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Abstract

We present Fractal, an API for programming parallel workloads on multithreaded and multicore architectures.
Fractal schedules threads on processors with cache configuration in mind in order to minimize cache misses. Fractal
achieves speedups of nearly 2x on Sun NIAGARA, while processors with less hyperthreading see less impressive
performance improvements.

1 Fractal

Fractal is an API for parallel workloads, which takes into account physical processor configuration and utilizes proces-
sor affinity to schedule work with the goal of minimizing L1 cache misses. The API employs a variety of schedulers,
designed to minimize cache contention in different ways and for different data access patterns. With hyperthreaded
processors executing one thread per virtual core, our schedulers lead to modest speedups of 10%—-20%, while our
system, executing on a Sun NAIGARA T-1000, an in-order multicore processor with 4 virtual cores per L1, can
demonstrate nearly 2 x performance improvements.

Fractal provides a write-once, run-anywhere abstraction which, while currently targeting only multicore or hy-
perthreaded CPUs, is designed with heterogeneous targets in mind. The Fractal framework supports the notion of
heterogeneity both in a multinode cluster and, more importantly in the short term, in an environment that supports one
or more GPUs, and can be easily extended to work in a networked, heterogeneous cluster.

Fractal’s source code is available for download at http://www.cs.virginia.edu/~jws9c/fractal/.

1.1 Fractal API

Fractal provides a minimalist API to parallelize independent iterations of loop bodies. In this section we discuss the
entry points and their implementations.

1.2 Components

Table 1 contains a complete listing of Fractal API entrypoints. We discuss the functionality-critical members below.



Function Prototype | Description |

new(handle_t xhandle) | Create a new Fractal context
kernel?d(l;::iicle:;;_t l]:::g:i; Register a ?-D kernel, where ‘2" is 1,2, or 3
scheduler function(handle t handle, Select a scheduler
scheduler_t scheduler)
loop(handle_t handle,
dimension_t dimension,
intptr. t initial, | Describe aloop control
intptr t less,
intptr. t stride)
delete(handle t handle) | Free resources related to a context
launch(handle_t handle) | Begin a calculation
get_error ( void ) | Check error state
clear_error ( void ) | Reset error state
barrier (handle_t handle) | Global barrier
partition barrier(handle t handle) | Per-L1 barrier
finish(handle_ t handle) | Wait for calculation to complete
print_error (FILE xstream) | Display error information
override.cpu(handle.t handle, Select a different CPU from the DB
char *Ccpu_name)

Table 1: A listing, with brief descriptions, of all of the entrypoints into the Fractal API. All entrypoints and type names
are prefixed with fractal_ (not shown), as are non-standard types. All entrypoints return a fractal_error_t
value, except for fractal print_error (). intptr_t is a signed integer type (from <stdint.h> in C99)
with sufficient width to store a pointer on the host architecture.

e fractal new() and fractal_delete():

fractal new() creates a new fractal context and returns an opaque index in handle. A valid index is
required for all other fractal API entrypoints (except the error handlers), so fractal_new () must be called
before any other fractal functions. Multiple simultaneous fractal contexts may exist concurrently; however,
to launch simultaneous fractal computations would be unwise, as they would compete for resources. This
functionality exists primarily to allow future extension of the API.

fractal_ delete() releases the resources associated with handle. It is an error to attempt further opera-
tions relative to handle after calling fractal_delete().
e fractal kernel?d():

Each of fractal kernelld(), fractal kernel2d(),and fractal kernel3d() are used to asso-
ciate callbacks with compute kernels with handle. The types fractal_kernel?d_t are function pointer
types which take one, two, or three intptr_t (see caption on Table 1) arguments, respectively.

e fractal scheduler function():

The user calls fractal_scheduler_function () associates a scheduler sched with handle. Currently
fractal_scheduler_t is opaque; however, we envision the possibility of exporting the definition to al-
low users to implement custom schedulers. There are currently four schedulers available. Details follow in
Section 1.3.3.

e fractal_ loop():



fractal_loop() is used to describe for loop-style loop control data and associate it with handle. Fractal
currently supports up to three loop dimensions (specified with dimension). Extension to higher dimension-
ality is possible, should user response signal it is needed. Work is partitioned by the scheduler according to the
loop specifications. The associated kernel is called once per innermost loop iteration, as if the body of that loop.

e fractal launch() and fractal finish():

fractal_launch() signals the Fractal runtime that the context associated with handle is fully specified
and the computation is ready to begin. The runtime does final initialization, work scheduling, and thread creation
(see Section 1.3.2). The main thread continues asynchronously.

fractal_finish() synchronizes on the termination of all associated threads. A program should not call
fractal_ delete() or attempt to terminate without first calling fractal _finish().

e fractal barrier() and fractal partition barrier():

These functions are special in that they can and must be called from a fractal kernel. fractal_barrier()
creates a global barrier. No thread may proceed past the barrier until all threads have reached it. fractal_-
partition barrier () creates a barrier that is local to the set of threads that share a physical CPU (or an
L1 cache). Threads local to a different CPU may proceed without consequence.

Because Fractal is based on POSIX threads, all synchronization and mutual exclusion primitives and operations
associated with pthreads are available within Fractal. These include POSIX semaphores and pthread mutexes
and condition variables. Indeed, the fractal barriers are based on these primitives. It is safe to mix primitives as
needed, however, users desiring more control with pthreads-based, lower-level synchronization primitives will
need to take care to avoid deadlock, and these constructs will not necessarily work with all targets.

1.3 Implementation

In this section we discuss some of the details and challenges of our Fractal API implementation.

1.3.1 System Configuration

We faced a number of issues in implementing the Fractal API. Most important among these are unreliable system-level
tools for obtaining architecture-level hardware specifications. Linux provides the /proc and / sys filesystems, which
provide information about the currently running system. In this work, we are concerned with the physical configuration
of the underlying processor architecture, as well as the mappings of virtual to physical processors, virtual and physical
processors to L1 caches, and processors and caches to their system level abstractions. The information provided by the
Linux system level interfaces on these topics is usually false. For example, all Intel systems used in our development
and testing list the ht tag, supposedly indicating that the processor supports hyperthreading. Of these systems, only
our Core 17 based machines are actually hyperthreaded. All others falsely report this functionality. Similarly, our Core
i7 systems report eight “physical ids” (0-7), one “core id” (0), one “sibling” (ostensibly a count of virtual cores per
physical core for hyperthreading), and the existence of one core, while our Core2 Quad systems report one “physical
id” (0), four “core ids” (0-3), four siblings, and the existence of four cores; In reality, the Core i7s have four physical
cores with 2-way hyperthreading on each core for eight virtual cores and the Core2 Quads have four physical cores
with no hyperthreading (thus four virtual cores). There is no way to determine this from the data in /proc/cpuinfo,
nor from any other data contained under /proc or /sys. Linux also provides the sysconf () interface to query
system state, but this is limited in functionality and actually reads /proc/cpuinfo for its data.

To get around these issues, and also to allow the use of our API on systems that do not provide the same system
information interfaces as Linux (our Solaris port, for example), we have developed a CPU database as part of our
implementation. Our database is indexed first by hostname. If that fails the system attempts to read /proc/cpuinfo
and uses the CPU model name data contained there (this information seems to be correct) and uses it to index the
database a second time. If the second lookup also fails, the system will fall back on a default configuration which
assumes a single physical core with two virtual cores.



Our CPU database allows uses to specify all of the desired data described above, as well as a number of other details
about caches. Having discovered the issues with /proc/cpuinfo, we were able to get actual device specifications
from marketing materials; however, that is still not sufficient to map a certain virtual processor to a certain L1 cache.
Intel provides a tool which was able to simplify this step on the Intel-based Linux systems'. Under Solaris, we were
forced to microbenchmark.

The need for a CPU database provided an unforeseen benefit: we were able to easily extend our API with an entry
into the processor database that allows override of CPU configuration state. This is useful in its ability to allow a
“debug” cpu. Our debug configuration defines only a single virtual processor. This is not generally useful for API
development, as the difficulty in developing the API is primarily related to the nondeterminism and locking involved
in multithreaded and reentrant code. For application developers, however, this allows debugging of their applications
in a single-threaded environment without “hacking” anything.

1.3.2 Initialization and Execution

At APl initialization, the processor database is queried for a processor specification matching the current system. With
this information in hand, the Fractal runtime can allocate its control structures and create threads. In order to enforce
the desired scheduling and sharing (Section 1.3.3), the systems explicitly assigns processor affinity when launching
threads. Each virtual processor is assigned one thread, except in the case where there is a one-to-one mapping between
virtual and physical processors, in which case two threads are assigned per processor.
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Figure 1: The Morton space-filling curve, with four levels of recursion shown.

1.3.3 Work Scheduling

Before launch, the master thread partitions the work into chunks. The chunks are created in sets of n equally sized
work units, where n related to the number of processors (virtual or physical, depending on the exact work scheduler
selected). The work partitioner begins by evenly partitioning half the work among the n processors, proceeding
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recursively until a minimum size work unit is allocated. The last two passes produce units of the same size. The
exponential decay in work unit size is designed to reduce the likelihood of experiencing a “long tail” effect, wherein
one or a few cores continue to process more compute-intensive workloads long after the majority of cores have become
idle. In an ideal situation, every core will process the same slice of work units. There is no mechanism for work stealing
built into the API at this time.

Fractal schedules work according to a selection among a number of possible scheduling patterns. The Fractal
schedulers assume neighborhood-based memory access patterns, with tight spatial and temporal locality. Schedulers
with more special purpose access patterns, say for a specific implementation of FFT, are feasible. The available
scheduling patterns include naive, which divides memory into 2n contiguous chunks (where n is the number of
available cores and L1 caches; parallel z, in which subsequent rows of data are processed simultaneously by threads
sharing core and cache; and staggered x, in which threads sharing core and cache stagger accesses to the same matrix
row. A morton scheduler is under development, which will schedule work based on a Morton space-filling curve
shaped access pattern.

The parallel 7 scheduler achieves speedups of 1.79x on NIAGARA while doing a 240 x 240 matrix multiply and
1.81x on a 3 x 3 x 3 Gaussian blur over 256 x 256 x 256 domain, and more modest speedups on hyperthreaded
Intel architectures (1.12x and 1.01x on the same workloads on a Core i7), when compared with the naive scheduler.
Architecures without hyperthreading are unable to achieve speedups at all.

None of the other schedulers are able to beat naive. We have not fully explored the reasons for the poor performance
of these schedulers, though we believe it can be attributed to multiple factors including: out-of-order processing, which
seems to explain the better performance of NIAGARA; and the large overhead of OS schedulers, which allows the
first of ostensibly cooperative threads to run well ahead before the second thread has a chance to begin. Attempts to
enforce closer synchronization the ameliorate this problem increased overhead sufficiently to outweigh their benefit.

2 Conclusions and Future Work

Fractal provides an API that allows users to easily and portably target multicore platforms with many threads of control.
Fractal can achieve impressive performance improvements on hyperthreaded architectures. Our results comparing
NIAGARA, Core i7, and Core 2 suggest that increased hyperthreading leads to better results for fractal. We would
like to explore this more fully.

In addition to hyperthreading, our results suggest that OS schedulers interfere with the fractal schedulers, by
allowing threads to run separately that Fractal intended to run together. This results in a competitive situation where
it was intended to be cooperative. By modifying the Linux scheduler to be Fractal aware, we believe we could
improve Fractal’s performance on Linux and show how OS schedulers could be better designed for high performance
computing.

Attempting to target GPUs with Fractal proved difficult, as fractal attempts to do fine-grained scheduling of threads,
and GPU programming APIs (and indeed GPU architectures) do not allow that. We did not find a satisfactory solu-
tion to this problem. Furthermore, the Fractal model of fine-grained work scheduling does not map well to GPU
architectures, which automatically schedule threads en masse. Even given satisfactory method of compiling GPU ker-
nels within a Fractal environment, current GPU targets are not likely to see performance improvements from Fractal
scheduling.



