
A General Post-Processing Approach to 

Leakage Current Reduction in SRAM-based FPGAs 

John Lach 

ECE Department 

University of Virginia 

jlach@virginia.edu

Jason Brandon 

ECE Department 

University of Virginia 

jmb2ac@virginia.edu

Kevin Skadron 

CS Department 

University of Virginia 

skadron@cs.virginia.edu

Abstract
A negative effect of ever-shrinking supply and 

threshold voltages is the larger percentage of total power 

consumption that comes from leakage current. Several 

techniques have been developed to help reduce leakage in 

SRAM-based memory, in which the percent leakage 

power is especially acute. SRAM-based field 

programmable gate arrays (FPGAs) pose similar leakage 

problems, but their structure and function require 

different solutions. This paper introduces a low 

complexity post-processing approach to reducing FPGA 

leakage current by ground-gating off SRAM cells that are 

unused in a particular device configuration. The 

approach is general enough to apply to any device 

configuration, and results reveal that significant leakage 

current reduction can be achieved with no delay penalty 

and acceptable area overhead. 

1. Introduction 

As CMOS VLSI technology continues to scale, with 

ever-decreasing minimum feature sizes and increasing 

logic and memory densities, dynamic power consumption 

magnitude and density pose significant problems. 

Designers have historically addressed this issue by 

reducing the supply voltage. This in turn has led to a 

reduction in threshold voltages to maintain performance. 

However, due to the exponential dependence of 

subthreshold leakage current on threshold voltage, static 

power consumption has exploded and become a key area 

of concern and investigation. In fact, we are nearing a 

break-even point where it is no longer possible to reduce 

overall power consumption by scaling supply and 

threshold voltages due to the resulting increase in leakage 

current.

According to [7], leakage power will surpass active 

power and represent over 50% of total power in 

microprocessors at the 70nm technology node. To meet 

the ITRS roadmap restriction of static power comprising 

less than 10% of maximum power dissipation, the 

reduction in static power needed by circuit and 

architecture innovations reaches 98% by the end of the 

roadmap [14]. 

In order to keep power consumption in check, while 

still reaping the benefits of technology scaling, techniques 

for reducing static power consumption have recently been 

investigated. Most efforts have focused primarily on 

circuit-level techniques. In recent years, investigative 

work has begun to focus on static-power-hungry 

architecture-level structures such as SRAM-based cache 

memories. Because they are composed of a large number 

of leaky SRAM cells, these cache memories represent a 

prime target for static power reduction techniques. 

SRAM-based FPGAs represent another opportunity 

for the development of leakage control techniques. Due to 

their reliance on SRAM cells for programmable logic and 

routing, FPGAs will require leakage control techniques to 

continue to benefit from technology scaling. With the 

increasing proliferation of FPGAs and the effort to utilize 

them in embedded low-power environments, the control 

of static power must be addressed in these devices. 

In this paper, we present a methodology for leakage 

current reduction in SRAM-based FPGAs. For any given 

design mapped to an FPGA, a significant number of 

SRAM cells are unused, and leakage reduction techniques 

can be used to place these cells in a low leakage state. In 

this work, circuit gating (specifically ground-gating [1]) 

is used to turn off unused resources. The techniques 

presented are exclusively post-processing and do not 

restrict the CAD tool flow or require designer 

intervention. There is no effect on circuit performance, 

with the only penalty being the additional area required to 

implement ground-gating. Using a combined bottom-up 

circuit-level and top-down architecture-level approach, 

we have identified appropriate granularities for turning 

off SRAM cells in both FPGA logic and routing 

resources. Prior work has only identified the importance 

of the FPGA leakage problem [8,15]. To our knowledge, 

this paper represents the first effort to address the 

problem. While the post-processing techniques we 

present are straightforward, they provide significant 

leakage current reduction with minimal overhead. 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



In the next section, we present related work on FPGA 

leakage analysis and circuit-level techniques for leakage 

reduction. Section 3 introduces our general post-

processing approach to leakage current reduction in 

FPGAs. Section 4 presents results for a theoretical 70nm 

FPGA employing our leakage reduction methodology. 

Section 5 gives our conclusions and direction of future 

work.

2. Background and related work 

Two key areas of background and related work that 

we leverage concern leakage current analysis in FPGAs 

and circuit-level techniques to reduce leakage current. 

2.1. Leakage current analysis in FPGAs 

FPGAs have generally followed suit with the rest of 

the VLSI community and progressively scaled supply and 

threshold voltages with each technology generation to 

keep power consumption in check while maintaining 

performance. The resulting increase in leakage current is 

forcing designers to address this issue. Only recently have 

power evaluation tools and techniques for FPGAs, which 

give thorough consideration to the issue of leakage 

power, been developed. 

[10] modified the VPR tool [2] to determine dynamic 

and static power consumption in a circuit placed-and-

routed to a user-specified FPGA architecture. The model 

assumes that the gate-source voltages of inactive 

transistors are half of their threshold voltages and uses a 

formula to calculate leakage. 

The work of [8] counters that this assumption is not 

usually valid. Their resulting method, fpgaEva-LP, 

models static leakage power using SPICE simulation of 

individual FPGA components with equal-probability 

input vectors. An important conclusion drawn by the 

authors is that up to 59% of the total power is attributed 

to leakage power. 

In [15], leakage analysis is performed on a 90nm 

FPGA architecture. This work focuses on logic blocks as 

well as their access points to general-purpose routing. An 

analysis of the contribution of unused components to 

overall leakage power is also given. At 100% logic block 

utilization, unused resource leakage still accounts for 

35% of total leakage. It is these unused resources that are 

the focus of the work presented here. 

2.2. Circuit-level leakage current reduction 

Both static and dynamic leakage reduction techniques 

in CMOS circuits have been studied. Static techniques 

utilize a multiple-threshold voltage (MTCMOS) 

fabrication process to selectively place faster low Vt

transistors on the critical path, while employing less leaky 

high Vt transistors off the critical path. Such an approach 

is appropriate for ASICs, in which the function of the 

circuit is constant, but FPGAs require post-fabrication 

flexibility. Therefore, dynamic techniques are necessary. 

One such technique is the pre-characterization of a 

circuit's inputs in terms of minimal leakage power [16]. 

When the circuit is placed in standby mode, the input 

pattern with the lowest leakage can be applied. 

A second post-fabrication leakage reduction 

technique is circuit gating. Circuit gating is the method of 

cutting off a circuit's path to Vdd or ground by insertion of 

‘sleep’ transistors controlled by configuration signals or 

bits. When the sleep transistor is on, the circuit is in 

active mode. When it is off, the circuit is in a low-leakage 

mode. The gating approach may be single- or multiple-

threshold-based. A higher Vt sleep transistor using 

MTCMOS provides increased leakage reduction, but the 

fabrication process is more expensive than single 

threshold [1]. In addition, single-Vt sleep transistors 

enable SRAM cells to maintain state [11]. In this paper, 

we explore both regular and high Vt transistors for 

ground-gating. 

Ground-gating using NMOS sleep transistors has 

been successfully applied to SRAM-based cache 

memories. In [1], a single NMOS sleep transistor is 

inserted between the SRAM cells of each cache line and 

the ground plane. The technique utilizes the stacking 

effect of having two NMOS transistors connected in 

series [6]. The row decoder of the cache controls the sleep 

transistors, resulting in all lines being in sleep mode 

except when being accessed. Results show that compared 

to a conventional cache, their DRG-Cache leaks 32% less 

energy while the relative read time is only 2.8% slower. 

Circuit gating has been employed in the FPGA 

domain as a proof of concept of an MTCMOS design 

methodology. [4] uses high-Vt local sleep transistors in 

FPGA logic blocks. These transistors give the capability 

to place individual regions of the logic block in sleep 

mode, including a group of four 4-input lookup tables 

(LUTs), a 4-bit adder, a 4-bit register, and the remaining 

control circuits. While this approach to ground-gating in 

an FPGA is similar to what we detail in this paper, the 

sleep transistor granularities considered in [4] were 

significantly more coarse, and only logic block leakage 

was considered. We explore a variety of granularities and 

show that the majority of SRAM cell leakage current 

savings can be derived from unused routing resources. 

3. Methodology 

A primary contribution of this paper is the derivation 

of appropriate granularities for turning off SRAM cells in 

FPGA logic and interconnect that are unused in a given 

configuration. While the ability to gate each SRAM cell 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



individually would ensure the maximum number of off 

cells regardless of the configuration, the overhead (in 

terms of not only area but also the additional leakage 

current introduced by the SRAM cells controlling the 

sleep transistors) would be unacceptable. 

We therefore use a combined bottom-up/top-down 

approach for determining appropriate granularities. The 

bottom-up aspect considers circuit-level issues that affect 

the area and leakage overhead introduced at various 

granularities. The top-down portion explores architecture-

level issues by considering cell groups left unused by real 

designs that are mapped onto the device. While bottom-

up issues call for a coarse granularity (to minimize 

overhead), top-down pushes for a finer one (to maximize 

number of off cells). Finding the appropriate balance is 

the focus of this section. 

3.1. Bottom-up analysis 

In determining the appropriate granularity for sleep 

transistor insertion, several issues must be considered. It 

is necessary to determine the ability of a single sleep 

transistor to reduce leakage current for multiple SRAM 

cells and whether there is an effective limit to the number 

of cells that can be gated by a single transistor. The 

existence of a limit would dictate what granularities were 

feasible. The sizing ratio of the sleep transistor and 

whether regular or high Vt transistors should be used 

must also be explored. Finally, any potential delay 

introduced by the sleep transistor need be considered. 

To answer these questions, we performed SPICE-

level simulations of different sleep-transistor 

configurations applied to basic blocks of SRAM 

equivalent to those used in various FPGA resources. 

Berkeley BSIM device models from the Berkeley 

Predictive Technology Model (BPTM) 70nm process 

technology model [3,5] at Vdd=1.2V were used in these 

simulations, following the conservative approach 

discussed in [14]. 

SRAM leakage 

Figure 1 gives the results for leakage reduction using 

regular Vt (Vt0 (NMOS) = 0.1902 V, Vt0 (PMOS) = -0.213 V) 

sleep transistors. We can see the general trend of 

decreased leakage reduction as the sleep transistor is sized 

up. We can also see that leakage savings continues to 

improve as the sleep transistor is shared amongst more 

SRAM cells. This is true up to the grouping of 64 cells, 

which is the upper limit appropriate for consideration 

given a target architecture of four 4-input LUTs. 

Figure 2 shows the results of the same simulations 

performed using high Vt (Vt0 (NMOS) = 0.2402 V, Vt0 (PMOS) 

= -0.263 V) sleep transistors. It is clear that the high Vt

results offer improved leakage savings across transistor 

widths and SRAM cell grouping sizes. This information 

can be used to make a design cost tradeoff. If the 

additional leakage savings is worth any additional process 

cost and the system does not require state-preserving 

gated cells, the high Vt approach is the obvious choice. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

105 525 700 1050

Sleep Transistor Width (nm)

%
 L

e
a

k
a

g
e

 R
e

d
u

c
ti

o
n

 i
n

 S
le

e
p

 M
o

d
e

1 cell

4 cells

8 cells

16 cells

64 cells

Figure 1. SRAM leakage reduction – regular Vt

sleep transistors 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

105 525 700 1050

Sleep Transistor Width (nm)

%
L

e
a
k
a

g
e

R
e
d

u
c
ti

o
n

in
S

le
e
p

 M
o

d
e

1 cell

4 cells

8 cells

16 cells

64 cells

Figure 2. SRAM leakage reduction – high Vt

sleep transistors 

Sleep transistor delay 

Potential circuit-level impact on delay of applying 

gated-ground to the SRAM cells used in FPGA logic and 

routing is an important consideration. When sleep 

transistors have been used to reduce leakage in caches, 

simulations revealed a delay penalty due to degraded 

bitline and sense amplifier delay [1]. 

However, circuit gating FPGA SRAM does not incur 

the same delay penalties as in caches due to the fact that 

reads from SRAM cells in FPGAs occur differently than 

in a cache, and the cells are not written to after 

configuration. FPGA resources using SRAM do not use 

bitlines and sense amplifiers to read the value of the cells. 

In an FPGA, only one of the two nodes is used to read the 

state of the cell. A connection is made directly from this 

node to the circuit it is used to control. SRAM cells thus 

continuously present their values (which remain constant 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



for a given FPGA configuration) directly to the circuitry 

they are used to control and therefore do not encounter 

the same delay issues as in a cache. 

However, to verify that there is no delay penalty 

when gating SRAM-based resources in FPGAs we must 

consider the ability of gated SRAM cells in the active 

mode to provide sufficient drive strength to the FPGA 

circuits they are used to control. FPGA logic was 

evaluated by simulating LUTs and configurable logic 

blocks (CLBs) with various load capacitances at the 

outputs. These simulations showed no measurable 

increase in delay over non-gated circuits when sleep 

transistors are used to gate LUTs or CLBs. FPGA 

interconnect was also evaluated by examining the signal 

quality from the gated SRAM cells in active mode, as 

signal degradation on the gate input could cause a switch 

to misbehave or behave sub-optimally by not driving the 

transistor into saturation or cut-off. Simulations 

performed on active routing switches revealed no 

degradation in the quality of a logical one or zero signal 

observed. Finally, the effect of gating on inactive cells 

was also evaluated. Inactive ground-gated SRAM cells 

exhibited a node zero voltage rise, potentially causing 

switches gated by these cells to partially turn on, which 

could lead to unnecessary loading on interconnect 

segments. It is therefore necessary to restrict the cells that 

can be gated off to those where an active signal is not 

present anywhere on the affected segments. Future work 

will explore alternate gating techniques (e.g. Vdd gating) 

to address this issue. 

3.2. Top-down analysis 

Unused resources in FPGAs represent a particularly 

wasteful source of static power consumption. Given that 

FPGA family size increments are typically quite large and 

that the logic/interconnect ratio is set, there tends to be a 

significant number of unused logic and routing resources, 

regardless of the design configured onto the device. In the 

architectural analysis, we explore how many of the 

unused logic and routing resources can be gated off with 

various granularities of gating control. 

Area overhead is calculated in terms of the 

equivalent number of minimum sized transistor areas 

introduced by the sleep transistors and the controlling 

SRAM cells at each granularity. This approach is process 

independent, and therefore the area overhead for each 

technique should stay relatively constant [12]. 

All of the techniques considered here are post-

processing, in that they involve the evaluation of already 

placed-and-routed designs. There is therefore no impact 

on the design process and the resulting quality of 

implementation. While putting restrictions on the 

synthesis, mapping, and place-and-route tools may 

increase the percentage of SRAM cells that can be turned 

off with coarser sleep transistor granularities, this must be 

traded off against additional delay and area overhead. 

This tradeoff will be explored as part of future work. 

Architecture model 

The architecture we chose is modeled after the 

island-style SRAM-based Xilinx Spartan IIe [13]. While 

we model the Spartan IIe as closely as possible, the 

approach presented here is general for any SRAM-based 

island-style FPGA. Such FPGAs are composed of CLBs 

in a sea of programmable routing. CLBs in turn are 

composed of some number of LUTs, flip-flops, and 

additional architecture-specific logic and local 

interconnect. Following the Spartan IIe, each CLB in our 

architecture contains four 4-input LUTs and four flip-

flops. CLBs are interconnected through routing channels 

running in rows and columns adjacent to each of their 

sides.

Multiple tracks exist in each channel and a CLB 

input or output pin could have a potential connection to 

any or all of these tracks. These multiple connections for 

a single pin could be controlled by either SRAM-gated 

pass-transistor switches or SRAM-controlled MUXes. 

The MUX approach is typically used for CLB input pins 

since these pins can only be driven by a single signal. 

However, output pins may fanout to more than one track 

and thus require individual connections to each accessible 

track in a channel. It was therefore assumed in this work 

that input pins employ the multiplexer style approach 

while output pins use individual pass transistor 

connections. In this paper, only unused CLB inputs are 

considered, as we found that the multiple-fanout nature of 

CLB outputs requires that constraints be placed on the 

router to enable coarse ground-gating of the SRAM cells 

controlling the CLB output pass transistors. This paper 

focuses only on post-place-and-route leakage reduction 

opportunities, but such tool alterations, and their resulting 

tradeoffs, will be considered as part of future work. 

At the intersection of the routing channels, switch-

boxes direct signals to adjacent channels. Several styles 

of switch-box exist, with each type having a different 

connection pattern to the tracks in adjacent channels. The 

“subset” style, in which a track in one channel can only 

connect to its corresponding track in each of the three 

other directions, is common. These connections are 

controlled by switch points, each containing six SRAM-

gated pass transistors. Therefore, assuming symmetrical 

routing channels, each switch-box contains n switch-

points and 6n SRAM-gated pass transistors, where n

corresponds to the number of tracks in each channel 

routed through that switch-box. This subset style of 

switch-box is assumed in this work. Other switch-box 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



styles, such as the universal and Wilton switch-boxes, 

will be the subject of future work. 

Following the Spartan IIe, we defined our 

architecture so that each routing channel contained 108 

tracks. These segmented tracks consisted of 24 single-

length segment, 72 hex-length segments, and 12 long 

lines. Assuming that each CLB input can connect to half 

of the tracks in its channel, a 54:1 MUX (with six SRAM 

control signals) is used at each input. The flexibility of 

the VPR tool allowed us to model this architecture by 

creating a custom architecture file. 

The various gating granularities were applied to the 

set of sixteen MCNC benchmark circuits detailed in Table 

1. Each circuit was targeted to the smallest equivalent 

Xilinx Spartan IIe device that would accommodate it. 

Table 1. MCNC circuits used 
Circuit # Clusters Spartan IIE Device

alu4 381 XC2S50E

apex4 316 XC2S50E

diffeq 375 XC2S50E

ex5p 266 XC2S50E

misex3 350 XC2S50E

apex2 470 XC2S100E

s298 483 XC2S100E

seq 438 XC2S100E

tseng 262 XC2S100E

elliptic 901 XC2S200E

ex1010 1150 XC2S200E

frisc 889 XC2S200E

pdc 1144 XC2S200E

spla 923 XC2S200E

clma 2096 XC2S400E

s38417 1602 XC2S400E

Logic granularity 

The three granularities of LUT leakage control 

investigated for this architecture were the ability to gate a 

CLB, a LUT, and a single half of a LUT, turning off 64, 

16, and 8 SRAM cells, respectively. A full CLB or LUT 

can be turned off only when completely unused, but 

gating half of a LUT puts to sleep half of the SRAM cells 

in a LUT when less than four inputs are used. In order to 

use only one sleep transistor per LUT, this technique 

requires that the input that is unused is known a priori

and always appears in the same place. It is logical to 

speculate that most FPGA CAD tools use a consistent 

ordering or can be easily modified to do so. Indeed, the T-

VPack tool used in this work follows such an approach 

[9]. Also, the unused input to the LUT must be set to 

insure that the asleep portion of the LUT is never 

accessed.

These three granularities were tested individually and 

in all possible combinations to determine the overall 

possible leakage savings in terms of gated SRAM cells. 

The T-VPack tool [9] was modified to gather logic 

resource utilization statistics for the benchmark circuits. 

The distributed version of the tool accepts as its input a 

blif file composed of LUTs and flip-flops representing the 

circuit and packs the logic resources into architecture 

specified CLBs. The modified version of the tool 

examines the internal representation of the circuit and 

determines the number of unused and partially used LUT 

resources that can be gated off at various granularities. 

Table 2 gives the arithmetic average across the set of 

benchmark circuits for the various logic granularities, 

presented in terms of both logic SRAM asleep and total 

device SRAM asleep. Several combination strategies are 

nearly equivalent to the granularities presented and are 

omitted for space. Another important point to note is the 

dramatic difference between the percentages of logic 

SRAM asleep and total SRAM asleep at each granularity. 

This stems from the fact that, on average, logic SRAM 

represents less than 10% of total device SRAM, while 

routing SRAM occupies over 90%. The area overhead of 

each strategy is given in the last row of Table 2. 

Table 2. % LUT SRAM cells asleep and area 
overheads for different granularities 

Granularity CLB 0.5 LUT Full LUT CLB+0.5LUT

% Logic SRAM Asleep 19.33% 23.41% 19.39% 33.07%

% Total SRAM Asleep 1.55% 1.97% 1.55% 2.75%

Area Overhead 0.16% 0.66% 0.66% 0.82%

The data presented in Table 2 yields some important 

insights. The CLB granularity provides a modest 

percentage of asleep cells but with a very small area 

overhead. The full LUT granularity does not provide 

much in additional sleep percentage over the CLB (as T-

VPack packs an entire CLB before starting a new one), 

and the significantly higher area overhead dictates that the 

granularity be discarded. The half-LUT granularity 

provides better results than the CLB granularity, as there 

are a large number of utilized LUTs that use less than 

four inputs. The largest percentage of asleep cells is 

provided by the combination of CLB and half-LUT 

granularities. Overall, if maximum leakage savings is 

desired, the combined CLB/half-LUT granularity should 

be used, but if area overhead must be minimized, the pure 

CLB granularity still provides good savings. 

Routing granularity 

Even greater amounts of SRAM-based resources can 

be gated by targeting interconnect because FPGA area is 

dominated by routing resources. Given the need to 

accommodate a wide variety of potential signal routings, 

FPGAs are designed with an extensive flexible routing 

network. However, when a circuit is actually placed and 

routed, the vast majority of the routing network goes 

unused. Thus, another ideal opportunity is presented for 

the application of post place-and-route gating. 

Our methodology examines the routing utilization 

characteristics of circuits to identify unused switch-points 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



and CLB inputs. By providing sleep transistors for the 

configuration SRAM cells of switch-point and MUX 

select line groups, we are able to gate a large amount of 

unused routing resources. Unused switch-points are 

identified by examining the four tracks connected to each 

switch-point. Due to the node zero voltage rise issue 

discussed in Section 3.1, only switch-points that connect 

to entirely signal-free tracks can be considered unused 

and be safely gated. Coarser granularities of control can 

be created by clustering switch-points and controlling 

each group with a single sleep transistor. The finest 

interconnect gating granularity is the individual switch-

point while the coarsest granularity is that of gating a full 

switch-box. MUX select line control cells may also be 

successfully gated when a CLB input is unused. 

In order to measure the desired routing resource 

utilization characteristics, the VPR place and route tool 

[2] was modified to track these statistics. The number of 

switch-boxes is easily determined based on the size of the 

CLB array and interconnect network. To determine the 

number of switch-points in the entire FPGA, the routing 

resource graph on which VPR is built is parsed to identify 

the true number of signals being routed through each 

switch-box. To identify switch-point usage statistics at 

various granularities, VPR’s internal representation of the 

placed and routed netlist of a circuit is parsed to 

determine the track usage on each side of a given switch-

box. Each switch-box was then analyzed to determine the 

number of unused switch-points that could be gated off. 

VPR was also modified to examine the placed-and-routed 

netlist and determine the pin usage for each CLB. 

Table 3 gives the arithmetic mean across all of the 

benchmark circuits of the gating ability of the routing 

strategies and granularities. We consider the two extremes 

of switch-point granularity, full switch-box and individual 

switch-point, as well as CLB input gating. We also 

consider the combination of switch-point and input 

gating. Results are presented in terms of both routing only 

SRAM asleep and total device SRAM asleep. The area 

overhead introduced by each technique is also given. 

Table 3. % Routing SRAM cells asleep and area 
overheads for different resources and 

granularities
Granularity Switchbox Switchpoint Inputs SP & Inputs

% Routing SRAM Asleep 4.50% 47.71% 7.72% 55.42%

% Total SRAM Asleep 4.14% 43.86% 7.09% 50.95%

Area Overhead 0.18% 11.13% 2.62% 13.75%

It is clear from these results that the majority of 

unused SRAM cells are in the interconnect network. We 

also note that the combination of switch-point gating and 

input gating enables almost 51% of device SRAM to be 

gated with a 13.75% area overhead. This gating 

percentage is a direct combination of the two individual 

gating percentages and results from the complimentary 

nature of the two gating strategies. It is clear from these 

results that there is significant opportunity for reducing 

SRAM leakage by gating unused routing resources. 

4. Results 

The analysis in Section 3 identified effective logic 

and routing granularities for sleep transistor gating. In this 

section, we analyze the leakage current reduction 

provided by these techniques and granularities. To gauge 

the leakage reduction obtained by the various gating 

techniques, the circuit-level and architecture-level results 

have been synthesized into a model of a 70nm FPGA. 

The detailed circuit-level leakage simulation results for 

the various blocks of the FPGA form basic units of 

leakage for each resource type. These leakage values are 

then combined linearly based on the architecture-level 

resource usage statistics and gating strategy to determine 

an overall leakage value for a given circuit and target 

architecture.

This total leakage is compared against a base leakage 

for each target architecture to determine leakage savings. 

When determining the base leakage, a conservative 

assumption was made that each resource is programmed 

in its lowest leakage state. The results presented can thus 

be viewed as the minimum of the attainable leakage 

savings. 

The percentage leakage reduction results of applying 

the combination of the most effective gating techniques to 

each benchmark circuit are shown in Table 4. As derived 

in Section 3, the most effective gating granularities 

(considering both leakage reduction and area overhead) 

are CLBs, switch-points (SP), and CLB inputs. The 

additional savings of gating half LUTs and CLBs is also 

considered. The second column in the table shows the 

base SRAM leakage current for the device. The 

percentage leakage current reduction results presented 

here are given for regular and high Vt sleep transistors for 

both combinations of granularities. The average savings 

across the benchmark set and the area overheads of each 

strategy are also given. There is no delay penalty for any 

of the configurations due to the circuit-level (no SRAM 

switching and no load on active interconnect segments) 

and architecture-level (no CAD tool restrictions) factors 

discussed in Section 3. 

As these results indicate, approximately 30-40% 

reductions in leakage can be achieved depending on the 

gating strategy. Given that [8] has shown that leakage 

represents 59% of the total power consumption in an 

SRAM-based FPGA, the leakage current reduction 

provided by our approach will result in significant power 

savings. It is clear that the choice of logic granularity has 

little effect on the overall leakage current savings. This is 

again due to the dominance of routing resources in 

FPGAs. It is also important to note the non-trivial leakage 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 



differences between using regular vs. high Vt sleep 

transistors. The decision to use one over the other must be 

determined by process cost and power goals. 

Table 4. SRAM cell leakage current reduction 

Reg Vt High Vt Reg Vt High Vt

alu4 4.62 23.22% 38.55% 24.02% 39.44%

apex4 4.62 26.41% 40.17% 27.20% 41.05%

diffeq 4.62 25.28% 40.42% 26.12% 41.35%

ex5p 4.62 31.16% 42.81% 31.29% 42.98%

misex3 4.62 25.05% 39.28% 25.86% 40.17%

apex2 6.93 29.02% 40.27% 29.58% 40.90%

s298 6.93 34.10% 44.23% 34.50% 44.70%

seq 6.93 31.39% 42.34% 31.96% 42.98%

tseng 6.93 43.38% 51.32% 43.51% 51.49%

elliptic 12.93 31.84% 41.51% 32.49% 42.24%

ex1010 12.93 19.94% 34.21% 21.13% 35.52%

frisc 12.93 32.53% 41.47% 33.02% 42.02%

pdc 12.93 17.54% 31.01% 17.86% 31.40%

spla 12.93 28.75% 38.58% 28.98% 38.87%

clma 25.35 25.78% 35.71% 26.29% 36.29%

s38417 25.35 36.02% 43.14% 36.81% 44.01%

28.84% 40.31% 29.41% 40.96%

Circuit

CLB+SP+Inputs CLB&0.5LUT+SP+InputsBase

Ioff (mA)

13.91% 14.57%

Average

Area Overhead

5. Conclusions and future work 

In this paper, we have shown how significant leakage 

current reduction can be achieved in SRAM-based 

FPGAs. Combining a bottom-up/top-down approach for 

determining effective ground-gating granularities for 

turning off SRAM cells in FPGA logic and routing 

resources, significant leakage current reductions were 

achieved with manageable area overhead and no delay 

penalty. In future FPGA generations, the use of these 

techniques can help control the inherent leakage problems 

induced by scaling. This work provides a straightforward 

yet effective start in addressing this significant problem. 

The techniques presented here were static for a given 

FPGA configuration, and no restrictions were placed on 

the synthesis, mapping, and place-and-route tools. Once 

the circuits are placed-and-routed onto the device using 

VPR, our post-processing techniques identify which 

resources are unused, and the SRAM cells at the gate 

inputs of the sleep transistors can be programmed 

accordingly. Putting restrictions on the design tools may 

increase the percentage of SRAM cells that can be turned 

off with coarser sleep transistor granularities, but the 

impact on area and delay must be considered. Future 

work in this area will quantify this tradeoff. Finally, the 

tradeoffs associated with other gating techniques (e.g. Vdd

gating) and multi-threshold processes will be explored, as 

will the impact of temperature on leakage. 

6. Acknowledgements 

This work is supported in part by the National 

Science Foundation under grant No. CCR-0105626. 

7. References 

[1] Agarwal, A., Roy, K., “A Single-Vt Low-Leakage Gated-

Ground Cache for Deep Submicron,” IEEE Journal of Solid-

State Circuits, Vol. 38, No. 2, pp, 319-328, February 2003. 

[2] Betz, V., Rose, J., “VPR: A New Packaging, Placement and 

Routing Tool for FPGA Research,” International Conference on 

Field-Programmable Logic and Applications, pp. 213-222, 

1997.

[3] Berkeley Predictive Technology Model: http://www-

device.eecs.berkeley.edu/~ptm 

[4] Calhoun, B., Honore, F., Chandrakasan, A., “Design 

Methodology for Fine-Grained Leakage Control in MTCMOS,” 

International Symposium on Low Power Electronics and 

Design, pp. 104-109, 2003. 

[5] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, 

“New paradigm of predictive MOSFET and interconnect 

modeling for early circuit design,” Custom Integrated Circuits 

Conference, pp. 201-204, 2000. 

[6] Chen, Z., Johnson, M., Wei, L., Roy, K., “Estimation of 

Standby Leakage Power in CMOS Circuits Considering 

Accurate Modeling of Transistor Stacks,” International

Symposium on Low Power Electronics and Design, pp. 239-244, 

1998.

[7] Kam, T., Rawat, S., Kirkpatrick, D., Roy, R., Spirakis, G., 

Sherwani, N., Peterson, C., “EDA Challenges Facing Future 

Microprocessor Design,” IEEE Transactions on Computer 

Aided Design of Integrated Circuits and Systems, Vol. 19, No. 

12, pp. 1498-1506, December 2000. 

[8] Li, F., Chen, D., He, L., Cong, J., “Architecture Evaluation 

for Power-Efficient FPGAs,” International Symposium on 

Field-Programmable Gate Arrays, pp. 175-184, 2003. 

[9] Marquardt, S., Betz, V., Rose, J., “Using Cluster-Based 

Logic Blocks and Timing Driven Packing to Improve FPGA 

Speed and Density,” International Symposium on Field-

Programmable Gate Arrays, pp. 37-46, 1999. 

[10] Poon, K., Yan, A., Wilton, S., “A Flexible Power Model for 

FPGAs,” International Conference on Field-Programmable 

Logic and Applications, pp. 312-321, 2002. 

[11] Rabaey, J., Chandrakasan, A., Nikolic, B., Digital

Integrated Circuits, 2nd Edition, Prentice Hall, New Jersey, 

2003.

[12] Rose, J., Betz, V., Marquardt, S., Architecture and CAD for 

Deep-Submicron FPGAs, Kluwer Academic Publishers, Boston, 

1999.

[13] Spartan IIe 1.8 V FPGA Family: Complete Data Sheet. 

[14] Sylvester, D., Kaul, H., “Future Performance Challenges in 

Nanometer Design,” Design Automation Conference, pp. 3-8, 

2001.

[15] Tuan, T., Lai, B., “Leakage Power Analysis of a 90nm 

FPGA,” Custom Integrated Circuits Conference, pp. 57-60, 

2003.

[16] Wolff, F., Knieser, M., Weyer, D., Papachristou, C., “High-

Level Low Power FPGA Design Methodology,” National

Aerospace Conference, pp. 554-559, 2000. 

Proceedings of the IEEE International Conference on Computer Design (ICCD’04) 
1063-6404/04 $ 20.00 IEEE 


	footer1: 


