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Abstract Third, thefunctional cache filter modalses the TSpec

This paper introduces a new analytical framework for notation and equivalence class concept to allow designers
analyzing and designing caches. It consists of four majorto more clearly understand the effects of cache systems on
parts: TSpec notationnto which reference traces can be particular memory references. Fourtmew metrics
transformed;equivalence classesvhich abstract away Provide more insight into cache design than current
chance effects of address bindings and specific inputs; theneasures such as hit rate or average memory access time.
functional filter model which operates on TSpec traces This last aspect is beyond the scope of this paper, but
and provides a formal description of cache operation; andintroduces two new measuresstantaneous hit-ratend

new metrics which evaluate cache performance. This instantaneous localitynterested readers should see [16].
paper gives an overview of TSpec notation and

equivalence classes, and then illustrates how the2. Proposed Approach

functional filter model can be used to derive better The analysis approach discussed here is inspired by

understanding of cache behavior. viewing a cache as a filter. As depicted in Figure 1, a cache
i filters out the references that hit and transforms an input
1. Introduction set of references into another, hopefully sparser, output set.

Thus, designing memory hierarchies can be seen as akin to
designing a compound optical lens: no single lens has all
the desired properties, but by cascading several lenses,
optical designers can achieve amazing acuity. Likewise,
Every time there is an increase in the speed of 5 Ve can view a cache as a filter that transforms an input

: ; equence of data references into an output sequence
microprocessor, the cache and corresponding memorys . g ! ;
system must be redesigned to feed the increased need fg-:presentmg a subset of its input. By composing a series of

The work of today's cache designer is becoming
increasingly difficult. It is well-accepted that there is a
processor-memory performance gap that must be
compensated for with the caching system [4, 10, 17].

; : : uch caches, as many references as possible are filtered
instructions and data to operate on. There continues to b rom the request string before it is presented to main

a constant level of research and improvement to cachem
- : ; emory. To get the best overall performance, the goal of a
functionality, but such research typically focuses more on articulér Ie\gel of cache is not éonly to filter out thge most

g?gég\slgng?nlj‘:’]dtgrlt;iﬁgcagﬁggrjygé%%étsgiﬁgdd:fsﬁanon.rwe eferences, but to filter out those that the next level cannot
: capture.

most common approach is to modify the cache hierarchy
and then simply judge that design by running benchmarks
through a simulator to determine hit rates or average
memory access times. Occasionally in the past and more T = <a,, &, &, &, ...> cache | T'=<a; A &, ..>
often now, researchers are taking a different approach and p| filter | g
attempting to design not just a better cache, but better ways. _ . ... D e

to degigng and ar?alyzejcaches through new models ?Jlrs' initial cache state | (T, S) | §'= final cache state
measures [1, 3,5, 7, 8, 9, 12, 13, 14, 16].

_ ) ) Figure 1. The Cache Filter Model
This paper describes an analytical framework for cache
design. There are four major components that form the |n the following analysis, we defineraference stringo
framework, each of which is a contribution on its own. pe the list of addresses (read or write) presented to the
First, the TSpec notationis a more formal way for memory system, and denote it as a sequenge ag e,
researchers to communicate with clarity about memory 5, g, ...>. The subscript indicates thmsition in the
references generated by a processor. Second, the Conce%ference string, and is only loosely related to wall-clock
of anequivalence classf memory references provides an time. At first it may seem that, and the filtered, will
abstraction for eliminating the random address placementajways be the same address. In most cases, this is true, but
effects of actions such as declarations, certain compilerif an’entire line is fetched to fill the cache, the order and
and linker decisions, heap allocation or SpeCIfIC mputs. value of the address may Change. In this paper the terms
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reference stringreference sequencandtrace are used address. (Note in the example below, all the initializations
interchangeably, and are denoted by the capital I€iter “©  are preceded bly which simply suppresses the generation
We use the symbal to indicate the position of a reference of an address. A variable can alsopmst-incremented
removed by a cache filter. This allows correlation between (e.g.,c+) so that after its current value is used, the value is
the input and output reference strings. For instance, theupdated to be the sum of itself and the increment specified
input <a, a, a> generates the output xa\> for most in its definition. In the example above, the ficstin the
caches. We view the cache as a filter functioran the specification represents the address 100 and increments
input of the reference strind@, and the state of the cache, the value ofc to 104, so that the next occurrencecof
S. The output of a filter functiof(T;S) consists of an  represents the address 104.
output trace]’, and an output stat8; (represented as the
pairT’;S’). Figure 1 illustrates this relationship. The trace- A trace is represented by eoncatenationof atoms
only portion of the output of a filter functign is denoted separated by commas. A variable or a concatenation of
fT(T;S), and the state-only portion is denof&(T;S). variables can then be repeated withiteetion operator,
*. So in the example above, thg after the parentheses
To supplement the cache filter model, we have developedcauses the trace within the parentheses to be used three
a new transform that is specific to cache design andtimes. Notice that since the initialization fois within the
simplifies modeling of the cache in the new domain. The parentheses, the address representeddryeach iteration
domain to which we transform reference strings is the are the same, but since the initializationsffandt are not
TSpec notation outlined below. In addition, viewing within the parentheses, the addresses representéd by
reference strings as combinations mfimitive TSpec and t+ change in each iteration. A with no explicit
reference patterns allows us to determine the overall effeciteration count simply means “zero or more repetitions”,
of a cache on that reference string in a straightforwardby analogy to the Kleene star in regular expressions.
manner.
The last TSpec operator required herenerge denoted

3. Overview of TSpec Notation T, & T,. Itis easiest to visualize this operation by lining

. . the traces up one above the other as if they were going to
that copies one vector to another. The code has beefne reference string. The merge of multiple traces is
simplified to three assembly instructions to allow the formed one atom at a time. The merge of a single atom
pattern to be easily seen in the reference string (one mighlyith any number ofis is defined to be the atom. The
from the source vector, storing that element in the of mytiple nonA atoms is undefined. For example
destination vector, and branching back). The following <@\ &BA>&<\ &\ @>=<q, &, 3 a4>’.
paragraphs explain this example in detail. The most basic S e e
TSpec element is arace atom a single address or 4 Equivalence Classes
reference in the trace. It can be represented by either a
literal, by A, or by avariable A literal is an explicit When analyzing a memory system, cache designers
(constant) numerical address, (e.g., 100 in the referencdraditionally work with specific traces for which the
string below). A variable represents a regular sequence ofaddress bindings and the input data, and hence the path
addresses, and is specified by a base address and ahrough each program, are known, much as in the example

increment (stride). In the copy exampief, andt are all trace from Figure 2. Sometimes it may be beneficial to
_ _ ) abstract away artifacts due to chance address bindings or
C Code: for i=1 to 3 t[i] = f[i]; specific inputs, or to consider the set of all possible traces
from a certain piece of source code. To address these
TSpec: c(100, 4); f(200, 4); t(300, 4); issues, we introduce the conceptegfuivalence classes

We divide the set of traces that can be generated by any
specific piece of source code into four sets, depending on
whether or not the address bindings and input data are
Reference known. The relationship among these groups is shown in
String: 100, 200, 104, 300, 108, Figure 3.

100, 204, 104, 304, 108, ! _
100 208. 104. 308. 108 In the figure,T represents a trace for which addresses and
' ' ’ ' input values are bound. The set of traces that would be
Figure 2: Copy example generated with the same source code and the same set of
address bindings a8, but with different input data, is

. denoted T 4}, and is referred to as the equivalence class of
variables. ¢ represents the addresses of the codegces unéjer varying data input Similarly, {T,}

references, and has a base address of 100 and an incremet@presemS the equivalence class of traceger varying

of four.f represents the addresses of the source vector fromyqqress bindings (Note that Ty} is essentially a
which data is being copied in the example, Emeghresents eneralization of the translation group for arrays described
the addresses of the destination vector into which the dat%y Harperet al. [8].) The sections that follow apply our

is being stored. For simplicity, references &ve assumed analysis techniques to the copy example from Section 3,
to be to a register and not represented here. A variable caBng”in the process, extend the notation to permit
beinitialized (denoted#X) to set its current value to its base descriptions of other members of the equivalence class

K, I#, (I#c, c+, f+, ¢+, t+, C)*3>



{Ty}. The notation is expanded by a conditional construct F(T1 & T2, S) = F(T1, S) & F(T2, S), we can analyze most
and used to describe members of the equivalence classesommon caches on a wide spectrum of traces by defining

{Tp}and {Tpg} in [15]. cache-filter functions for only a relatively small number of
primitives.
Same data Characterizing Primitive Traces

g N Despite the fact that there are an infinite number of
< Y possible source programs with an infinite number of
° inputs, the reference patterns that they generate can be
5 1Y T | {Tg described by combinations of a small set of parameterized
o primitive patterns. This is true because source programs
e NI {Tot | {Tod are themselves composed of combinations of similar code
3 b b constructs. The simplest two families of these primitive

patterns are the code loop and the stream. fTéued t
variables in Figure 3 are examples of streams. They
consist of a base address and an increment(stidean
example of a code loop. These consist of a base address,
an increment that defines the length of the code word, and
a number of loop iterations. Note that the essential
difference is that the stream has no repeated addresses,
while the code loop does. There are other families of
primitives, but their description is beyond the scope of this
paper. Extending the use dfas a placeholder, we can
show the frequency of a primitive within a reference string
without describing the particulars of the other primitives.
For example, a stream primitive could appear every 4th
;\eference in a code loop and be described as x(fx,
>

—~
—]

o

=

Figure 3:Equivalence Classes

The relationship among traces generated by a Defining Filter Functions

speCIflc_: source program, varying bmd_mg_s only Once the primitive set is defined, we must define the cache
(T}, input data only ({T3}), or both bindings filter function for each primitive and for each type of

i cache. In general, the filtering function for a cache can be

and input data ({fd})- defined one reference at a time as shown below. This
function describes the output of a traditional cache. It
could be a write-back cache (where dirty/modified lines
51 Overview are written back to the next level only when the line is
h . evicted) or a write-thru cache (where all writes modify
We first set the stage for our analysis by: main memory by writing the cache line and main

memory).

5. Analysis Method

1) Characterizing a set of “primitive” tracethat,
when merged, describe the input trace, and e : .

2) Defining filter functionsfe,cndT, S), as syntactic Hd(a), 1(a);S if write-back, dirty,a notin S
operators that characterize various caches. f@9 = 0O I(a);s if write-thru, andanotin S

AS otherwise

O™

Then we can perform the steps of our analysis
method on an example by:

T forming the tract b vzed int In the first situation, where the line is dirty aadnisses,
orimi t)iver?rr;a\scg;mg:\% € trac® be analyzed Into the output trace consists of the line evicted from the cache,
7= i . d(a)),and the line that includes the new referemdla)).
4) Applying the filter functionsf the cache system to %'r1(e)21ew state of the cache is den@auhereS’ = SC(‘-id)(za)
the %nrgmve "gces S;Rgl%/_,lttheg imitive trace U I(a). The write-through version of the cache would not
TS ) Recombining he |ffere F]f”rr]"' ve hracea a hehave a dirty line to evict, so the output would just be the
pec merge to see the eifect of the cache system on theyefarence to fill the line that includes the new reference

trace. (I(@)), and the new stat&). If a hits, the contents of the

. _ state remain the same, but the new state is deSSteal
For this approach to work, F(T1 & T2, S) = F(T1, S) & jpgicate the potential for change in the replacement
F(T2, S) and the definition of merge must be extended toalgorithm
include trace-state pairs. If all references fit in the cache, '

'El_hﬁ trace-stellte rge{ge Si?“p"ﬁ‘iﬁ to. thel_trat_ce-onlyf r?r‘fr‘i’e'While the above definition is very general, it provides little
e e>|<a(;np eSThe ow tShOW . te |m(§> |ca; Iogsthot b €S€ insight into what happens on the primitive or kernel levels.
generalideas. [he point here IS to understand thal becauSge are developing a catalog of cache filter functions that



operates much like a set of integration tables. The Consider what happens when the reference string will not
primitives are listed with parameters for the number of fit into either cache. Let the caches be of size 4 with a line
repetitions,As, cache size, and cache associativity. Eachsize of one reference. Transforming T into its primitive
primitive can be filtered as a whole instead of one traces generates the traces T1-T3 above. T1 corresponds
reference at a time by looking it up in the catalog and to the code references, T2 to the vector being copied from,
substituting specific values for the parameters. The wholeand T3 to the vector being copied to. The filtering function
catalog would be inappropriate here, but we give oneis now applied to each of the primitives singly. The trace
example and then use results from the catalog in theportion of the output prior to merging is the same for each
examples below. cache in this example. The code output is:

To understand the single catalog entry, an explanation offDMT(Tl, S)= f:AT(Tl, S)=TY
the state representation is needed. The state is an ordered =lfc, c+,A, ¢+, A, c+),A*10.
set of index-value pairs <i, v> and, with the addition of one
more construct, can be represented in TSpec. The cacheshis shows that the first iteration of the code misses while
in the examples below use LRU replacement. To write subsequent iterations all hit in both caches. The\teat
TSpec with LRU order, it is useful to start from gvedof the end represent the 10 filtered references from the
a TSpec construct, rather than the beginning. By analogysecond and third iterations (5 from each). Filtering the two
with l#c, we definelc# to initialize a variable to ittast data stream primitives yields
value in the trace. In the catalog entry below, khe
variables represent parameters. fom (T2, S) = £41(T2, S) = T2’
=g, (A, T+, A A, A)*3 =14, (f+,A*4)*3 =T2 and

feaiLru(<'#a, A*x1, a+,A*x2)*x3>; S) =T"; S’

wherel” = <l#a, d*x1, a+,A*x2)*x3> and fom (T3, S) = £41(T3, S) = T3’

S’ = la#, a-*x3,S =i, (A, A A, t+,A)*3 = #, (t+,A*4)*3 = T3.

This catalog entry says that for any stream, with any This demonstrates that each of the streams comes through
number of intervening\s, the filtering effect of a fully ~ untouched because they contain no repeating addresses.
associative infinite LRU cache with a line size of one

word, will result in an output trace that is the same as theWhen merging the filtered primitives, we must use
input trace and a new cache state that is the reverse streagaution. Different types of caches will have different

concatenated with the old state. effects during a merge when the capacity is limited. For
direct-mapped caches the merged miss rate can be
5.2 Example Analysis estimated based on the effects of the conflict misses of one

iteration. If we evaluate using the metexpected missges

or Em[T], this yields the following expected performance:

T1 expects 3 misses; T2 expects 3 misses; T3 expects 3
isses. Approximately 1 additional miss per iteration

Transforming Traces
For the purpose of our analysis methods we choose th

\r/si?r:gﬁtegtr?;i\é?}g:]égez;é?j(r:gsféot;?ng?nzgui‘\r/ﬁ:g?g%rgggﬁtgiv er(;‘other than in the first iteration) will occur due to conflicts
) i o o 145 = !

is depicted by describing the shape of the trace’s rising from capacity issuesg. 1*2 = 2. Overall, then:
primitives without the specific address bindings. It can be - ;
described by the TSpec notatiaithout the base address Em(T] _E3m£T31{L+3lfer12[T2] + Em{T3] + Em[Capacity]
informationand allows us to see the underlying form of - ,
the references. As an example of the transformation that =11 misses
must take place, consider the copy example of Figure 3.

This segment consists of three primitive traces, one codeThe approximate trace output of the direct-mapped cache

loop and two streams. They are described as follows: is fTDM(T, S) = (#c, c+, T+, c+, t+, c+),IfEc, o+, f+, t+)*2
. where the precise c+ in the second set of parentheses
Tl= (#c, c+, A, c+, A, ©)*3 depends on the particular code reference evicted each
T2= W, (A f+ A A, A3 iteration.

T3= #, (A, A, A, t+, A)*3

For a fully-associative cache experiments have shown
Applying Filter Functions (T, S) has two possibilities for a loop of this type. The
We are now able to app|y the filter functions to the first is that the whole |OOp fits in the cache, and the OUtpUt
individual primitives in the previous section. For our is only the compulsory misses. The second possibility is if
complete example, we will use the reference string in the loop does not fit, in which cask£(T, S) = T because
Figure 3 and consider its output from two different styles the latter references in the loop always evict the first
of cache. The first cache, DM, will be a direct-mapped references in the loop before they can be reused. For our
cache and the second cache, FA, will be a fully associativeexample Tea(T, S) = T =1#f, lt, (Wc, c+, f+, c+, t+,
cache with LRU replacement. The rule-of-thumb in the ¢+)*3. All of the references miss and there are a total of 15
cache community has been that in most situations, FAmMisses—poorer performance than the direct-mapped case.

would be the more effective cache. . . ) L
This method of analysis has already provided two insights.

The first is that when a loop reference pattern does not fit
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