used in the first
phase and stresses the limits of even the most
advanced computer systems available today. Three
approaches are used to meet the computational
requirements of the LPV controller:

1. Parallelization of the LPV controller (and use of
a multiprocessor version of RT-Linux). The core
controller computations (output and state update)



2

saturate the processor bandwidth. In addition, the
controller matrices must be updated periodically to
adjust to the rotor speed. Fortunately, this
interpolation task, although computationally
expensive, is not a real-time task and can be
offloaded to a second processor. Dual-processor
computer systems are now only incrementally more
expensive than conventional single-processor
systems. A key question, however, is whether the
matrix can be communicated between processors with
sufficient speed and without causing undue
contention for the system bus.
2. Use of new processor instructions. The
“Streaming SIMD” (SSE) instructions in the Pentium
III and Pentium 4 processors support “mini-vector”
operations in which the 128-bit floating-point
hardware is used to perform 4 single-precision (32-
bit) operations in parallel. Since single-precision
provides sufficient accuracy for our controller, this
permits up to a four-fold speedup in controller
computation. This peak computation rate is
moderated, however, by the overhead of setting up
the packed data format in SSE registers and
subsequently extracting results back into conventional
registers.
3. Use of higher-speed commodity processors and
appropriate I/O hardware. The Pentium 4
processor provides almost twice the clock rate and
hence twice the peak execution rate of the Pentium
III. However, speed alone is not sufficient without
suitable hardware for A/D and D/A conversions.

This paper describes the implementation of
these three approaches and their effectiveness. The
next section describes the energy-storage flywheel
that forms the basis for our test system. Section 3
characterizes the computational demands of the
control application. Using this data, Section 4 then
shows the benefits of spreading the tasks over a multi-
processor and of using mini-vector instructions.
Section 5 discusses I/O considerations and Section 6
concludes the paper.

2. Control Environment

2.1. Control Requirements

Control of complex modern systems usually
involves the design and implementation of several
independent tasks that must process data with varying
degrees of logical and temporal importance. For an
active magnetic bearing (AMB) system, we have
identified the following tasks:

• Five degree of freedom suspension controller,
runing at a fixed periodic rate, usually in the
order of 25-200µs, providing the appropriate
signals necessary to suspend the rotor. This task
is critical—missing one period can have
catastrophic consequences.

• Spin rate measuring task, triggered once per
revolution, used to calculate the spin rate of the
rotor. This task also divides the period of one
rotation into 256 scheduling points and schedules
the imbalance controller to be executed at each
of these scheduling points. The accuracy of the
spin rate calculated by this task makes this task
very intolerant to temporal error.

• Imbalance controller, executed 256 times per
revolution, used to produce a synchronous force
used to counteract the effect of rotor imbalance.
Slight temporal incorrectness is allowed.

• Dta transfer and data plotting tasks, sending
data to disk, screen, or other devices. These tasks
allow a relatively large temporal error.

• Network transfer tasks, which transfer data and
commands to and from other computers. These
tasks allow a larger temporal error and data loss.
For safety reasons, especially, these networking
tasks are critical for the safety of the operator so
that the AMB can be operated and monitored
from a remote location.

• Miscellaneous tasks, such as screen refresh, shell
programs, computational engines (Matlab,
Scilab, MuPAD, Mathematica, MathCAD, etc.).
There is no temporal limitations on these tasks.

The success of the AMB is heavily dependent
on the proper design of the suspension controller
(task 1) and on the predictable execution of the
controller. This is, of course, due to the inherent
open loop instability of all AMBs. The purpose of the
controller is to stabilize the closed loop system,
meaning that the rotor will be suspended within the
AMB with the necessary stiffness and damping. All
the other tasks listed above act to provide a higher
level support or control of the AMB, and are also
very important in their own right. These too must also
be executed in a predictable fashion, although,
depending on the task, some tasks will allow for
varying degrees of temporal predictability.

2.2. RTiC-Lab

The Open Source movement and Linux have
lead to the birth of a hard real time operating system
which is entirely based on Linux. This hard real time
Linux, or RTLinux, is developed by FSMLabs, Inc.



3

and uses many of the strengths of Linux without
interfering with the general Linux development.

RTLinux works by introducing a virtual
machine in between the general purpose operating
system (GPOS) of Linux and the underlying
hardware, as shown in Figure 1. This virtual machine
intercepts all interrupts being generated by the
underlying hardware and passes these as soft
interrupts to the GPOS only when real-time
scheduling permits. Within RTLinux, a priority
based scheduler identifies a group of hard real time
tasks for scheduling. One of these real time tasks is a
special task which is the combination of the full
Linux GPOS and its underlying user tasks. Thus, the
Linux GPOS cannot interact with any of the higher
priority tasks unless the hard real time developer
explicitly asks for this interaction. The end effect is
that for a PC, the worst case interrupt latency and
jitter are 15 and 30µs, respectively. The resulting
latencies are near those of the underlying hardware.

Figure 1: RTLinux Architecture

Control of AMBs requires an exhaustive tuning
and characterization process during the early design
stages. The Real Time Controls Laboratory, or RTiC-
Lab, is software that uses the strengths of Linux and
RTLinux, and is used not only during these early
stages of controller design and plant characterization,
but also during subsequent monitoring and control.
Designed and tested at the University of Virginia's
Rotating Machinery and Controls Laboratory, it
provides an environment in which to implement
controller algorithms while providing real time access
to controller states, plant outputs, controller actions,
controller parameters, and other controller
information. All this information can be plotted and
filtered—via user defined filters—in soft real time.
The user can further filter the necessary data either in
soft real time or post mortem. Most importantly,
controller parameters can be updated in real time
through a user-defined graphical user interface.

RTiC-Lab has two very important features not
found in any other real time controls implementation
platforms. First. RTiC-Lab is and will be—as with its
underlying Linux and RTLinux platforms—Open
Source Software, released and protected under the
Free Software Foundation's General Public License.
That is, users of RTiC-Lab can download the source
code, use it, enhance it, and share it with their
colleagues. Second, control using RTiC-Lab can be
distributed over a common network of personal
computers. That is, RTiC-Lab can be used over a
common 10/100 Mb Ethernet network. Note,
however, that if the controlled plant is both
computationally simple and safe enough to be
handled exclusively in a single computer, then RTiC-
Lab can collapse into one single computer to control
the entire plant.

An AMB example of RTiC-Lab is shown in
Figure 2. A devoted display or host computer (DHC)
is networked via 10 or 100 Mb/s TCP/IP network to a
set of devoted controls computers (DCCs). The
controls engineer sits at the DHC (which may or may
not be at the same room or even building as the
DCCs) and coordinates, codes, and synchronizes all
DCCs from the DHC. Run-time parameters, such as
sampling rate, startup delay, and networking
parameters, can be set for each of the DCCs from the
DHC. Each of the DCCs is a minimal computer
system having no keyboard, harddrive, mouse, video
card, or monitor. They only have the necessary I/O
cards which are used to interface to the plant
hardware and the necessary ethernet card to
communicate with the DHC.

Figure 2: Example Configuration of RTiC-Lab

In accordance with the RT-Linux paradigm
(Figure 1), RTiC-Lab separates the AMB controller
into the hard real time or “embedded” part and the



4

soft real time or “reactive” part. The embedded part
of the controller (resident exclusively in the DCCs)
includes all tasks having hard timing constraints:
1) the AMB suspension controller(s) (both periodic
and event driven), 2) a software watchdog, and 3) a
set of interrupt service routines that are used for
communication with the reactive task. The reactive
task (resident in both DHC and DCCs) is a multi-
threaded, user-space application which runs within
the Linux kernel, performing the following functions:
1) communication with the embedded tasks via RT-
FIFOs, 2) display of a graphical user interface for the
user, 3) error checking of the user's controller code,
4) sending parameter updates to the embedded tasks
as requested by user, and 5) sending data to either
screen, file, or printer.

3. Characterizing the Computational
Requirements of the LPV Controller

On a 733 MHz Intel Pentium-III with a 133
MHz bus, the measured time for one iteration of the
44th order LPV control computation was 100.21µs,
well short of the 25µs needed to attain an update rate
of 40 KHz. Various computing bottlenecks might be
the source of the slow execution: sheer complexity of
the algorithm, caches misses (which stall computation
while the data is fetched from memory), TLB misses,
branch mispredictions, etc.

To characterize the source of the delay, we
needed to be able to accurately count events like
cache misses for a known number of iterations.
While the Pentium-III does provide built-in
performance counters, they can be difficult to use for
obtaining precise event counts. Instead, we found
that the easiest way to obtain our measurements was
to use the SimpleScalar simulator [4] that is widely
used in microprocessor-design research.
SimpleScalar includes a simulator that models the
clock-cycle by clock-cycle flow of instructions
through the processor pipelines. We configured the
simulator to approximately imitate a Pentium-III and
to only produce statistics for a single iteration of the
control algorithm.

We found that for the 16 KB data caches of the
Pentium-III, the control algorithm experiences a
negligible number of cache misses, TLB misses, or
branch mispredictions—see Table 1. Instead, the
bottleneck is sheer computational throughput: one
iteration of the controller constitutes approximately
128,000 assembly-language instructions. Even if the
controller can operate at the Pentium-III’s peak
sustained bandwidth of three instructions-per-cycle
(IPC), one iteration would take 42,667 clock cycles,

which can only be accomplished in 25µs if the
processor has a clock rate of 1.7 GHz. Based on our
actual measurement of 100.21µs, the controller is
only able to attain an average IPC rate of 1.4.

Instructions 128,423
First-level instruction-cache misses 340
First-level data-cache misses 1750
Second-level (unified) cache misses 2
TLB misses 0
Branch mispredictions 3

Table 1: Event counts in the simulated Pentium-III
for a single iteration of the control algorithm.

The recently introduced Pentium-4 is now
available at such clock rates, although sustained IPCs
of 3 instructions are rare even in regular, loop-
oriented code like the controller. Upgrading to a
Pentium-4 with a higher clock speed clearly helps,
but other methods are needed to reduce the
computational complexity. The remainder of this
paper shows how we use a second CPU and the
Pentium family’s multimedia or SSE instructions to
reduce the instruction bandwidth. These techniques
allow us to attain the desired 25µs time per iteration,
and the general techniques we describe are useful not
only for our specific control application but for any
real-time computing workload that requires high-
speed computation.

4. Meeting the Computational
Requirements of the LPV Controller

4.1. Multi-Processing Techniques

In theory, a commodity multiprocessor
executing RTLinux provides the necessary computing
capability by which to achieve the target execution
frequency of higher-order controllers. However, it
can be challenging to determine which parts of a
sequential code can be executed in parallel such that
the computation and communication occur prior to
the hard real-time deadlines.

The nature of the LPV controller, from the
perspective of its computational requirements, is that
a linear interpolation of the various matrices in the
controller parameters must occur periodically, based
on the speed of the plant. That is, the speed of the
plant rotation is used to determine the correct
controller parameters, based on a linear combination
of the parameters at the low end of the operating
environment and on the high end of the operating
environment. The measurement of 100.21µs



5

discussed in Section 3 is based on computing the
interpolationeveryiteration of the control algorithm.
However, because the system does not experience
large changes of speed from one iteration to the next,
this interpolation does not have to occur every
iteration, and can be moved to a second processor and
still achieve real-time correctness guarantees.

Posix real-time threads were used in RTLinux
to move the interpolation computation to a second
processor in the dual-processor PC. This second
processor was previously unused by the real-time
controls system. By extracting the interpolation from
the main controller thread, we were able to reduce the
duration of the main controller thread to 37.91µs. A
double-buffering approach is used to ensure that that
main controller thread always has a recent version of
the interpolated matrices.

While this reduction is a significant step toward
our goal of 25µs, there are still open issues with
regard to the parallelization of the LPV controller.
Even while repeatedly computing the interpolation,
there is spare capacity on the second processor.
Intuitively, as control algorithms become more
complex and higher-order, it will be necessary to
exploit some of this excess capacity. The fundamental
challenge will be to precisely determine exactly how
much capacity is available, and how to ensure the
predictable communication between the processors
given such tight deadlines. This is an area of future
research for both us and the RTLinux community.

4.2. Mini-Vector Instructions

The Intel Pentium III processor family,
introduced in February 1999, contains a new set of
instructions: Streaming SIMD (Single Instruction,
Multiple Data) Extensions (SSE). SSE allows a
single microprocessor to perform multiple arithmetic
operations in parallel, as if it were a miniature vector
machine. SSE is similar to the previously introduced
MMX instructions in that they share the concept of
SIMD, but they differ in the data types they handle.
MMX instructions provide SIMD for integers, while
SSE instructions provide SIMD for single-precision
floating-point numbers. MMX instructions operate on
two 32-bit integers, while SSE instructions operate on
four 32-bit floats simultaneously.

An example use of the “mulps” SSE operation is
shown in Figure 4. Before the processor executes the
“mulps”, the 4 32-bit floats must be loaded into the
two registers,xmm0 and xmm1.Conceptually, in a
single time step, the 4 32-bit numbers inxmm0are
multiplied in parallel with the corresponding 32-bit
numbers inxmm1,with the resulting 4 32-bit numbers

being placed back intoxmm0. It is important to note
that if the resulting numbers are to be used invidually
(i.e., not in subsequent SSE instructions), each 32-bit
value must be “unpacked” from the special-purpose
xmm0 register, which requires a small amount of
time.

0.5 0.4 0.3 0.2

0.1 0.3 0.3 0.1

0.05 0.12 0.09 0.02

Figure 3: Example of the "mulps xmm0,
xmm1" instruction

However, there are limitations to the use of the
SSE instructions. In theory, the use of the SSE
instructions result in a 4x speedup. However, packing
and unpacking the data into and out of the XMM
registers significantly reduces the actual speedup.
Also, at this time, compilers do not transparently
insert the appropriate SSE instructions, but rather still
rely on their non-SSE counterparts. Exploiting small-
scale SIMD parallelism is an active area of
development in the compiler community.

Therefore, to use the SSE instructions in the LPV
code, we had to manually insert the assembler
routines into our C source code. This use of
assembly-language instructions currently restricts the
upgrade path to the family of Pentium-III compatible
processors, but permits us to demonstrate the value of
SIMD instructions for high-speed, real-time control.
As commercial compilers begin capitalizing on SIMD
behavior, the use of assembly will no longer be
necessary.

To use the SSE instructions required us to
determine the best candidates for instruction-level
parallelization, and to manage the contents of the SSE
registers by hand. After careful instrumentation of the
LPV controller code, we focused on a small number
of the most appropriate statements from the C code,
and replaced approximately 5 C statements with 300
hand-coded assembly routines and validated the
resulting operation. The modified controller showed
that the dual-processor version of the controller with
SSE routines executed in 27.09µs. We believe that
this version of the multiprocessor, SSE-enabled
version of the LPV controller will enable us to meet
our timing requirement of 25µs with only modest
improvements of raw hardware capacity (certainly the

xmm0

xmm1

xmm0



6

Pentium 4, available in clock speeds of 1.4-2.0 GHz,
will more than suffice) and the choice of proper
hardware for A/D and D/A conversions, the subject of
the next section.

5. I/O Requirements

While improved computational throughput is
necessary to meet our goals, it is not the
computational limitations that cause the greatest
limitation, but rather I/O. For example, using ISA
A/D and D/A cards, a system executing a five degree
of freedom control algorithm will spend 55µs on I/O.
If output conversion (D/A) of an already-computed
result is overlapped with the next iteration of the
controller computation (this pipelining of conversion
and computation is supported by RTiC-Lab), the
system still must spend 30µs on I/O. For our 8kHz
(125 µs), phase-one controller, this was accepetable,
but for a controller running at 25µs, even the time
spend on mere A/D conversion is greater than our
entire desired time per iteration.

The chief problem is that ISA cards take
approximately 5 µs to perform each conversion.
Faster ISA cards can be purchased that will reduce
the conversion time to under 1µs. Unfortunately,
ISA have the further problem that they hold the
system bus for extended periods of time and so even
the faster ISA cards are not suitable for high-speed,
real-time control.

PCI cards for A/D and D/A are now widely
available and are much better suited for such
applications. They provide throughput, in bytes, that
is equivalent to the bus frequency times two divided
by the number of cards in the bus. For a 100MHz
bus, this corresponds to a maximum theoretical
sustained transfer rate of 200 MB/s for one card, 100
MB/s for two cards, etc. Furthermore, PCI cards hold
the bus for only fractions of a microsecond each time
that they are accessed.

The final part of our solution, then is simply the
choice of PCI cards for A/D and D/A that have the
sufficiently fast conversion latency. If A/D is now
reduced to 6µs and RTiC-Lab pipelines D/A to be
overlapped with the subsequent iteration, we are left
with 19 µs per iteration that can be dedicated to
computation—easily sufficient in conjunction with
the use of the fast Pentium4 processors.

6. Conclusion

This paper shows that high-speed active
magnetic bearings can be supported by commodity
PCs, but that the use of multiple processors, the use

of “mini-vector” SIMD instructions now supported by
most microprocessors, and intelligent choice of I/O
hardware are essential components for extracting the
best performance from the real-time controls platform
and maximizing the sophistication of magnetic
bearing control that these systems can support.

References

[1] E. Hilton, M. Humphrey, J.A. Stankovic, and P.
Allaire. “Design of an Open Source, Hard Real-
Time Controls Implementation Platform for
Active Magnetic Bearings.” InProceedings of
the Seventh International Symposium on
Magnetic Suspension Technology,Zurich,
Switzerland, August2000.

[2] E. Hilton, V. Yodaiken, M. Humphrey, and P.
Allaire. “The Real Time Controls Laboratory and
Open Source, Hard Real Time Controls
Implementation Platform.” InProceedings of the
Second Real-Time Linux Workshop, Orlando,
Florida, November 2000.

[3] M. Humphrey, E. Hilton, and P.
Allaire.“Experiences using RT-Linux to
Implement a Controlller for a High Speed
Magnetic Bearing System.” inProceedings of the
5th IEEE Real-Time Technology and
Applications Symposium”, Vancouver, Canada,
June 1999.

[4] D.C. Burger and T.M. Austin. “The
SimpleScalar Tool Set, Version 2.0.”Computer
Architecture News, 25(3):13-25, June 1997.


