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Abstract 
 

This paper presents the parallelization of the 
particle filter algorithm in a single target video 
tracking application.  In this document we demonstrate 
the process by which we parallelized the particle filter 
algorithm, beginning with a MATLAB implementation.  
The final CUDA program provided approximately 75x 
speedup over the initial MATLAB implementation. 
 
1. Introduction 
 

The optimization of algorithms by means of 
parallelization is at the forefront of the field of 
computer science.  The main reason for this movement 
is because of the recent popularity of multi-core 
processors, which are capable of running multiple 
independent logical threads at the same time.  One of 
the most exciting types of multi-core processor is the 
Graphics Processing Unit (GPU).  GPUs are normally 
used for the rendering of 3-dimensional graphics to the 
computer screen; however, recent developments such 
as the programming library Compute Unified Device 
Architecture (CUDA) offer the prospect of using GPUs 
for general programming [10].  In addition to CUDA, 
another popular approach to parallel programming is 
the Open Multi-processing (OpenMP) library, which 
provides programmers with a set of compiler 
instructions that make full use of multi-core CPU 
capabilities [11].   

The goal of our technical project is to use multiple 
styles of parallel programming to increase the 
efficiency of the particle filter (PF) algorithm, which is 
a probabilistic model for tracking objects in a noisy 
environment.  We are working together on this project 
to explore the potential speed increases that can be 
gained using the CUDA and OpenMP programming 
libraries. 

This paper has three major divisions.  First we 
describe the PF algorithm and its applications in image 
analysis.  We then describe the different approaches we 
took to parallelization.  Finally, we share our results, 
interpretation of those results, and compare them with 
other attempts at parallelization of the PF. 
 
2. Particle Filter Algorithm 
 

The PF is a statistical estimator of the state of a 
target given noisy measurements of the state [2]. In this 
work, state refers to the position of the target.  Using a 
Bayesian framework, the PF estimates the posterior 
density by a given set of samples.  These samples are 
known as particles.  Each particle has an associated 
weight, based on a chosen image property, which is 
used to build a likelihood model [1].  This likelihood 
model is then used in subsequent time steps. Finally, 
the weights and the particle locations are utilized to 
estimate the target location [1].  

In image analysis, the PF merits research into 
parallelization due to its plethora of applications.  A 
majority of these applications lie in the field of feature 
tracking, in particular, different forms of surveillance 
from facial recognition [9] to the following of vehicles 
in traffic [1].  Also of interest is the use of the PF in 
video compression [15].  An additional application, 
and one particularly useful to our project, is the 
tracking of leukocytes (white blood cells) [4].  The 
problem with most PF implementations, however, is 
that the computational cost is prohibitive for real-time 
applications.  The intent of our project, then, is to 
provide enough speedup to the PF algorithm to allow 
for real-time processing of data.  With this ability, the 
algorithm would allow interactive and immediate 
results, greatly facilitating its adoption. 
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3. MATLAB Implementation 
 

We began our work on this project with a version of 
the PF written in MATLAB.  The program was divided 
into two sections, the first generating a synthetic video 
sequence for use in the second section which contained 
the implementation of the algorithm.  The video 
sequence simulates the motion of a white blood cell 
with additive noise by picking a point in each frame, 
dilating that point, and then adding random Gaussian 
noise to the frame. The PF section takes the video 
sequence as input, with a predefined motion model 
representing the estimated path that the object will 
follow.  For every frame in the provided video 
sequence, the algorithm makes one hundred 
estimations about the location of the object in that 
frame.  These estimations are weighted according to 
the image, the weights are normalized, and the 
estimations are updated. 
 
4. Conversion from MATLAB to C 
 

Our first step was to translate the given MATLAB 
code into C.  A majority of this conversion was straight 
forward line-by-line adaptation; however, the built-in 
MATLAB functions required significant work due to a 
relative lack of documentation available.  For example, 
MATLAB provides a Gaussian random number 
generator, whereas C only contains a Uniform 
distribution random number generator.  We 
transformed the Uniform distribution to a Gaussian 
distribution using the Box-Muller algorithm, however 
this has a drawback.  The Box-Muller algorithm uses 
expensive operations including logarithm, cosine, and 
the square root function [3].  This cuts back on some 
speed gains in the C implementation. 

Other MATLAB functions provided an added 
difficulty as it was not perfectly clear what purpose 
they served in the algorithm.  Instead of simply looking 
at documentation we had to observe the behavior of 
these functions in order to mimic their functionality.  
An example of this is the imdilate function, which 
dilates the image.  In the PF, this function is used to 
expand the size of the object within the video sequence 
to accommodate the error added by the algorithm. 

Before moving on to the parallelization of the 
program, we measured the degree of auto-vectorization 
carried out by the compiler.  Under optimization level 
3 (-O3), the Intel C Compiler (icc) and the GNU C 
Compiler (gcc) were both making use of SSE and 
SSE2 instructions.  icc was also inserting MMX 
instructions, while gcc had virtually none of these 
instructions.  In addition icc used SSE and SSE2 
instructions with a much greater frequency than gcc.  

Upon re-compiling to eliminate the use of these mini-
vector instructions, we found that there was a 
negligible impact on execution time.  Nevertheless, we 
use the version of the code incorporating SSE 
instructions for the remainder of our analyses. 
 
5. OpenMP Implementation 
 

The next step after completion of the C 
implementation was to parallelize the program using 
OpenMP.  First we began profiling the program to find 
the sections that dominate the execution time.  For the 
PF, we determined that 90% of the execution time was 
taken by the section where the estimations are updated 
according to the normalized weights.  Although other 
sections of the program had data-dependencies, this 
update section did not, making it a good candidate for 
parallelization.  With this section parallelized the 
OpenMP implementation provided a 2.5x speedup, 
with a theoretical maximum increase of 3.0x.   

The section responsible for a majority of the 
remaining execution time was the likelihood 
calculation.  While there were no obvious data-
dependencies in this section, there was an array that 
every thread accessed.  This led to a race condition 
preventing us from getting speed gains.  In order to 
solve this problem we provided each thread with its 
own copy of the array.   

The last section taking up a significant portion of 
the execution time was the generation of random 
numbers.  The built-in C rand function is not thread-
safe because it requires previous calls to rand to ensure 
that the next call provides a different random number.  
In order to parallelize this section, we had to provide 
each thread with its own seed value and create a 
thread-safe random number generator, specifically the 
Linear Congruential Generator.  This thread-safe LCG, 
programmed specifically as a CUDA device function, 
is separately packaged and will be available online. 

The remaining loops were relatively basic to 
parallelize, with OpenMP providing all the needed 
functionality, including a few parallel sum reductions.  
With a majority of the program parallelized we reached 
a maximum speedup of 3.75x. 
 
6. Naïve CUDA Implementation 
 

Knowing that the update portion of the code was 
responsible for the vast majority of the execution time, 
we decided to only transcribe this portion of the code 
in CUDA. In addition, we knew that this section would 
parallelize more easily compared other sections of the 
execution, including the normalizing weights and the 
random number generation portions. These sections 



had data dependencies that would require substantial 
reworking of the code, in order to function in CUDA. 
This translation entailed writing a single kernel which 
would be executed for the processing of each frame. In 
addition, this kernel would have the find index 
function as a device function that each thread would 
call as part of the updating sequence. After completing 
this section, we were able to get speedups on par with 
the OpenMP implementation.   

The issue with this implementation was that every 
frame required the loading of data back from the GPU 
to the CPU, and then back to the GPU again.  It was 
obvious that the program would be bottlenecked by I/O 
if we had to move data back and forth every frame.  
This is because CUDA memory copy functions require 
significant overhead, in that they require a global 
synchronization of all threads.  We tried to process a 
minute of video (1800 frames) with 100,000 particles, 
but the overhead of moving information back and forth 
from the GPU was approximately half a second per 
frame, compared to 0.7 seconds per frame total.  With 
our goal being to process a minute of video with a high 
number of particles, we knew we had to move the 
whole program to the GPU. 
 
6.1 Naïve versus Thrust 
 

In addition to the initial naïve CUDA 
implementation, we also experimented briefly with the 
Thrust library.  Thrust is an abstraction of CUDA for C 
coding that allows parallel programming on the GPU 
without using CUDA library functions. 

Our experience with Thrust was that it required a 
substantial reworking of our code in order to provide 
worthwhile performance.  This is mainly due to the 
fact that Thrust organizes data into vector objects that 
require iterators to modify individual pieces of that 
data.  A great portion of our code involves complex 
functions and somewhat irregular accesses, two things 
that Thrust does not support efficiently.   

To be more specific, Thrust applies changes to its 
data vectors using its built in transform function.  The 
transform function applies a functor to all of the 
specified data from a beginning iterator to an ending 
iterator.  This works well for simple mathematical 
tasks, such as multiplication of all data elements by 
another set of elements or a constant.  However, the 
more intricate functions required in the likelihood 
calculation require manipulation of data 
discontinuously.  In order to achieve the same result,  
Thrust requires us to use the “transform_if” function, 
which along with a stencil vector of 0’s and 1’s, 
applies a transformation to specific values in another 
array.  It takes three inputs: the array of values to be 

modified, the stencil vector that specifies which indices 
to modify, and a functor that represents the 
transformation to apply.  We saw this as likely 
requiring a large additional overhead.  For this reason 
we decided to just carry on with a full CUDA 
implementation, and discontinued our work with 
Thrust. 
 
7. CUDA Optimizations 
 

In order to port the rest of the program onto the 
GPU, we had to first overcome several obstacles.  The 
normalization of weights required a tree reduction for 
the summation of the weights.  In addition, several 
sections, including calculation of likelihoods and the 
random number generation, required thread-specific 
copies of data structures.  The reason for these data-
dependencies is that the results of a previous frame are 
used in the calculations in the next frame. 
 
7.1. Tree reductions 
 

CUDA does not have a simple, straight-forward 
way of calculating sums in parallel like OpenMP.  In 
order to perform a reduction across multiple thread 
blocks we had to force a global synchronization of 
threads with an additional kernel call.  The partial sums 
within each thread block are calculated in parallel 
using a simple tree reduction algorithm.  After a global 
synchronization the partial sums are added serially. 
 
7.2 GPU Linear Congruential Generator 
 

CUDA has no built-in random number generator, 
but the PF requires both Gaussian and Uniform random 
numbers every frame.  Because our goal was to prevent 
all CPU-GPU communication within a frame, this 
meant we had to generate these random numbers either 
entirely ahead of time or on the GPU.  Since we want 
three random numbers per particle per frame, it quickly 
becomes unreasonable to move that much data to the 
GPU ahead of time.  Thus, we elected to create a 
random number generator function for both the 
Gaussian and Uniform distributions on the GPU. 

Our implementation uses a Linear Congruential 
Generator (LCG) which creates uniformly distributed 
random numbers.  We still use the Box-Muller 
algorithm to convert these random numbers to the 
Gaussian distribution when needed.  In order to make 
sure that we obtain unique random numbers, we 
provide a seed value in an array for each thread, using 
CPU clock values.  Each thread updates its own seed 
value, making accesses to the parallel and thread-safe. 
 



8. Results 
 

We performed several layers of testing in order to 
find the situations in which parallelization of the 
algorithm was most beneficial.  The machine running 
the MATLAB, C and OpenMP versions had a Core2 
Duo Extreme processor running Ubuntu 8.04.4 LTS.  
The C and OpenMP version were compiled using GCC 
4.2.4 or ICC 11.1.  The MATLAB version we used 
was 7.8.0.347 (R2009a).  The CUDA versions of the 
program ran on a Core i7 and a GeForce GTX 285.  
The operating system was the same between both 
computers, and CUDA was compiled using CUDA 2.2. 

We chose to parallelize the algorithm by providing 
individual threads for each particle, because each 
particle requires information from a previous frame.  
Increasing the number of particles produces a greater 
deviation in the execution times of each of our 

implementations, as can be seen in Figure 1 (we used 
logarithmic scale to fit the data in the graph visibly).  

Increasing the number of frames, however, has a 
smaller effect on this deviation, shown in Figure 2.  
The MATLAB implementation has issues with run-
time as the number of frames exceeds 500, so it was 
left out of this graph. 

Figure 3 displays the execution times with 10 
frames and 100,000 particles, numbers intended to 
clarify the differences in scaling between 
implementations of the algorithm.  Figure 4 shows the 
relative speedup values for the same inputs. 

Finally, Figure 5 shows the average error rates, in 
pixels, which were determined for different numbers of 
particles.  The amount of error and the number of 
particles are inversely proportional.  The upper limit of 
the reasonable number of particles for a given video 

sequence is the number of pixels on the screen, 
because our algorithm does not define the space 

between pixels.  Estimations made between pixels are 
simply rounded to the nearest pixel.  Thus, exceeding 
the number of pixels on the screen produces no 
noticeable benefit.  For the video sequence we used, 
the resolution of the screen was 128 by 128; therefore, 
the

and 1000 particles 
pro

 maximum number of particles was 16,384.   
Since the only way to guess the incorrect position 

would be to have an error of half of a pixel or more, 
having an average error rate well below that threshold 
will almost guarantee successful estimations.  For 100 
particles, Figure 5 shows an average error rate of over 
0.3 pixels, so it is highly likely that with that many 
particles there will be incorrect estimations.  The error 
rates rapidly drop, however, 

duce highly accurate results. 
The lesson to take away is that the upper limit of the 

number of pixels in the image is theoretically useful, 
but not practically useful.  Our full CUDA 



implementation is, however, capable of running 10,000 
particles at over 55 frames per second, so that 
theoretical maximum is not an issue on the small 

ages we used.. 

. Integration with MATLAB 
 

fied in C, as the 
PU cannot call external functions. 

0. Related Work 
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In order to make the CUDA implementations useful 
they needed to be callable from MATLAB.  This 
required the creation of a MEX file, which also 
allowed MATLAB functions to be called from the 
program.  This enables customization of the likelihood 
function, a feature that is important for optimizing the 
particle filter accuracy or applying it in other contexts.  
However, this feature is only available to the naïve 
CUDA, C, and OpenMP versions of the program, 
because the optimized CUDA program runs the 
likelihood function on the GPU.  In order to customize 
the likelihood function in the optimized program, the 
device function would have to be modi
G
 
1

In our survey of the related literature on the 
parallelization of the PF, we found that the algorithm 
was being used for a variety of applications, and that 
this variety was influencing the approach to 
parallelization.  Furthermore, many of these papers 
describe application-specific optimizations that do not 
relate well to p

eral form. 

Even though there have been several attempts to 
parallelize the PF algorithm, many of these attempts 
focused more on using stream processing [8] or 
OpenGL [7], rendering them too different for direct 
comparison. Yet, there are two efforts that are worth 
discussing, although neither mentions porting the 
algorithm from MATLAB. Ferreira, Lobo and Dias [5] 
ported a facial recognition and tracking algorithm to 
CUDA that implemented the PF for tracking human 
faces.  The focus of their project was real-time robot 
vision and, consequentl

cialized for that purpose.  There is also the work by 
Ulman [14], in which he optimized a PF algorithm for 
tracking naval vessels. 

Although these projects utilize the main PF 
algorithm, they differ significantly in their calculation 
of the likelihoods phase.  The reason for customizing 
this section of the algorithm is that it affects the 
accuracy of the estimations for the particular 
application being used.  Depending on the nature of the 
implementation, this can drastically change the 
approach to pa

elihood function is not as complex as the ones 
described in these papers, lending itself very easily to 
parallelization. 

Other sections of the algorithm were very similar 
across implementations.  In particular, Ulman [14] 
showed a profile of the execution time of his program 
that matched ours closely.

 of its time updating the weights like ours did with 
the likelihood calculations taking up the majority of the 
remaining execution time. 

While there are similarities across all 
implementations of the PF that parallelize easily, 



performance can be limited by the properties of the 
specific application.  Therefore, optimizations tailored 
to the particular application can yield additional 

end themselves to a more general 
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 would reduce execution time.  Finding a 
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 structures to contain the 
information for each object.  This would open the 
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11. Conclusions 
 

As the results in Figure 1 show, the CUDA 
implementations are slower than both the C and 
OpenMP implementations until a certain number of 
particles are used.  The naïve CUDA implementation is 
not faster than the OpenMP implementation until over 
10,000 particles are used, while the optimized CUDA 
implementation is not faster until around 9,000 
particles.  This is due to the overhead of kernel calls 
and the copying of data from the CPU to the GPU.  C 
and OpenMP provide very fast execution times under 
this 10,000 particle count, but the CUDA 
implementations become significantly faster a

unt (the axes of the graph are logarithmically scaled, 
so at 100,000 particles optimized CUDA is 32x faster 
than C, naïve CUDA is 13.7x faster than C). 

Also important to notice is that increasing the 
number of frames is a linear increase in execution time.  
As is apparent in Figure 2, the optimized CUDA 
implementation has a much lower slope than the 
others.  This is primarily because the data is moved to 
and from the GPU only once, allowing maximum use 
of the GPU’s acceleration.  The more frames that need 
to be processed the more of a benefit the optimized 
CUDA implementation gives.  The naïve CUDA 
implemen

par with each other for the most part, although the 
naïve CUDA implementation is slightly faster in 
general. 

Overall, the PF is a highly parallelizable algorithm, 
and further optimization remains possible through 
several avenues with the full CUDA implementation.  
An example of a direct improvement on our work 
would be to improve the reductions to add block sums 
in parallel instead of serially.  Also, we implemented a 
binary search for the CDF function, producing 
generous speedup.   Unfortunately, it reduces the 
accuracy of the algorithm by a marginal amount, s
w
the current performance increase offers great promise

r PF algorithms in real-time video mining. fo
 
12. Recommendations for Further Work 
 

As a recommendation for a possible future project, 
random number generation on the GPU is a major 
issue for the speed of our algorithm.  As was 

mentioned previously, CUDA has no built-in random 
number generation, so the expedient creation of 
random numbers is a primar

rlo algorithms are dependent on efficient and 
faithful random number generation, so this would be a 
great avenue for future work. 

For the PF specifically, there are further CUDA 
optimizations that could be implemented.  Improving 
the tree reductions so that they do not serially add 
block sums

y to remove the need for global synchronization 
related to the reduction would also provide additional 
speedup.   

Another avenue for further research would be to 
expand the algorithm so that it can track multiple 
objects at the same time.  This would simply require 
additional looping and data

possibility for speedup from 
o
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