
Parallelization of Particle Filter Algorithms

Matthew A. Goodrum,* Michael J. Trotter,* Alla Aksel,+ Scott T. Acton,+
Kevin Skadron*

{mag6x, mjt5v*, alla+, acton+, ks7h*}@virginia.edu
*Department of Computer Science

+Department of Electrical and Computer Engineering
University of Virginia, Charlottesville, VA 22904

Abstract

This paper presents the parallelization of the
particle filter algorithm in a single target video
tracking application. In this document we demonstrate
the process by which we parallelized the particle filter
algorithm, beginning with a MATLAB implementation.
The final CUDA program provided approximately 75x
speedup over the initial MATLAB implementation.

1. Introduction

The optimization of algorithms by means of
parallelization is at the forefront of the field of
computer science. The main reason for this movement
is because of the recent popularity of multi-core
processors, which are capable of running multiple
independent logical threads at the same time. One of
the most exciting types of multi-core processor is the
Graphics Processing Unit (GPU). GPUs are normally
used for the rendering of 3-dimensional graphics to the
computer screen; however, recent developments such
as the programming library Compute Unified Device
Architecture (CUDA) offer the prospect of using GPUs
for general programming [10]. In addition to CUDA,
another popular approach to parallel programming is
the Open Multi-processing (OpenMP) library, which
provides programmers with a set of compiler
instructions that make full use of multi-core CPU
capabilities [11].

The goal of our technical project is to use multiple
styles of parallel programming to increase the
efficiency of the particle filter (PF) algorithm, which is
a probabilistic model for tracking objects in a noisy
environment. We are working together on this project
to explore the potential speed increases that can be
gained using the CUDA and OpenMP programming
libraries.

This paper has three major divisions. First we
describe the PF algorithm and its applications in image
analysis. We then describe the different approaches we
took to parallelization. Finally, we share our results,
interpretation of those results, and compare them with
other attempts at parallelization of the PF.

2. Particle Filter Algorithm

The PF is a statistical estimator of the state of a
target given noisy measurements of the state [2]. In this
work, state refers to the position of the target. Using a
Bayesian framework, the PF estimates the posterior
density by a given set of samples. These samples are
known as particles. Each particle has an associated
weight, based on a chosen image property, which is
used to build a likelihood model [1]. This likelihood
model is then used in subsequent time steps. Finally,
the weights and the particle locations are utilized to
estimate the target location [1].

In image analysis, the PF merits research into
parallelization due to its plethora of applications. A
majority of these applications lie in the field of feature
tracking, in particular, different forms of surveillance
from facial recognition [9] to the following of vehicles
in traffic [1]. Also of interest is the use of the PF in
video compression [15]. An additional application,
and one particularly useful to our project, is the
tracking of leukocytes (white blood cells) [4]. The
problem with most PF implementations, however, is
that the computational cost is prohibitive for real-time
applications. The intent of our project, then, is to
provide enough speedup to the PF algorithm to allow
for real-time processing of data. With this ability, the
algorithm would allow interactive and immediate
results, greatly facilitating its adoption.

skadron
Text Box
In Proceedings of the 3rd Workshop on Emerging Applications and Many-core Architecture (EAMA), in conjunction with ISCA 2010

skadron
Text Box

3. MATLAB Implementation

We began our work on this project with a version of
the PF written in MATLAB. The program was divided
into two sections, the first generating a synthetic video
sequence for use in the second section which contained
the implementation of the algorithm. The video
sequence simulates the motion of a white blood cell
with additive noise by picking a point in each frame,
dilating that point, and then adding random Gaussian
noise to the frame. The PF section takes the video
sequence as input, with a predefined motion model
representing the estimated path that the object will
follow. For every frame in the provided video
sequence, the algorithm makes one hundred
estimations about the location of the object in that
frame. These estimations are weighted according to
the image, the weights are normalized, and the
estimations are updated.

4. Conversion from MATLAB to C

Our first step was to translate the given MATLAB
code into C. A majority of this conversion was straight
forward line-by-line adaptation; however, the built-in
MATLAB functions required significant work due to a
relative lack of documentation available. For example,
MATLAB provides a Gaussian random number
generator, whereas C only contains a Uniform
distribution random number generator. We
transformed the Uniform distribution to a Gaussian
distribution using the Box-Muller algorithm, however
this has a drawback. The Box-Muller algorithm uses
expensive operations including logarithm, cosine, and
the square root function [3]. This cuts back on some
speed gains in the C implementation.

Other MATLAB functions provided an added
difficulty as it was not perfectly clear what purpose
they served in the algorithm. Instead of simply looking
at documentation we had to observe the behavior of
these functions in order to mimic their functionality.
An example of this is the imdilate function, which
dilates the image. In the PF, this function is used to
expand the size of the object within the video sequence
to accommodate the error added by the algorithm.

Before moving on to the parallelization of the
program, we measured the degree of auto-vectorization
carried out by the compiler. Under optimization level
3 (-O3), the Intel C Compiler (icc) and the GNU C
Compiler (gcc) were both making use of SSE and
SSE2 instructions. icc was also inserting MMX
instructions, while gcc had virtually none of these
instructions. In addition icc used SSE and SSE2
instructions with a much greater frequency than gcc.

Upon re-compiling to eliminate the use of these mini-
vector instructions, we found that there was a
negligible impact on execution time. Nevertheless, we
use the version of the code incorporating SSE
instructions for the remainder of our analyses.

5. OpenMP Implementation

The next step after completion of the C
implementation was to parallelize the program using
OpenMP. First we began profiling the program to find
the sections that dominate the execution time. For the
PF, we determined that 90% of the execution time was
taken by the section where the estimations are updated
according to the normalized weights. Although other
sections of the program had data-dependencies, this
update section did not, making it a good candidate for
parallelization. With this section parallelized the
OpenMP implementation provided a 2.5x speedup,
with a theoretical maximum increase of 3.0x.

The section responsible for a majority of the
remaining execution time was the likelihood
calculation. While there were no obvious data-
dependencies in this section, there was an array that
every thread accessed. This led to a race condition
preventing us from getting speed gains. In order to
solve this problem we provided each thread with its
own copy of the array.

The last section taking up a significant portion of
the execution time was the generation of random
numbers. The built-in C rand function is not thread-
safe because it requires previous calls to rand to ensure
that the next call provides a different random number.
In order to parallelize this section, we had to provide
each thread with its own seed value and create a
thread-safe random number generator, specifically the
Linear Congruential Generator. This thread-safe LCG,
programmed specifically as a CUDA device function,
is separately packaged and will be available online.

The remaining loops were relatively basic to
parallelize, with OpenMP providing all the needed
functionality, including a few parallel sum reductions.
With a majority of the program parallelized we reached
a maximum speedup of 3.75x.

6. Naïve CUDA Implementation

Knowing that the update portion of the code was
responsible for the vast majority of the execution time,
we decided to only transcribe this portion of the code
in CUDA. In addition, we knew that this section would
parallelize more easily compared other sections of the
execution, including the normalizing weights and the
random number generation portions. These sections

had data dependencies that would require substantial
reworking of the code, in order to function in CUDA.
This translation entailed writing a single kernel which
would be executed for the processing of each frame. In
addition, this kernel would have the find index
function as a device function that each thread would
call as part of the updating sequence. After completing
this section, we were able to get speedups on par with
the OpenMP implementation.

The issue with this implementation was that every
frame required the loading of data back from the GPU
to the CPU, and then back to the GPU again. It was
obvious that the program would be bottlenecked by I/O
if we had to move data back and forth every frame.
This is because CUDA memory copy functions require
significant overhead, in that they require a global
synchronization of all threads. We tried to process a
minute of video (1800 frames) with 100,000 particles,
but the overhead of moving information back and forth
from the GPU was approximately half a second per
frame, compared to 0.7 seconds per frame total. With
our goal being to process a minute of video with a high
number of particles, we knew we had to move the
whole program to the GPU.

6.1 Naïve versus Thrust

In addition to the initial naïve CUDA
implementation, we also experimented briefly with the
Thrust library. Thrust is an abstraction of CUDA for C
coding that allows parallel programming on the GPU
without using CUDA library functions.

Our experience with Thrust was that it required a
substantial reworking of our code in order to provide
worthwhile performance. This is mainly due to the
fact that Thrust organizes data into vector objects that
require iterators to modify individual pieces of that
data. A great portion of our code involves complex
functions and somewhat irregular accesses, two things
that Thrust does not support efficiently.

To be more specific, Thrust applies changes to its
data vectors using its built in transform function. The
transform function applies a functor to all of the
specified data from a beginning iterator to an ending
iterator. This works well for simple mathematical
tasks, such as multiplication of all data elements by
another set of elements or a constant. However, the
more intricate functions required in the likelihood
calculation require manipulation of data
discontinuously. In order to achieve the same result,
Thrust requires us to use the “transform_if” function,
which along with a stencil vector of 0’s and 1’s,
applies a transformation to specific values in another
array. It takes three inputs: the array of values to be

modified, the stencil vector that specifies which indices
to modify, and a functor that represents the
transformation to apply. We saw this as likely
requiring a large additional overhead. For this reason
we decided to just carry on with a full CUDA
implementation, and discontinued our work with
Thrust.

7. CUDA Optimizations

In order to port the rest of the program onto the
GPU, we had to first overcome several obstacles. The
normalization of weights required a tree reduction for
the summation of the weights. In addition, several
sections, including calculation of likelihoods and the
random number generation, required thread-specific
copies of data structures. The reason for these data-
dependencies is that the results of a previous frame are
used in the calculations in the next frame.

7.1. Tree reductions

CUDA does not have a simple, straight-forward
way of calculating sums in parallel like OpenMP. In
order to perform a reduction across multiple thread
blocks we had to force a global synchronization of
threads with an additional kernel call. The partial sums
within each thread block are calculated in parallel
using a simple tree reduction algorithm. After a global
synchronization the partial sums are added serially.

7.2 GPU Linear Congruential Generator

CUDA has no built-in random number generator,
but the PF requires both Gaussian and Uniform random
numbers every frame. Because our goal was to prevent
all CPU-GPU communication within a frame, this
meant we had to generate these random numbers either
entirely ahead of time or on the GPU. Since we want
three random numbers per particle per frame, it quickly
becomes unreasonable to move that much data to the
GPU ahead of time. Thus, we elected to create a
random number generator function for both the
Gaussian and Uniform distributions on the GPU.

Our implementation uses a Linear Congruential
Generator (LCG) which creates uniformly distributed
random numbers. We still use the Box-Muller
algorithm to convert these random numbers to the
Gaussian distribution when needed. In order to make
sure that we obtain unique random numbers, we
provide a seed value in an array for each thread, using
CPU clock values. Each thread updates its own seed
value, making accesses to the parallel and thread-safe.

8. Results

We performed several layers of testing in order to
find the situations in which parallelization of the
algorithm was most beneficial. The machine running
the MATLAB, C and OpenMP versions had a Core2
Duo Extreme processor running Ubuntu 8.04.4 LTS.
The C and OpenMP version were compiled using GCC
4.2.4 or ICC 11.1. The MATLAB version we used
was 7.8.0.347 (R2009a). The CUDA versions of the
program ran on a Core i7 and a GeForce GTX 285.
The operating system was the same between both
computers, and CUDA was compiled using CUDA 2.2.

We chose to parallelize the algorithm by providing
individual threads for each particle, because each
particle requires information from a previous frame.
Increasing the number of particles produces a greater
deviation in the execution times of each of our

implementations, as can be seen in Figure 1 (we used
logarithmic scale to fit the data in the graph visibly).

Increasing the number of frames, however, has a
smaller effect on this deviation, shown in Figure 2.
The MATLAB implementation has issues with run-
time as the number of frames exceeds 500, so it was
left out of this graph.

Figure 3 displays the execution times with 10
frames and 100,000 particles, numbers intended to
clarify the differences in scaling between
implementations of the algorithm. Figure 4 shows the
relative speedup values for the same inputs.

Finally, Figure 5 shows the average error rates, in
pixels, which were determined for different numbers of
particles. The amount of error and the number of
particles are inversely proportional. The upper limit of
the reasonable number of particles for a given video

sequence is the number of pixels on the screen,
because our algorithm does not define the space

between pixels. Estimations made between pixels are
simply rounded to the nearest pixel. Thus, exceeding
the number of pixels on the screen produces no
noticeable benefit. For the video sequence we used,
the resolution of the screen was 128 by 128; therefore,
the

and 1000 particles
pro

 maximum number of particles was 16,384.
Since the only way to guess the incorrect position

would be to have an error of half of a pixel or more,
having an average error rate well below that threshold
will almost guarantee successful estimations. For 100
particles, Figure 5 shows an average error rate of over
0.3 pixels, so it is highly likely that with that many
particles there will be incorrect estimations. The error
rates rapidly drop, however,

duce highly accurate results.
The lesson to take away is that the upper limit of the

number of pixels in the image is theoretically useful,
but not practically useful. Our full CUDA

implementation is, however, capable of running 10,000
particles at over 55 frames per second, so that
theoretical maximum is not an issue on the small

ages we used..

. Integration with MATLAB

fied in C, as the
PU cannot call external functions.

0. Related Work

arallelization of the algorithm in a more
gen

y, their version of the PF was
spe

rallelization. In our program, the
lik

 His program spent nearly
90%

im

9

In order to make the CUDA implementations useful
they needed to be callable from MATLAB. This
required the creation of a MEX file, which also
allowed MATLAB functions to be called from the
program. This enables customization of the likelihood
function, a feature that is important for optimizing the
particle filter accuracy or applying it in other contexts.
However, this feature is only available to the naïve
CUDA, C, and OpenMP versions of the program,
because the optimized CUDA program runs the
likelihood function on the GPU. In order to customize
the likelihood function in the optimized program, the
device function would have to be modi
G

1

In our survey of the related literature on the
parallelization of the PF, we found that the algorithm
was being used for a variety of applications, and that
this variety was influencing the approach to
parallelization. Furthermore, many of these papers
describe application-specific optimizations that do not
relate well to p

eral form.

Even though there have been several attempts to
parallelize the PF algorithm, many of these attempts
focused more on using stream processing [8] or
OpenGL [7], rendering them too different for direct
comparison. Yet, there are two efforts that are worth
discussing, although neither mentions porting the
algorithm from MATLAB. Ferreira, Lobo and Dias [5]
ported a facial recognition and tracking algorithm to
CUDA that implemented the PF for tracking human
faces. The focus of their project was real-time robot
vision and, consequentl

cialized for that purpose. There is also the work by
Ulman [14], in which he optimized a PF algorithm for
tracking naval vessels.

Although these projects utilize the main PF
algorithm, they differ significantly in their calculation
of the likelihoods phase. The reason for customizing
this section of the algorithm is that it affects the
accuracy of the estimations for the particular
application being used. Depending on the nature of the
implementation, this can drastically change the
approach to pa

elihood function is not as complex as the ones
described in these papers, lending itself very easily to
parallelization.

Other sections of the algorithm were very similar
across implementations. In particular, Ulman [14]
showed a profile of the execution time of his program
that matched ours closely.

 of its time updating the weights like ours did with
the likelihood calculations taking up the majority of the
remaining execution time.

While there are similarities across all
implementations of the PF that parallelize easily,

performance can be limited by the properties of the
specific application. Therefore, optimizations tailored
to the particular application can yield additional

end themselves to a more general
n.

bove this
co

tation and the OpenMP implementation are
on

o it
as not included in our final implementation. Even

y concern. All Monte
Ca

 would reduce execution time. Finding a
wa

 structures to contain the
information for each object. This would open the

parallelizing frames and
bjects, instead of particles.

supported by NSF grant no. IIS-
t from NVIDIA Research.

[1] A cking

Using Snake Particle Filter." 2010 Southwest

[2]

rial on Particle
Filters for Online Nonlinear/Non-Gaussian

[3] B E. P., and Mervin E. Muller. "A Note on

the Generation of Random Normal Deviates." The

[4] B

Study in
Leveraging Manycore Coprecessors." 23rd IEEE

[5] Ferreira, João Filipe, Jorge Lobo, and Jorge Dias.

“Bayesian real-time perception algorithms on

speedup, but do not l
pproach to parallelizatioa

11. Conclusions

As the results in Figure 1 show, the CUDA
implementations are slower than both the C and
OpenMP implementations until a certain number of
particles are used. The naïve CUDA implementation is
not faster than the OpenMP implementation until over
10,000 particles are used, while the optimized CUDA
implementation is not faster until around 9,000
particles. This is due to the overhead of kernel calls
and the copying of data from the CPU to the GPU. C
and OpenMP provide very fast execution times under
this 10,000 particle count, but the CUDA
implementations become significantly faster a

unt (the axes of the graph are logarithmically scaled,
so at 100,000 particles optimized CUDA is 32x faster
than C, naïve CUDA is 13.7x faster than C).

Also important to notice is that increasing the
number of frames is a linear increase in execution time.
As is apparent in Figure 2, the optimized CUDA
implementation has a much lower slope than the
others. This is primarily because the data is moved to
and from the GPU only once, allowing maximum use
of the GPU’s acceleration. The more frames that need
to be processed the more of a benefit the optimized
CUDA implementation gives. The naïve CUDA
implemen

par with each other for the most part, although the
naïve CUDA implementation is slightly faster in
general.

Overall, the PF is a highly parallelizable algorithm,
and further optimization remains possible through
several avenues with the full CUDA implementation.
An example of a direct improvement on our work
would be to improve the reductions to add block sums
in parallel instead of serially. Also, we implemented a
binary search for the CDF function, producing
generous speedup. Unfortunately, it reduces the
accuracy of the algorithm by a marginal amount, s
w
the current performance increase offers great promise

r PF algorithms in real-time video mining. fo

12. Recommendations for Further Work

As a recommendation for a possible future project,
random number generation on the GPU is a major
issue for the speed of our algorithm. As was

mentioned previously, CUDA has no built-in random
number generation, so the expedient creation of
random numbers is a primar

rlo algorithms are dependent on efficient and
faithful random number generation, so this would be a
great avenue for future work.

For the PF specifically, there are further CUDA
optimizations that could be implemented. Improving
the tree reductions so that they do not serially add
block sums

y to remove the need for global synchronization
related to the reduction would also provide additional
speedup.

Another avenue for further research would be to
expand the algorithm so that it can track multiple
objects at the same time. This would simply require
additional looping and data

possibility for speedup from
o

13. Acknowledgements

This work was
612049 and a gran0

14. References

ksel, Alla, and Scott T. Acton. "Target Tra

Symposium on Image Analysis and Interpretation.
Austin, TX, IEEE Computer Society, 2010.

Arulampalam, M. Sanjeev, Simon Maskell, Neil
Gordon, and Tim Clapp. "A Tuto

Bayesian Tracking." IEEE Transactions on Signal
Processing 50(2):174-188, 2002.

ox, G.

Annals of Mathematical Statistics 29(2):610-611,
1958.

oyer, Michael, David Tarjan, Scott Acton, and
Kevin Skadron. "Accelerating Leukocyte
Tracking using CUDA: A Case

International Parallel and Distributed Processing
Symposium. Rome, Italy: IEEE, 2009.

GPU.” Journal of Real-Time Image Processing,
2010.

Gilliam, Andrew D., Frederick H. Epste

[6] in, and

Scott T. Acton. "Cardiac Motion Recovery via

[7] L

ated particle filter with pixel-level
likelihood.” International Workshop on Vision

[8] M zuhito Otsuka. “Real-time

visual tracker by stream processing.” Journal of

[9] Nummiaro, Katja, Esther Koller-Meier, and Luc

Van Gool. "An Adaptive Color-based Particle

[10]

2009).
http://developer.download.nvidia.com/compute/cu
da/2_3/toolkit/docs/CUDA_Reference_Manual_2.
3.pdf (accessed October 24, 2009).

Active Trajectory Field Models." IEEE
Transactions in Biomedicine 13(2), 2009.

enz, Claus, Giorgio Panin, Alois Knoll. “A gpu-
acceler

Modeling and Virtualization. Konstanz, Germany,
2008.

ateo Lozano, Oscar, Ka

Signal Processing Systems. DOI 10.1007/s11265-
008-0250-2, 2009.

Filter." Image and Vision Computing 21:99-110,
2003.

 nVidia. "CUDA Reference Manual 2.3." CUDA
Zone. (July 1,

[11] Quinn, Michael J. Parallel Programming in C
with MBI and OpenMP. New York: McGraw-
Hill, 2004.

[12] Szafaryn, L. G., K. Skadron, and J. J. Saucerman.

"Experiences Accelerating MATLAB Systems
Biology Applications." Proceedings of the
Workshop on Biomedicine in Computing:
Systems, Architectures, and Circuits (BiC), 2009.

[13] Thrust. Thrust: C++ Template Library for CUDA.

http://code.google.com/p/thrust/ (accessed April
23, 2010).

[14] Ulman, Geoffrey. “Bayesian Particle Filter

Tracking with CUDA.” (April 2010).
http://csi702.net/csi702/images/Ulman_report_fin
al.pdf (accessed May 14, 2010)

[15]Wold Eide, Viktor S., Frank Eliassen, Ole-

Christoffer Granmo, and Olav Lysne. "Scalable
Independent Multi-level Distribution in
Multimedia Content Analysis." In Protocols and
Systems for Interactive and Distributed
Multimedia, edited by Fernando Boavida,
Edmundo Heitor da Silva Monteiro and Joao
Orvalho, 37-48. Heidelberg: Springer Berlin /
Heidelberg, 2002.

	1. Introduction
	2. Particle Filter Algorithm
	3. MATLAB Implementation
	4. Conversion from MATLAB to C
	5. OpenMP Implementation
	6. Naïve CUDA Implementation
	7. CUDA Optimizations
	8. Results
	11. Conclusions
	12. Recommendations for Further Work

