Hardware Support For SDT:

The Use of Hardware Counters For Hot Spot Detection in Strata

Kevin Hirst, Kevin Scott, Kevin Skadron, Jack Davidson {krh2n, jks6b, skadron, jwd} @cs.virginia.edu

Abstract

Compilers have begun to push the limits
of static program optimization and are showing
diminishing returns in optimization of current
techniques. While compilers are good at
ordering data accesses and predicting behavior
of processor structures such as cache and
branch predictors, they cannot truly take
advantage of run-time information. JIT
compilers and profilers can take advantage of
information collected during a program’s
execution, but cannot optimize programs for
every execution. Strata is a dynamic
optimization framework that has already been
introduced by Kevin Scott. In the Strata
architecture, the eventual goal is to implement
speculative profiling of execution traces in
[frequently executed areas of running programs,
or hotspots, and to use these profiles to optimize
code during execution. By optimizing hotspots
only, we maximize the chances that running a
dynamic optimizer will be beneficial. In this
paper, I will describe a low cost, hardware
method of identifying hotspots and deciding
where speculative profiling will take place.

1. Introduction

Modern compilers have developed
many more sophisticated techniques in the past
few years to improve program performance.
Compilation techniques that reduce hazards
associated with data access and branch resolution
allow for better performance at run-time.
Improvement of static compiler techniques,
however, is showing diminishing returns in
program performance and instruction throughput.
Time can be better spent in analysis of these
programs at runtime, and experiments should be
run to determine how we should analyze
programs at runtime.

Traditional factors that hinder program
performance include cache misses, branch
mispredictions, and structural hazards.
Compilers have difficulty determining what the

effect of these factors will be at runtime. While
the compiler may arrange accesses to memory in
a way that will favor cache hit ratios, the
compiler does not know how well the cache will
perform at runtime. The OS layer is another
factor that the compiler cannot take into account.
For example, process scheduling can cause
certain data within a process to have a low hit
rate due to cache evictions. A dynamic
optimizer may be able to detect this behavior and
reschedule instructions that can be executed
during these cache misses.

Ideally, a dynamic optimizer would be able
to monitor all of these factors and reorder or
change instructions to best suite the execution
environment of the processor and OS layer. Our
experiments, however, are not just geared to
running a dynamic optimizer on a given
processor framework and analyzing the results.
We propose that cooperation between the
dynamic optimizer and the processor hardware
can help us best exact optimization of the
running program. More specifically, we wish to
address the issue of hot spot detection in running
programs. A hot spot is a frequently executed
area of the program, usually contained in a main
loop or function. We wish to identify these areas
so we can determine where to best use our
resources for optimization. In our addressing of
hot spot detection, we wish to address the
following questions.

* How do we best identify hot spots in
running programs without unnecessary
overhead?

e What method of hot spot detection will
allow the programmer the most
flexibility in choosing a method of
optimization or in choosing a program
area to focus optimization on?

The answers to these questions will provide
processor manufacturers the information
necessary to build processors that best support
future needs for dynamic optimizers.

In general, our results showed that our
methods of hot spot detection were low cost

compared to software methods, and detected
program areas with a wide range of “hotness.”
Some areas were executed extremely frequently,
and some were not executed as frequently, but
most areas deemed hot by our detection method
were executed with sufficient frequency to
warrant optimization.

Our experiments are run using SimpleScalar,
running a version of Strata that supports the
PISA architecture. Section 2 of this paper will
explain and justify our additions to the PISA
architecture. Section 3 will detail previous work
on dynamic optimizers with hardware support
and hot path prediction, and Section 4 will give a
breakdown of our benchmarks and our results.
Section 5 will detail our conclusions and any
further work needed on this research.

2 Methods

For this area of research, Strata was
ported to the PISA architecture for simulation on
the SimpleScalar system. For a detailed
explanation of Strata’s architecture and the
issues in porting this architecture to PISA, please
refer to the appendix. Briefly, Strata is a system
that builds code fragments from a running
program’s text segment into a fragment cache.
Code from the running program is then executed
from the fragment cache, and stats are taken
from that execution, if need be. Optimization
occurs on the individual fragments.

2.1 Hot Paths

The metric that Strata’s performance
will be measured by is the simple equation T +
Topi < To. This simply means that in order for
Strata’s overhead to be worthwhile, the new
execution time of a program plus the time spent
optimizing it must be less than the old execution
time. Run-time optimization is a relatively
expensive process. In addition to optimization
costs, Strata incurs the cost of building fragments
into the fragment cache. In order to circumvent
these costs, optimizations enacted upon
fragments must have a high gain. If a particular
fragment is rarely executed, then optimization
performed on that fragment is wasted due to the
optimization costs. The simple equation Tgneq =
(To1a— Thew) * X = Tqp, where X is the number of
times the fragment is executed, tells us the gain
of optimizing a fragment. Hot paths are traces
within the program, usually contained in loops,

that have high x values. We wish to reserve our
optimization for hot paths to maximize gain.

2.2 Hot Path Detection

The detection of hot paths within the
running program is our central issue. Our
philosophy was to provide a simple, flexible,
solution, and let the individual programmer
decide how to use our solution. The method of
hot path detection in Strata is based upon a
structure of hardware counters, which keeps
track of how many times certain individual
fragments are executed. The counter structure is
an associative cache, meaning that its identifying
tag is simply the program of the beginning
instruction of the fragment. Each entry, or
counter, also contains the number of times that
the instruction at that PC has been executed.
Each cycle, the processor sends the current PC to
the counter structure, and the counters update
themselves, using their own comparators and
adders. If the PC matches a particular counter,
that counter simply adds 1 to its current total.
The entry contains a callback address, to be
explained briefly. The counters are created using
an instruction we added to the PISA architecture.

The counter initialization instruction
has the format described in this table.

Counter Regl Reg2 Unused
Opcode

Bits Bits Bits Bits
63..32 31..24 23..16 15..0

The counter instructions themselves use indirect
addressing. This means that the address to
monitor is the value contained in the register
pointed to by regl, and the callback address is
the value in the register Reg2. These counter
instructions are placed at the taken trampoline
for branches with a backward taken target, where
the backward taken target has already been built
into the fragment cache. If the backward taken
target has not already been built into the
fragment cache, then we do not know which
address to monitor, and cannot issue a counter
instruction. Once the counter instruction has
been issued into the taken trampoline and
subsequently executed, we update the taken
trampoline such that that counter instruction will
not be executed again, and therefore we occur no
additional penalty. Please see Appendix A for
more on fragment layout in Strata. The layout of
the trampoline is detailed in Figure 1.

*, LN
i i
i:}:;; I::f:gt Table 1 — Counter Instructions
-- branches forward across jump if branch is not
taken
BNE R12,0, 8 --2 insts ahead
Fragment Fragmert Jump Not_Taken_Target
Add SP, SP, -8
Store T2, SP, 0
Store T3, SP, 4
Branch Branch Loadlmm T2, Taken_Target
LoadImm T3, Profiler_Address
Mot Taken Mot Taken Counter T2, T3
] Load T2, SP, 0
Courter Init Taken : Load T3,SP, 4
Sounterinit Add SP, SP, 8
Taken \/\f T Jump Taken_Target

Figure 1 The counter initialization instruction(s) are later replaced with the actual jump to the taken
target, since a second counter initialization is redundant.

The code is explained in Table 1- The
stack is decremented by 8 to save the temporary
registers, while the callback and monitoring
address is sent to those registers, and the counter
instruction follows, along with a restore of the
temporary registers.

Strata maintains a list of addresses
needing to be fixed in order to replace not-taken
and taken trampolines which activate the
fragment builder the first time a branch is
executed. These trampolines call the builder
with the target address of the branch, which is
determined conditionally at execution time.
When a branch’s target fragment is built, the
branch in the fragment which jumps to that target
is “fixed” such that it no longer jumps to the
Strata builder, but the fragment that contains the
target. In the same way, the counter is “fixed” so
that it no longer executes every time a taken
branch is executed. Table 1 contains a code
example.

There are several advantages to this
approach. This architecture is flexible because it
allows the user to start gathering information
about the execution of certain fragments with a
penalty of only a few instructions per counter. It
allows the programmer to use the information
gathered by the counters in a method of his or
her choosing. Another advantage our paper
addresses is the actual savings, measured in
processor cycles, of using our hardware counters
versus normal software methods in hot path
detection. This is a significant part of the
rationale for implementing such primitives in
hardware.

This approach to hot path detection also
has a low hardware cost. An individual counter
has a comparator, an adder, a tag, an unsigned
integer, and a 32-bit callback address. This
structure is detailed in figure 3. This may seem
fairly large, but the size of the structure will
depend on the number of counters that are
actually needed. This can vary highly from
application to application.

PC Branch &ddr Callback Cnfr
= = Iner |

FC

Figure 2 - the counter structure. In this
figure, the top line is a match, and the counter
is incremented and checked versus the
threshold. If it matches, the PC is latched out
from the callback address and fed the branch
address as an argument.

Finally, the counter implementation
would not be on the critical path of the
processor. As shown in figure 3, the PC would
simply be broadcast to the counter structure and
checked versus all of the existing tags. The

arg(ll)

counter is incremented if necessary. Therefore,
there is no hardware slowdown of other
instructions in normal program execution.

We limited our hot spot detection to
loop constructs within original program code.
Figure 1 shows the placement of the counter
instructions, and the method by which Strata
avoids executing the counter instructions more
than once. Because we limited our focus to
program loops, counters are only created at
backward taken branch targets, since backward
branches represent these loops. The
disadvantage of this approach is that functions
called many times outside of loops will not be
fully optimized. However, we will still
experience worthwhile gain from these
functions, because the hot paths within these
functions will be executed many more times than
the function itself, and those hot paths will be
well optimized. However, our counters are
flexible enough for any programmer to use a
different method, if he or she chooses.

When a counter associated with a loop
head reaches a particular threshold, we consider
that area of the program to be hot, and at that
point we would begin speculative profiling of
that loop. At this point, however, we do not turn
off the hardware counter monitoring this loop.
Because we want a fair assessment of how
worthy these loops are of optimization, the
counter continues to keep track of the number of
times that loop is executed, despite reaching the
threshold. Keeping the counter active helps us
determine what percentage of program execution
time a loop is occupying. Since the hardware
monitoring is a transparent function (i.e. there
are no instructions required to continue the
monitoring) the executing program will incur no
instruction penalty as a result of the continued
monitoring, except where a profiler might decide
to read a particular counter. The amount of time
we should spend optimizing a loop is probably
correlated to its percentage of its execution time
by a hyperbolic function. That is, we should
spend more and more time optimizing loops with
large percentages of execution, but keep in mind
that any optimizer will produce diminishing
returns after a certain number of times. This
topic will be covered as we expand the
capabilities of Strata.

The callback address associated with
the counter is the address of our speculative
profiler, and the processor calls that function
using the associated PC as a parameter when the
counter reaches our threshold. The method and
implementation of speculative profiling will be

left to a future paper, since we are only interested
in hot spot detection here. Speculative profiling
keeps track of the most commonly executed path
within the loop or hot spot, and puts a greater
priority on optimization of that path. We
considered a reasonable threshold to be four
executions. Using this metric, we assume that
optimization of a loop would equal the loop in
number of instructions executed. Therefore, if
we achieved a 25% faster solution by
optimization, which is a reasonable assumption,
then we have broken even.

In order to check our results versus a
similar software method, we implemented an
identical structure to our hardware counters in
software as well. We keep the same data as our
hardware counters (a callback address and a
counter), except we implement them as a
standard array in main memory. Since main
memory is inexpensive, we keep a large array of
these structures and use a hash function to map
the branch PC to certain slots. The hash function
is only a cost of a few instructions, but there are
several loads which drive the cost of initializing
and/or incrementing a counter to 25-30
instructions, and introduce the possibilities of
data cache misses. Table 2 explains the software
method and its drawbacks.

Table 2 — Software Counters

This is the equivalent software implementation —
the hash function must be called and a match determined on
the corresponding counter in memory. If a match is not found
in the hashed slot, the counter in that slot is initialized to zero,
and the callback and branch addresses are written. If a match
is found, the counter is incremented.

The value of the address kept in the hashed slot is returned in
register TO, the address of the slot is in T1

BNE R12,0,8 --2 insts ahead

Jump Not_Taken_Target - not taken trampoline
AddImm SP, SP, -16

Store TO, SP, 0

Store T1, SP, 4

Store T2, SP, 8

Store T3, SP, 12

Loadlmm T1, Slot_Addr — determined by strata builder
Loadlmm T2, Taken_Target — determined by strata builder
JAL Address_Fetch - fetches address into TO
BEQ T2, TO, 32 -if the addresses match skip 4 insts
LoadImm T3, Profiler_Address — determined by builder
Store T2, T1, 0 — store new address of counter
Store 70, T1,4 - set new counter to 0

Store T3, T1, 8 — store profiler address

Load T3,TI1,4

AddImm T3, T3, 1 — increment counter

Store T3, T1,4 - store it back

LoadlImm TO, TO, 4

BNE TO, T3, 16 — if counter <> 4 skip two insts
AddIlmm T1, T2, 0 — put address in parameter register
JAL Profiler_Address

Load TO, SP, 0

Load T1, SP, 4

Load T2, SP, 8

Load T3, SP, 12

AddImm SP, SP, 16

Jump TakenTarget

In addition to the instructions that are in
Table 2, the software method incurs a penalty for
a jump-and-link to fetch the address in the proper
slot for comparison with its taken address, and it
incurs a delay for two branch determinations, as
there is no branch delay slot in the PISA
architecture. Another drawback of the software
method of profiling is that without adding a high
additional cost to Strata for keeping track of
which branches have reached their execution
threshold, we cannot turn off these instructions
or rewrite the branch in the same method as we
do for hardware counters. Therefore, the
software method will not discontinue profiling of
a branch when the threshold of four executions is
reached, and will continue to incur execution
penalties. When a speculative profiler has been
implemented, we will be able to remove software
instrumentation, but at the cost of keeping lists
of those locations and information on how to
remove them. Our hardware method of profiling
will continue to increment a counter after it
reaches the threshold, but it will not incur
instruction penalties since this occurs as part of
the processor’s natural functions.

3 Related Work

Many dynamic optimization systems
have been written in the last few years. As with
other areas of research, many of these systems
incorporate similar techniques and methods. We
will review some of the more recent methods of
hot path profiling.

Hot path profiling has become a popular
topic within the realm of dynamic optimization.
SDT papers in general recognize the value of
reserving optimization for frequently executed
program blocks. We look at a few methods that
are software based only. Kistler and Franz [3]
incorporate trace scheduling into their path
profiling code. Their algorithm starts at the
beginning of a procedure and collects the hot
trace by selecting the most frequently taken fork
until the end of the procedure. By selecting
traces until they have full coverage of the basic
blocks, they claim to have divided the entire hot
path of the program into corresponding traces.
By profiling the entire program unselectively,
they have introduced large overhead into their
system, and their results show that the hot path
profiling hurts execution time. Patel and

Lumetta[4] also construct traces based on
selection of highly biased branches. Their
algorithm removes branches and replaces them
with assertion instructions after they show highly
biased behavior. Assertions are fired if the
branches do not follow the predicted path, and
the trace is eliminated. Areas with highly biased
behavior are constructed into traces and executed
as such, whereas areas without such behavior are
executed normally. The optimizer then focuses
on the constructed traces. This demonstrates an
ability to focus on highly executed areas, but
profiling must be occurring at all times so the
optimizer can focus on wanted areas. These
solutions could clearly be implemented using
counter instructions, which would only execute a
speculative profiler after a hot spot is detected,
rather than depending on a profiler running
during a program’s entire execution.

Finally, Hwu et. al [2] propose a
hardware architecture for dynamic optimization
that focuses primarily on hot spot detection and
determination heuristics. They propose an
architecture that sits at the retirement stage of the
processor and collects information on branches.
A branch behavior buffer collects information
about the paths of particular branches.
Frequently executed branches are collected into a
list of candidate branches, and infrequently
executed branches are non-candidate branches.
As the program executes, the hot spot detector
determines the ratio of candidates to non-
candidates, and trace collection starts when the
ratio exceeds a certain amount. This architecture
would seem to limit hot spot detection to short,
tight loops, considering that the hot spot
detection operates off of a local ratio. Since
branches are removed from candidacy as a
function of their execution percentage to all other
recent branches, a loop with a large number of
branches inside would be invalidated simply as a
matter of the total number of branches. Trace
collection would not occur no matter how many
times the loop was executed, and optimization
would therefore not occur. The primary
advantage of the simple hardware counters over
Hwu’s hot spot detector is that we may use
software to implement any of a number of hot
spot detection or trace collection algorithms —
including long loops that are branch heavy.

Instruction Count

1E+12

1E+11

.% @None
% OHC
£) osc
*
10000000000 -
1000000000 -+
gce mcf parser twolf vortex vpr gzip bzip2
Benchmark
Figure 3 - Instructions executed per benchmark
' O Counters
Counter #'s and Thresholds B Thresholds
Ot >10
Ot > 100
2000 1938 Wt> 1000
Ot > 10000
1800 @t > 100000
1600 H
1400 H -I 1341
1200 1
2
s 1000
=
(¢}
800 -
645
600 -
400 -
154
200 - 125
49 34 36
0 4
gcce mcf parser twolf vortex vpr gzip bzip2
Benchmark

Figure 4 - Number of Counters Used Per benchmark, and execution thresholds reached per
threshold level

Premature Evictions

0.9
0.8
0.7
0.6 Ot>10
[
] Bt>100
g 05 Ot> 1000
$ Ot > 10000
0.4 Bt > 100000
0.3 1
0.2

gce mcf parser twolf

vortex vpr gzip bzip2

Benchmark

Figure 5 - Premature Evictions Percentage per Threshold Level

Savings

A
o /\

\

Percentage

gce mcf parser twolf vortex vpr gzip bzip2
Benchmark

Figure 6- Instruction Savings per benchmark
4 Results

We took statistics on eight spec2000
benchmarks, running each benchmark from start
to completion. Our focus is primarily on the
savings that our hardware counters offer over
similar software profiling. In addition, we
collected the number of thresholds reached by
individual counters, and the total executions of
instructions at each monitored address. A
monitored address is an address with an
associated hardware counter. Figure 3 shows the

number of instructions executed per benchmark,
with the hardware counters, and with efficient
software counters, and Figure 6 shows the
savings of hardware counters as a percentage of
overall instruction count.

Table 3 — Average number of executions at
addresses with associated counters

Benchmark Execution Quantity
vortex 244078

gce 56049

twolf 124987

mcf 314984

vpr 98473

gzip 73666494

bzip 123110447

parser 95768

Table 3 is introduced as the average
number of executions per monitored
address(address with an associated counter). The
instruction savings results in Figure 6 show an
increase in instruction count of 1.5% to 7.5%.
This is a wide range of values, but readily
explainable because software methods of hot
path detection cannot update their collected data
without additional instruction overhead. There
are instruction penalties for each counter
initialization and increment, as well as address

lookup penalties. The parser, twolf, and mcf
benchmarks sustained the highest penalties for
maintaining software counters. Parser had a high
number of loops for its instruction count, and
mcf and twolf incurred large penalties because
their loops executed many more times than other
benchmarks, meaning that they incurred the
penalty for each execution. Parser spent more
time executing instructions within its loops than
other benchmarks because the coverage of loops
in the parser program was higher, probably in
string comparison algorithms. Gcc averaged
half an order of magnitude lower in terms of
execution of instructions at loop addresses.
Since the number of instructions executed in gcc
was not an order of magnitude lower, its
overhead was much lower than parser. The
benchmarks rwolf and mcf each instantiated a
fair number of counters, and averaged a higher
number of executions per monitored address as
parser, but since there were fewer monitored
addresses, the software overhead was not as
high. The bzip, gzip,and vortex had few
monitored addresses, but bzip and gzip executed
instructions at their monitored addresses
extremely frequently, therefore encountering the
software penalty a high number of times, and
saving around five percent.

In Figure 3, the instruction count of
benchmarks that were not instrumented with the
Strata architecture were much lower than those
instrumented with Strata. This is because of the
lack of an indirect branch cache. Thus, every
time an indirect branch was encountered, the
fragment builder in Strata had to determine
where the location of the next fragment was. In
a benchmark such as gcc, the overhead was
particularly great due to the number of procedure
calls, while bzip had very few, and therefore
incurred less instrumentation penalty. For a
more detailed look at the Strata architecture look
at Appendix A.

Figure 4 displays the number of
counters instantiated in each benchmark, and the
number of counters that reached the four-
execution threshold, thus instantiating a would-
be speculative profiler. In addition, Figure 4

displays the number of counters that reached the
thresholds of 10-100000 executions in increasing
orders of magnitude. Similarly to cache
structures, the counters had an eviction policy.
The counters were implemented as a circular
buffer. That is, the counters were kept in a 64-
element array with an index pointer. When a
counter is instantiated, it replaces the current
counter at the structure pointed to by the index
pointer. The index pointer is then incremented to
point to the next structure, and if the index
pointer is incremented past the number of
elements, it is modified to point to the beginning
of the structure. So each counter is subject to
possible eviction from the counter structure. The
numbers in Figure 4 show the number of
executions at monitored addresses without
evictions. Therefore, figure 5 shows numbers
that are representative of an infinitely large
collection of counters. Figure 5 displays the
overall number of counters that would reach the
corresponding threshold (t) of executions, but
would be evicted before they could reach that
threshold, as a result of the counter structure
implementation.

Overall, these figures show that a large
percentage of counters would reach at least a
100-execution threshold without being evicted
from a 64-entry counter structure. In the three
benchmarks with less than 64 counters, every
counter would of course never be evicted. In
benchmarks with greater numbers of instantiated
counters, however, there was a sharp curve in the
percentage of counters that would be evicted as
the corresponding threshold increased. In gcc
and parser, around seventy percent of speculative
profiling candidate loops would be evicted
prematurely if the execution threshold were set at
1000 executions, simply due to the sheer number
of counters that the program required. By the
time counters reached 100,000 executions,
around 95% or more were often evicted.

These results show that optimal
detection of “hotness” of loop heads would
probably be obtained by setting thresholds at
around 100 executions. This way, most counters
would reach the threshold without being evicted.

Executions

Executions

Executions of each counter in GCC

100000000

10000000

1000000 - & ¢ .,
100000 -
10000 -
1000 -

100

*

4 ® o0 0

?0’03 oo

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Counter #

Executions of each counter in Parser

100000000

oo o

10000000 . oo
1000000 |

100000 -

10000

1000 A

100 -

10 1

0 200 400 600 800 1000 1200 1400

Counter #

Figure 7 - Scatter Plots for Counter Benchmarks PARSER and GCC

Finally, figure 7 shows a detailed scatter
plot of the number of executions for each counter
instantiated in the benchmark gcc. There are
obvious areas of concentration for our data
points in gcc. Around 100 — 1000 executions,
there is a clear concentration, and, even across
the whole graph, an obvious majority of points
rest between 100 and 10000 executions. This
supports our conclusions regarding the eviction
data in Figure 5. From this data, we can see that
the area of concentration revolves around the
optimal area of counter thresholds reached
versus premature evictions. In other words, a
large percentage of our loop heads would be
detected as hot if the threshold were set at 100
executions, and few of their counters would be
evicted. The parser graph shows two areas of
concentration between 10 and 100 executions
and between 100 and 10000 executions. The
counters are clearly more evenly dispersed in
parser, but show the same general areas of
concentration as gcc, which supports our claim
as well.

5 Future Work/Conclusions

Our hardware execution counters were
extremely efficient in detecting hot spots,
showing up to 12% gain in instructions per
program over a simplistic software method. Ata
one time cost of 11 instructions (plus one-time
cost of removal), these counters seem to be an
extremely efficient method of hot spot detection.
In addition, we were able to see some groupings
that led us to clear conclusions about possible
threshold levels for initialization of speculative
execution profiling. In the future, we would like
to collect more data for groupings for more
executions with high numbers of loops. Since
several of the benchmarks required few counters,
we were not able to gauge the usefulness of a
higher threshold on a macro level.

However, the extreme “hotness” of
some of the program areas of the benchmarks
lead us to conclude that this simple method of
hot spot detection would lead to reasonably
beneficial results when the program areas are
optimized at run-time. In the future, we would
like to implement an optimizer and measure our
instruction savings on each benchmark. We
would like to see our system’s performance
when combined with other systems such as
speculative profilers, for collecting most
frequently executed paths within program hot
spots, or more importantly, the dynamic
optimizer itself. However, since the average

number of executions per monitored address was
high for each benchmark, we can conclude that
an average loop would not have to be highly
optimized to show gain in real execution time.

In the future as well, we would like to
be able to simulate benchmarks using a floating
threshold, which could feasibly modify the
counter structure such that the thresholds were
dynamic. This could help if a loop was
executing quite frequently but had few
instructions per loop. (i.e. its counter was getting
incremented quite frequently) Tight loops are
harder to optimize and should require more
executions to qualify as a speculative profiling
candidate. This area of work was somewhat
addressed by the solution in [2], but at a high
cost.

In summary, we conclude that simple,
low hardware cost instruction counters seem to
be an efficient and worthwhile method of hot
spot detection. The numbers we have collected
here, especially the average number of
executions of monitored addresses, show that
cooperative hardware/software methods of hot
spot detection and speculative profiling warrant
further study.

References

[1] Ebcioglu, Kemal, et. al. “Dynamic Binary
Translation and Optimization”

IEEE Transactions on Computers, Vol. 50, No.
6, June 2001

[2] Merten, Matthew C., et. al. “An
Architectural Framework for Runtime
Optimization”

IEEE Transactions on Computers, Vol. 50, No.
6, June 2001

[3] Kistler, Thomas and Franz, Michael.
“Continuous Program Optimization: Design and
Evaluation” IEEE Transactions on Computers,
Vol. 50, No. 6, June 2001

[4] Patel, Sanjay J. and Lumetta, Steven S.
“rePLay: A Hardware Framework for Dynamic

Optimization” IEEE Transactions on Computers,
Vol. 50, No. 6, June 2001

[5] Voss. Michael J. and Eigenmann, Rudolf.
“Adapt: Automated De-Coupled Adaptive
Program Transformation” IEEE Transactions on
Computers, Vol. 50, No. 6, June 2001

[6] Merten, M.C.; Trick, A.R.; George, C.N.;
Gyllenhaal, J.C.; Hwu, W.W.

“A hardware-driven profiling scheme for
identifying program hot spots to support runtime
optimization “ Proceedings of the 26th
International Symposium on Computer
Architecture, 1999. Page(s): 136 -148

Appendix A
Strata Architecture

Strata is an architectural framework for dynamic optimization that is based upon a fragment
cache, where code from a running program is stored awaiting execution or optimization. When Strata
begins, control is transferred to the fragment builder, which pulls code out of the program’s original text
segment and copies it into a fragment until it sees a conditional branch. At a conditional branch, two
trampolines are built which transfer control back to the fragment builder. One trampoline tells the
fragment builder to begin at the taken address of the branch, and one trampoline tells the builder to begin at
the not taken address. The fragment cache layout is detailed in Figure A.

The function of the trampolines initially is just to pass the taken or not taken

address to the builder, so the builder may begin pulling code from that
address in text segment to start building the new fragment. However, the
fragment cache is advanced enough that we know if a fragment for that text
address has already been built. If a fragment for that address has already
marmal been built, then the trampoline is just a jump to that fragment.
Cole This is shown in Figure B.
Frag [WT [T
To
Builder | DTANEN
e Mot Taken
Trampoline F
TEkER rag | MT (T Frag |MNT [T
é Trampoline
Figure & Fiouek

Erauitet Banhe Lasoul Control Change on a Fragment Cache Hit

In addition to being able to build direct jumps from fragment to fragment, Strata can also update
fragments built when the branch target was not in the cache. The trampolines of those fragments initially
point to the builder, but once the branch target is built into the fragment cache, the builder updates those
trampolines to point directly to the target fragment. This reduces overhead for fragments executed more
than once, because calls to the builder are expensive.

