
Predictive Design Space Exploration Using Genetically
Programmed Response Surfaces

Henry Cook
Department of Electrical Engineering and

Computer Science
University of California, Berkeley
hcook@eecs.berkeley.edu

Kevin Skadron
Department of Computer Science

University of Virginia
skadron@cs.virginia.edu

ABSTRACT
Exponential increases in architectural design complexity
threaten to make traditional processor design optimization
techniques intractable. Genetically programmed response
surfaces (GPRS) address this challenge by transforming the
optimization process from a lengthy series of detailed simu-
lations into the tractable formulation and rapid evaluation
of a predictive model. We validate GPRS methodology on
realistic processor design spaces and compare it to recently
proposed techniques for predictive microarchitectural design
space exploration.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Design, Measurement, Performance

Keywords
genetic programming, predictive modeling, design space ex-
ploration

1. INTRODUCTION
Computer architects can no longer afford to rely solely

on simulation to evaluate a design space. Design spaces are
simply too large, and there are too many interactions among
parameters [5, 18]. Isolating a small number of variables to
sweep neglects the fact that the values of many other param-
eters may change in order to keep a balanced organization.
The design space of a single core is already large; the multi-
core or system-on-a-chip design spaces are nearly intractable
because core architecture, core count, cache sizes, intercon-
nect topology, energy efficiency, and thermal efficiency are
all inter-related [18]. Design–specific analytical models of
some components might be developed that are trivial to
solve, but a model simple enough to derive a priori typically
cannot account for emergent interactions between multiple
variables.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA
Copyright 2008 ACM 978-1-60558-115-06/08/0006 ...$5.00.

What is required is an automatically generated analytical
model that accounts for the necessary complexities but allows
a large number of design points to be quickly evaluated.

This problem is neither new nor unique to the computer
architecture or design automation communities. In an effort
to address computational constraints on design space explo-
ration, the modeling and simulation research community has
developed the family of techniques known as response sur-
face methodology [4, 21]. Given a sample of collected perfor-
mance data, these techniques build approximation functions
(“response surfaces”) which predict the global performance
of all candidate designs.

Techniques for creating globally accurate response sur-
faces range from simple linear regressions to highly non-
linear artificial neural networks. We advocate the use of
genetic programming [15] to create appropriate non-linear,
polynomial approximation functions and fit them to col-
lected architectural performance data. Genetic program-
ming is a technique, based on evolutionary biology, used to
optimize a population of computer programs according to
their ability to perform a computational task. In our case,
the ‘program’ is an analytic equation whose evaluation em-
bodies the response surface model, and the ‘task’ is to match
sample data points obtained from full–scale simulations [1].

Unlike a standard search algorithm, GP uses the evolu-
tionary process to improve the accuracy of a set of pre-
dictive functions, rather than to heuristically improve the
performance of a set of designs. Automatically creating a
predictive approximation function becomes increasingly ef-
ficient compared to a direct heuristic search as design spaces
grow. GPRS almost completely decouples the time it takes
to optimize a design from the time required to run a cycle–
accurate simulation. The simulations used can afford to be
complex and realistic, and this increased complexity has a
negligible impact on the time it takes to explore the entire
design space and select optimal designs.

On a superscalar processor design space consisting of over
20K design configurations from [11], genetic programming
creates response surfaces that globally predict IPC with less
than 2% mean percentage error and less than 9% worst case
error, based on sample sizes of less than 1% of the total de-
sign space. On a second superscalar processor design space
containing almost billion design points from [17], we find
that median percentage errors of the predictions range from
1.1% to 6.1% at sample sizes as low as 200 design points.
This reduction in the number of required simulations by six
orders of magnitude demonstrates the dramatic time-saving
potential of automatically generated predictive models.

2. PREDICTIVE MODELING
GPRS and other predictive modeling techniques are fun-

damentally different from design optimization strategies based
on heuristic searches, including genetic search algorithms.
Predictive models are built using the simulated results of a
small sample of designs picked in advance. Designers us-
ing heuristic searches do not know in advance what path
the search will take through the design space, and so po-
tentially expensive simulations must be run whenever the
search algorithm needs to evaluate a design point.

GPRS avoids coupling the search time of the algorithm
to the running time of the simulation. In other words,
the GPRS process costs O(simulationT ime∗ sampleSize+
evaluationT ime∗stepsToConverge) whereas a heuristic search
costs O(simulationT ime∗evaluationT ime∗stepsToConverge).
For GPRS, stepsToConverge is relatively agnostic to de-
sign space dimensionality and sampleSize grows only linearly
with design space dimensionality. In order to offer compara-
ble scalability, the time to convergence of a heuristic search
could not increase by more than a few evaluations per di-
mension added to the design space.

Figure 1 shows how many design evaluations a heuristic
search could afford to make before a predictive search would
be more time efficient for various simulation run times, as-
suming 10 possible bindings per dimension and two hours
added to GPRS evaluation time per dimension (see Section
6). For truly large design spaces, it seems unlikely that a
heuristic search could converge on a solution after so few
design point evaluations, and therefore also unlikely that
one would be more efficient than constructing a predictive
model.

Another fundamental difference between predictive model
generation and heuristic searching is the level of insight
the end result provides into the nature of the design space.
GPRS provides a global map of the entire design space in the
form of an analytic function, making explicit to the architect
which variables have a significant impact on the target per-
formance measure and what interrelationships exist among
them. A global view of performance behavior across the en-
tire design space is a superset of the guidance an architect
could expect from a heuristic search–based approach.

While we review some of the related work pertaining to
automated design optimizations using heuristic searches, we
focus our comparison studies on several recently proposed
techniques for predictive exploration of microarchitectural
design spaces in out–of–order execution (OOE) processors.

3. OTHER RELATED WORK
Response surface methodology is well established and has

previously been used in many engineering fields to address
design optimization problems where the functional compu-
tation costs of evaluating design fitness are high [21]. GPRS
specifically has been used for optimizing the calcination of
roman cement and predicting stress fractures in steel [1].
Genetic programming in general has been previously used
in the computer architecture domain in the context of auto-
matically synthesizing accurate branch predictors [8].

There have been many efforts to speed up the exploration
process by reducing the number of instructions executed in
simulation [6, 7, 14, 20]. These techniques are fundamentally
orthogonal to response surface methodology because they
are concerned with decreasing per simulation overhead via

Figure 1: Number of evaluations heuristic search can

afford before GPRS becomes more efficient, for various

full–scale simulation times (in minutes). X–axis is num-

ber of design points, y-axis is number of evaluations.

reduced input sets, rather than decreasing the total number
of simulations via output prediction.

Yi et al. use a Plackett-Burman fractional factorial design
of experiments to prioritize design parameters for statistical
sensitivity studies [22]. Joseph et al. derive linear perfor-
mance models using stepwise regression [12]. These tech-
niques are not meant to be used to make predictions about
design performance, but rather to identify the interactions
and significance of the various design parameters.

Eyerman et al. [10] and Karkhanis and Smith [13] propose
CPI adders as accurate analytical models which capture su-
perscalar processor designs. These models must be created
by an architect with expert knowledge of the system, and it
is unclear how they will address the complicated interactions
of chip multiprocessor design spaces.

Lee and Brooks [17] perform regression modeling based on
cubic splines in order to generate predictive approximation
functions for superscalar processor performance and power.
Their method is a statistical process rather than an auto-
mated algorithm, and requires an a priori understanding of
variable relationships on the part of the architect [11].

An advantage of GPRS over analytical models is that the
response surfaces are generated automatically, rather than
having to be carefully constructed and tuned by the archi-
tect based on their previous knowledge of the design space.
However, this automation means that GPRS is much more
computationally intensive than any statistical technique.

Ipek et al. [11] propose training artificial neural networks
(ANNs) to create predictive global approximation models of
several computer architecture design spaces. Their neural
networks in general achieve 97–99% mean prediction accu-
racy after only training on 1–2% of the design space [11].
Like GPRS, ANNs automatically learn non–linear functions.
However, they also represent a “blackbox” in that they give
the designer no explicit insight into the relationships that
the network develops between the input variables and the
response function. Genetically programmed response sur-
faces, by contrast, create non–linear yet explicitly defined
functions, and thereby allow the designer to see exactly what
the algorithm has learned from the sample data.

Kumar et al. attempt to search through a large het-

erogeneous chip multiprocessor design space using a hill–
climbing search [16]. Hill–climbing selects a configuration
4.5% worse than the configuration selected by the exhaus-
tive global search, while requiring 86% fewer full simulations.
Eyerman et al. [9] perform a similar study in a embedded
processor context and investigate the performance of a va-
riety of search algorithms. During the search phase of the
process they use statistical simulation [6] to speed up the
evaluation of individual design points.

4. RESPONSE SURFACE CREATION
Due to space constraints we assume the reader is famil-

iar with the basic processes of standard genetic search al-
gorithms. Like all evolutionary algorithms, the biological
concepts of natural selection and survival of the fittest are
at the heart of genetic programming. The only difference
is that rather than searching through the space of possible
designs directly, our algorithm searches through the space
of predictive functions which describe design performance.

The algorithm is structured such that accurate candidate
response surfaces are more likely to ‘survive’ and be recom-
bined, and so subsets of their highly fit structure spread
across generations, leading to a rising average fitness and
the eventual convergence of the algorithm on an accurate
model. Readers seeking more information about genetic pro-
gramming in general should refer to [15], and those seeking
information about the mechanics of genetically programmed
response surfaces should refer to [1].

4.1 Modeling Representation
Candidate response surfaces are polynomial equations rep-

resented as expression trees, where an individual node in a
tree represents a user-defined operator, an encoded design
parameter or a tuning parameter (Figure 2). Operators are
defined by the user – in this case we include simple arith-
metic operators, square and square root operators and a
logarithmic operator. If operators are undefined for cer-
tain inputs (e.g. divide by zero), a harsh fitness penalty is
assigned to the expression tree containing them if such an
exception is ever raised during fitness evaluation.

Cardinal and real–valued design parameters are encoded
as floating point values, while boolean variables are con-
verted into 0/1 values. The use of tuning parameters (Sec-
tion 4.3) serves to abstract the form of the approximation
function from the data value ranges [1]. Nominal parame-
ters (variables representing discrete choices with no inherent
quantifiable properties) are represented with one-hot encod-
ing [11].

4.2 Evolution
A candidate response surface’s fitness is evaluated based

on two metrics: the quality of the approximation of the
experimental data by the candidate, and the size of its as-
sociated expression tree. We quantify the quality of the
model by calculating the sum of absolute differences between
the candidate surface’s predictions and the collected perfor-
mance data for all sample design points (Eq.1). Penalizing
lengthy expression trees serves to keep the equations more
compact and globally fit, and encourages the process to drop
terms which do not improve the quality of predictions. In
the fitness function (Eq.2) the constant c is used to control
the size penalty; size is measured in terms of the number of
tuning parameters (ntp) which have been introduced into

Figure 2: Expression trees undergoing crossover breed-

ing

the function. After a period where the fitness of of the best
candidate fails to improve beyond a certain threshold, the
GP algorithm is declared to have converged and is halted.

Q(Si) =

PX
p=1

|Fp − F̃p|

PX
p=1

Fp

(1)

Φ(Si) = Q(Si)− c ∗ ntp2
i → max (2)

The evolutionary reproduction and mutation processes in
GP are much like those of normal genetic algorithms. Can-
didates are selected for reproductive participation according
to their fitness (with highly fit candidates having a higher
probability of being selected), and the selected candidates
then swap randomly determined subtrees (Figure 2). With
mutation, a randomly selected node in a randomly selected
expression tree is mutated into a different node of the same
type (i.e. operators mutate into other operators, design vari-
ables into other design variables).

4.3 Tuning Parameters
A critical but completely automated step of the genetic

programming process is the assignment of tuning parame-
ters to a candidate expression tree. Tuning parameters ab-
stract the structure of the expression from the specific data
value ranges; using them results in simpler approximation
functions [1]. These added parameters serve to mold the
generic structure provided by the expression tree so that it
fits as closely as possible to the sample data. Tuning pa-
rameters are added by the algorithm to an expression tree
deterministically based on the tree’s topology, and their val-
ues are automatically adjusted to fit the candidate surface to
the data. The effectiveness of the overall genetic program-
ming technique hinges on the ability to detect fit candidates;
poor tuning will result in theoretically fit expressions being
inadvertently discarded by the technique.

For the tuning process itself, our implementation of the
GP algorithm uses an open source implementation of the
Levenberg–Marquardt algorithm for solving nonlinear least–
squares problems [19]. Levenberg–Marquardt is an iterative
technique that can be thought of as a combination of steep-
est descent and the Gauss–Newton method, with the method
of convergence changing depending on its proximity to a so-
lution.

4.4 Design of Experiments
We use a design of experiments (DOE) technique known

as the Audze-Eglais Uniform Latin Hypercube design of ex-
periments [2] to select the points included in the sample
set of performance data used in the genetic programming of
the response surfaces. Audze-Eglais selects sample points
which are as evenly distributed as possible through the de-
sign space by formulating the problem as one of gravitational
attraction and minimizing the “potential energy” of the sys-
tem of points. We formulate our Audze-Eglais DOEs using
the optimization technique described by Bates et al. [3].
Random sampling [17] does not guarantee an even sampling
distribution, and sampling based on variance [11] does not
allow us to collect the complete set of sample data prior to
the response surface training process.

5. EXPERIMENTAL METHODOLOGY
We use simulated performance data previously collected

by Ipek et al. [11] and Lee et al. [17] for their recent OOE
processor design space exploration studies. These datasets
allow us to present a direct comparison of the accuracy of
the three techniques, and also provide a validation of the
effectiveness of GPRS at modeling realistic architectural de-
sign spaces. The Ipek et al. processor design space con-
tains 12 design variables (with 2 or 3 parameter bindings
each), resulting in over 20K unique design points. Parame-
ters included issue width, frequency, branch predictor sizes,
functional unit counts, ROB and register files sizes, and
cache sizes. The Lee and Brooks design space has 23 design
variables divided into 12 groups (with 2 to 10 parameter
bindings each), resulting in approximately one billion de-
sign points. The parameter groups include pipeline depth,
pipeline width, physical registers and reservation stations,
cache sizes, functional unit latencies, and memory latencies

Both sets of performance data were collected from detailed
simulations running over a subset of the SPEC CPU 2000
benchmarks. Ipek et al. made their benchmark selections
based on metric similarity clustering suggestions provided
by Phansalkar et al. [20], and used the MinneSPEC [14]
reference inputs [11]. Lee and Brooks created their input
traces by sampling the SPEC full reference input set [17].

We use a tool based on [3] to automatically generate an
Audze-Eglais Design of Experiments of a specified size for
a user-supplied list of parameters and their associated valid
bindings. The ideal size of the sample set varies depending
on the size of design space being studied. The output of our
DOE formulator is a list of points within the global design
space that will become the training set for the GPRS for-
mation algorithm. For the purposes of this study, we simply
extract these datapoints out of the previously collected sets
of performance data, but in a brand new optimization study
we would simulate each of them in full detail.

In selecting the parameters used to control the operation
of the GP algorithm, we generally adhere to the values sug-
gested by Alvarez in his genetic programming optimization
studies [1]. We use an initial population size of 500 candidate
expression trees, limit the maximum number of generations
to 1000 (the GP process almost always converged after fewer
than 100 generations), set the expression tree size penalty
constant c to 0.000001, and use a 10% elite percentage and
10% kill percentage to aid in convergence.

For reasonable values, these algorithmic variables affect

the efficiency of the algorithm and the speed at which it
converges, and not its ability to arrive at an accurate so-
lution. The size penalty constant is the most important to
set appropriately because it can affect whether the models
produced over or under fit the sample data. Cross valida-
tion can also be used to prevent overfitting when the proper
value for this constant is unknown [11].

Because a response surface is simply an analytic equation,
off-the-shelf numeric solvers can be used to rapidly locate the
predicted global optima and examine other features of the
surface (we use Mathematica R©).

This short chain of applications is already almost fully
automated, and represents an extremely powerful infras-
tructure for architects faced with difficult design optimiza-
tion tasks. With this in mind, we are working to realize a
toolchain for taking a set of a benchmark results, a simula-
tor configuration script, and a list of design parameters with
their bindings and automatically formulating DOEs and cre-
ating GPRSs based on them.

6. EXPERIMENTAL RESULTS
We find that the models generated by GPRS accurately

and robustly depict the true behavior of many performance
measures, even at extremely small sample sizes. GPRS iden-
tifies variables that have a significant impact on the perfor-
mance measure by explicitly including them in an analytical
equation, giving the architect insight into how they should
be optimized and which subspaces should be explored.

Our first study makes use of data provided by Ipek et. al
[11]. We generate DOEs for this twelve dimensional space
and use them to train GPRSs that provide predictions for
performance (IPC), branch prediction and L2 cache hit rate.
We calculate percentage errors between the predicted values
suggested by the response surface equation and the detailed
simulation data. We calculate GPRS error across all data
points collected by Ipek et al. — in this case, they conducted
an exhaustive search of the entire processor design space —
and find that the GPRS provides highly accurate predictions
of design performance on a global scale.

With sample sizes as small as 0.1% of possible designs,
predictions of branch predictor accuracy and L2 hit rates
have < 2% mean global error. GPRS predictions of IPC
for all the non-sampled points achieve 2.8–4.9% mean error
with standard deviations between 2.2–3.4%. When sampling
increases to 0.5%, this result improves to 1.2–3.0% mean
percentage error with standard deviations in the range of
1.1–2.3%. These results are generally comparable to the per-
formance of the neural network–based technique, but with
better accuracy achieved at smaller sample sizes. Making
successful predictions at very small sample sizes will be-
come increasingly important as architectural design spaces
continue to grow exponentially.

We are also concerned with the distribution of prediction
error across the design space. Not only do we desire a low
variance in error, but we also do not want to badly mis-
predict any individual points. To explore the worst of our
predictions we use cumulative density functions of individual
point error. Figure 3 shows the most and least accurately
predicted benchmarks; other CDFs are reported in a techni-
cal report. The maximum percentage errors on any one pre-
diction range up to only 15% for even the most poorly pre-
dicted benchmarks, with at least 80% of the points having
a percentage error smaller than 5%. On the best–predicted

Figure 3: CDFs of error for IPC in the Ipek et al.
design space at a 0.5% sample size. The Y-axis rep-
resents the percentage of design points with predic-
tion errors < the X-axis value.

Figure 4: CDFs of error for BIPS in the Lee et al.
design space at a 0.000002% sample size

benchmarks over 97% of the points have percentage errors
smaller than 5% and the maximum error is only 7.3%.

Genetically programmed response surfaces are explicit ap-
proximation functions relating design parameters to perfor-
mance measures, and we can make use of their explicit na-
ture to gain insight into the target design space. The genetic
programming process drops terms from the response surface
equation which do not confer any additional predictive ac-
curacy. Over time, parameters strongly correlated with the
performance measure are retained, while insignificant vari-
ables are discarded. For this reason, an architect examining
the response surface generated for a target benchmark can
quickly tell which design decisions will actually have a sig-
nificant impact on performance.

As expected, the GPRSs created for the Ipek et al. data
identified different parameters as significant when asked to
provide predictions for different performance measures. For
the cache and branch prediction performance measures the
cache sizes and branch predictor sizes were the only sig-
nificant variables for all benchmarks. For IPC predictions,
many parameters had a significant role in determining per-
formance, and these parameters were different for surfaces
trained on different benchmark applications. This makes
intuitive sense — different architectural characteristics will
have different performance impacts on memory-bound ap-
plications as compared to CPU-bound ones, for example.

The response surface makes it easy to predict exactly what
the performance impact of a given design decision will be,
even in the face of complicated multivariate interactions.
None of the ratios or variable relationships need be speci-
ficied in advance — the genetic programming algorithm is
wholly responsible for automatically identifying the relevant
variables and their relationships.

Numerical optimization with off-the-shelf software can rapidly

benchmark (1) true (2) pred. (3) worst
applu 2.25 2.235 2.19
art 0.53 0.537 0.51
bzip2 1.48 1.433 1.42
crafty 1.76 1.744 1.62
equake 1.66 1.627 1.61
gcc 1.29 1.269 1.15
mcf 0.58 0.559 0.54
mesa 3.04 2.909 2.87
mgrid 1.73 1.723 1.41
swim 0.95 0.936 0.89
twolf 1.01 0.979 0.93
vortex 2.48 2.362 2.31

Table 1: Summary of GRPS results after training on
Ipek et al.’s processor performance data with sam-
ple size of 0.5%. (1) True global optima in IPC as
determined by exhaustive search. (2) Optimal IPC
value predicted by GRPS. (3) Worst possible de-
sign’s IPC after significant variables are analytically
optimized.

determine the optimal values for significant variables, and
an architect could search through the remaining variables
to find the precise optimal configuration. However, we find
that even just assigning the remaining insignificant design
variables to be random valid values will result in near opti-
mal designs (see Table 1). Simply rapidly evaluating every
possible point using the response surface model is also a
tractable solution in some cases.

Our second study made use of performance and power
data collected from a superscalar processor design space by
Lee and Brooks [17] to test their regression modeling tech-
nique for performance prediction. Lee and Brooks used uni-
form random sampling when they selected the points used
to formulate their regression models. For this study, we like-
wise use random sampling rather than a DOE — this allows
us to evaluate the comparative effectiveness of GPRS inde-
pendent of our more robust sampling method. Figure 4 uses
cumulative density functions of percentage error to illustrate
the performance of GPRS on this design space.

At sample sizes as low as 200 out of over 1 billion design
points per benchmark, we find that the median percentage
error of the performance (BIPS) predictions provided by the
GRPSs range from 1.1% to 6.1%, with variances of 2.3% and
9.9% respectively. Maximum errors range between 23.1%
and 44.8%; in general these values are outliers. For power
(watts), the median percentage errors are at worst 6.2% with
a variance of 5.7% and a maximum of 32.5%. The Lee and
Brooks dataset does not include an exhaustive search of the
design space, so we have evaluated GPRS error based on
1000 datapoints not included in the sample set. Again we
find that GPRS attains accuracy comparable to the alter-
native technique, but achieves it at smaller sample sizes.

Our success at making predictive models of the Lee and
Brooks design space demonstrates that accurate predictions
based on several orders of magnitude fewer simulations are
certainly feasible when the design space is large enough.
Simulations used to generate our model could afford to be
20 times more detailed than those used by Lee and Brooks,
or 5 million times more detailed than those used in an ex-
haustive search, assuming we are willing to spend the same
amount of time on each study.

We find that in practice the time required to create a

highly accurate GPRS is several hours, and for a popu-
lation size of 500 running completely unparallelized every
additional 100 sample points adds about two hours to con-
vergence time. Blackbox neural networks can be created in
only minutes, whereas regression analysis is not automated.
However, due to our use of a formal DOE and the predic-
tive interpolation provided by our response surface, sample
size increases only linearly with each dimension added to
the problem. At high dimensionality the time spent creat-
ing and evaluating a GPRS is significantly smaller than the
time required to complete the larger set of full–scale simu-
lations required for an exhaustive study, heuristic search, or
predictive technique dependent on larger sample sizes.

7. CONCLUSIONS
Architects making use of genetically programmed response

surfaces can anticipate vast reductions in simulation over-
head and automated identification of important design pa-
rameters and subspaces, all while maintaining a high degree
of confidence in the predictive results. GPRS provides ar-
chitects with predictive polynomial equations that can be
trivially solved to estimate what a costly cycle-accurate sim-
ulation would otherwise have produced, enabling an analy-
sis of the performance impacts of proposed design changes
without requiring additional detailed simulation data. Time
saved by using GPRS allows the few detailed simulations re-
quired for training to be even more detailed, thus improving
the overall efficiency and realism of the process.

Unlike the heuristic design space searches performed in
[16] and [9], the time our technique takes to locate optima
is decoupled from the length of time it takes to run a full–
scale simulation — simulations of the small number of de-
sign points in the sample set can all be done as a prepro-
cessing step. The predictions generated by a GPRS are ex-
tremely accurate even when trained on small sample sets,
which means that as design spaces grow exponentially the
sample size only needs to grow slightly to keep accuracy
high. Predictive techniques that are scalable and automated
will become increasingly fundamental to producing effective
computer architecture optimizations as the trend towards
greater design complexity continues.

8. ACKNOWLEDGMENTS
This work was funded in part by a research grant from

NSF, nos. CCR-0133634, CCF-0429765, and IIS-0612049,
and formed the basis for Cook’s undergraduate senior thesis
in the Univ. of Virginia School of Engineering and Applied
Science. We would like to thank John Lach, Paul Reynolds
and the anonymous reviewers for their helpful comments,
and the research groups of Sally McKee (Cornell) and David
Brooks (Harvard) for access to their datasets.

9. REFERENCES
[1] L. Alvarez. Design Optimization based on Genetic

Programming. PhD thesis, Univ. of Bradford, 2000.

[2] P. Audze and V. Eglais. A new approach to the
planning out of experiments. In Problems of dynamics
and strength, volume 35, 1977. In Russian.

[3] S. J. Bates, J. Sienz, and D. S. Langley. Formulation
of the audze–eglais uniform latin hypercube design of
experiments. Adv. Eng. Software, 34(8):493–506, Jun.
2003.

[4] G. Box and N. Draper. Empirical modelbuilding and
response surfaces. John Wiley and Sons, 1987.

[5] J. Davis, J. Laudon, and K. Olukotun. Maximizing
cmp throughput with mediocre cores. In PACT, Oct.
2005.

[6] L. Eeckhout, S. Nussbaum, J. Smith, and
K. DeBosschere. Statistical simulation: Adding
efficiency to the computer designer’s toolbox. In IEEE
Micro, Sept./Oct. 2003.

[7] L. Eeckhout, J. Sampson, and B. Calder. Exploiting
program microarchitecture independent characteristics
and phase behavior for reduced benchmark suite
simulation. In IISWC, Oct. 2005.

[8] J. Emer and N. Gloy. A language for describing
predictors and its application to automatic synthesis.
In ISCA, Jun. 1997.

[9] S. Eyerman, L. Eeckhout, and K. D. Bosschere.
Efficient design space exploration of high performance
embedded out-of-order processors. In DATE, Mar.
2005.

[10] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E.
Smith. A performance counter architecture for
computing accurate cpi components. In ASPLOS, Oct.
2006.

[11] E. Ipek, S. McKee, B. de Supinski, M. Schulz, and
R. Caruana. Efficiently exploring architectural design
spaces via predictive modeling. In ASPLOS, Oct. 2006.

[12] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil.
Construction and use of linear regression models or
processor performance analysis. In HPCA, Feb. 2006.

[13] T. Karkhanis and J. E. Smith. A first-order
superscalar processor model. In ISCA, 2004.

[14] A. KleinOsowski and D. Lilja. Minnespec: A new spec
benchmark workload for simulation-based computer
architecture research. IEEE Comp. Arch. Letters,
1(1), 2006.

[15] J. Koza. Genetic Programming: On the programming
of computers by means of natural selection. MIT
Press, 1992.

[16] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core
architecture optimization for heterogeneous chip
multiprocessors. In PACT, Sep. 2006.

[17] B. Lee and D. Brooks. Accurate and efficient
regression modeling for microarchitectural
performance and power prediction. In ASPLOS, Oct.
2006.

[18] Y. Li, B. C. Lee, D. Brooks, Z. Hu, and K. Skadron.
Cmp design space exploration subject to physical
constraints. In HPCA, Feb. 2006.

[19] M. Lourakis. levmar: Levenberg-marquardt nonlinear
least squares algorithms in C/C++.
http://www.ics.forth.gr/ lourakis/levmar/, 2004.

[20] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John.
Measuring program similarity: Experiments with spec
cpu benchmark suites. In ISPASS, Mar. 2005.

[21] G. Venter, R. Haftka, and J. Starnes. Construction of
response surfaces for design optimization applications.
In 6th Symp. on Mult. Anal. and Opt., 1996.

[22] J. Yi, D. Lilja, and D. Hawkins. A statistically
rigorous approach for improving simulation
methodology. In HPCA, Feb. 2003.

