
The Use of Mini-Vector Instructions for Implementing
High-Speed Feedback Controllers on General-Purpose

Computers

Kevin Skadron1, Marty Humphrey1, Bin Huang2, Edgar Hilton3, Jihao Luo4, and Paul Allaire5

1Dept. of Computer Science, University of Virginia, Charlottesville, VA  22904
2Dept. of Electical and Computer Engineering, University of Virginia, Charlottesville, VA  22904

3FSM Labs, 3466 Hyde Park Way, Tallahassee, FL 32309
4AFS Trinity Power, Inc., Charlottesville, VA 22901

5Dept. of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA  22904

ABSTRACT
This paper describes the use of Intel Pentium-III SSE
instructions for high-order control computations in a high-spin-
rate flywheel.   This application is representative of many control
environments that require both high performance and real-time
guarantees.  We find that the SSE instructions are able to provide
a dramatic increase in performance but that they are difficult to
use unless the programmer is provided with a simple API.
Unfortunately, the resulting abstraction means that some of the
potential gains are lost to function-call overhead, and use of the
API still requires substantial interaction between the controls
engineer and the experienced SSE programmer. The use of SSE
entails a tension between performance and ease of use that is not
easily resolved.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Active magnetic bearing, flywheel, vector instructions, API,
multi-threaded execution.

1. INTRODUCTION
Recent advances in the cost and speed of general-purpose
microprocessors suggest that it is time to reconsider whether
digital signal processors (DSPs) can be replaced by general-
purpose (multi-)processors (GPPs) for many streaming-media
and otherwise high-capacity numerical computations. GPPs offer
many advantages, including native support for floating-point
execution, greater flexibility, easier programmability, greater
portability from generation to generation, a huge menu of
available commodity software products, and general ease of use
for non computer scientists. Unfortunately, there are also many
unresolved issues, centering on whether GPPs have the raw
computational capacity, can meet the stringent timing
constraints, and can meet the predictability requirements of
applications for which DSPs were previously considered to be
the only solution

This paper is not a comparison of DSP and GPP approaches, but
rather describes experiences from designing and implementing a
testbed based on GPPs for developing high-speed, computational
feedback controllers and the value of so-called mini-vector
instructions for this purpose.  Our application for feedback
control is real-time control of active magnetic bearings (AMBs)
in a high-speed, energy-storage flywheel, and the purpose of the
testbed is to provide a platform in which new and hopefully more
accurate controllers can be evaluated.  This testbed is designed
for use by controls engineers with limited depth of knowledge in
computer science and computer architecture and hence the
emphasis is not only on performance and predictability, but also
on ease of use.  The system is prototypical of the control and
system-design requirements in many types of rotating
machinery.

The first phase of this project focused on developing an RT-
Linux [1] based, real-time controls-testing environment called
RTiC-Lab (see Section 2.2) for this testbed, and successfully
satisfied real-time, predictability, and capacity concerns [2,3,4].
Since the emphasis was on the development of RTiC-Lab, only
controllers with modest computational demands (small
controllers with 4 KHz update rates) were employed.

This paper reports on the second phase of the project, which
seeks to improve the overall performance of the testbed to study
control for AMBs in high-speed environments like the flywheel,
where greater speeds provide greater energy-storage capabilities.
Both the computational requirements of the controller (i.e., what
is done during each iteration) and the frequency of the control
iterations (40,000 updates/sec., i.e., 40 KHz) are significantly
increased, easily overwhelming the hardware capacity of the
computer used in the first phase and surpassing the limits of even
the most advanced commodity PC available today.
Measurements on a 700 MHz Intel Pentium-III (Coppermine)
with a 133 MHz bus using gcc 3.1 -O3 showed that on average,
each iteration of the controller took 73.30 µs, much longer than
the 25 µs needed to attain an update rate of 40 KHz.  One
solution to this speed problem is to simply ride the speed curve,
as processors double in speed every 1.5 years.  Yet controls
engineers desire improved throughput today, and techniques that
can provide speedups now, while still riding the speed curve,
should certainly be explored.  In addition, our goal of 40 KHz is
only an intermediate goal, as the controls engineers will continue

In Proceedings of the 3rd Workshop on Media and Stream Processors, Dec.  2001, held in conjunction with the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, Austin, TX.



to design more sophisticated and demanding algorithms that will
require continuing improvements in computational speed.

Because the controllers are based primarily on matrix operations
and require only single-precision floating-point capabilities, the
mini-vector instructions now prevalent in many instruction-set
architectures are a natural vehicle for obtaining improved
throughput.  These instructions partition existing high-precision
hardware to perform multiple lower-precision operations in
parallel—similar to vector operations provided by some
supercomputer.  For example, with minimal extra overhead,
quad-precision floating-point hardware can be used to perform
four single-precision operations.

In particular, we use the Streaming-SIMD (SSE) instructions [5]
for floating-point operations provided by the Intel Pentium III
and Pentium 4 processors to achieve nearly 2x speedups on the
key section of the controller. As we describe in this paper, SSE
technology is an important building block upon which we were
able to meet the computational challenges, but the benefits of
SSE were reduced by a number of issues with its suitability for
use in the testbed as well as with its suitability for use by non-
expert programmers.

An example use of the “mulps” SSE operation is shown in
Figure 1. Before the processor executes the “mulps”, the 4 32-bit
floats must be loaded into the two registers, xmm0 and xmm1.
Then the four 32-bit numbers in xmm0 are multiplied in parallel
with the corresponding 32-bit numbers in xmm1, with the
resulting four 32-bit numbers being placed back into xmm0. It is
important to note that if the resulting numbers are to be used
individually (i.e., not in subsequent SSE instruction), each 32-bit
value must be “unpacked” from the special-purpose xmm0
register, which requires one or more explicit instructions
depending on the values’ next use.

0.5 0.4 0.3 0.2

0.1 0.3 0.3 0.1

0.05 0.12 0.09 0.02

Figure 1: Example of the "mulps xmm0, xmm1" instruction

The next section describes the energy-storage flywheel and
controls testbed and its computational requirements.  Section 3
describes the use of SSE to ultimately solve the computational
challenges, and Section 4 discusses some of the issues that arise
when trying to use SSE instructions in an environment like the
testbed described here.

2. CONTROL ENVIRONMENT
Before the use of SSE on the controller can be described, it is
important to briefly describe the computational environment in
which the controller executes. Section 2.1 briefly describes the
energy-storage flywheel and the testbed system.  Section 2.2
introduces the RT-Linux-based software environment we have
constructed around it, called RTiC-Lab.  Section 2.3 describes
the characterization of the controller application in order to more
concretely describe the challenges, and Section 2.4 briefly
describes how we parallelized the controller in order to reduce,
but not solve, the computational challenges.

2.1.  Testbed Overview
Energy-storage flywheels offer compelling advantages as backup
energy sources and as replacements for batteries.  They are
particularly attractive for environments where low weight and
long operating life are important, like satellites.  Indeed, in
satellites, flywheels have the additional advantage that they can
also replace some of the gyroscopes used for navigation and
orientation.

To avoid the parasitic effects on energy and the maintenance
problems that mechanical ball bearings incur, the energy-storage
flywheel under study at the University of Virginia Rotating
Machinery and Controls (ROMAC) Laboratory uses active
magnetic bearings (AMBs) [6], which are simply electromagnets
situated around the flywheel housing.  The bearing currents
produce a magnetic field that controls the position and flexion of
the flywheel shaft.

Control of the AMB currents is achieved with a five-degree-of-
freedom state-space controller running at a fixed periodic rate
that corresponds to multiple current updates per revolution of the
flywheel [7], providing the appropriate signals necessary to
suspend the rotor and counteract the effects of rotor imbalance
and any disturbances.  The use of a state-space controller entails
the manipulation of large matrices that embody the current state
of the system and corresponding control elements. The state-
space controller also requires a very simple spin-rate-measuring
task to calculate the current rotational speed of the rotor.  This
rate is used to update the controller matrices (see Section 2.4).
Both tasks (spin rate and controller computations) are presumed
to be critical—missing one period can allow sufficient deviation
in the flywheel’s position for collision with the housing—hence
the use of RT-Linux.  Even in the presence of mechanical
backup bearings, at high rotational speeds the flywheel stores so
much energy that such collisions can be catastrophic, at best
leading to large energy losses and at worst leading to explosive
destruction of the system (e.g., the satellite).

Accurate control of the flywheel is important not only to avoid
catastrophic failure, but also to minimize the need for
adjustments in its position and consequent loss of stored energy.
The development of feedback controllers—especially state-space
controllers for open-loop unstable systems like the bearing
currents—requires an exhaustive tuning and characterization
process during the early design stages. This imposes an
additional set of tasks into the control system, namely data
transfer so that the control engineer can observe and tune the
performance of the current control design.  More detail about the

xmm0

xmm1

xmm0



overall control system can be found in [8], but the exact nature
of the control algorithms remains confidential.

To deal with these difficulties, ROMAC is developing a high-
performance testbed for controller design.  The goal is to provide
an environment in which a controls engineer with little
programming experience can safely test new controllers at full
speed and evaluate their accuracy.  An overview of the flywheel
in this test system appears in Figure 2.  This figure shows the
flywheel and bearings in a typical configuration.  The critical
task is control of the radial bearings, especially since the rotors
under study are not rigid at high speeds. Axial motion, on the
other hand, is minimal and requires minimal computational
effort.  Note that the computational infrastructure and techniques
developed for this testbed are easily ported to other systems of
rotating machinery, especially those using AMBs.

2.2.  RTiC-Lab
The open source movement and Linux have led to the birth of a
hard real time operating system which is entirely based on Linux
but which does not interfere with its development. RT-Linux  [1]
works by introducing a virtual machine between Linux and the
underlying hardware, intercepting all interrupts generated by the
underlying hardware and passing these as soft interrupts to Linux
only when real-time scheduling permits.  This is shown in
Figure 3.  Within RT-Linux, a priority-based scheduler identifies
a group of hard real time tasks for scheduling. One of these real-
time  tasks is a  special  task  which is  the combination  of the
full Linux GPOS and its underlying user tasks. Thus, the Linux
GPOS cannot interact with any of the higher priority tasks unless
the hard real time developer explicitly asks for this interaction.

The Real Time Controls Laboratory, or RTiC-Lab [2,3,4], is
software that builds on RT-Linux and is used not only during
these early stages of controller design and plant characterization,
but also during subsequent monitoring and control. Designed and
tested at ROMAC, it provides an environment in which to
implement controller algorithms while providing real time access
to controller states, plant outputs, controller actions, controller
parameters, and other controller information. All this information
can be plotted and filtered in soft real time. The user can further
filter data in a post-mortem fashion. Most importantly, controller
parameters can be updated in real time through a user-defined
graphical user interface. The desire to provide this “plug-and-
play”-type capability in which controls engineers (not computer
scientists) insert their new controllers has a direct consequence to
the use of SSE which we discuss in Section 4.  The organization
of a testbed using RTiC-Lab is shown in Figure 2, with RTiC-
Lab running on the host computer.  When using RTiC-Lab,
depending on computational-throughput and safety requirements,
the controllers may also run on the host computer or on devoted
control computers (DCCs).  Given that radial-bearing control
saturates current microprocessors and that flywheel failure
presents severe physical danger, the flywheel is isolated in a
separate chamber and controlled by one or more DCCs
connected to the host computer by Ethernet and transmitting
relevant data to the display/host computer.

RTiC-Lab has two important features not found in any other real
time controls implementation platforms.  First, RTiC-Lab is and
will be—as with its underlying Linux and RT-Linux platforms—

Open Source Software, released and protected under the Free
Software Foundation's General Public License. That is, users of
RTiC-Lab can download the source code, use it, enhance it, and
share it with their colleagues. Second, control using RTiC-Lab
can be distributed over a common network of personal
computers. That is, RTiC-Lab can be used over a common
10/100 Mbit Ethernet network. Note, however, that if the
controlled plant is both computationally simple and safe enough
to be handled exclusively in a single computer, then RTiC-Lab
can collapse into one single computer to control the entire plant..

Figure 2 shows an RTiC-Lab testbed configured for use with the
energy storage flywheel. A devoted display or host computer
(DHC) is networked via 10 or 100 Mb/s TCP/IP network to a set
of devoted controls computers (DCCs). The controls engineer
sits at the DHC and coordinates, codes, and synchronizes all
DCCs from the DHC. Run-time parameters, such as sampling
rate, startup delay, and networking parameters, can be set for
each of the DCCs from the DHC. Each of the DCCs is a minimal
computer system having no keyboard, mass storage, mouse,
video card, or monitor. They only have the necessary I/O cards
to interface to the plant hardware and the necessary Ethernet card
to communicate with the DHC.

In accordance with the RT-Linux paradigm (Figure 3), RTiC-
Lab separates the AMB controller into the hard real time or
“embedded” part and the soft real time or  “reactive” part.  The
embedded part of the controller (resident exclusively in the
DCCs) includes all tasks having hard timing constraints:
1) the AMB suspension controller(s) (both periodic and event
driven), 2) a software watchdog, and 3) a set of interrupt service
routines that are used for communication with the reactive task.
The reactive task (resident in both DHC and DCCs) is a multi-
threaded, user-space application which runs within the Linux
kernel, performing the following functions: 1) communication
with the embedded tasks via RT-FIFOs, 2) display of a graphical
user interface for the user, 3) error checking of the user's
controller code, 4) sending parameter updates to the embedded
tasks as requested by user, and 5) displaying data to screen, file,
or printer.

2.3. Characterizing the Computational Re-

quirements of the Controller
To determine the most appropriate approach for speeding up the
computation, it was first necessary to determine the source: sheer
complexity of the algorithm, caches misses, TLB misses, branch
mispredictions, etc. To do so, we needed to be able to accurately
count events like cache misses for a known number of iterations.
We chose to use the SimpleScalar simulator [9], which can
model the clock-cycle-by-clock-cycle flow of instructions
through the processor pipelines.  We configured the simulator to
approximately imitate a Pentium-III and to only produce
statistics for a single iteration of the control algorithm.  An
alternative approach would have been the use of the Pentium-
III’s performance counters, but SimpleScalar gives us the ability
to predict performance on a variety of processor configurations.

We found that for the 16 KB data caches of the Pentium-III, the
control algorithm experiences a negligible number of cache
misses, TLB misses, or branch mispredictions (Table 1).



Figure 2.  Flywheel-control testbed, including flywheel, AMBs, host computer, and optional devoted control
computers.

Figure 3.  RT-Linux architecture.



Instead, the bottleneck is sheer computational throughput: one
iteration of the controller constitutes approximately 128,000
assembly-language instructions.  Even if the controller can
operate at the Pentium-III’s peak sustained bandwidth of three
instructions-per-cycle (IPC), one iteration would take 42,667
clock cycles, which can only be accomplished in 25µs if the
processor has a clock rate of 1.7 GHz.  Note that although 1.7GHz
processors are available, the overhead of the operating system is
not factored in, implying that increased commodity speed alone
will not solve our computational capacity problems.

Table 1. Event counts in the simulated Pentium-III for a single
iteration of the control algorithm.

Instructions 128,423

First-level instruction-cache misses 340

First-level data-cache misses 1750

Second-level (unified) cache misses 2

TLB misses 0

Branch mispredictions 3

An additional performance issue that is not characterized above is
the impact of I/O.  Newly available PCI boards permit the
necessary 5 channels of A/D or D/A to be performed within 6 µs;
A/D (input) is synchronous and cannot be overlapped with the
controller computation, but D/A (output) can be overlapped with
the subsequent iteration. Out of the 25 µs budget per iteration to
achieve 40 KHz update rates, A/D therefore leaves us with 19 µs
per iteration that can be dedicated to computation.

2.4. Parallelizing the Controller Computation
Upon analyzing the controller algorithm, a computationally
expensive, but non-real-time, section was identified that could be
executed in parallel with the main controller iteration. This code
dynamically adjusts the control parameters to the flywheel’s
current rotational speed by performing a linear interpolation
between two 48x48 matrices.  This interpolation uses the speed of
the flywheel’s rotation to determine the correct controller
parameters, based on a linear combination of the parameters at the
low end of the operating environment and on the high end of the
operating environment. In the original version of the control code,
this interpolation is performed every iteration.  The 73.30 µs time
reported in Section 2.3 is based on this version.   However,
because this interpolation does not have to occur every iteration,
it can be moved to a second processor and still achieve the real-
time correctness guarantees. This second processor was
previously unused by the real-time controls system.

Upon restructuring the algorithm to use POSIX threads and
offload the interpolation task to a second processor, the duration
of one iteration in the main thread was reduced to an average of
34.17 µs, still shy of the 19 µs target. Measurements were made
using the RDTSC Pentium instruction, hence no simulation is
involved here.  A double-buffering approach is used to ensure that

that main controller thread always has a recent version of the
interpolated matrices.  Newly interpolated versions of the
matrices are not time-critical and hence are transmitted back to
the first processor gradually.

The rest of the paper focuses on using SSE instructions to
improve the computational throughput of the remaining, critical
computational tasks.

3. APPLYING SSE INSTRUCTIONS TO
THE MAIN CONTROLLER THREAD

Two approaches were used to apply SSE instructions to the main
controller thread. In the first approach, we used two SSE-enabled
compilers, gcc 3.1 [10] and the Intel C++ Compiler 5.0.1 for
Linux [11,12]. In the second approach, we manually selected and
inserted SSE instructions in the code.  Again, measurements were
made using the RDTSC Pentium instruction, hence no simulation
is involved here.  For the experiments in this section, interpolation
was removed altogether to isolate the effects of SSE.  This change
in the code accounts for the difference in “no-interpolation”
iteration times between Sections 2.5 and 3.

3.1. Using SSE-Enabled Compilers
Gcc 3.1 supports both the SSE and SSE-2 instruction set for
Pentium-III and Pentium-4 processors, as does the Intel C++
Compiler for Linux. The result of applying these SSE-enabled
compilers to this specific controller code is shown in Table 3.

Table 2. Performance of SSE-enabled compilers.

Compiler Time per Iteration

gcc 3.1 (no SSE) 28.75 µs

gcc 3.1 28.05 µs

Intel C++ Compiler (no SSE) 32.11 µs

Intel C++ Compiler 32.00 µs

The Intel C++ Compiler is very useful at describing its attempts
to vectorize the compiled code (via the –vec_report3 directive).
There were 23 loops that conceivably could have been vectorized.
Of these, ten were not vectorized because they were not inner
loops, two were not vectorized because they contained
unsupported loop structures, nine were not vectorized because
they contained an unvectorizable statement (generally another
loop statement), one was not vectorized because of having mixed
data types, and one was vectorized (a loop initializing all entries
of a 5-element array to 0). While only 1 out of 23 is arguably of
little value, our conclusion is not that the Intel Compiler is
particularly bad in vectorizing our code (we believe the gcc
compiler is similar, although its diagnostics do not allow us to
easily confirm this); rather, the use of SSE in compiler technology
is very complex and will be limited to hand-coding—possibly
with the use of libraries—for the foreseeable future.



3.2. Manually Inserting SSE Instructions
Given that there was not a significant performance gained by
compiler-enabled use of the SSE instructions, we were forced to
manually insert SSE into the controller code. The overall result of
our application of SSE is shown in Table 3.

Table 3. Performance speedup when manually inserting SSE
instructions

Compiler Time per Iteration

gcc 3.1 (no SSE) 28.75 µs

gcc 3.1 (manual use of SSE) 17.96 µs

Before attempting to use SSE, we decided that it was not fruitful
to blindly apply SSE instructions to the entire controller iteration.
To determine the best sections of code on which to apply SSE, we
instrumented the code using the RDTSC instruction and identified
a particularly time-consuming section that perform a matrix
multiply of 48x48 by 48x1. We developed a straightforward
matrix-multiply routine in assembly code based on the SSE
operations movaps, mulps, addps, and xorps. By using the SSE
instructions, we were able to reduce the average duration of this
section from 19.60 µs to 9.52 µs, approximately a 2x speedup. In
theory, the use of SSE instructions should result in a 4x speedup,
but packing and unpacking the data into and out of the XMM
registers significantly reduces the actual speedup.  Nevertheless,
while our ultimate goal is to reduce the duration as much as
possible, an overall iteration time of 17.96 µs is almost fast
enough for us to conclude that we have met our target frequency
with a sufficient margin of safety.  Faster processors will certainly
allow us to meet that frequency.    Further, smaller speedups can
be achieved by vectorizing other important but smaller sections of
code.  Note that we chose not to use existing libraries like Intel’s
Performance Libraries [13].  Although the results reported here
use a straightforward implementation that may have inferior
performance to the tuned libraries from Intel, hand-coding gives
us the flexibility to explore the impact of various alternatives that
are customized for our control application.

4. DISCUSSION
While SSE directly facilitated satisfying our throughout
requirements for this particular controller and this particular target
frequency, there are open issues and concerns, especially in
regard to the application of such techniques by users of RTiC-
Lab.

The goal of RTiC-Lab is to provide a computational environment
in which people who are not experts in computer programming
(and certainly not experts in the use of SSE) can insert their
domain-specific controllers into a hard real-time environment.
Clearly, fully-featured SSE-enabled compilers will not be
available for some time. Explaining the concept behind SSE
instructions is easy enough, but learning to program with them is

often difficult for non-computer-scientists, especially if they have
no prior experience with assembly-language programming.   This
makes effectively programming a control algorithm using SSE
almost prohibitively difficult for most controls engineers.
Reusability of SSE assembly code is equally difficult for the same
reasons.

Even if the controls engineer does not perform the SSE
programming, another necessity for explaining the SSE code to
the controls engineer is to describe the programmed functionality
in the event that either this functionality is not correct or the
timing issues are not satisfied. That is, if SSE is used, there
appears to be a fragile, repeated discourse necessary between the
controls engineer and the computer scientist until the timing
issues and functionality are satisfied.   For the most part, we have
found this process difficult, time-consuming, and error-prone.

Instead of dealing directly with assembly code, perhaps a better
approach is to provide library routines and an API that the
controls engineer must invoke in order to achieve the benefits of
SSE (e.g., routines like create_matrix()  and multiply_matices()).
Using libraries hides the complexity of SSE implementations, and
requiring their use has the advantage that SSE-based
implementations can transparently use alternative representations
to minimize packing and unpacking overhead.

For simple matrix-matrix and vector-matrix operations, this has
worked well.  The routines are flexible enough to be useful in the
design of new controllers and the interface is reasonably
straightforward for controls engineers to use in their own
programming.   Unfortunately, the use of an API does not
eliminate the need for discourse between the controls engineer
and the computer scientist, since the best way to implement a
control algorithm is not always obvious, since the API cannot be
used blindly for just any vector or matrix operation, and since the
performance results are not always obvious to interpret.

We used a simple library with that we developed with just a
limited set of hand-coded vector/matrix operations.  We next plan
to port our code to instead use the Intel Performance Libraries
[13], which are available for use with Linux.  The Intel libraries
have a greater range of functionality and are likely to have more
finely tuned SSE implementations.  They also provide a cleaner
upgrade path to new versions of the Intel architecture.

We remain concerned that any chosen API will not provide the
exact mix of functionality needed as control algorithms become
more complex.  We also remain concerned that the generality of
the library functions incurs unnecessary overhead.  Given that the
nature of controls applications is to continually increase controller
complexity, which usually directly correlates with computational
and programming requirements, the effort to effectively use SSE
remains considerable.

5.  SUMMARY
We have described a testbed for the design of controllers for
rotating machinery and its use to develop state-space controllers
for an energy-storage flywheel. Applications like this require
high-performance floating-point throughput, and we have found
that mini-vector instructions, like the SSE instructions provided
by the Intel Pentium III and Pentium 4, can provide at least a
factor of two speedup for the vector/matrix operations in our



control code.  Unfortunately, we have found SSE difficult to use,
especially given the multi-disciplinary environment in which the
SSE code is developed and the need for non-expert programmers
to work with SSE.  Use of a library of common functions has
helped, but some knowledge of the underlying SSE behavior
remains necessary.

The current status of the project is that we believe SSE is an
important technology for computationally-intensive, real-time
applications, but that the use of SSE entails a tension between
performance and ease of use that is not easily resolved.

ACKNOWLEDGMENTS
This work was supported in part by a grant from AFS Trinity
Power Corp.  We would also like to thank the anonymous
reviewers for their helpful comments.

REFERENCES
[1]  M. Barabanov and V. Yodaiken.  “Introducing Real-Time

Linux.”  Linux Journal, Feb. 1997.

[2]  E. Hilton, M. Humphrey, J.A. Stankovic, and P. Allaire.
“Design of an Open Source, Hard Real-Time Controls
Implementation Platform for Active Magnetic Bearings.” In
Proceedings of the Seventh International Symposium on
Magnetic Suspension Technology, Zurich, Switzerland,
August 2000.

[3]  E. Hilton, V. Yodaiken, M. Humphrey, and P. Allaire. “The
Real Time Controls Laboratory and Open Source, Hard Real
Time Controls Implementation Platform.” In Proceedings of
the Second Real-Time Linux Workshop, Orlando, Florida,
November 2000.

[4]  M. Humphrey, E. Hilton, and P. Allaire.“Experiences using
RT-Linux to Implement a Controller for a High Speed
Magnetic Bearing System.” in Proceedings of the 5th IEEE
Real-Time Technology and Applications Symposium”,
Vancouver, Canada, June 1999.

[5]  S. Thakkar and T. Huff. “Internet Streaming SIMD
Extensions,” IEEE Computer, 32:26-34, 1999.

[6]  P. E. Allaire et al.  “Magnetic Bearings.”  In CRC Handbook
of Lubrication and Tribology, vol. 3, E. R. Boozer, editor,
pages 577-600, 1994.

[7]  J. Collado, R. Lozano, and A. Ailon.  “Semi-global
stabilization of discrete-time systems with bounded inputs
using a periodic controller.”  Systems & Control Letters, vol.
36, pages 267-75, 1999.

[8]  K. Skadron et al.  “Supporting Higher-Order Controllers for
Magnetic Bearings in a High-Speed, Real-Time Platform
Using General-Purpose Computers.”  In Proceedings of the
2001 International Symposium on Magnetic Suspension
Technology, Oct. 2001.

[9]  D.C. Burger and T.M. Austin.  “The SimpleScalar Tool Set,
Version 2.0.” Computer Architecture News, 25(3):13-25,
June 1997.

[10]  Gnu C Compiler. http://gcc.gnu.org/

[11]  Intel C Compiler for Linux.
http://developer.intel.com/software/products/compilers/c50/

[12]  A. Bik, M. Girkar, P. Grey, and X. Tian. “Efficient
Exploitation of Parallelism on Pentium III and Pentium 4
Processor-Based Systems”, Intel Technology Journal, Q1,
2001.

[13]  Intel Performance Libraries.
http://www.intel.com/software/products/perflib/


