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Abstract

Energy management only recently emerged as a major consideration in the design of high-

performance Internet services. As a result of requirements for continual performance scaling, the

energy required to provide these services also massively increased—an unfortunate corollary of

Moore’s Law. At the same time, the high scalability of Internet services is commonly achieved

by employing multi-tier (functionally distributed) clustered architectures. At high-demand sites,

the number of server computers in such clusters can be very large (on the order of thousands or

above). Due to the high overall power consumption and related heat dissipation that these server

farms exhibit, severe operational challenges arise such as high energy costs, high cooling costs (op-

eration and maintenance), costly infrastructure requirements (such as sophisticated power-delivery

and cooling systems), increased space demands (server unit density is limited by heat dissipation),

and decreased system reliability (heat-related failures). These increased operational costs constitute

a significant part of total upkeep and maintenance expenses of large sites. Advances in network-

ing technology have and will continue to cause demand and reliance on Internet-based services to

accelerate, exacerbating the above-mentioned issues.

By 2002, researchers already identified that there is significant potential for reducing energy use

in Web servers. Because of observed daily and weekly demand fluctuations due to the natural cycle

of human activity levels, Internet server workloads tend to show extended periods of low-load or

even near-idle operation. Furthermore, newer server-class hardware started to adopt power saving

modes previously only supported on mobile systems, which allows judicious reduction of server

capacity (and the corresponding energy use) during those off-peak load conditions. Since then,

several techniques appeared to manage power dissipation of individual machines. However, since
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most techniques incur some performance penalty, minimizing the global energy expenditure of a

cluster with minimal effect on its performance remains a challenge.

This dissertation presents the theoretical analysis of several aspects of this energy minimization

problem, starting out with a basic multi-tier server model, which is then extended to deal with

multiple priorities and reconfigurable clusters; it discusses the optimization of spare capacity in

such clusters when multiple machine sleep states are available; and finally, it analyzes how external

disturbances, such as those triggering dynamic thermal management actions, affect the performance

of cluster power management algorithms.
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Chapter 1

Introduction

1.1 Motivation

Data centers hosting high-performance Internet services consist of large-scale, heterogeneous,

multi-tier server clusters. Thousands of server machines can be densely packed in the machine

rooms of such data centers. The power consumption of these machines alone is a great problem,

first because of high power delivery (infrastructure) expenses, and more importantly because the

daily energy costs constitute a significant part of operational costs. High availability requirements

that are natural for Internet services also call for expensive investments in backup power supplies.

Another serious problem in a data center is the heat generated by the servers. Even with dynamic,

temperature-aware request distribution, expensive cooling infrastructure (including backup cooling)

is necessary to keep the temperature of the machine room safe. These cooling systems consume

significant amounts of energy too, raising operational costs even further. A rule of thumb is that

for every watt consumed by the computer systems, another watt of electricity is consumed by the

climate control. Even with good climate control, local hotspots can still form during periods of

higher demand, which has a negative impact on equipment reliability and lifetime. Since the num-

ber of machine components is huge, the overall probability of temperature-related failure can be

high. This, again, causes high maintenance costs. In short, energy requirements—both for the com-

puter systems and their cooling—are becoming a major cost component in data center operation,

presenting a threat to the competitiveness of service providers and a barrier to the deployment of

1



Chapter 1. Introduction 2

new Internet services. Furthermore, the energy requirements of data centers are large enough to

present environmental concerns.

The potential for significant energy usage reduction exists because of the uneven utilization

characteristics of high-performance Internet services. Studies of real-life Web services show that

the number of requests received by a service is highly time-varying [11]. Depending on the nature

of the service, there can be more and less active periods on different time scales (e.g. hour, day, or

month). Other sources of fluctuation include, for example, high-profile events or breaking news,

which can abruptly and drastically raise the demand for news websites. However, even during

regular operation, cyclical load variations can be observed, as exemplified in Figure 1.1 showing

two typical Web server traces.

To meet peak demands, data centers are typically overprovisioned. This means that during

capacity planning, the maximum expected (or accepted) load is determined, and hardware resources

sufficient to comfortably pass a corresponding stress test are provided. If the load estimates are

correct, the full capacity of the server farm is utilized only for short time periods, with a large portion

of the cluster otherwise idle. Ideally, all hardware would operate completely energy-proportionally,

i.e. the energy used by a machine would be proportional to its utilization, in which case the idle

portion of the cluster would not consume any electricity. However, in reality idle machines do

consume significant energy, mainly due to conversion losses, leakage, and standby power. Hence,

overprovisioning results in large amounts of wasted energy.

One option to reduce this waste is consolidating several services on one cluster. This may

improve overall utilization (translating to reduced idleness), yet the periodic trends are unlikely

to be eliminated. A more promising alternative is the application of dynamic power management

(DPM), the essence of which is to adjust the power states of the machines over time to most closely

match the actual demand, eliminating a large part of the idle power dissipation. DPM encompasses

several techniques, such as putting unused components (e.g., network interfaces, disks, or even

DRAM modules) to sleep, slowing down the CPU, or shutting down entire machines in a cluster.

Naturally, the biggest challenge in DPM is providing an algorithm (referred to as a policy) that

decides which components or machines should be in which power states at any given time. In
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(b) Weekly load fluctuation of the 1998 World Cup Web servers (Sun–Sat).

Figure 1.1: Web server traces showing cyclical load variations. (Data source: The Internet Traffic
Archive [39].)

fact, finding optimal policies appears to be a hard problem using even relatively simple system

models [38].

It is important to point out that all of the above-mentioned power management techniques im-

pact performance. Sleep modes entail both shutdown and wakeup latency, during which processing

cannot be performed (but energy is still consumed). Slowed-down CPUs effectively reduce server

throughput and increase delays. Clearly, power management for servers must save energy while

maintaining performance requirements. The requirements are usually specified in a service level
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agreement (SLA), which is a contract describing minimum acceptable values for several perfor-

mance metrics that the service provider (e.g., hosting center) must meet, along with associated

penalties for violations. Of particular interest are service latency requirements, since latency is

directly observable by each individual client.

1.2 Research Approach

This dissertation addresses the question of how to optimize energy savings on large-scale, scalable,

multi-tier server clusters with bursty, aperiodic workloads, while still providing soft real-time per-

formance. This entails finding the optimal global operating point of a system with given load and

power characteristics and performance constraints, in the space of all allowed power states. The ex-

pected workload of such a system is aperiodic, with highly varying execution demand and possibly

intensive I/O activity. Given the importance of service latency, we assumed performance constraints

imposing limits on total end-to-end server delay. A significant challenge in this environment is to

make energy-aware decisions in the face of power-performance tradeoffs that vary among applica-

tions and from tier to tier. For instance, in a tier running a disk I/O intensive application, little or no

performance is gained by speeding up the CPU.

Multi-tier servers are composed of groups of machines (tiers), where each tier handles some

aspect of each request. For example, one tier might serve static content (e.g., static parts of web

pages and images), another handles business logic, while a third performs database operations. The

tiers are typically organized in a pipelined fashion: each stage sends sub-requests to the next stage

(if any), performs some processing, and sends its response to the previous stage (or ultimately to

the client), as depicted in Figure 1.2. Because the tasks of each tier are highly heterogeneous, so are

their performance characteristics. The importance of multi-tier configurations lies in their ability to

substantially increase the scalability of a service.

Our main approach to this problem is as follows. We first estimate the optimal settings based on

a system model, and then, because that estimate may not be sufficiently precise, feedback control

is used to converge to more optimal final settings. Neither a purely model-based, nor a purely
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Stage 1

(HTTP Server)

Stage 3

(Database Server)

Stage 2

(Application Server)

Client

Figure 1.2: Example multi-tier server.

feedback-based approach using just service delay as the setpoint would give comparable results.

The first one could not correct for inevitable modeling and estimation errors, while the second one

would need to use heuristics, which might never achieve optimal power savings and might take a

long time to converge.

Several different cluster models were considered. First, we assumed a basic model with a single

machine in each tier (i.e., a thin pipeline). Since in this model each server must be awake to pro-

cess every request, sleep states are not allowed and only CPU speed can be manipulated to manage

power. Next, we extended this model to include prioritized service classes. Finally, we generalized

the basic model to allow reconfigurable (i.e. variable-sized) clustered tiers, where sleep states be-

come available in addition to variable CPU speeds. Using these models, we theoretically formulated

and rigorously analyzed the stated problem as constrained optimization problems, and formulated

mathematical solutions. This enabled the development of mathematically rigorous methods to dy-

namically tune all power states globally in the cluster, while satisfying total (end-to-end) request

processing delay constraints.

Leveraging the analytical results, several algorithms and power management policies were de-

signed in order to achieve the target performance with the least amount of power. In the most basic

model, our policy merely effects optimized CPU speeds in all machines in the thin pipeline. The

policy for the most complex model, however, keeps an optimized number of machines awake at op-

timized CPU speeds, and puts the remaining machines in low-power sleep states in order to balance

energy savings against the ability to accommodate future bursts without violating performance re-

quirements. The optimal balance is some function of both the future workload and the performance
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specifications of the user. Constructing such policies is non-trivial even in single-tier (i.e. non-

tiered) systems because of several practical limitations. For example, these limitations include that

transitioning between power states has both latency and energy overheads, and that the effects of

switching performance states on service latency and power dissipation non-linearly depend on the

workload. Our policies observe these limitations while considering multi-tier clusters, which added

another dimension of complexity.

In order to experimentally validate and quantify the benefits of the discovered algorithms, we

created several actual system implementations on our real testbeds. The basic model policy was

validated on a small testbed of 3 laptops with variable-speed processors, while the more complex

policies were verified on a larger testbed of 12 PCs, also with variable-speed processors and sup-

porting multiple machine sleep states. Whereas much of the related literature is based on calculated

or simulated quantification of benefits, in contrast, we took real measurements on actual hardware

with algorithm implementations applicable in practical systems with realistic assumptions and lim-

itations.

In summary, this dissertation includes the following main contributions:

• CPU speed-based energy minimization across thin resource pipelines whose tiers exhibit dif-

ferent power-performance tradeoffs, while maintaining end-to-end delay guarantees, with

established superiority to both local policies that do not coordinate their actions across the

machine pipeline and traditional heuristics that are not based on an analytical foundation.

(Published [35].)

• Extension to accommodate multiple request classes with different performance requirements,

in order to accommodate different classes of clients (users) or different service level agree-

ments. (Published [36].)

• Generalization of the theory and algorithms to reconfigurable multi-tier clusters, where each

tier consists of a variable number of machines, and therefore allows more complex energy

management through utilizing machine sleep states.
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• A spare capacity optimization algorithm for the general system model, assuming multiple

sleep states with transition latencies and power dissipation progressively increasing and de-

creasing respectively with the depth of the state. Energy use is minimized subject to respon-

siveness constraints.

• Analysis of the cluster DPM policies with respect to their ability to tolerate thermal overload,

machine failures, or other aberrant behavior.

• Finally, a major part of this project’s contribution is the extensive experimental evaluation

of the analytical solutions developed. A prototype implementation on a real experimental

testbed running a complex multi-tier Web service (running workloads that are acceptable

models of real-life commercial applications) was constructed. Physical measurements of

total system power were taken on the main power supply lines.

1.3 Background

1.3.1 Escalation of the Power Problem

Traditionally, power management was mainly a concern in embedded, battery-operated systems,

with the goal of maximizing battery life. Hence, algorithms focused on typical workloads of this

domain (e.g., periodic, real-time task sets such as those in multimedia applications), and on taking

advantage of special non-linear properties of battery technology, for example the phenomenon that

batteries may recover some charge if left idle.

Due to heavy performance scaling of desktop PCs and servers, which led to increasingly power-

hungry CPUs and other components, the energy use and heat generation of these systems became

problematic. While for an individual desktop PC user the concerns may be more limited (e.g.,

annoying fan noise), for a server farm operator the rampant power demands could mean huge in-

creases in costs. To see the trend, consider the exponential growth of the size of the Google server

farm over the last several years. The total number of computers in 2000 was about 6,000 (at four

sites) [34]. In 2001, at each site there were about 3,200 servers [10]. Finally, the latest published
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estimate places the total size of the farm in 2004 at 63,272 machines [50]. If we also observe that a

single site in 2001 spent at least 1560 MWh of energy (a more than $100 K expense) a year [10], it

becomes clear that the kind of growth expected demands advanced energy management solutions.

In fact, providers like Google argue that operating costs like energy dominate over fixed costs like

hardware. Providing enough hardware to accommodate bursts is often not the challenge: affording

the operating costs of this hardware is [6].

The capacity of future networks will increase dramatically. As networked devices become ubiq-

uitous, demands on Internet services will grow by orders of magnitude. In addition, the complexity

of the services offered will increase further, requiring ever greater computational capacity for each

client. This growth of demand will generate a similar growth in service provision, requiring large

increases in both the number and the size of data centers and creating a huge energy management

problem. Strong evidence of this growth is already seen: in 2005, already 1.2% of U.S. electricity

use was attributed to servers and associated cooling [43]. While there are long-term initiatives in

the direction of energy-proportional hardware designs [7], the reality for the foreseeable future is

that idle machines do consume significant energy. Therefore DPM techniques will remain critical

in attacking the energy problem.

1.3.2 Power Management Techniques

Several effective techniques exist for power management in servers today. The low-level design and

implementation details of power states and transitions for modern systems are given in the ACPI

specification [21].

On the granularity of entire computers, power savings can be attained by putting to sleep com-

puters which are unnecessary to serve the current workload. Various sleep states, with different de-

grees of power savings and wakeup latency, are available. These system sleep states are defined by

ACPI S-states. Sleep states are highly effective for managing energy in a server farm because they

address the static power problem of idle servers. However, using sleep modes requires reconfig-

urable capability in the clusters (in each tier), including power-aware request scheduling algorithms

in the cluster load balancers, ensuring consolidation of requests to only the necessary number of
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servers, as well as some remote wake-up capability (e.g. Wake-On-LAN, a technique allowing a

special network packet to wake up a machine). Depending on the application’s characteristics and

resource needs, reconfigurability may be hard (or even impossible) to implement, which slows the

adoption of this technique.

Within individual machines, the basic method is to put the CPU into a low-power state while

it is idle. The different low-power CPU states are referred to as ACPI C-states. The benefit from

these sleep states can be enhanced by short-term request batching [10], which delays processing of

incoming requests for a short time so that several can be processed in one active cycle, allowing for

slightly longer sleep periods. Additionally, CPU power can be lowered by the CPU throttling (i.e.

clock gating or modulation) technique, which stops the CPU for very short periods amounting to a

user-specified portion of time on average (e.g. 12.5–87.5% in increments of 12.5%). This provides

for an approximately proportional decrease in CPU power dissipation, since it draws very little

power when stopped. At the same time it also results in a proportional slow-down for CPU-bound

tasks.

More recently, dynamic voltage scaling (DVS), also known as dynamic voltage and frequency

scaling (DVFS), also became available in commercial server CPUs. This technique reduces power

usage by slowing down the CPU (lowering its clock frequency) and reducing its core voltage. The

discrete frequency-voltage combinations available in a specific CPU are known in ACPI terms as

its performance states or P-states. The principal advantages of DVS are that the approximately

linear slow-down caused by the frequency reduction allows approximately near cubic savings in

power consumption, and that the transition between these different performance set-points has a

fairly low overhead. The first advantage is in contrast with CPU throttling, which only achieves

linear power reduction and therefore may not actually conserve energy. It is important to point

out however, that as the voltage range available is shrinking, with many in industry suggesting that

voltage cannot be reduced by more than about 25%, sleep modes are gaining additional importance

in complementing DVS policies. Moreover, as the leakage power of CPUs is approaching 50%

or more of their total power, leaving CPUs active with low utilization becomes extremely costly.

Still, DVS retains its importance in applications where entering sleep modes might not be possible
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because the machine’s other resources are actively used, even though its CPU capacity might not

be required. In these cases DVS can help reduce leakage power, because leakage is proportional

to the supply voltage affected by voltage scaling. Therefore, effective energy management requires

selecting the proper balance of the available techniques, based on all requirements of the provided

services.

Although effective energy management policies have been devised for simpler (single-server

or single-tier cluster) architectures or for more restricted sets of available techniques, no straight-

forward extensions exist to make them applicable to multi-tier clusters supporting a combination

of the aforementioned power management techniques while preserving response-time guarantees.

This work presents the first comprehensive effort to address this more general optimization prob-

lem.

1.3.3 Distinction Between Power and Energy Management

It is very important to distinguish energy management and power management and their contrasting

implications, especially since power and energy are sometimes loosely used in a synonymous mean-

ing throughout the literature. While both power and energy management algorithms are based on

the aforementioned power management techniques, they aim to solve different problems: the goal

of power management is to reduce instantaneous power draw at any point in time, while energy

management intends to reduce total energy consumed to perform a task. Note that power man-

agement does not necessarily improve energy efficiency—for instance, CPU throttling is effective

in reducing instantaneous power, but at the same time it proportionally increases execution times,

possibly resulting in increased energy use. Conversely, achieving better overall energy efficiency

(for example, by consolidating work on fewer machines) may actually lead to increased peak power

in parts of the system.

One major problem with overprovisioning in a data center is that the excess capacity of the

machines themselves must be matched by similar excess capacity in power delivery and cooling

infrastructure as well. This translates to serious initial investment costs. To make matters worse,

computers are traditionally rated at their worst-case power draw, which is hardly realistic in power-
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ful server-class machines running real applications—in fact, normally only specialized workloads

specifically designed to stress hardware components to their power limits (such as the Intel Max-

imum Power Program or P4MAX [48]) are able to approach worst-case power dissipation. Hence,

great investment saving potential exists in provisioning power delivery and cooling infrastructure

for the actual workload’s power draw instead of the machines’ ratings. This in turn requires proac-

tive power management with a policy that prevents exceeding infrastructural limits, while having as

little performance impact as possible. Such DPM is referred to as power capping or power budget

management, or, if performed at the level of multiple machines, as power shifting or ensemble-level

power management [47, 70].

Energy management, on the other hand, seeks to reduce operational costs by reducing the en-

ergy use of the (overprovisioned) infrastructure. By eliminating part of the energy consumption

from the computers, the energy needs of the cooling infrastructure automatically also diminish,

adding to the significance of energy management. Similarly as in power management, the main re-

quirement for energy management policies is having an acceptable performance impact. However,

since in this case there are two metrics describing the performance of a given policy, namely how

much energy the machine uses during the execution of a task (energy, E) and the execution time

of the task (delay, D), a single derived metric must be defined to allow comparing policies. Such

metrics are the widely used E×D energy-delay product [26], the E×D2 product, which is more ap-

propriate for microarchitectural evaluations due to its advantage of being voltage independent [12],

and other similar metrics with different weighing of energy and performance. However, in the

context of real-time Internet services, the focus of this dissertation, these metrics are not directly

applicable because instead of the actual service delay of each request, we are interested in whether

deadlines were met. A good metric of energy efficiency analogous with the energy-delay product

in this domain is power/throughput2, or equivalently, the product of energy per successful request

and the inverse of throughput. Further, such metrics are not sufficient since for throughput-oriented

workloads, the energy spent per successful request or over some time period is a very important

metric in itself due to its direct correspondence to cost savings.

Finally, it should be noted that, despite the seemingly contradicting goals of each, power and
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energy management can be combined to gain the benefits of both strategies. Since power manage-

ment policies determine power states that are safe with respect to the auxiliary infrastructure, those

power states can be viewed as a limiting envelope for energy management policies, which are then

allowed to direct hardware into states within these limits. Nonetheless, joint optimization of power

and energy management is non-trivial and it is out of the scope of this dissertation.

1.4 Related Work

1.4.1 Traditional Power Management

Prior to servers, DPM policy investigation efforts were mainly directed at embedded and desktop

systems. For instance, earlier DVS research primarily addressed standalone, battery-operated, em-

bedded mobile devices, which still remains an active research area (see survey by Unsal and Koren

[83]). Subsequently, DVS was also exploited in desktop systems. Flautner et al. proposed a DVS

policy that manages energy with the focus of maintaining the quality of interactive performance of

applications [24]. Their algorithm is based on interactive-episode detection and it was validated us-

ing trace-driven simulation showing 75% CPU energy savings. However, no experiments on actual

hardware were performed or system energy savings measured. DPM using sleep states, based on

complex system modeling and learning, was investigated by Chung et al. [16, 17]. These works

were primarily concerned with power-manageable devices within a computer (such as hard disk

drives), addressing device sleep states. With similar focus, AbouGhazaleh et al. addressed DPM

for wireless network cards by increasing sleep durations and utilizing deeper sleep states, evaluat-

ing the power-performance tradeoffs [2]. However, their methodology was highly specific to this

domain and not directly applicable to server DPM.

In their survey of DPM design aspects, Benini et al. address the modeling of power-managed

systems and present an overview of techniques and policies [8]. The policies presented target indi-

vidual machines as opposed to multi-tier servers or clusters. Irani and Pruhs provide an overview of

the algorithmic theory relating to these methods [38]. They discuss the Speed Scaling with Power-

Down (SS-PD) scheduling problem, which is similar to our central problem of finding the optimal
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combination of power states, including CPU performance states and system sleep states, and note

that it is unknown whether the offline version of this problem (for a defined task set) is NP-hard.

However, the theories presented do not address server workloads.

1.4.2 Energy-aware Real-time Systems

Families of DVS algorithms integrated with an RTOS scheduler were proposed for periodic hard

real-time task sets in several papers [5, 55, 66]. DVS algorithms assuming similar task sets and a

continuous frequency setting model were presented by Zhu et al. [91] for multi-processors. More

recently, Zhu and Mueller presented a feedback control-based DVS framework with EDF schedul-

ing in hard real-time systems [92]. A soft real-time energy-efficient scheduler for periodic tasks in

embedded systems is presented by Yuan and Nahrstedt [88]. It employs a DVS algorithm similar to

the most aggressive one proposed by Pillai and Shin [66], but it is based on CPU cycle demand dis-

tribution histograms built online. It can save more energy while providing statistical performance

guarantees.

Much of the previous literature is focused on multimedia task sets. Simunic et al. devise a DVS

algorithm for portable systems, which relies on offline workload characterization and probabilistic

online detection of arrival or service rate changes [76]. Other DVS algorithms targeted at soft real-

time systems predict near-future processing requirements (load) based on past history. PAST, one

of the first such algorithms proposed by Weiser et al., simply assumes that the predicted (next) time

window will have the same amount of idle time as the previous window had [85]. Govil et al.

presented and evaluated other prediction schemes, including AGED AVERAGES, which uses a moving

average of past samples with geometric decay, and PEAK, which expects short peaks in load [28].

The latter was shown to outperform PAST.

Recently, Varma et al. applied control theory to predict the future workload to guide their DPM

policy [84]. The authors designed an algorithm, nqPID, that outperforms the aforementioned al-

gorithms, while achieving performance that is less dependent on parameter tuning. However, their

results were validated only by simulation against a periodic task model. Feedback control tech-

niques were also employed with DVS by Lu et al., in order to save energy while guaranteeing frame
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rate in multimedia workloads [51, 52]. Their load predictions are calculated based on a queue-

ing model. In their first paper [51], they report similar energy savings as Simunic et al. [76], but

with reduced computation and improved quality of service. The authors also used a dead-zone

control method to provide strong real-time guarantees without requiring prior workload knowledge

like many other multimedia DVS schemes [52]. However, since it controls buffer levels, it is not

applicable to systems that do not tolerate buffering latency (e.g., Internet servers).

None of the efforts mentioned above address energy minimization in resource pipelines where

savings at different tiers can be traded off against each other and where end-to-end latency require-

ments must be achieved. Ironically, most Internet server installations today are multi-tier, giving

rise to pipelines of processing stages and hence a much richer space for energy optimization across

the entire pipeline. Slightly related is the work by Kang et al., proposing a power-aware scheduler

for distributed systems with hard real-time end-to-end delay constraints [41]. It is capable of deter-

mining an optimal voltage schedule in a single task chain (such as a multi-tier Web server), but it

assumes periodic task chains, which is not true of Web services.

1.4.3 Server Power and Energy Management

The importance of reducing both energy and power consumption in server systems is now well-

known, and has become a major research topic. Several papers have made the case by pointing

out negative environmental effects, high operating costs, power density problems, and expensive

infrastructure requirements of large server sites [10, 11, 20]. Lefurgy et al. present an general

overview of the motivation, potential, and mechanisms related to energy management in servers

and clusters [46]. They specifically point out the power advantage of heterogeneous configurations

such as multi-tier servers, which our work takes advantage of.

Several papers address DVS in standalone servers and server clusters. Elnozahy et al. presented

a soft real-time feedback control-based DVS policy combined with request batching [20]. Their

simulation results showed up to 42% savings of CPU energy in a standalone web server, when

90% of the response times were within the target latency. They did not, however, validate their

results by implementation in a real system, nor did they measure total system energy savings. A
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real DVS policy was implemented by Sharma et al. for standalone web servers with multiple QoS

service classes, each of which had soft real-time deadlines [75]. The system builds on a proven

schedulability bound for aperiodic tasks, due to which it can sustain less than 2% deadline miss

ratio. However, as is common to most previous work, the system is restricted to single-tier servers.

Reconfigurable clusters have already been proposed in the literature as a means of enabling the

exploitation of the powered-down system state. Elnozahy et al. present and evaluate by simulation

five different power management schemes for single-tier server clusters [19]. The schemes employ

VOVO (vary-on/vary-off, i.e. turning nodes on and off depending on cluster load) and/or independent

or coordinated (across the cluster) DVS. VOVO attempts to consolidate all workload to just as many

nodes as necessary, leaving enough slack for load spikes. An independent DVS policy (IVS) is

completely node-local, while a coordinated one (CVS) is constrained to a small frequency range

around the cluster average. VOVO combined with CVS is shown to be superior, which underlines the

importance of our approach of optimizing all power states simultaneously. In their paper on power-

aware request distribution (PARD), Rajamani and Lefurgy identify key system and workload factors

that affect energy management in reconfigurable clusters [69]. Their methodology was similar to

ours, but their system models are too simple to capture the complexity of service pipelines (i.e.,

multi-tier clusters) or a richer set of sleep and performance states. Heath et al. designed an energy

management policy in heterogeneous clusters based on extensive system modeling [32], having

similar limitations.

Power management of memory and storage devices in servers has also been addressed in the

literature. Lebeck et al. [45] evaluate by simulation power-aware page allocation, which results

in significant improvement in memory energy efficiency. Tolentino et al. [80] propose feedback

control-based memory power management, relying on a modified kernel to achieve substantial sys-

tem energy savings with minor performance loss. Their work also highlights the importance of

memory power as a function of the amount of memory per processor. Joint power management of

memory and disks, observing cache size and idle periods, is explored by Cai et al. [13]. Unlike in

their work, which relies on disk sleep states to manage disk power, Gurumurthi et al. [29] propose

variable-speed disk drives, which have the advantage that they do not incur very costly wakeup la-
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tencies. Our work focuses on CPU and system-level power management techniques, and we leave

it for future work to integrate memory and storage power management into our solutions.

Recently, virtual machine (VM) architectures have been used as a platform to implement global

power management policies [63]. Such architectures make it possible to expose individual DVS

states to each guest VM, whereas the virtual machine monitor can choose the actual hardware state,

taking the guest VMs’ “soft” states as hints. This can provide a framework to the coordination

of individual policies across multiple levels of hierarchy (from within a CPU to among racks of

machines). Another advantage is the ability to transparently migrate VMs based on power manage-

ment decisions. However, the framework itself does not address optimal coordination in multi-tier

systems with end-to-end performance constraints, which is the focus of our work. On the other

hand, our policies could be implemented on such a VM framework if desired. Other works on

virtualization address multi-tier application performance [65], but not in conjunction with power

management.

Complementary to our research are the efforts directed at dealing with cluster-level power pro-

visioning and thermal issues. The former problem is addressed by several researchers. Lefurgy et

al. introduce power capping, a high-level power management technique that allows constraining the

peak system power of a single server, supported by actual power measurement in hardware [47].

The underlying DPM technique directed by the power capping logic can be either CPU throttling or

DVS. The ability to limit peak power to a power budget allows under-provisioning of power supplies

and delivery infrastructure for cost savings. Even further savings are possible if the same idea is

taken to the cluster (or rack, enclosure etc.) level, where the power peaks of individual servers tend

to average out, yielding a smoother total power profile. Therefore, constraining the whole group

of servers to an aggregate power budget ideally demands smaller performance sacrifice, assuming

the power budget is optimally distributed among the cluster nodes. The dynamic distribution of the

total power budget is termed power shifting, and it was investigated independently by Lefurgy et al.

and Ranganathan et al. [70]. Fan et al. employed power modeling to attack data center-level power

provisioning inefficiencies, and also evaluated the additional gains achievable by data center-level

power capping in very large scale clusters running real live workloads [22]. On such a large scale,
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they find modest improvements from power capping compared to the improvement from power

modeling only. Finally, several papers explore cluster-level thermal management [33, 58, 59, 74].

These results may be combined with our energy management policy, provided care is taken to

resolve conflicting power state directions from the separate algorithms. For example, states selected

by the power capping algorithm should not be unconditionally set in hardware but only if the current

state dictated by other policies would exceed the power of those selected states.

In summary, the research described in this dissertation was aimed at covering the gap in energy

management literature in the area of resource pipelines with contemporary power management fea-

tures. Energy management in multi-stage execution systems represents a very important, surpris-

ingly overlooked, topic that significantly impacts the ability of realistic server farms to reduce their

operational costs. This topic is especially challenging when the server farm must meet end-to-end

latency requirements of different traffic classes. To my knowledge, this work undertook the first

comprehensive systems-oriented research effort with an extensive experimental component that ad-

dresses energy management policies in multi-tier (i.e. pipeline) latency-sensitive server farms. A

significant departure of my work from much of the previous work on latency-sensitive services is

also that we are not restricted to periodic task models commonly assumed in real-time systems

research. Hence, my results have a much broader impact and applicability in the Internet service

application domain. If adopted, my algorithms can lead to additional cost reduction in the operation

of large server clusters, enabling deployment of more server capacity in a growing number of data

centers.



Chapter 2

DVS for Multi-Tier Servers

2.1 Introduction

Complex web services are commonly realized by multi-tier web server systems in order to func-

tionally distribute computation across several computers. The different tiers perform different parts

of request processing. For example, an e-business service usually consists of an HTTP server tier,

an application server tier, and a database server tier. Client requests to these systems generally have

highly varying and unpredictable resource requirements at each tier. Requests for static content

such as images or binaries are often served by the first tier alone, with no resource usage in the oth-

ers. On the other hand, an online purchase transaction would likely have a large processing demand

on the application server and the database server, with the HTTP server only transferring a trivial

amount of data.

In this chapter, we consider the energy efficiency of multi-tier web servers hosting soft real-time

services with guaranteed end-to-end response times. These web servers are often significantly over-

provisioned in order to meet target response delay constraints even under peak loads. This practice,

however, leads to poor overall energy efficiency since such systems are typically under-utilized. The

energy (and cooling) costs of large server farms are reported to be a significant part of their total

upkeep and maintenance expenses [10, 20]. Excess power consumption not only hurts the operator

economically, but it also limits the number of servers per unit volume (in the machine room) due

to heat dissipation considerations [11]. Hence, there is an increasing need for solutions that reduce

18
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the system’s energy consumption with as little effect on performance guarantees as possible.

Dynamic voltage scaling (DVS) is a powerful technique that allows significant energy savings

by sacrificing some system performance. Reducing voltage requires a roughly proportional decrease

in frequency, but power decreases quadratically with voltage. One of the key advantages of DVS

(compared to other schemes, such as turning machines off) is that the overhead of performance

adjustments is very low, and thus it allows for an aggressive power saving policy.

Previous research has studied DVS in a single web server or a single-tier web server cluster

with performance guarantees [10, 11, 19, 20, 75]. However, straightforward extensions of these are

not sufficient to reasonably optimize power in server pipelines. In a pipeline, the end-to-end delay

is composed of highly variable stage delays, therefore independent stage delay control achieved by

single-server algorithms cannot be effective in controlling the end-to-end delay. Further, since such

independent DVS algorithms have no concept of end-to-end delay, their power optimization cannot

be optimal because they lack the proper solution constraint. To our knowledge, no work has been

done to address DVS in multi-tier web servers with end-to-end delay constraints.

In this chapter, we design, implement, and evaluate a coordinated distributed DVS policy for a

traditional three-tier web server system, based on distributed feedback control driven by a simple

stage delay model. The policy is designed for realistic CPUs with discrete DVS frequency settings.

Decisions on frequency adjustments are made on each stage locally, governed by a decentralized

self-coordination scheme. The self-coordination ensures that each stage can individually compute

the globally optimal solution and apply it to itself, without the need for a central entity. We also

present the formulation of the problem of determining the globally optimal DVS policy for such

systems. We show experimental results from our prototype implementation confirming that our

solution is efficient and stable. We experimentally verify that the proposed coordinated scheme

outperforms uncoordinated single-machine power management. In particular, we compare it to the

default Linux power management as a baseline. Additional energy savings in excess of 30% are

observed.

It should be observed that the DVS-based approach explored in this chapter does not exclude

the usage of other power saving schemes. Typically, different schemes would be employed at
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different time-scales. For example, relatively long-term load fluctuation patterns (such as day/night

fluctuations) can be accommodated by turning machines on or off to match the anticipated load

as proposed in earlier literature [19]. In such an on/off scheme, extra capacity would typically be

left on each stage to accommodate shorter-term bursts. Hence, given a particular configuration of

machines that are on, the protocol described in this chapter can be used to determine their power-

optimal DVS settings. Consequently, energy savings are increased by taking advantage of load

fluctuations on shorter time-scales. Moreover, if machines in each tier are roughly load-balanced,

their actions would typically be symmetric within the tier. Hence, in order to investigate coordinated

DVS schemes across the pipeline, it is enough to consider a pipeline of one machine per stage. In

thicker pipelines, assuming homogeneous servers with appropriate load-balancing in each stage, all

machines within a stage will likely behave identically. With that in mind, we focus in this chapter on

deriving and implementing coordinated power-optimal DVS schemes for thin pipelines (i.e., those

with one machine per stage) that respect end-to-end latency constraints.

The main contributions of this chapter are the theoretical optimization of the energy efficiency

(i.e., power consumption subject to latency constraints) of soft real-time multi-tier web servers, and

the detailed case study and evaluation of our prototype testbed implementation. This work appeared

in [35].

The rest of the chapter is organized as follows: section 2.2 presents the general system archi-

tecture and DVS solution; section 2.3 details the implementation; and performance evaluation is

presented in section 2.4. The chapter concludes with section 2.5.

2.2 Architecture

Our multi-tier web service architecture consists of a pipeline of several processing stages. The

processing at each stage invokes services of the next stage in a request-response fashion. Requests

from a client are addressed to the first stage. Depending on content, they may be processed by

subsequent stages sequentially. Such processing is typically in response to calls to business logic

scripts and database queries. Eventually, calls and queries return to their originating stage with a
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response to be sent back to the client.

The non-traditional element in our energy-efficient architecture is that the server machines in

the aforementioned pipeline have DVS-capable processors. By employing our novel coordinated

DVS policy, the servers minimize the overall power consumption of the web service while satisfying

the (soft) real-time end-to-end delay constraints on request processing. The controlled variable is

the end-to-end response delay, with the set-point (i.e., the target value of the controlled variable)

being a pre-configured end-to-end delay value. Note that by end-to-end delay we refer to the total

latency on the server side, which does not include network latencies between the server and the

client. To prevent frequent DVS changes in response to delay fluctuations, a dead-zone is imposed.

In other words, no corrective action is taken as long as the measured end-to-end delay lies within an

acceptable range between a low and a high threshold. If either threshold is violated, the feedback

loop changes DVS settings in the pipeline to recover from the violation.

2.2.1 Delay Characteristics

End-to-end delays are continuously measured at the first stage, where client requests enter and

responses leave. The average CPU utilization Ui is measured at each stage i with sampling period

T . The measured end-to-end delay, D, can be broken into a delay component Di for each stage i.

Hence, for an N-stage system, D = ∑
N
i Di. In turn, the delay Di, on stage i, can be broken into a

CPU processing delay, denoted DCPU
i , and a blocking delay, such as I/O blocking, denoted Dblock

i .

This delay is incurred by a request when waiting on or using a resource other than the CPU.

The DVS mechanism manipulates CPU speed and voltage only. Thus, it can only control the

CPU delay components, DCPU
i . In contemporary multi-tier servers, significant non-CPU delay com-

ponents, Dblock
i , are typically present due to network latency and database I/O. This happens to be

a fortunate circumstance from the perspective of DVS schemes, as opposed to a disadvantage. The

reason is that DVS schemes opportunistically increase CPU delay DCPU
i whenever possible (by

slowing processors down) in order to save energy. If the end-to-end delay is primarily a function of

Dblock
i and not DCPU

i , more aggressive energy savings can be accomplished without adverse effects

on overall delay performance. Observe that it could be argued that the reverse is also true. Namely,
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if the I/O blocking delay, Dblock
i , is very large and if the disk is the bottleneck, the system will

needlessly try to increase CPU speed when it is overloaded. This will decrease power savings with-

out affecting the actual bottleneck delay. Fortunately, this situation is easy to prevent at run-time

by disallowing machines with a low CPU utilization from speeding up their CPU. Hence, unless

the CPU is the bottleneck at some machine, power savings will not be needlessly impaired. The

algorithm described below adopts this restriction.

2.2.2 Simple Dynamic Voltage Scaling

In a first attempt to design an optimal feedback-based DVS scheme in terms of energy savings, we

only assume that the CPU delay DCPU
i at stage i is a convex function g(Ui) of the CPU utilization,

Ui, at that stage. In other words, stage delay increases progressively more steeply as CPU utilization

increases. Formally, the second derivative d2g(Ui)/dU2
i is positive. For example, given a Poisson

arrival process and exponentially distributed execution times, we know from queueing theory that

DCPU
i = Ti/(1−Ui), where Ti is a constant. Hence, d2g(Ui)/dU2

i = 2Ti/(1−Ui)3, which is positive

for Ui < 1.

This assumption is generally true of busy servers, and it is intuitively supported by the obser-

vation that real-life web servers tend to increasingly saturate when operating at higher CPU uti-

lizations, leading to steeply increasing latencies. When the algorithm described below is applied to

workloads for which this assumption does not hold, the resulting system will still maintain the end-

to-end delay within constraints, albeit with poorer performance and energy efficiency. For instance,

the assumption may be false in completely sequential workloads (i.e., in workloads with no parallel

tasks), where CPU utilization has no effect on delay. However, typical web server workloads are

highly concurrent in nature because of the large number of independent clients.

The convexity assumption leads to a simple set of rules for adjusting CPU speed to globally

maximize energy savings subject to delay constraints. Namely, if the measured end-to-end delay,

D, exceeds an upper threshold, step up the frequency of the most loaded machine. Similarly, if the

delay drops below a lower threshold, step down the frequency of the least loaded machine.

Intuitively, when the end-to-end delay exceeds the desired value, some processor’s frequency
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must be stepped up to decrease that processor’s utilization and consequently decrease delay. The

convexity of the utilization-delay function implies that stepping-up the frequency of the most uti-

lized processor is a good rule-of-thumb, because it results in the maximum reduction in delay for

the same reduction in utilization. Hence, hopefully, delay can be brought down to the set point with

the least additional energy expenditure.

By the same token, when the end-to-end delay is below threshold, stepping-down the frequency

of the least utilized processor is a good choice because it results in the least impact on delay for

the same increase in utilization. Hence, this processor can presumably be slowed down the most

resulting in the most energy savings.

The main advantage of the above algorithm is simplicity. It uses two simple rules that require

only per-machine total utilization measurements and a measurement of end-to-end delay. In par-

ticular, it does not need to know individual stage delays, task execution times, or processor power

characteristics.

The algorithm does not actually lead to an optimal solution to the energy minimization problem

because it implicitly assumes that energy savings are proportional to utilization changes. In general,

this is not true. Fortunately, if the processors’ power-frequency curve and the workload’s utilization-

delay function are known, the above optimization algorithm can be easily adapted to produce the

optimum energy consumption as shown below.

2.2.3 Optimality Conditions

Let us assume that the power consumption Pi of stage i is a general function of CPU utilization:

Pi = pi(Ui) (2.1)

Second, assume that the delay DCPU
i of a stage i is approximately related to its utilization Ui by the

queueing-theoretic equation:

DCPU
i =

Ti

1−Ui
(2.2)
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where Ti is the mean service time of each stage. In reality, this equation is not exact, since stud-

ies suggest that web workloads in general follow a heavy-tailed distribution [87]. Unfortunately,

queueing models with heavy-tailed interarrival and service times are very difficult to analyze [23].

However, our model provides a reasonable approximation for deriving a practical optimality con-

dition for typical multi-tier web workloads. The intuition is that with similar distributions in each

tier, the relative estimation error diminishes, and the resulting deviation from the optimal system

state is insignificant compared to the deviation arising from the inherent discreteness of the system

(i.e., small number of available frequencies). Our experimental results also support this intuition by

showing improved performance with the proposed model. For other workloads where the model is

inappropriate, the same analysis can be carried out with a different delay approximation equation.

Summing over the entire pipeline, the total power consumption P of the N-stage system can be

expressed by:

P =
N

∑
i=1

pi(Ui) (2.3)

Our objective is to minimize that power consumption subject to the constraint ∑
N
i=1 DCPU

i +Dblock
i ≤

L, where L is the maximum desired latency. Taking the equality condition as the limiting case, and

substituting from Equation (2.2), this constraint can be rewritten as:

N

∑
i=1

Ti

1−Ui
= K (2.4)

where K = L−∑
N
i=1 Dblock

i , which we assume is a constant independent of frequency settings, since

blocking delays are not affected by CPU speed.

To solve the aforementioned constrained optimization problem, we first add the Lagrange mul-

tiplier, λ, which yields:

L(Ui,λ) =
N

∑
i=1

pi(Ui)+λ

(
N

∑
i=1

Ti

1−Ui
−K

)
(2.5)
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Using the Kuhn-Tucker Theorem, we can get:

∂L
∂λ

= 0 (2.6)

and for each i:
∂L
∂Ui

= 0 (2.7)

The solution of Equation (2.6) is exactly the constraint given by Equation (2.4), thereby ensuring

that it is always satisfied. From Equation (2.7), we get:

p′i(Ui)+λ
Ti

(1−Ui)2 = 0, (2.8)

which implies:
p′i(Ui)(1−Ui)2

Ti
=−λ. (2.9)

Hence, the optimal solution to the general power minimization problem is the following equalizing

optimality condition:
p′1(U1)(1−U1)2

T1
= · · ·= p′N(UN)(1−UN)2

TN
(2.10)

Next, to arrive at a specific solution, let us consider the following equation between system

power consumption and CPU frequency:

Pi = Ai f n
i +Bi, (2.11)

where Ai and Bi are constants. The general rule of thumb with CMOS technology is that

P ∝ V 2 f ∝ f 3, that is, power is proportional to the cube of clock frequency. The rationale is

that raising the clock frequency also necessitates increasing the voltage. In reality, however, f ∝ V

is a simplification, hence our more general expression. This assumption is accurately satisfied in

realistic systems, with n ranging between 2.5 and 3. The same power model with n = 3 is assumed

for analysis by Elnozahy et al. [19]. In general, it is possible to obtain the exponent n and constants

Ai and Bi by curve fitting against empirical measurements obtained from profiling the system.
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If the workload arrival rate at stage i is λi cycles/s, the utilization Ui of that processor is λi/ fi,

where fi is the service rate or frequency in cycles/s. Equivalently, fi = λi/Ui. Substituting in

Equation (2.11) yields the specific power-utilization function:

Pi = pi(Ui) = Ai
λn

i
Un

i
+Bi (2.12)

Note that the power consumption of a tier of machines has an indirect dependence on the other

tiers: the behavior of the other tiers affects the utilization of the mentioned tier, which in turn

affects its power consumption. Our model is simple in the sense that it does not contain a prediction

component to capture how tiers affect each other’s utilization. However, the model is fairly accurate

in representing the true power consumption based on the observed utilization, which does reflect

the inter-tier dependencies.

Substituting in the general solution given in Equation (2.10), we get:

p′i(Ui)(1−Ui)2

Ti
=
−nAiλ

n
i U−(n+1)

i (1−Ui)2

Ti
(2.13)

This finally leads us to the following equalizing optimality condition, which provides the optimal

solution to our specific power minimization problem:

W1H(U1) = W2H(U2) = · · ·= WNH(UN) (2.14)

where Wi is a weight, which, after simplifying Equation (2.14) by (−n), is given by:

Wi =
Aiλ

n
i

Ti

and H is a transformation defined as:

H(Ui) =
(1−Ui)2

Un+1
i

.

To minimize power consumption across the pipeline subject to the end-to-end delay constraint,
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a feedback loop is added to equalize the weighted transformed utilizations of all stages such that it

satisfies Equation (2.14). Utilization is manipulated by changing the CPU frequency settings.

2.2.4 Improved Algorithm with Miss Ratio Considerations

To converge on the condition expressed in Equation (2.14), average local stage CPU utilization

measurements, Ui, are broadcast by each machine at each sampling period. Average end-to-end

delay D is computed by the first stage and also broadcast to all stages at each sampling period.

Given this information, the distributed DVS algorithm on each machine computes the weighted

transformed utilization, WiH(Ui) for each stage i. It is desired to keep these values as equal as

possible while observing that a given deadline miss ratio is not exceeded.

To ensure that a maximum tolerable miss ratio r is not exceeded, one can compute (from

the expected workload distribution) the conditional probability that a deadline miss will occur in

the next sampling interval given that the maximum delay observed in the current sampling inter-

val is some fraction αhi < 1 of the actual deadline L. We denote this conditional probability by

Pr(D[k +1] > L|D[k] < αhiL), which is a function of αhi (where D[k] and D[k +1] denote the delay

measurements in the current and next samples respectively). If the maximum acceptable deadline

miss ratio is r, we would like to ensure that Pr(D[k + 1] > L|D[k] < αhiL) ≤ r. Given an ana-

lytically derived or empirically measured conditional probability function, the equality condition,

Pr(D[k+1] > L|D[k] < αhiL) = r can be solved for αhi simply by finding the point where the curve

of this function reaches value r. The following two feedback rules are then applied:

• If D > αhiL (overload), machine i with mini{WiH(Ui)} steps up its frequency to the next

higher discrete setting. Note that since H is monotonically decreasing in the range of Ui, this

will increase the weighted transformed utilization, effectively balancing it as desired.

• If D < αloL (underutilization), machine i with maxi{WiH(Ui)} steps down its frequency to

the next lower discrete setting (where αlo < αhi). Note that by symmetry, this will decrease

the weighted transformed utilization, again meaning a balancing action.
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The first rule guarantees that the conditions for a sustained miss ratio of r or more are always

corrected to reduce miss ratio. The second rule allows energy savings to be applied when the

system is underutilized. By applying these rules simultaneously on each machine in the pipeline,

we arrive at a distributed algorithm that converges on the globally optimal solution. Note that if

Wi are equal for all stages (such as in a homogeneous system with perfectly balanced load over the

whole pipeline), the algorithm reduces to the one described in section 2.2.2.

Finally, observe that while we described the algorithm for a single class of clients with the same

deadline, it is straightforward to generalize to multiple classes. The only change is that the first

stage now measures the end-to-end delay for each class separately. This delay vector is broadcast to

other stages. Let the deadline of class i be Li and its measured end-to-end delay be Di. Each stage

executes the following two rules:

• If ∃i : Di > αhiLi (overload), machine i with mini{WiH(Ui)} steps up its frequency.

• Else, if ∀i : Di < αloLi (underutilization), machine i with maxi{WiH(Ui)} steps down its

frequency (where αlo < αhi).

The first rule of the aforementioned algorithm can be further improved by excluding machines with

a low CPU utilization (i.e., Ui < Ulo) from stepping up their speed. As mentioned earlier, this

situation might arise if the disk was the true bottleneck making the CPU speed irrelevant. With this

improvement, CPU speed is adjusted only if the adjustment is likely to affect delay. The resulting

algorithm has better energy savings in systems dominated with disk bottlenecks.

2.2.5 Feedback Control Model

Having defined our DVS algorithm, we proceed to describe and analyze the design of the feedback

control system we chose to implement. Note that our goal here is not to design an optimal controller,

but rather to demonstrate the practical usefulness of our algorithm. Hence, we develop a simple yet

effective controller, focusing on the design limitations of our target systems, such as the small

number of available CPU frequencies. Other control-theoretic models of absolute delay control

loops with different assumptions have been presented by Sha et al. [73].
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The overall system is modeled by a discrete nonlinear feedback control loop with a deadzone.

The input of the loop is the pair of threshold parameters αlo and αhi, which define the controller

deadzone. The error signal received by the controller is then the difference of the measured end-

to-end delay (feedback) and the center of this deadzone. Given the error signal, the controller

determines the DVS adjustment as follows. If the error falls in the deadzone, no adjustment is

made. If the error is greater, then the CPU frequency of one stage is adjusted by one stepping,

as selected by the algorithm given in section 2.2.4. Driven by the current CPU frequencies and

the offered load, the multi-tier web server (controlled system) processes requests with a certain

end-to-end latency, which is sampled, averaged, and fed back to compose the aforementioned error

signal.

Since the available CPU frequencies in the controlled system are limited, the presented satu-

rated controller cannot become unstable. Limit cycles, where the system would only operate at

the lowest or highest CPU frequency, are also impossible (assuming that other levels are available)

because the frequencies are always adjusted by a single stepping only. However, analyzing stabil-

ity is still worthwhile for identifying the presence of harmful oscillation in the system. To assure

that our controller does not cause oscillatory behavior, it is sufficient to show that under constant

offered load no frequency decrease can lead to a frequency increase. This means that whenever the

maximum end-to-end delay falls below the lower threshold, the average increase in delay caused

by stepping down any CPU frequency should be smaller that the deadzone. Otherwise, the fre-

quency decrease could drive the maximum end-to-end delay beyond the high threshold, which in

turn would trigger a frequency increase, resulting in undesired oscillation in the average delay. This

deadzone constraint can more formally be expressed from the delay equation (Equation (2.2)) as

follows:

Ti

(
1− λi

f < j−1>
i

)−1

−Ti

(
1− λi

f < j>
i

)−1

≤ Z (2.15)

where f < j>
i is the j-th CPU frequency setting in stage i and Z is the deadzone (relative to the

deadline). In order to bound the average delay increase, we observe that for any DVS architecture,



Chapter 2. DVS for Multi-Tier Servers 30

we can find frequency bounding parameters α and β as follows:

∃α,β : ∀ j : f <∆ j>
i ≤ α f < j>

i +β < f < j>
i s.t. 0 ≤ α < 1 and 0 ≤ β,

where f <∆ j>
i = f < j>

i − f < j−1>
i . Using these parameters, the following equation satisfies the dead-

zone constraint given by Equation (2.15):

Ti

(
1− λi

(1−α) f < j>
i −β

)−1

−Ti

(
1− λi

f < j>
i

)−1

= Z. (2.16)

Solving Equation (2.16) for λi, we get the arrival rate λB
i , for which the maximal delay increase

arising from some frequency adjustment equals Z. Since the delay increase function on the left-

hand side of Equation (2.16) monotonically increases in λi, Equation (2.15) is satisfied for all λi ≤

λB
i . From this, λB

i / f < j>
i yields a utilization bound for each frequency setting j, below which the

deadzone constraint is satisfied.
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Figure 2.1: Effect of parameters on the utilization bound for stable CPU frequency reduction [35,
Fig. 1].

In Figure 2.1, we calculate (based on profiled parameter values) the aforementioned utilization

bound for various parameters. Figure 2.1(a) shows the results for different deadzone ranges. We

can see from the graph that a deadzone range of 0.3, for instance, yields a utilization bound of 64%.

Figure 2.1(b) demonstrates how different feasible choices of the frequency bounding parameters

affect the utilization bound. As the graph shows, some parameter values give tighter bounds than

others. For example, for the CPUs used in our experiments, α = 0.33 and β = 0 give the tightest
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overall bound, 66%, over the whole frequency range. Together, the graphs show that a deadzone

range of 0.3 will prevent frequency oscillation as long as the utilization of the CPU being stepped

down is lower than 64%. This condition is likely to be satisfied, as generally the most underutilized

stage’s capacity is decreased to save power. The conclusion is that the parameter αlo should be

selected based on the appropriate deadzone range that prevents oscillatory behavior.

Note that we rely on single-step actuation as opposed to changing multiple CPU frequencies at

the same time. This is especially significant since the number of available DVS frequency settings

for a CPU is usually small, and multiple-step actuation could easily overreact to load variations.

Having said so, the controller gain can be altered by changing the sampling period. Smaller periods

result in higher gain since actuation is more frequent (while the actuation step remains the same).

It is important to choose a sampling period that does not cause stability problems. Specifically,

to avoid unnecessary oscillation, it is sufficient to ensure that the sampling period is long enough

that the effect of the last frequency adjustment appears in the newly measured end-to-end delay.

Therefore, a suitable sampling period should be inferred from the expected workload arrival rate

and target latencies.

2.3 Implementation

2.3.1 Infrastructure Overview

In designing our implementation structure, our primary goal was to make our DVS policy as inde-

pendent of the actual server software as possible. This is preferable because it is unobtrusive to the

software that we want to leave intact, and extensible because it needs not be modified to accommo-

date a new software. There is no need to modify any existing server software on the source code

level as long as we can measure the end-to-end processing delay on the first stage without doing

so. This may be done by taking advantage of certain hooks the server software provides for plugin

modules. The Apache web server [78], for example, does provide such hooks.

Our prototype three-tier platform is composed of three laptop computers with Mobile AMD

Athlon XP DVS-capable processors. The processors have discrete frequency levels ranging from
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532 MHz to 1529 MHz, with settling time specified as 100 µs. Each computer runs Linux 2.6. We

implemented two separate three-tier web server systems on this platform: a Synthetic system and a

TPC-W [82] system. In the Synthetic system, the first two computers run Apache 1.3 as an HTTP

front-end and as an application server, respectively, while the third computer runs the MySQL 4.0

database server [62]. The TPC-W system consists of the first computer running Apache 1.3 as

HTTP front-end and image server, the second running JBoss 3.2 [71] as an application server, and

the third running MySQL 4.0. As for the actual TPC-W software, we adopted a J2EE-based imple-

mentation of the TPC-W 1.8 benchmark that uses contemporary technologies such as entity EJBs

with container managed persistence for best performance [81]. We have not been able to find a

readily available client for this server. Thus, on the TPC-W client side, we used a compliant Re-

mote Browser Emulator from a separate source [64]. Several modifications were necessary to both

the server and the client to make them interoperable. Since the client was not capable of accepting

browser cookies containing the session identifiers, we modified the server to support session track-

ing using URL encoding. Further, we modified the client’s URI fragments and patterns, as well

as resolved interface-level incompatibilities. Our DVS policy is implemented independently as a

standalone daemon to be started on all servers. The daemons on each stage establish TCP connec-

tions with the previous and next stages. Once they form a pipeline, they start self-coordination and

control of the local CPU frequency.

2.3.2 Measurements and Actuation

Measuring end-to-end delay in practice is a challenge. True end-to-end delay could only be mea-

sured with kernel support. Alternatively, measuring delay in user space is a flexible yet imprecise

solution. Since Linux does not yet provide the necessary timestamping support for TCP packets,

we chose the user-space solution, which gives a reasonable approximation if the network is not the

bottleneck resource on the first stage.

To obtain end-to-end delay samples, processing delays of the first stage (and thus the whole

pipeline) are measured by our Apache extension module attached to the post read-request and

the logger hooks. The time elapsed between the invocation of these two hooks for a given re-
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quest is its measured end-to-end processing delay. In many cases, the implementation must also

support separate request classes with different deadlines. For instance, the TPC-W specification

defines several “web interactions” with different delay constraints. Hence, our extension module

also provides a new command, which allows deadline specifications for separate request classes

identified by regular expressions against the request URI. Every sample thus consists of a delay

measurement and a corresponding deadline. The DVS daemon running on the first stage provides a

local (System V) Message Queue IPC interface to gather these samples. The measured end-to-end

delay statistics are then periodically sent to all subsequent remote stages via TCP/IP messages.

At the end of each sampling period, average stage CPU utilization is measured by the DVS

daemon on all stages. The utilization values are obtained from the Linux kernel, by reading its

clocktick accounting statistics from the virtual file /proc/stat. Averages for each period are

computed by subtracting the values collected at the end of the previous period from those at the

end of the current period. The average stage CPU utilizations, along with the stage’s current CPU

frequency setting, are periodically sent from all stages to each other also via TCP/IP messages.

The DVS algorithm is invoked at the end of each sampling period. Through the coordination

mechanisms described above, all stages ideally have a consistent view of current CPU frequencies,

average CPU utilizations, and the end-to-end delay statistics, hence they can solve the current global

DVS problem instance independently. When a stage’s solution indicates that one of the rules need

to be activated on itself, then that stage adjusts its CPU frequency (i.e., steps it up or down to

the next discrete setting). The actual CPU speed setting is implemented by invoking the standard

userspace frequency scaling governor of the Linux CPUFreq device driver.

2.3.3 Parameter Selection

When implementing our DVS algorithm, we must make an appropriate choice of the upper and

lower delay thresholds, αhi and αlo, described in section 2.2.4. Violations of these thresholds trigger

reactions to overload and underutilization respectively. As mentioned in section 2.2.4, the upper

threshold is chosen such that Pr(D[k+1] > L|D[k] < αhiL) = r, where L is the end-to-end deadline,

D[k + 1] is the end-to-end delay in the next sampling period, D[k] is the maximum end-to-end
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delay measured in the current sampling period, and r is the maximum tolerable deadline miss ratio.

In other words, we would like the DVS algorithm to increase CPU speed when the conditional

probability of a future deadline miss reaches the maximum tolerable miss ratio. Figure 2.2 plots the

aforementioned conditional probability for our workload as a function of the delay threshold. This

curve was obtained empirically by observing the delays in every two successive sampling times.

The conditional probability of a future deadline miss depends on CPU speed because at lower

speeds individual requests contribute more to server delay, hence causing a larger delay variability.

We imagine that in high-performance servers where individual requests are very small compared to

server capacity, the granularity of individual requests will play a smaller role. Let us take 5% to be

the largest tolerable miss ratio. From Figure 2.2, we see that a threshold of αhi = 0.7 guarantees

that the maximum miss ratio will remain below 5%. The lower threshold is then selected by using

the analysis in section 2.2.5, where it was shown that 0.3 is an appropriate deadzone range for our

workload. Hence, we use 0.4 as the lower relative delay threshold, which yields a deadzone range

of αhi−αlo = 0.3.
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Figure 2.2: Choosing the upper delay threshold [35, Fig. 2].

In settings where the workload is not known at design time, the parameters must be determined

online. The analysis presented above simply has to be automated by sampling the delays in the live

system. The high threshold can then be computed from the estimated long-term conditional prob-

ability as shown above. Finally, an adaptive online algorithm can determine the minimal deadzone

by measuring oscillations and adjusting the deadzone to avoid them, leading to an appropriate low

threshold for the workload.
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2.3.4 Control Performance

As we mentioned in section 2.2.5, when choosing the sampling period, one major concern is to

limit controller overshoot as much as possible. A conflicting concern is to get a short response

time (rise time) when the system starts violating the performance requirements. We select a short

sampling period during overload for the sake of high responsiveness to deadline misses. Our choice

is T = 200 ms because, with the expected throughput of our workload, only a small number of re-

quests exit during this time, which means the system quickly reacts after observing a few samples.

It also results in a low controller overhead, since coordination data will be measured and sent only

five times per second. Since in modern systems the power consumption of the network interfaces

is not significant compared to the main components (CPUs, memories, disks), this communication

overhead has very low effect on total system power. Also, since at most one frequency adjustment

occurs in every sampling period, our 100 µs per period frequency transition overhead stays negli-

gible even with this short period. However, such a small period is not suitable during underload,

because it leads to a small set of delay samples that makes their average not sufficiently representa-

tive. Therefore, the sampling period during underload ranges from 4 to 10 seconds, depending on

the deadlines of the workload. The reason is that this prevents the controller from decreasing system

capacity before current request delays could be measured, as long as deadlines are met. Therefore,

stability problems are avoided, since the longer sampling period ensures that the effects of the pre-

vious frequency adjustment are seen before further adjustments. This much longer sampling period

does not mean, however, that the system becomes unresponsive to deadline misses during under-

load, because it is implemented in terms of the short periods by aggregating their samples. Hence,

if deadline misses occur in any short period, the controller identifies an overload situation, which

results in immediate corrective action at the end of that short period. Our results indicate that this

yields a good compromise between soft real-time performance and energy savings.

Another design feature that impacts control performance is the issue of agreement in our dis-

tributed coordination scheme. Although synchronous coordination should be capable of guarantee-

ing coherence and consistency, it is expensive to enforce. Therefore coordination (i.e., sharing of

utilization values and end-to-end delay) is done asynchronously. Assuming that average utilization
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and average delay do not change abruptly from sample to sample (which can be ensured by an

appropriate choice of the sampling period, discussed above), asynchrony has very little effect since

state is not very time-sensitive. However, asynchrony does give rise to the possibility that, in an

overload or underload situation, there might be no agreement on which stage should react (albeit

there is likely to be an agreement on whether the system is underutilized or overloaded). As long

as any stage decides to react, lack of agreement can only increase the extent of system reaction (as

two or more machines decide to perform a corrective action). In other words, lack of agreement

increases controller gain, which can be easily accounted for in stability analysis by substituting the

expected value of system reaction for the actuation step size. The implication is that if the impact

is unacceptable, then a centralized design might be preferable.

Let us also remark that since we do not assume that stage clocks are synchronized, the exact

actuation times may vary throughout the pipeline. We note, however, that in the worst case, any

stage’s reaction will be late by at most one sampling period since the last broadcast of end-to-end

delay. Since we choose the sampling period to be small (compared to end-to-end deadlines) for fast

system reaction, we argue that this delay is acceptable.

2.4 Evaluation

We evaluate two versions of our algorithm (the Feedback DVS version, implementing the naive

policy, and the Weighted Feedback DVS version, implementing the optimization-based policy) by

comparing them to a Baseline and an Independent DVS scheme. For the Baseline, we set the CPU

frequency to the maximum on all stages. Let us point out that this does not necessarily mean

that the CPUs will constantly run at that frequency. Linux (together with most modern operating

systems) attempts to save power by default when the CPU is idle, even without a DVS policy. The

exact way is platform and parameter-specific, but usually the CPU is turned off until a hardware

interrupt occurs. Our platform uses the default method for x86 platforms: it executes the HLT

instruction, which halts the CPU and puts it into a low-power state. Thus, our Baseline policy

already performs such power management. For the Independent DVS scheme, we control the CPU
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frequencies independently, running an implementation of the PAST [85] DVS algorithm on each

stage. All DVS algorithms are run on top of the Baseline policy. Thus, our reported power savings

are those above the aforementioned policy.

The rationalization of our choice of comparison policies is that no other reasonable and ap-

plicable algorithm exists in previous literature to compare with. As we discussed in section 1.4,

reasonable previous solutions to multi-stage power optimization with real-time constraints are not

applicable to aperiodic workloads with unknown worst-case execution times. On the other hand,

algorithms devised for standalone servers or server clusters cannot reasonably satisfy end-to-end

delay constraints in a multi-stage pipeline setting, unless the end-to-end deadline is partitioned

such that each stage works to satisfy a local deadline. Such partitioning must be done dynamically

in a manner adaptive to current load, which makes it a non-trivial extension of the single-machine

policy. The obvious extension of partitioning the end-to-end deadline a priori (e.g., by dividing

by the number of stages) works very poorly because the stage load is not balanced, leading to poor

performance and stability of such local schemes. Therefore, we deemed that comparisons with such

algorithms would be unfair. Instead, we compare to two stable uncoordinated power management

policies.

2.4.1 Workloads

To evaluate the expected real performance of our algorithm, we experiment with separate workloads

for the two systems we implemented. The workload for the Synthetic system attempts to create a

tunable server workload modeled after that of a typical three-tier web server. While it is less repre-

sentative of a specific application, it is very flexible. On the other hand, while the workload of the

TPC-W system does not represent many different types of applications, it is a very realistic model

of an online bookstore application. Our goal in implementing two different systems is to conduct

a more comprehensive evaluation, and to study the sensitivity of our algorithms with respect to the

workload.
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2.4.1.1 Synthetic Workload

As most serious services rely on large volumes of data, we create a reasonably-sized database on

the third stage. We have 500 tables, each table contains 1,000 records, and each record consists

of 20 variable character fields. All records are initially filled with a key and 19 random fractional

numbers. The physical size of the database (220 MB) prevents it from being entirely cached on our

machine (the maximal observed cache memory size was 126 MB), making this stage I/O-intensive.

The second stage implements application server functionality using CGI scripts, which perform

data access and simulate data processing. The script first requests the database server to perform

one of three different types of data manipulation actions: query record based on primary key; up-

date record selected by primary key; or query records based on textual search pattern. The requested

action is randomly chosen. In the first two cases, the key is randomly selected from the existing

valid keys, and in the third case, the search pattern is a random 3-digit number as a substring.

This randomization helps avoid invalid results due to disk caching by decreasing spatial locality

of data accesses. These actions are, although minimal, representative of many real applications

because they consist of both reads and writes, they involve both simple indexed lookups and com-

plex non-indexed searches, and they can have highly varied execution times. Once the database

access is finished, the script performs numeric calculations to simulate data processing. This pro-

cessing, along with the processing done by the database client library (before sending a request to

the database server), makes the second stage CPU-intensive, with the amount of CPU processing

performed depending on the size of the data set received.

Finally, for the first stage, we create a small CGI script that sends an HTTP GET request to the

second stage, and copies the response to the client. It models the non-CPU intensive mediator and

response-assembler role the HTTP server tier typically has.

Figure 2.3 shows a histogram of the inherent end-to-end delay distribution of this workload in

the Baseline case with no concurrent requests in the pipeline.

Test requests from the client are generated by the httperf [60] workload generator tool at

various average rates. The request interarrival times are exponentially distributed. An individual

TCP connection is created for each request.
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Figure 2.3: Synthetic workload end-to-end delay distribution at sequential load [35, Fig. 3].

2.4.1.2 TPC-W Workload

The database was populated as per the TPC-W requirements, with the scaling factors of 100 em-

ulated browsers (EBs) and 1,000 items. The application server is logically further divided into

two sub-tiers: it uses entity EJBs for database access (EJB tier) and servlets to provide access for

clients to the specified web interactions (dynamic web tier). In order to achieve better scalability,

we increased the size of the database connection pool from the default 20 to 50. We also increased

the connection timeout value from 5 to 20 seconds, the largest deadline in the TPC-W benchmark.

The HTTP front-end server is loaded with all the static data: 1,000 item images, 1,000 thumb-

nails, and miscellaneous small images such as buttons and icons. For dynamic requests (i.e. web

interactions), the HTTP server is set up as a proxy to the application server. To generate realistic

client requests and to collect our statistics, we used the Remote Browser Emulator running in real

time (i.e. no slow-down factor was used). The client workload profile used for the evaluation is the

TPC-W shopping mix (the basis for the primary TPC-W metrics), which consists of an average mix

of browsing and ordering activity. We varied the offered load by adjusting the number of EBs, with

other parameters (e.g., think time between user interactions) kept constant at their standard values.

2.4.2 Measurement Setup

We place our three server laptops on one network segment, making sure that unintended traffic does

not flood it. The workload generator is run on a dedicated client computer located in a separate

network segment. To filter out possible measurement errors due to lack of client resources, we verify
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that close to 100% of system time is available for request generation on the dedicated computer

during each test.

To measure the power consumption of the laptops, we use three custom measurement circuits

that sense the current flowing from each laptop power supply (AC adapter). The accuracy of the

measurements was within 5%, similarly to the solution described in previous work [11]. Since

the adapters provide constant voltage (18.5 V), we need not measure it. Observe that the adapter’s

voltage remains the same even when the CPU is performing DVS. Hence, our measurements reflect

the true total power consumption of the laptop, including that of the CPU and other circuits. During

power measurements, we remove the batteries from the laptops, since we do not want to measure

power consumed to charge them, and we want the laptops to obtain power exclusively from the

AC adapter. Also, since server systems usually do not include a display, we turn off the LCD

backlighting, which drains a significant amount of power. We do not, however, turn off the display

adapter, by which our power savings could be improved further without affecting performance.

Current readings for all three laptops are performed simultaneously at a rate of 2000 samples

per second per channel, using three channels of a National Instruments PCI-6034E data acquisition

card installed in a separate computer. The average stage power consumptions for the test duration

are then calculated offline. Performance data, such as the deadline miss ratio, are collected from

the output of the workload generator tool.

2.4.3 Performance Results

2.4.3.1 Synthetic Workload Results

Next, we evaluate the energy savings and deadline miss ratio of the synthetic 3-tier service that runs

our DVS algorithm. Each data point in our results is obtained by running several experiments for

3–5 minutes and plotting the average values along with error bars. Since we want to show the stable

behavior of the system, we eliminate transient cold-start effects by running a short (18–30 s) lead-in

workload prior to starting each experiment.

Figure 2.4(a) and (b) plot the deadline miss ratios of the two comparison policies as a function of

the average request rate, which we vary from 0 (no load) to 700 requests/minute (severe overload).
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We perform several sets of experiments for different deadlines ranging from 4 to 10 seconds. These

deadlines are natural for our setup for a number of reasons. First, delays in multi-tier web servers

are the sum of the delays of individual stages. As the database tier typically has much larger delay

due to I/O than other stages, a 4-second deadline easily translates to a sub-second delay bound to

the first two stages in our three-tier prototype. Second, the typical e-business server workloads

that we model usually include computationally complex operations that work on large data sets.

These operations can cause delays to be on the order of seconds in these systems. Note that the

TPC-W specified delay constraints are also in a similar range (3–20 seconds). Another factor is

that our testbed computers are slow compared to real-life web server hardware. Obviously, on

faster machines shorter deadlines are possible. Nevertheless, real studies with e-business web site

users [9] show that these deadlines are in the tolerable range in most cases. The Baseline graph

(Figure 2.4(a)) shows that the system begins to saturate at 450 requests/minute in each case, and

that saturation is naturally slower with higher deadlines.
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(b) Independent DVS.
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(c) Feedback DVS.
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(d) Weighted Feedback DVS.

Figure 2.4: Performance of comparison algorithms and our novel algorithms (Synthetic work-
load) [35, Figs. 4–5].
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Figure 2.4(c) presents the miss ratio of the (simple) Feedback DVS algorithm. This first version

is one where all weights Wi are assumed to be equal (as an approximation). The advantage of this

version is that it does not require knowledge of the power characteristics of the CPUs, and charac-

teristics of machine workload. If such information is available, however, it is possible to compute

the coefficients Wi derived in section 2.2.4. Figure 2.4(d) shows the resulting improved (optimized)

Weighted Feedback DVS algorithm using weights derived from empirical measurements. We can

see that when the system is underloaded, our algorithms have a slightly higher deadline miss ratio

than the comparison algorithms, but still within our specified tolerable limit, 5%. This means that

the end-to-end delays are successfully controlled so that deadlines are statistically (at least 95% of

the time) still met. Therefore, the increased miss ratios are acceptable in soft real-time systems such

as our multi-tier web service. As we see next, the increased miss ratios are the results of improved

power savings with our novel algorithms.

To illustrate what energy savings are achieved, in Figure 2.5(a), the total power consumption of

the three servers using the feedback DVS policies is compared to the total power consumption using

the two comparison policies. For each load level, the power samples are obtained by performing

individual measurements for each deadline. The lines connect the averages of these samples, while

the error bars show the minimum and maximum values. (We note that at many data points, the

power measurements were so consistent across our experiments that the corresponding error bars

are not visible graphically.) We can verify that the Baseline power saving policy in fact saves a con-

siderable amount of power in itself when the system is underutilized: it achieves an approximately

80 W base power consumption out of the highest observed power of over 180 W.

Finally, Figure 2.5(b) displays the overall power savings attained by the two feedback DVS

policies and the independent DVS policy. We can see that both of our algorithms can achieve

above 30% total power savings under medium load. The graph also demonstrates that the improved

algorithm in fact slightly outperforms the original algorithm. As conjectured, both of our algorithms

also have a great advantage over the Independent policy. Let us observe that approximately 20%

power is saved even when the system is idle, because background processes and periodic kernel

operations such as the timer handlers all run at lower frequency. The highest relative power savings
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Figure 2.5: Power consumption using our novel algorithms (Synthetic workload) [35, Figs. 6–7].

are realized at medium load (150–225 requests/min). The shape of the curves is explained by the

fact that in light load (0–75 requests/min), the CPU is often idle, therefore most of the power saving

opportunities are exploited by the Baseline policy, and little can be added by the DVS algorithms.

As load increases, there is less chance for the HLT instruction to be executed. Our policy wins

because it can run the processor at a lower frequency. Progressing towards heavier loads (above

300 requests/min), there is no longer much opportunity to lower processor frequencies. Therefore

the power savings diminish. Since most server farms are normally over-provisioned, a substantial

power reduction is possible using our schemes.

2.4.3.2 TPC-W Workload Results

In this section, we describe the experimental results obtained from our 3-tier TPC-W service. Ev-

ery data point reports the results of multiple repeated experiments, showing the average behaviors

and the observed deviations. Each individual test run consists of a 10-minute ramp-up period, a

30-minute measurement interval, and finally a 5-minute ramp-down period. The load placed on the

system is identical throughout each test run, but data collection takes place solely in the measure-

ment interval. The ramp-up period is used to warm up the system to the desired operating point,

while the purpose of the ramp-down period is to keep the system at that point even as the measure-

ment finishes. Thus, test startup and shutdown effects are eliminated from the results. These test

runs are much longer than the ones we performed with the Synthetic workload in order to meet the

TPC-W requirements. The long measurement interval is necessary, for instance, to collect sufficient
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Figure 2.6: Comparative performance (TPC-W workload) [35, Fig. 8].
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Figure 2.7: Power consumption using our novel algorithms (TPC-W workload) [35, Figs. 9–10].

samples from each individual web interaction type.

Figure 2.6 displays the performance (deadline miss ratio) of each algorithm we considered with

the TPC-W workload. Since every TPC-W web interaction type (class) has a specified end-to-end

deadline, the plotted data points reflect the aggregate miss ratios, i.e. the number of interactions that

missed their deadline per the total number of interactions. The graph shows that our performance

goal (5% miss ratio) is met by each policy when the system is not overloaded.

Figure 2.7(a) and (b) show the results of the power measurements. The first plots the absolute

total system power consumption, while the second visualizes the gains of each considered algorithm

relative to the Baseline scheme. We can make similar observations to the ones about the Synthetic

system. Both of our new algorithms exhibit improved power savings over both comparison policies.

Again, our Weighted algorithm slightly outperforms our simple one as expected. Bigger differences

can be expected between the two policies in heterogeneous systems, where the simple algorithm

would become less useful. For this workload, the Independent DVS policy saves somewhat more
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power at the highest loads, but with a slightly higher deadline miss ratio than the Weighted DVS

algorithm. In conclusion, we have obtained overall very similar results for the TPC-W workload as

for the Synthetic one, which suggests that our schemes are not sensitive to a specific workload type.

2.4.3.3 Discussion

To understand why our algorithms perform better than the comparison policies, the key is to realize

that the inputs available to each algorithm are different. Since the local (independent) algorithms

have no knowledge of the global performance of the system (i.e., whether end-to-end deadlines are

met), they can only assess how much CPU capacity the machine should provide based on local met-

rics, such as the CPU utilization. As periods of high CPU utilization can occur in some machines

without causing global performance problems (deadline misses), in such cases the local algorithms

waste power by unnecessarily increasing the overall capacity. By contrast, our global (coordinated)

algorithms allow machines to run at lower capacity and hence lower power as long as the actual

performance constraints are not violated. As we saw on the graphs, the difference, i.e. the wasted

power to provide unnecessary capacity, varies with the offered load. Moving from low to medium

load, it increases because the amount of periods with high CPU utilization but no performance con-

straint violations grows. At medium load the growth stops as violations start occurring, and moving

towards high load the difference decreases because the increased capacity gradually becomes more

necessary, thus less wasteful.

One might wonder if our algorithms have any advantage over a static scheme that configures the

CPUs to run at some fixed clock speed. Since such a scheme is open-loop by nature, our algorithms

possess all the advantages of closed-loop systems, most notably: decreased sensitivity to parameter

variations in the controlled system, and improved rejection of transient disturbances. In other words,

since the static scheme must be calibrated for a specific system and workload, it could not achieve

optimal performance because of persistent errors in calibration and transient noise in the system.

Further insight can be gained by measuring the average number of CPU speed adjustments during

experiments with constant average load. The results shown in Table 2.1 indicate that significant

variability exists in the system even if the load is kept constant. (Note that we verified that the
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adjustments were not controller-induced oscillations.) Therefore, an open-loop algorithm such as

the aforementioned static scheme is unlikely to achieve similar performance.

Load (EB) 20 40 60 80 100 120 140 160

Adjustments 0.5 1.3 4.1 9.2 20.8 25.0 18.8 3.5

Table 2.1: CPU frequency adjustments per minute with the Weighted DVS algorithm [35, Table 1].

2.4.3.4 Parameter Sensitivity

We performed additional experiments to evaluate the effects of varying the thresholds of our al-

gorithm. As we shall see, decreasing these thresholds generally reduces both deadline misses and

power savings. In Figure 2.8(a) and (b), we verify that 0.7 is a good choice for high threshold be-

cause it yields lower miss ratio than higher values, and it saves more power than lower ones. Next,

in Figure 2.8(c) we can see that a low threshold of at most 0.6, which corresponds to a deadzone

of at least 0.3 (since the high threshold is fixed at 0.9), yields low miss ratio. At the same time,

Figure 2.8(d) shows good power savings when the low threshold is at least 0.4. Reconciling with

our selected high threshold of 0.7 and our minimum deadzone requirement of 0.3, we verify that

0.4 is indeed a good choice for the low threshold.

2.4.3.5 Observations

Let us note that for both systems (Synthetic and TPC-W), data points that are compared to calculate

the power savings for a specific load level, are obtained from experiments of approximately the

same duration and amount of work, with negligible differences. Thus, the measured average power

consumption was proportional to the total energy spent during compared experiments. From this,

it can be seen that the total energy savings are approximately equal to the total power savings

presented. Our intuition is also supported by Figure 2.9, where we plot the energy savings in the

TPC-W experiments. The basis of comparison is total system energy spent per web interaction,

which is obtained by dividing the average total system power by the average web interactions per

second (WIPS, a standard TPC-W metric).
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Figure 2.8: Effects of different thresholds on power and performance: (a)–(b) evaluates different
high thresholds with fixed low threshold = 0.5; (c)–(d) evaluates different low thresholds with fixed
high threshold = 0.9 [35, Figs. 11–12].

Four important points are made from the experimental results. First, non-trivial power savings

can be achieved using our DVS scheme while maintaining the miss ratio at a low rate. Second, more

optimal savings occur when the weighted transformed utilizations of all machines are equal than

when utilizations are perfectly balanced. This interesting observation is confirmed both theoreti-

cally and experimentally. Third, balancing machine utilizations is an adequately good heuristic that

is very easy to implement largely independently of load and machine characteristics. Finally, the

scheme does not require any modifications to server code. We therefore believe that our algorithms

are both practical and efficient, which makes them a good candidate for implementation in real-life

systems.
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Figure 2.9: Total DVS energy savings (TPC-W workload) [35, Fig. 13].

2.5 Conclusions

In this chapter, we presented a distributed DVS control algorithm that minimizes overall power

consumption in a server pipeline subject to end-to-end latency constraints. While the algorithm was

described for a single class of clients, straightforward extensions to multiple classes are possible. A

formal derivation of optimality conditions was given, together with a feedback control architecture

that drives the system to satisfy these conditions. Interestingly, it was shown that the optimal

power savings do not always coincide with the load balanced condition of equal utilization on all

servers. However, in practice such load balancing is a good approximation. A functional prototype

of this system was implemented and experimentally evaluated. Empirical measurements confirm

theoretical results and show that our system consumes up to 30% less energy than the default Linux

power saving mode. These savings have a significant effect on the operation costs of large server

farms.

In the following chapters, this work will be extended to multiple classes of clients with different

timing constraints, and to larger server clusters with multiple machines per stage.



Chapter 3

Exploiting QoS Classes

3.1 Introduction

In addition to coordinated DVS described in chapter 2, another potential source of energy savings

in soft real-time systems exists through the introduction of Quality of Service (QoS) classes. When

some part of the workload requires less stringent latency requirements (such as those originating

from low-priority or non-interactive clients), it may become possible to further decrease the ca-

pacity of the system to conserve more energy. For example, in many practical multi-tier Internet

services, classes of clients can be naturally assigned different priorities based on their performance

requirements. In addition, there can be different types of requests with different acceptable response

delays. Often, the acceptable processing time limit of any particular operation is proportional to its

client-perceived complexity. Hence, power savings can be increased by allowing longer latencies

for request classes whose client-perceived complexity is greater. The main question this chapter

aims to answer is how much additional energy can be saved by such workload classification.

Fundamentally, there are two ways to accommodate different classes. One is to partition re-

sources among classes. This, however, may result in decreased efficiency if extra resources in one

partition cannot be borrowed by another. This problem can be addressed using virtualization. An

alternative approach for service differentiation is to prioritize access to key resources. Here, the

system must be modified to give lower priority to the service classes with more relaxed latency

requirements. Then, if the server is prioritized and the DVS algorithm is made aware of the relaxed

49



Chapter 3. Exploiting QoS Classes 50

performance requirements of some classes of requests, it may be able to operate some of the server

machines in slower P-states, resulting in overall power savings.

This chapter investigates the design issues and energy savings benefits of service prioritization

in multi-tier web server clusters. We make two contributions. First, we demonstrate an inexpensive

design to effectively prioritize the whole multi-tier system running commodity software requir-

ing no application or OS modifications. Second, we quantify the improvement in the system’s

overall energy efficiency due to such prioritization through experiments on our testbed with a re-

alistic multi-tier web server workload while keeping the existing cluster-wide energy management

technique. Prioritization saves up to 15% additional energy through exploiting the different per-

formance requirements of separate service classes, with only 3% increase in average deadline miss

ratio (DMR) and an up to 4% decrease in DMR for high-priority requests. This work appeared

in [36].

The rest of this chapter is organized as follows. Section 3.2 motivates and presents our design

and discusses alternatives. Section 3.3 describes important implementation issues. In section 3.4,

we introduce our testbed and our workload, then present our experimental results. Section 3.5

considers related work specific to QoS, and finally, section 3.6 concludes the topic.

3.2 System Architecture

3.2.1 Motivation

One of the successful existing power and energy management techniques involves power-aware

QoS, a combination of dynamic power management and service prioritization [75]. The essence of

such a technique is that lower-priority tasks (requests) with longer deadlines can be satisfied with

lower system performance. Consequently, the power usage of the system can be reduced.

The power-aware QoS approach was shown to yield good results. However, prioritization in

itself has not been evaluated from an energy management standpoint. This makes it difficult to

predict how it would affect a system with an existing dynamic power management solution already
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in place. Therefore, our work is motivated by the question of what the added energy efficiency gain

of prioritization is.

3.2.2 Assumptions

We address server farms running a multi-tier service such as an e-commerce website. The general

architecture is shown in Figure 3.1. Based on the expected load, each tier is statically preallo-

cated a number of machines (mi), among which the total offered load arriving at the tier is evenly

distributed. Tier 1Front-end load balancer m1 Tier 2m2 Tier NmNClientrequests ServerResponses
Figure 3.1: General model of clustered multi-tier system [36, Fig. 1].

We assume that, at a given throughput, the most important performance metric for the multi-tier

service is end-to-end server latency, measured from the point a client request enters the first tier

until a response is sent back to the client. Since response latency is the primary factor behind user

satisfaction with web sites [9], maximizing server throughput alone is not sufficient. Hence, we

assume that the site owner defines end-to-end deadlines that the server application has to meet. As

it is typical in web services, these deadlines are considered soft, where a user-selectable maximum

miss rate must statistically be met.

3.2.3 Design

3.2.3.1 Ideal Design

The complete prioritization of a traditional multi-tier server is very costly in terms of implementa-

tion effort. Consider the model of a typical server application’s architecture shown in Figure 3.2. A

request processor accepts requests from the input socket and places them in a task queue. The next

available service thread starts executing the task. The task may create subrequests to the next tier,
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Inputsocketqueues OSOutputsocketqueuesResourcequeues
ApplicationServiceThreadPoolRequest ProcessorTaskqueue Sub-requestqueueConnection PoolRequests Responses

Figure 3.2: Simplified model of typical server in multi-tier system [36, Fig. 2].

which are queued up in the subrequest queue until a free connection is available. A thread may also

become blocked and placed in an OS resource queue (e.g., CPU, disk, or semaphores). Finally, the

response is buffered in an output socket queue until the OS is able to send it to the network.

Ideally, all of these queues should support priorities and all subcomponents of each task (such as

subrequests, disk I/O, resource locks, etc.) should inherit its priority. However, widely used server

OSs such as Linux still lack many of these features by default. Moreover, application support

is typically largely missing. Hence, to implement the ideal design, one would have to modify

critical parts of OS resource management and scheduling, each server application, as well as the

communication protocols to propagate priority information between them.

3.2.3.2 Inexpensive Design

Our design goal is to find the least intrusive prioritization solution that is effective for the multi-tier

system. We avoid application modifications since most server applications are large and complex,

and the source code is often not available. It is nevertheless critical that the task queue and sub-

request queue behave as if they were prioritized because in general both can become a bottleneck.

The reason is that both of these queues are served by a usually small number of pooled resources
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(threads or connections) and the service times can be relatively large. The local service time of a

task primarily depends on how resource-intensive the given tier is, while the latency of a subrequest

is the total task service time of the next tier (including its subrequests).

As a simple solution, in many cases it is possible to run multiple instances (one for each service

class) of the same server application and prioritize them on the process level. This in effect creates

separate queues for each class, which are served by each instance in FIFO order. Assuming the

OS supports preemptive real-time process scheduling (such as the SCHED FIFO scheduling class

in Linux), by assigning real-time priorities to the instances, we ensure that higher-priority queues

are served first whenever there are idle threads or free connections available. Since now we have

separate processes for each class, we also have separate communication channels for each class

between the tiers. Thus, fortunately there is no need to modify the communication protocols to add

priority information, since it is implicitly preserved by the connection structure: each instance only

issues subrequests to next-tier instances of the same priority.

There are many situations where this design must be simplified even further. For instance,

database servers are generally not possible to run as multiple instances operating on the same data

set. In addition, their disk-intensive workload leaves process-level prioritization less effective, un-

less OS support for prioritized asynchronous I/O was also added. Following our design goal, we

solve the issue by leaving the database server unprioritized, while trying to minimize task queuing

in it. By selecting restrictive connection pool sizes in the previous tier, we ensure that it becomes

a bottleneck instead of the unprioritized database server. This works because now the bottleneck

stage (typically a CPU-bound application server) is prioritized. It also limits the number of concur-

rent database queries, reducing priority inversion due to transaction and I/O locking. If the original

connection pool size was already restrictive, it does not need to be further reduced, only partitioned

between instances, since this reserves sufficient connections for high-priority requests to prevent

their starvation. Following this principle, in our testbed we assigned 8 connections to 3 instances

each, in place of our original pool of 24 connections.

Naturally, the inexpensive design has certain limitations. First, if the server’s bottleneck is an

OS resource that is not prioritized (e.g., disk or network), then process priorities are not helpful. In
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most cases, however, the bottleneck can be shifted to the previous tier as discussed above. Second,

if an application that does not support multiple instances on the same machine, is not running on

the last tier, then this design has no way of propagating request priority to the subsequent tiers.

Fortunately, in typical 3-tier setups this is not the case: web and application servers allow multiple

instances. Finally, if different-priority instances in the same tier need to perform intensive com-

munication (e.g., to maintain fast-changing shared state coherent), then under heavy overload as

the low-priority instances are starved, they cannot respond to any messages. However, such shared

state poses scalability limitations in itself, and thus avoiding overload is important even without

prioritization.

The inexpensive design represents a great reduction in complexity compared to the ideal design

and still results in effective prioritization in our experiments.

3.3 Implementation

3.3.1 Overview

We deployed a three-tier web-serving system on Linux, with Apache on the first tier, JBoss on

the second, and MySQL on the third. As the front-end load balancer, we used the Linux Virtual

Server solution. Static content (e.g., images) are served directly from the first tier. Forwarding

dynamic requests to JBoss and balancing them across the second tier is done using the Apache

module mod jk. Finally, database requests are issued by JBoss through the Connector/J MySQL

driver. To avoid the complexity of database clustering, the third tier consisted of only one server.

Since in our setup database performance is not the bottleneck, improving database scalability via

clustering would not significantly affect our findings.

3.3.2 Energy Management

As the existing energy management solution, we employ the following simple feedback control-

based DVS policy, discussed previously in more detail in section 2.2.2 (on page 22). The system

periodically determines its load using the following user-defined criteria: if less than 5% of response
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latencies exceed the 50% of the deadline, the system is considered underloaded, while if more than

5% exceed the 90% of the deadline, we consider it overloaded. The algorithm increases the speed

(i.e., P-state) of the most utilized server if the system is overloaded, or decreases the speed of the

least utilized server if it is underloaded. Since in our workload (described in section 3.4.1), the

majority of deadlines were 3 or 5 seconds, a 5-second feedback period was chosen to allow control

actions to have an effect by the next period. The latency statistics are smoothed by exponentially

weighted moving averaging (EWMA) to reduce measurement noise.

Our implementation has two components: an Apache module to measure the end-to-end laten-

cies, and a daemon on each server that measures its CPU utilization, runs the feedback controller,

and sets its P-state.

3.3.3 Server Replication

Simply replicating a server such that multiple identical instances are executed on the same machine

can result in OS resource conflicts. Since many of these are exclusive (bound sockets, output files,

server state, etc.), separate resources must be configured for each instance.

Another issue is that server instances that are assigned real-time process priorities can starve

regular (non-realtime) processes such as our user-space DVS daemon. Hence, it may not get a

chance to increase the machine’s speed when needed. Therefore, the daemon is assigned an even

higher real-time priority than the server instances.

3.4 Experimental Evaluation

3.4.1 Workload

We used the TPC-W benchmark, a very realistic model of an online bookstore application. On the

first tier there are 2 web servers serving image files, on the second tier we have 4 application servers

maintaining session state and executing business logic, and on the third tier we have a database

server handling all persistent data. Client machines are running the Remote Browser Emulator,

which emulates specified numbers of web clients. The database was populated with the scaling
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factors of 100 emulated browsers (EBs) and 1,000 items. The workload profile was the TPC-W

shopping mix (the basis for the primary TPC-W metrics).

Experiments were repeated 5 times, and consisted of a 5-minute ramp-up period (to warm up the

system), a 15-minute measurement interval, and finally a 30-second ramp-down period (to maintain

load as measurement finishes). The error bars in our graphs show the standard deviation.

3.4.2 Experimental Setup

Our testbed consists of 8 AMD Athlon 64 PCs with 512 MB RAM. The processor has two P-states

with frequencies at 1.8 GHz and 1.0 GHz. The machines are connected with 100 Mbps Ethernet.

For measuring power, we use a Watts Up Pro power analyzer (with 3% accuracy).

We performed our experiments in three different test configurations. The Baseline configuration

has no prioritization or DVS. In the NP-DVS configuration, we add our DVS solution, and all

clients are treated equal. In the P-DVS configuration, however, we differentiate three clients by

relaxing some of their deadlines, assigning them to corresponding priority classes, and prioritizing

the multi-tier server cluster as described in section 3.2.3.2. For example, if a request type has a 3-

second standard deadline, the three clients are assigned deadlines of 3, 6, and 9 seconds and priority

classes 1 (most important), 2, and 3, respectively.

3.4.3 Evaluation Metrics

Our primary metrics to evaluate performance are the system’s throughput (web interactions per

second, WIPS) and its deadline miss ratio (DMR).

Our main results evaluate the energy efficiency of the system, showing total system power,

and total system energy per web interaction (Joules/WI). The first metric is important since many

clusters are thermally constrained and lowering the average power typically lowers related costs.

Further, since it is measured for equal intervals, it is directly proportional to total system energy,

which translates to electricity costs. The second metric is important because it is a measure of

energy efficiency (more precisely its reciprocal), which represents the amount of “useful” energy
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Figure 3.3: Throughput of individual classes with the P-DVS setup [36, Fig. 3].
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Figure 3.4: Total throughput comparison, summed across all classes [36, Fig. 4].

spent executing the successful web interactions. It also equals to average power divided by average

throughput, which demonstrates that it also accounts for performance.

3.4.4 Performance Results

As expected of the prioritized system, Figure 3.3 shows that the throughput of higher-priority

classes is better as the load increases toward peak capacity. When the load is low, the system has

enough capacity to satisfy requests from all classes equally, hence the throughput is also identical.

Figure 3.4 compares the combined throughput of all classes achieved by each setup. Note that

in the higher load region the Baseline setup sustains a higher throughput than both NP-DVS and

P-DVS. This behavior is expected because, with many concurrent requests in the system, response

times are stretched out more as the DVS policy slows down some servers, hence the web interactions

become more spread out, resulting in lower throughput. In other words, since the think times

in the emulated browsers do not depend on the response times, if the latter are longer, the next

requests will arrive later, effectively reducing throughput. This is, however, not a problem as long
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as deadlines are honored; in fact, the goal of the DVS policy is to use up all slack time to save

energy. It is a major advantage in that the DVS-capable server automatically paces client behavior

without missing deadlines, as opposed to operating faster and bringing more requests upon itself

that ultimately results in lower energy efficiency.

We make two key observations from Figure 3.4. First, the Baseline setup’s performance quickly

falls off under very high loads due to inefficient scheduling. In contrast, P-DVS maintains a more

consistent throughput by still allowing most high-priority requests to complete. Second, P-DVS

clearly wins over NP-DVS, which degrades even earlier than the Baseline because the stretched

execution times increase concurrency, exacerbating the scheduling inefficiencies. The fact that per-

forming DVS in a throughput-oriented soft real-time system places more stress on the scheduler

points to a fundamental performance advantage of prioritization in conjunction with energy man-

agement.
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Figure 3.5: Overall deadline miss ratio comparison. Includes all classes. [36, Fig. 5]

Comparing the overall deadline miss ratios between setups in Figure 3.5, we can see that when

heavily loaded, NP-DVS has a higher miss ratio since treating all clients equally causes it to saturate

earlier. P-DVS, on the other hand, successfully maintains an acceptable miss ratio by reducing

scheduler contention via prioritization and by relaxing deadlines of low-priority requests.

3.4.5 Energy Efficiency Results

The average power of each experiment, measured on the whole cluster, is shown in Figure 3.6. As

expected, NP-DVS follows the curve seen with conventional DVS algorithms, converging with the

Baseline as load increases. In contrast, P-DVS keeps power usage lower even as the system becomes
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Figure 3.7: Comparison of total system energy per web interaction [36, Fig. 7].

overloaded. As we saw earlier, the differentiated client classes result in a better overall deadline

miss ratio, which allows as much as 15% greater power savings. Note that since all experiments

had identical measurement intervals, this also equals to the total energy savings.

Our final goal is to quantify and compare the energy efficiency benefits of the DVS setups. As

discussed in section 3.4.3, energy efficiency is important since it factors in throughput in addition

to energy usage. Figure 3.7 plots the average energy spent per web interaction, or the reciprocal of

energy efficiency for each setup. While the graph shows no significant difference between the DVS

setups at lighter loads up to 375 EBs (7–14% savings over the Baseline for NP-DVS vs. 6–13% for

P-DVS), around 525 EBs we see a large increase with NP-DVS. This means a large drop in energy

efficiency, which is due to the earlier saturation we observed in section 3.4.4 that causes throughput

reduction. P-DVS, on the other hand, avoids wasting energy on less important requests and even

achieves 48% savings over the Baseline at 600 EBs because of its ability to use less power and still

have higher throughput.
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3.5 Related Work in QoS

Several papers address priorities in individual servers [3, 18, 54, 75]. These solutions, however,

require modifying the server application, which is costly and often not feasible. Other efforts [1, 77]

have been directed at middleware QoS solutions that do not require application or OS changes.

These do not, however, address multi-tier servers or energy consumption. In contrast, our work

is concerned with the interaction of service differentiation with power management and the energy

consumption of clusters. Closely related to our research is the work by Sharma et al. [75]. While we

build on some of their results, we have a multi-tier system model that requires coordinated energy

management.

There is significant recent research on energy management in server clusters [10, 20, 25, 31,

53, 68, 72]. However, they either do not deal with service differentiation or they are restricted

to a single-tier cluster. An economically-driven energy and resource management framework was

presented for clusters by Chase et al. [14]. This research is closely related to our work since it

allows service differentiation in conjunction with energy management. However, extending it to

the case of multi-tier servers with end-to-end latency constraints is not straightforward. Our work

is distinguished from the above literature in that we address multi-tier clusters with different service

classes, and we focus on how prioritization affects the energy efficiency of such clusters.

3.6 Conclusion

This chapter investigated how much additional benefit prioritization has on a multi-tier server sys-

tem’s energy efficiency with an existing DVS-based power management policy. We prioritized the

multi-tier system without application or kernel modifications, and performed experiments using

three client classes, two with relaxed deadlines. Our results clearly illustrate that the main benefit

of prioritization is not only more stable performance as the system nears overload, but also greatly

improved energy efficiency, resulting in energy savings of up to 15%.
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Reconfigurable Clustered Tiers

4.1 Introduction

The analyses in the previous chapters addressed multi-tier servers where each tier is, or is treated

as, a single computer. However, my research seeks solutions to the energy management problems

of large-scale server farms. To this end, the analysis is extended to the case where every tier of

the system consists of a multiple-machine cluster. Observe that if the number of machines in each

tier does not change, the extension is simple. To a first level of approximation, each tier can be

viewed as a single super-processor of the combined capacity of all constituent machines and with

a larger number of possible DVS performance states (P-states). Nevertheless, we investigate the

more interesting and more general problem posed by variable-sized tiers, i.e. where the number of

machines in each tier can change. This can be implemented such that each tier is a reconfigurable

cluster, which has been previously investigated in single-tier servers [14, 67, 69]. In particular, we

investigate the important problem of optimal assignment of machines to tiers: given a fixed total

number of machines in the farm, the question is how to partition and assign those machines to

tiers in a way that maximizes energy-efficiency. We analyze the problem, and propose an energy

management policy for achieving theoretically optimal dynamic tier assignment.

Obviously, certain physical assignment constraints must be observed. For example, some ma-

chines may need to be outside a firewall while others might need to be inside. Such constraints

are easy to incorporate by reducing the space of feasible assignments. Among those assignments

61
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that are feasible, certain ones are more energy-efficient than others. This is because the assignment

essentially determines the overall load of tiers, affecting in turn the power-saving opportunities. For

instance, in a traditional three-tier Web server farm, assigning an extra machine to the application

server tier (which has CPU-intensive workload) instead of the database server tier may be energy-

efficient if it significantly reduces the CPU utilization of that tier and therefore allows previously

saturated servers to lower their frequencies. On the other hand, the same assignment may not be

energy-efficient if the database tier experiences the greatest fraction of the end-to-end delay, and

the addition of an extra machine would substantially reduce that fraction.

In the previous chapters, we only considered the DVS power management technique. Yet, many

applications are able to deal with cluster reconfiguration, which has the following implications.

With reconfigurable clustered tiers allowed, it also becomes feasible to automatically turn machines

on or off based on load conditions, as long as at least one machine remains turned on in each tier.

Moreover, due to the high idle power exhibited by modern hardware, it is preferable to turn off (i.e.

transition to the Soft-Off sleep state) those machines that are not needed, as opposed to having

them enter their lowest P-state. Intuitively, as the leakage power of CPUs is approaching 50% or

more of their total power, leaving CPUs active with low utilization becomes extremely costly. At

the same time, as entering the Soft-Off state involves shutting down all but a few circuits and

subsystems, it has an even greater power saving potential than DVS, which should be leveraged.

Therefore, our energy optimization policy is designed to account for this and show a bias toward

putting machines to sleep whenever possible.

The rest of this chapter is structured as follows: section 4.2 discusses our system model along

with power and performance characterization, section 4.3 presents an analysis of our power op-

timization problem, section 4.4 details our algorithms and design issues pertaining to them, sec-

tion 4.5 contains implementation information, section 4.6 presents our evaluation methodology and

experimental results, and finally we discuss related work and conclude.
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4.2 System Modeling

In order to analyze the machine assignment problem, we must first create a formal system model.

We begin by stating our assumptions about the system and introducing some notation. Then we

proceed to develop models for estimating server tier latencies and power consumption built on

the introduced system variables. Importantly, our power model does not simply follow from the

commonly assumed CMOS processor power model [61] but from our system-level empirical ob-

servations and theoretical analysis.

4.2.1 Definitions and Assumptions

We consider multi-tier server clusters, consisting of a constant number of tiers, each of which are

composed of a variable number of machines. All machines in one tier run the same application, and

requests go through all tiers. The end-to-end server performance must meet a predefined service

level agreement (SLA). We assume a simple SLA specifying a target average end-to-end server

delay. Finally, each machine optionally supports multiple P-states (DVS).

In order to simplify the problem, we make a few important assumptions. First, we assume that

machines within a single tier have identical power and performance characteristics; in other words

tiers are homogeneous in terms of hardware. This is a reasonable assumption because, even though

whole data centers are typically heterogeneous, it is normally preferred that groups of servers run-

ning the same application and being load balanced (i.e. the equivalent of a tier) are identical—this

simplifies load balancing, among others. The second, related assumption is that there is perfect load

balancing within a tier such that the CPU utilization of the constituent machines is equal. While this

is idealistic, it is only required for analytical tractability, and based on our empirical observations

the impact of moderate imbalances on actual performance is insignificant.

One concern when designing algorithms for large-scale clusters is invariably that of scalability.

The assumptions above are not only helpful in reducing the complexity of the problem, but also in

ensuring scalability because they allow the optimizations to be performed on groups as opposed to

individual machines—aggregate measures of a whole tier will represent individual machines well.
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Variable Description

s number of tiers (pipeline stages)

λi total average arrival rate at tier i
mi number of machines in tier i
fi CPU frequency of each machine in tier i

Ui CPU utilization of each machine in tier i

Pi power consumption of each machine in tier i
Ptot total power consumption

Wi average service latency of tier i
Wtot end-to-end (total) average service latency
D target average end-to-end latency (soft deadline)

Table 4.1: Model variables of reconfigurable multi-tier cluster.

Also note that typical large-scale cluster architectures are composed of hierarchical units, where

communication within the same unit (e.g., a rack of servers, or servers within the same enclosure) is

less expensive than across units. This means that data can be collected (and commands distributed)

efficiently through highly scalable hierarchical aggregation (and dissemination).

Table 4.1 summarizes the variables of our system model and their notation. As an implication

of the assumptions above, we do not need to model individual machine CPU frequencies—it is

sufficient to use a single value per tier. This is because, since power is a convex function of fre-

quency [37], setting the same frequency on all nodes within a tier is equally or more power-efficient

than setting different values. Further, the performance effects of frequency scaling are not greater

than its effects on power [46], therefore there is no performance or energy-efficiency benefit from

different settings within a (homogeneous) tier either. Therefore, we limit our study to the model

where each tier is operated at a single CPU frequency.

4.2.2 Power Model

In our system model, two variables have a significant effect on the power draw of an individual

active machine: its CPU utilization and frequency (which also affects core voltage). Other vari-

ables may have an indirect effect by influencing these. To obtain a predictive model from these two

variables for machine power consumption, Pi, we analyzed the actual power measurements from a

large pool of characterization experiments, in which a machine operates at varying Ui and fi (varied
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together with voltage using DVS). Our experimental setup is described in section 4.6. The charac-

terization data points were obtained by varying the incoming load (number of emulated clients) in

each possible DVS state, and recording the CPU utilization, frequency, and the measured power.

Figure 4.1 shows the resulting curves.
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Figure 4.1: Average system power measurements with varying CPU utilization and frequency.

We found that Pi is approximately linear in both Ui and fi for any fixed fi and Ui, respectively.

The near-linear relationship seen between power and utilization was expected, and was documented

in previous work [22]. The power-frequency relation in Figure 4.1(b) is in reality slightly super-

linear (as expected from the CMOS power model), however its linear approximation is still suffi-

ciently accurate. This simply results from the supported core frequency-voltage pairs in our pro-

cessors (listed in Table 4.2). Calculating fV 2 from the table (as a simple approximation for CMOS

power) yields a qualitatively similar graph to our measured power. An at least quadratic function

of f (suggested throughout the literature [e.g., 11, 19, 57] from the assumed CMOS model) can fit

this almost perfectly. However, a linear function of f also provides a good fit with R2 = 0.9929,

and therefore it is preferable for our purposes because of its simplicity.

In addition to the nice linearity we see with each variable, even the slopes of those lines have

good properties that can be easily established. As deducible from Figure 4.2, the slope over one

variable is well approximated by a linear function over the other variable. That is, the slope ∂Pi/∂Ui
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Frequency (MHz) Voltage (V)

1000 1.10
1800 1.30
2000 1.35
2200 1.40

Table 4.2: Performance states (core frequency-voltage pairs) available in our processors.

y = 0.0168x - 9.2232

R2 = 0.9946
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Figure 4.2: Characterization of the slopes of average system power over both independent variables.
Data points show slope values calculated from the measured data. The dotted line shows a linear
regression fit, labeled with its equation and R2.

is approximately linear in fi (Figure 4.2(a)) and ∂Pi/∂ fi is approximately linear in Ui (Figure 4.2(b)).

With this information, we can analytically derive the general form of the two-variable predictive

power model. First, let

∂Pi( fi,Ui)
∂Ui

= bi1 fi +bi0, (4.1)

∂Pi( fi,Ui)
∂ fi

= ci1Ui + ci0. (4.2)

Next, the differential dPi can be written in the form

dPi =
∂Pi

∂Ui
dUi +

∂Pi

∂ fi
d fi. (4.3)
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Since Pi( fi,Ui) is “well-behaved” (single valued and both itself and its derivatives are continuous),

we can proceed as

∂2Pi

∂Ui∂ fi
=

∂2Pi

∂ fi∂Ui

bi1 = ci1. (4.4)

Note that this is confirmed by our empirical data in Figure 4.2, where bi1 = 0.0168 and ci1 = 0.017.

From this, it follows that Equation (4.3) is an exact differential equation. The solution can be

obtained as

Pi = bi1 fiUi + ci0 fi +bi0Ui + constant, (4.5)

which after renaming yields the final model:

Pi( fi,Ui) = ai3 fiUi +ai2 fi +ai1Ui +ai0. (4.6)

In order to instantiate the model for a specific machine, its parameters need to be determined.

We did so by simply running an optimization algorithm to find parameter values that minimized the

sum of squared errors over all data points between the model prediction and our actual measured

data. This process resulted in optimal values lying close to the theoretically obtained solution in

Equation (4.5), further validating our methodology. Table 4.3 contains the values for reference.

Power estimation for our test system using this model was fairly accurate, showing a good fit (R2 =

0.9879) with an average error of 1% and a worst case error less than 4%. A more general, third-

order polynomial model was also attempted for comparison, but it did not yield actual improvement

(it merely resulted in over-estimation, i.e. the estimation following measurement disturbances more

closely).
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Parameter Theoretical value Optimal value

ai3 0.0168 0.0155
ai2 0.0049 0.0059
ai1 -9.223 -7.212
ai0 — 49.967

Table 4.3: Power model parameter values (theoretical and optimal).

4.2.3 Delay Model

4.2.3.1 CPU Utilization

The service latency of short requests in concurrent servers is mostly a function of CPU utilization.

Hence, in order to predict latency for various cluster configurations and performance states, we first

need to model CPU utilization in those configurations. This is achieved through a two-step process:

we first estimate the current offered load from measurements, and then based on this we can predict

utilization for the selected configurations.

Given our assumptions on perfect load balancing and equal CPU frequencies in a tier, the re-

lation between offered load λi, CPU utilization Ui, tier size mi and frequency fi can be estimated

using

λi = mi fiUi. (4.7)

Once this is done, the utilization of any tier configuration can be predicted using the same relation:

Ui =
λi

mi fi
. (4.8)

In Figure 4.3, we experimentally evaluate the accuracy of this approach. We ran individual

experiments in all possible tier configurations, at various constant offered loads. Ideally, for a given

load we want to see the same estimation in all configurations (i.e., the same line repeated on the

graph), since the true offered load (number of clients) stays the same regardless of server configu-

ration. The graph shows that while varying tier size does not, varying CPU frequency does cause

inaccuracy in the estimates. The estimation is imperfect due to the fact that CPU frequency scaling

does not exactly linearly affect server processing capacity. However, this inaccuracy is acceptable,
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Figure 4.3: Estimation of the offered load at different operating points. Each line represents a
different tier configuration: the legend shows the tier size and the CPU frequency in MHz. The
true offered load (number of clients) was varied in each configuration, and the estimated load was
calculated from the measured CPU utilization.

because it simply results in the slight overestimation of the performance effect of a frequency ad-

justment. If the estimate is used to predict utilization at some smaller or greater frequency than

the current one, the prediction will be too high or low, respectively. This means that an algorithm

based on this model will likely adjust the frequencies slightly more conservatively (with smaller

modifications) than using a perfect model. Further note that model errors will be compensated for

using feedback control.

Finally, the prediction model was validated: load estimates from one configuration (mi = 7,

fi = 2200) were used to predict the CPU utilization for all other configurations. This produced

fairly accurate values with a good correlation to the actual measurements (R2 = 0.9690).

4.2.3.2 Service Latency

Using the model discussed above to predict CPU utilization, service latency can also be predicted

for any tier configuration. To obtain our latency model, we performed nonlinear regression analysis

using a heuristically decided format. After computing the fitting coefficients (via curve fitting to
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our measurements) we obtained the following model (R2 = 0.9968).

Wi(Ui) =
wi1

(1−Ui)2 +wi0 (4.9)

Note, however, that in reality, requests can take longer and so latency also slightly depends on CPU

frequency. According to measurements in our test system, this had a very limited impact and could

be safely ignored.

4.3 Theoretical Analysis

4.3.1 Optimization Problem Formulation

For our purposes, a power management strategy is optimal if it assigns machines to tiers and deter-

mines their operating frequencies such that the total power consumption of the system is minimal

while deadlines are still met. This is more formally expressed as the following minimization prob-

lem:

min
mi, fi

Ptot =
s

∑
i=1

miPi

(
fi,

λi

mi fi

)
=

s

∑
i=1

(
ai3λi +ai2mi fi +ai1

λi

fi
+ai0mi

)
(4.10a)

subj. to Wtot =
s

∑
i=1

Wi

(
λi

mi fi

)
≤ D (4.10b)

and
s

∑
i=1

mi ≤ M. (4.10c)

4.3.2 Tier Balancing Condition

We solve the problem using the method of Lagrange multipliers. The Lagrangian function is:

L(mi, fi, l1, l2) =
s

∑
i=1

(
ai3λi +ai2mi fi +ai1

λi

fi
+ai0mi

)
+ l1

(
s

∑
i=1

Wi

(
λi

mi fi

)
−D

)
+ l2

(
s

∑
i=1

mi−M

)
. (4.11)
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Setting ∀i : ∇mi, fiL = 0, we get for each i:

∂L
∂mi

= ai2 fi +ai0 + l1
∂Wi

∂mi
+ l2 = 0, (4.12a)

∂L
∂ fi

= ai2mi−ai1
λi

f 2
i

+ l1
∂Wi

∂ fi
= 0. (4.12b)

Equations (4.12) are independent of the latency function. To arrive at a specific solution, the actual

latency function has to be substituted. For instance, using Equation (4.9), which our characterization

has led to, the general latency constraint (4.10b) becomes:

Wtot =
s

∑
i=1

wi1

(
1−

λi

mi fi

)−2

+wi0

≤ D, (4.13)

and Equations (4.12) expand to:

∂L
∂mi

= ai2 fi +ai0−2l1
wi1λi(

1− λi

mi fi

)3

fim2
i

+ l2 = 0, (4.14a)

∂L
∂ fi

= ai2mi−ai1
λi

f 2
i
−2l1

wi1λi(
1− λi

mi fi

)3

mi f 2
i

= 0. (4.14b)

It is easily shown that the Equations (4.14) are not independent, therefore a concrete solution in

general cannot be obtained. However, solving (4.14) for l1 results in our optimality criterion:

G(mi, fi) = (1−Ui)3 mi

wi1

(
ai2 fi

Ui
−ai1

)
= 2l1. (4.15)

This means that, assuming the constraints are active (i.e., the total latency can exceed the deadline),

total cluster power use can only be optimal if G are equal across all tiers, more formally if

∀i, j : G(mi, fi) = G(m j, f j). (4.16)
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4.4 Policy Design

We designed an energy management policy that takes advantage of our predictive models and the-

oretical results. The policy is periodically invoked, when it obtains basic measurements from the

system, applies the models, computes the optimal power states, and initiates the necessary power

state transitions.

4.4.1 Energy Management Policy

A simple approach to computing the optimal power states would be to perform an exhaustive search

over the possible cluster configurations, selecting the one that best matches the optimality criterion

derived above. However, there are two issues with this. Firstly, the criterion is only a necessary

condition of optimality, and may not be a sufficient condition. Secondly, an exhaustive search does

not scale up to large cluster sizes, or to large numbers of possible frequencies. Therefore, to address

these issues, we designed a greedy heuristic search algorithm to perform the optimization. The

algorithm relies on an additional assumption regarding the power characteristics of the hardware:

it assumes that the static system power dissipation is large enough that turning on an additional

machine and lowering the common CPU frequency such that CPU utilization is kept constant,

never saves power. More formally,

(mi +1)Pi(
λi

(mi +1)Ui
,Ui)≥ miPi(

λi

miUi
,Ui), (4.17)

which reduces to

ai1Ui +ai0 ≥ 0. (4.18)

This is a very realistic assumption with current server hardware. For instance, the machines in our

testbed clearly satisfy it according to the parameter values in Table 4.3, and prior work has relied

on similar findings [68].

As per the aforementioned assumption, the optimization can be performed in two rounds. The

first round finds the minimum number of machines in each tier so that the end-to-end performance



Chapter 4. Reconfigurable Clustered Tiers 73

constraint Wtot ≤D is satisfied using the highest frequency for the machines. We start from comput-

ing a minimum allocation that only ensures that any one tier will not exceed the end-to-end deadline

in itself. Then, we continue the search by incrementally assigning machines to tiers one by one,

until the predicted total latency meets the constraint. At each step, we need to decide which tier to

add a machine to. We base this decision on our optimality criterion: we choose the tier that, with the

added machine, would result in the “most equal” values G(mi, fi). More precisely, we choose the

assignment for which the standard deviation of the values G is minimal. In the second round, tier

frequencies are decreased one at a time in a similar fashion, as long as the response time constraint

is still met. The decision which tier to affect at each step, is guided by the same objective: select

the change that minimizes the standard deviation of G(mi, fi). A detailed pseudo-code is listed in

Algorithm 4.1. (The two-round structure of our heuristic is similar to the queuing theory based

heuristic proposed by Chen et al. [15].)

As with any greedy algorithm, the risk of finding local minima exists. However, its impact is

limited to reducing energy savings and not performance, since it only affects how the performance

goal is met. Furthermore, the impact is small in larger clusters because adjustments to G become

relatively smaller, making it easier to equalize.

4.4.2 Allocation Constraints

A few additional constraints must be given attention. For example, if the minimum feasible mi,

calculated in line 4, was greater than M (e.g., due to a severe system overload), the second round

might erroneously reduce some frequencies. Therefore, it must be ensured that initial values mi are

feasible (i.e., by cropping tier sizes until their sum equals M).

Another important practical consideration is that some tiers may not actually be reconfigurable.

A good example is a database server tier, which does not support hot addition or removal of its clus-

ter nodes. This constrains the feasible allocations, which must be reflected by reducing the search

space. The solution might seem trivial: for non-reconfigurable (static) tiers, instead of calculating

a minimum feasible mi, simply assign the static tier size to mi, and then do not attempt to add more

machines to them (modify the for loop at line 7 to only loop over reconfigurable tiers). However,
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Algorithm 4.1 MultitierClusterEnergyOpt pseudo-code.
Ensure: Wtot ≤ D and Ptot is near minimal

1: for i = 0 to s do
2: fi ⇐ Maximum supported frequency for tier i

3: Ûi ⇐ 1−
√

wi1/
(
D−∑

s
j w j0

)
{Maximum feasible Ui s.t. Wi = D}

4: mi ⇐
⌈
λi/(Ûi fi)

⌉
{Minimum feasible mi s.t. Ui ≤ Ûi}

5: end for
6: while Wtot((m)i,( f )i) > D and ∑

s
i mi < M do

7: for i = 0 to s do
8: σ′

i ⇐ StdDev((G(m j, f j)|0 ≤ j < s, j 6= i),G(mi +1, fi))
9: end for

10: i ⇐ argmini(σ
′
i)

11: mi ⇐ mi +1
12: end while
13: while Wtot((m)i,( f )i) < D and not all fi are minimal do
14: for i = 0 to s do
15: f ′i ⇐ Next frequency lower than fi

16: σ′
i ⇐ StdDev((G(m j, f j)|0 ≤ j < s, j 6= i),G(mi, f ′i ))

17: end for
18: Si ⇐ σ′

i if Wtot((m)i,( f )′i)≤ D)
19: if S = /0 then
20: break
21: end if
22: i ⇐ argmini Si

23: fi ⇐ f ′i
24: end while
25: return ((m)i,( f )i)

an important detail must not be overlooked: static tiers may be much less energy efficient (due to

overprovisioning), and accordingly may have a hugely different G than the rest of the tiers that

can only be slightly affected by adjusting fi. Including that value during optimization would cause

some other (reconfigurable) tier to be assigned many unneeded machines in an attempt to bring

its G closer to the inefficient tier, reducing the overall StdDev(Gi). This would result in seriously

degraded system energy efficiency. Therefore, in the first round of the algorithm, static tiers must

be completely excluded from the set of tiers used in the standard deviation calculation (line 8).
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4.4.3 Load Estimation with Feedback Control

As discussed in section 4.2.3.1, estimation of the offered load is crucial for predicting the latency

in a target cluster configuration. While we demonstrated that this is easy to calculate from the

current CPU utilization with relatively good accuracy, note that this approach has a limitation:

demand that is higher than total CPU capacity cannot be detected from utilization measurement

because it saturates at 100% (and in practice even lower). Therefore, relying on this method only

would result in unacceptable underestimation of offered load as the system got into saturation.

Hence, other inputs are needed to detect this condition. We chose to add two types of performance

monitoring: one to detect when response times exceed D, and another to detect service errors

resulting from overload (e.g., timeouts), both meaning our estimate of λi is low. Once detected,

we rely on feedback control to increase our load estimates, in order to quickly and reliably drive

performance within the SLA specifications. It is important to note that the addition of our feedback

controller is beneficial in several ways:

• it solves the aforementioned limitation of CPU utilization-based load estimation;

• it allows performance specifications to be met despite errors in modeling, characterization

inaccuracies, parameter variations, and practical issues such as server errors due to overload;

• it results in improved fault tolerance properties of the energy management policy, and in

reduced sensitivity to aberrant behavior (this point will be explored in chapter 6).
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Figure 4.4: Design of the energy management policy with closed-loop control.
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Our feedback control loop, sketched in Figure 4.4, is designed as follows. The controlled system

(or “plant”) is a multi-tier server cluster. Each period, three kinds of measurements are taken from

it: tier CPU utilization, end-to-end service delay, and service error rate. These are all easy to

obtain in practical systems: end-to-end response time samples are collected at the front-end tier and

averaged across servers (weighted by the number of samples from each server), while error rates are

summed. We employ two Proportional-Integral (PI) feedback controllers: one responds to latency

violations, and one to service errors. (The reason to separate them is that they require different

gains.) If service errors were observed, their rate is fed to the error controller, otherwise delay error

is calculated by subtracting the target delay D from the measured average delay, which is fed to the

delay controller. The final control output is produced by adding the selected controller’s output and

the other controller’s integral component. Since the service error rate can never go below its target

(i.e. zero), the integral component of the error controller is exponentially decayed (halved) when

the rate is zero.

Next, the tier load estimator takes the utilization measurements and calculates an estimated of-

fered load for each tier using the method described in section 4.2.3.1, adding the control output

(if positive). The increment is distributed between reconfigurable tiers proportionally to their mea-

sured utilization, which ensures convergence to the true load plus any compensation added by the

controller to correct steady state error. Then, the estimated tier loads are input to the optimization

algorithm (section 4.4.1), which determines the new energy-optimized allocation, reflecting mini-

mal tier capacities required to maintain the required performance. Any extra machines not allocated

are subject to being allocated as spare servers to absorb load bursts, or to being transitioned to a

sleep state, which decision is handled by spare capacity optimization, the subject of chapter 5. Fi-

nally, the determined target power states are applied to the cluster, affecting the service and thereby

closing the loop.
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4.5 Prototype

We implemented our energy management policy within our ClusterControlWare framework, de-

scribed below.

4.5.1 Overview of ClusterControlWare

We developed a middleware framework that greatly simplifies the implementation of control poli-

cies for server clusters. It allows the programmer to create sensors to measure the system, actuators

to perform elementary adjustments on it, and controllers that may invoke these across cluster nodes.

For instance, our energy management policy is implemented as a controller, which invokes sensors

to take measurements and actuators to effect power state transitions. The software allows flexi-

ble definition of cluster nodes, including what objects (sensors, actuators, and controllers) need

to be created on each and their parameters. It directly supports multi-tier clusters via node group

definitions, where groups may have additional objects that are only created on member nodes. For

example, a group can be defined for a Web server front-end tier with a sensor to measure end-to-end

latency. Groups can further have power and performance parameters (plugging into our models), as

well as a specified set of allowed CPU frequencies to use for DVS.

We also implemented support for multi-tier cluster reconfiguration, by allowing groups to be

marked static or dynamic. Dynamic groups may have new members added or existing members

removed during operation, with the framework taking care of automatically setting up all necessary

services. To achieve this, groups must define a service actuator that can start or stop the service, and

a corresponding service sensor that can report whether the service is running. The service actuator

must also provide for configuring the load balancer of the service, if any, to add or remove backend

nodes started or stopped in the next tier. For example, after starting a new application server, the

load balancers of all servers in the previous tier (e.g., Web servers) must be updated to start using

it. Reducing the need for overprovision, this solution also enables the migration of nodes among

tiers (if allowed by the user), provided that multiple tier applications are installed on the nodes,

and, in addition to the services, all group-specific sensors and actuators are started and stopped as
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well. Idle nodes belonging to dynamic groups may be shut down and at later time waken up as they

become needed. All of this is supported through complex node and membership state handling—in

fact, much of the code is devoted to this. ClusterControlWare currently consists of slightly less than

5,000 lines of Python code.

Our framework also acts as a research tool, by collecting traces showing cluster state over time,

such as: demand, capacity, estimated load, service errors, service delay, machine states, group

membership states, etc. We have used these cluster traces extensively during our experimental

studies to evaluate the behavior of our algorithms.

4.5.2 Spare Capacity

Since realistic Web workloads are bursty, some of the idle nodes must be kept active to accommo-

date short-term load spikes. However, keeping idle machines alive is costly due to their static power

consumption. Hence, a balance must be found in the trade-off between energy savings and respon-

siveness during bursts. Here we simply note that our prototype contains an optimization algorithm

that automatically determines the minimum number of spare idle machines necessary to maintain a

level of responsiveness, and refer the reader to chapter 5 for the details.

4.6 Experimental Results

We evaluate our policy on a realistic testbed with commonly used server software in a typical multi-

tier setup. We use a highly dynamic Web workload that is an appropriate application of this kind of

system, and we simulate the load fluctuations observed in real-life Web server traces. Performance

and energy efficiency of our policy is measured, and the benefits of dynamic tier allocation are

quantified by comparing three schemes: (i) traditional (energy-oblivious) provisioning, (ii) energy-

conscious static capacity planning, and (iii) our dynamic energy-optimizing allocation policy.
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4.6.1 Experimental Setup

Our testbed uses a 12-node cluster composed of Linux-based PCs. Each PC has a DVS-capable

AMD Athlon 64 processor, which supports the frequencies 1.0, 1.8, 2.0, and 2.2 GHz, as well as

an Ethernet interface that supports the Wake-On-LAN protocol for remote wakeup capability. The

machines also have 512 MB RAM, a hard disk, and a simple display adapter, but no monitor in

order to keep the setup more realistic. A Watts Up Pro power meter is connected to the main power

strip, measuring the AC power draw of the entire cluster.

The cluster is set up as a 4-tier Web server consisting of the following tiers:

1. A front load balancer tier with 1 machine statically allocated. It runs the Linux Virtual Server

(LVS) [90] high-performance layer-4 (TCP-level) load balancer. Packet forwarding to the

backend servers is set up in direct routing mode, the most scalable of the available mecha-

nisms. The power draw of this tier was not measured because in a real-life cluster it would

represent a much smaller fraction of total power than in our setup, thus our results would be

skewed if we included it.

2. A Web (HTTP) server tier with dynamic machine allocation. This runs Apache [78] with the

mod jk connector module, which forwards dynamic requests to the load balanced backend

servers.

3. An application server tier, also with dynamic machine allocation, which runs the JBoss en-

terprise Java application server [71]. It uses the MySQL Java connector to forward queries to

the backend database cluster.

4. A database cluster tier with 3 machines statically allocated. The MySQL Cluster scalable

database package [62] is used with 3 data nodes, over which the data set is partitioned. An

SQL node (through which the cluster can be accessed) is co-located with each application

server.

For each tier, standard versions of server software are used with no modifications necessary. We

developed a loadable module for Apache, which reports end-to-end service latency samples to

ClusterControlWare through a System V message queue. We also implemented scripts to start,

stop, and check each service and to add or remove backends to LVS and mod jk.



Chapter 4. Reconfigurable Clustered Tiers 80

4.6.2 Parameter Selection

Selecting appropriate control parameters is very important to get good performance response. Our

goal was to design a highly responsive controller, therefore we opt for an 8-second control period

that can be considered very short in server applications. Hence, care must be taken when choosing

the controller gains to avoid unstable behavior (i.e., oscillations between extremes). Since the

controlled process is complex and dynamic, it is preferable not to rely on a detailed model when

determining the gains.

We use the classic Ziegler-Nichols tuning method [93], which although imperfect [30], has the

advantage that it requires very little information about the system. The two separate PI controllers

must be independently tuned, with the other disabled in both cases. Further, the delay controller

is tuned with a workload that does not cause server errors. In the final controller, the total integral

component is clipped to between 0 and 8.8 GHz, which is approximately 2/3 of the total reconfig-

urable capacity in our cluster. Such clipping is typically performed to prevent excessive response in

Integral controllers that may exhibit steady state error due to system constraints (e.g., not enough

machines are available to reach the target).

After experimenting with our system, we chose 250 ms for the average latency target, which

is reasonable both in terms of user expectations of an interactive website, and compared to the

120–140 ms baseline with no energy management.

4.6.3 Trace-driven Dynamic Workload

A 3-tier implementation of the TPC-W benchmark [82] was used as the test workload. It models

a realistic bookstore website where all types of pages are dynamically generated using fresh data

from the database, and also contain typical web images (buttons, logos, item thumbnails, etc.).

The server establishes sessions with shopping carts, and ensures all transactions within the same

session are routed to the same application server (session stickyness). A separate client machine

is used to generate load for the servers. It can emulate hundreds of independent Web users, each

navigating through pages as guided by a stochastic transition matrix. Retrieving a page and all
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images referenced by it is defined as one web interaction. Server throughput is measured in web

interactions per second (WIPS), and latency in web interaction response time (WIRT).

The load imposed on the system by the TPC-W application is determined by the number of

emulated browsers (EBs) the client executes. In performance-oriented studies (the original intent of

the benchmark), this is sized to the maximum target server capacity. However, in an energy manage-

ment study, we are interested in performance and energy efficiency during realistic operation, which

includes significant periods of off-peak load conditions. A simple way to create such conditions is

to run a smaller number of emulated browsers than what the system can handle. However, the re-

sults have limited practical interpretation because this creates a constant load as opposed to one that

realistically fluctuates over time. A more desirable approach is to simulate the load variations found

in real-life Web server traces, but using our dynamic benchmark—to create a trace-driven dynamic

workload. Note that it is not possible to simply replay arbitrary server logs because the content they

serve differs from our benchmark’s content.

Our solution is to calculate the hourly average loads (in requests/s) for the trace in question,

scale each value by a constant factor to obtain a corresponding number of EBs such that the peak

equals to a given value (e.g., the maximum EBs the system can handle), and then run experiments

in which the number of EBs is varied over time to match the resulting sequence. Between data

points, we linearly interpolate to achieve smooth fluctuations. This technique also allows easily

speeding up the traces in order to significantly reduce the time required for experiments. Figure 4.5

demonstrates that the resulting throughput profile closely matches that of the source trace shown in

Figure 1.1(a) (on page 3). We use a speedup factor of 5×, by which we can run this day-long trace

in 4.8 hours. The same trace-driven approach was used by Rajamani and Lefurgy [69] (but with a

much higher speedup factor of 48×).

4.6.4 Performance and Energy Efficiency

We use our trace-driven TPC-W workload to evaluate our policy. For a cluster energy study to be

comparable, it is important to scale the workload such that the peak requires close to full cluster

capacity. After experimenting with our system, we determined that a peak of 400 EBs is appropriate.
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Figure 4.5: Throughput using our dynamic workload simulating fluctuations in the EPA Web server
trace. Compare with Figure 1.1(a).

Our performance results are shown in Figure 4.6. In Figure 4.6(a), we see the actual cluster capacity

dynamically varied over time, together with the required capacity (demand), which is computed by

our algorithm based on the estimated load. As expected, the algorithm leaves sufficient margin over

the estimated load when determining demand, so that tier utilizations stay low enough to meet the

target latency. Figure 4.6(b) shows that this is successful even with little controller involvement in

the steady state. Average delay (WIRT) was 227 ms, below the 250 ms target. Some of the controller

reactions are due to short bursts of server errors caused by a limitation in our implementation:

sessions belonging to an application server that is brought down are lost, resulting in failed next

requests in those sessions. This could be alleviated, for example by existing session management

solutions. Even with this limitation, we saw less than 2 errors per minute on average.

To evaluate the energy benefits, we ran this workload on the same cluster in two other setups.

The Baseline setup is a cluster that is statically provisioned for our peak load, i.e. all 12 machines

are operating at the maximum frequency. Note that even this basic setup is energy-aware in the

sense that no extra machines are provisioned beyond this particular workload’s peak demands.

The DVS setup uses our policy but without dynamic cluster reconfiguration, i.e. it also operates

all 12 machines, but allows DVS to save energy. Power traces for our optimization-based policy

(“Optimal”) and the two other setups (Baseline and DVS) are compared in Figure 4.6(c). Looking

at pure cost reduction, our policy achieved 34% total cluster energy savings by dynamically turning
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Figure 4.6: Power and performance results running the trace-driven workload.

off some machines when fewer could handle the load. To compare energy efficiency, we must

factor in performance degradation as well. We use the energy-delay product, a widely used metric,

defined in terms of experiment duration T , total energy consumed E, average power P, number of

web interactions I, and throughput WIPS as follows:

E
I
× T

I
= P× T 2

I2 =
P

WIPS2 (4.19)

in other words we use the energy per request multiplied by the inverse of throughput, which we

calculate from average power divided by the square of throughput. From this, we obtained 0.996 Js

for our policy, a substantial improvement over the energy efficiency of the baseline with 1.475 Js.

The key observation from our results is that our Optimal policy is successful in managing recon-

figurable cluster capacity. When load increases, capacity is timely increased such that it is always
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sufficient to meet the performance target. End-to-end latency is kept close to the target even as

the load fluctuates. At the same time, substantial energy is saved compared to both a statically

provisioned case and also to using DVS alone.

We ran another experiment with a much lighter peak load (100 EBs), in order to measure how

much energy could be saved by our policy during extended low-load periods (e.g., weekend days).

We used the same trace accelerated to 60× to shorten the duration of the experiments. We measured

40% total energy savings, which can be seen as the maximal benefit of the policy at this cluster

size (note, in a larger cluster there are greater opportunities under such conditions). Our policy

sustained 199 ms average latency, well under target (the baseline was 121 ms). Energy efficiency

was improved from 22.77 Js to 14.58 Js.

4.6.5 Dynamic Tier Allocation

We are also interested in measuring whether dynamic tier allocation can save more energy than

some arbitrary static scheme. Note that the static scheme is not overprovisioned, it is an energy-

conscious policy merely restricted in capacity allocation between tiers. For the comparison to be

general, we choose not to implement one particular policy but to emulate an “oracle” policy that

chooses the best static allocation for each test workload. We implement this by running multiple

experiments with different static allocations, searching for one that uses the least energy and still

meets the SLA. We then compare our dynamic policy against that result.

For these experiments, instead of a trace-driven workload, we use a slightly modified TPC-W

workload at constant levels. Our modification creates a gradually changing imbalance between

the Web and the application server tiers. This simpler (but still highly dynamic) workload allows

more straightforward comparisons than if we had used a fluctuating trace. The results are shown

in Figure 4.7. At lighter loads, there is not much opportunity to improve on the optimal static

allocation because only very low capacity is needed (most machines are sleeping in both cases).

However, at greater loads, we obtain additional savings up to 6%. The performance penalty is

lower than 35 ms above the SLA. The amount of extra savings also depends on how efficient the

static allocation is at the given load level—for example, at load 200, we gain only about 2% because
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the best static allocation happens to be very efficient. It should be noted however that in practice

such ideal policy cannot be implemented. The main point is that whenever the balance of tier loads

can shift over time (e.g. the request mix is time-dependent), significant benefit can be realized by

our policy over any static allocation policy.
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Figure 4.7: Energy comparison of the dynamic allocation policy against ideal static allocation. The
baseline is static provisioning for the peak load (i.e. all 12 machines operate at full frequency).

4.7 Related Work

DPM techniques for dynamic reconfiguration of components in individual machines were surveyed

by Benini et al. [8]. These techniques in general are not appropriate for throughput-oriented work-

loads because they rely on exploiting completely idle periods of operation. They do not address

energy optimization with respect to a variable number of power-manageable, load balanced com-

ponents, a key concept in the server domain.

Pinheiro et al. [68] design a power management scheme for reconfigurable clusters based on

measuring and distributing demand for resources to a subset of the cluster. Transient demand vari-

ations are compensated for with PID feedback control. They evaluated the scheme on a Web server

serving static content with no sessions involved. They report energy savings of 45%, however their

workload was network interface-bound with peak CPU utilizations of only about 25%. Elnozahy

et al. [19] propose cluster reconfiguration combined with DVS, assuming a cubic relation between

CPU frequency and power, evaluated by simulation. Based on this assumption, they conclude that
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the cluster uses least energy when all machines operate in an optimal frequency range, not neces-

sarily using the least number of active machines. This is in contrast with our observations based

on our power model derived from actual measurements. The work by Rajamani and Lefurgy [69]

is highly relevant to ours. They point out critical workload factors that must be properly selected

for valid evaluations of energy management schemes. Hence, we use a similar methodology in our

evaluations.

Heterogeneous clusters were also addressed in the literature [32, 72]. Heath et al. [32] devel-

oped a solution based on complex system modeling. Implementing an adaptive Web server that

takes advantage of the model, they achieve 42% energy savings on a small cluster with two types of

machines, serving mostly static requests. One shortcoming is that their model does not incorporate

DVS. Rusu et al. [72] report 45% energy savings in a small heterogeneous cluster combining re-

configuration and local (independent) DVS. The rely on power, execution time, and server capacity

characterization to provide energy management with soft real-time performance.

Direct comparison of our power and energy savings to the state of the art above is problematic

for two reasons. First, hardware used in other studies may have lower idle power, which leads

to higher savings regardless of the policy. Second, our multi-tier setup requires at least half of

our small cluster to be active (1 machine per tier, plus the static DB tier), while other works may

scale down to 1 active machine, increasing their savings. In essence, our setup has a more limited

dynamic power range. This may be alleviated by consolidation of several services to a single

machine, however this was not explored because in large-scale clusters the power consumption of

one machine per tier is insignificant. For smaller-scale clusters, it could be addressed in future

work. It is worth noting that our policy still achieves a better ratio between energy savings and

maximum power savings (34% energy to 50% power) than previously reported results [68] (45%

energy to 71% power).

Finally, our work is conceptually novel and different from the above in that (i) we address

multi-tier clusters with highly dynamic workloads, (ii) we perform joint energy optimization using

coordinated reconfiguration and DVS based on theoretical analysis, (iii) we use feedback control to

correct for estimation errors, and (iv) our policy is evaluated with a realistic trace-driven benchmark
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with the peak load correctly sized to our cluster’s capacity.

4.8 Conclusion

In this chapter we presented an energy management policy for reconfigurable clustered multi-tier

servers. We have shown that the policy affords greatly increased energy efficiency compared with

the conventional cluster setup provisioned for peak load. This can lead to energy savings up to

40% without significantly reducing service performance. Furthermore, our policy even outperforms

energy-aware static allocation by up to 6%.

The key factor behind this result is the algorithm’s theoretical foundation, which enables op-

timized automatic allocation of processing capacity between the tiers, from a pool of available

machines supporting several (DVS) performance states. An implication of this is that offline (e.g.,

table-based) techniques that statically predetermine the optimal cluster configuration based on the

overall load [e.g., 32, 72] are energy-inefficient under highly dynamic workloads, where a dynamic

allocation policy such as ours is needed.



Chapter 5

Spare Capacity Optimization with Multiple Sleep States

5.1 Introduction

In a reconfigurable clustered tier, if serving the offered load with optimal energy efficiency is feasi-

ble using fewer machines than what is provisioned for the tier, then the extra machines may be put to

sleep. The great power reduction potential of sleep states, however, obviously comes at the expense

of completely stopped processing in nodes while asleep, but also during the time for shutting down

and waking up (shutdown and wakeup latency). Additionally, these state transitions (to and from a

sleep state) also consume significant energy. Hence, it must be determined whether the overhead of

putting a machine to sleep is warranted, which problem was addressed in prior work [15] through

quantifying machine reboot costs.

Dynamic, bursty workloads (such as typical Web workloads) pose further challenges by dis-

playing heavy load fluctuations and unpredictable load spikes. The transitioning decision, therefore,

must not disregard performance constraints: the machines awake must still be able to process load

spikes within the specified response time limits. To that end, it may be necessary to keep some of

the extra machines awake to provide spare capacity to absorb such load spikes. In this chapter, we

examine how to optimize this spare capacity such that given performance requirements can be met

with the least amount of energy. Research we are aware of has not addressed this problem beyond

simple heuristics [e.g., 68]. Intuitively, the more spare capacity is left by the energy management

policy, the more extra energy is spent, but also the better the system is at absorbing bursts. The

88
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optimal trade-off therefore also depends on how bursty the load is expected to be and how tolerant

the user is to transient violations of acceptable performance. We provide a simple way to reconcile

this energy-performance trade-off by allowing the user to specify the maximum burst rate to be still

accommodated by the policy.

Extending the optimization space even further (and presenting additional complexity), modern

machines offer multiple, increasingly deep sleep states characterized by decreasing power demands

and increasing transition latencies. Finding the optimal amount of spare capacity in the presence of

multiple sleep states in the server farm (such that spikes in the load can be accommodated) becomes

significantly more complicated. We show that the optimal spare capacity that should be reserved

to assure performance guarantees for future load with minimal power is a combination of spare

capacity in several power states. The optimal combination can be determined as a function of the

various wakeup latencies (including power-on latency for turned-off machines) in effect throughout

the farm at the time, together with the predicted workload characteristics. Our results indicate that

over 10% extra energy savings are possible with highly dynamic workloads when multiple sleep

states are exploited.

5.2 System Model and Assumptions

We assume a reconfigurable multi-tier cluster composed of machines that support n system sleep

states, each characterized by a distinct power level and wakeup latency. The power dissipation

and wakeup latency of state i is denoted pi and ωi, respectively. We assume that ∀i,0 < i ≤ n :

pi ≤ pi−1 ∧ωi ≥ ωi−1, where state 0 is the On state with ω0 = 0. As an example, recent ACPI-

compliant [21] hardware may support up to 5 system sleep states (S-states). For instance, these

include the Hibernate-to-RAM state, in which CPU state is saved to RAM and many components

(such as CPUs and disks) can be shut down while RAM is still powered to maintain its contents,

and the Hibernate-to-Disk state, where volatile program state (in the RAM and CPU registers) is

saved to disk and most components can be shut down. Note that our model is not restricted to these

states.
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The most widely used approach to utilizing multiple power states in general is to start out in the

shallowest state and progressively move to deeper states over time while the hardware is idle. We

refer to transitioning to a deeper system sleep state as demotion1. We assume that direct demotion

is not possible—the machine has to be first waken up and then transitioned to the desired new state.

This is realistic since the OS must perform additional work during the transition. For example, when

moving from Hibernate-to-RAM to Hibernate-to-Disk state, the OS must save memory content to

disk. This means that moving to the best state at first is much more efficient than via progressive

demotion.

With respect to the workload, we assume that load spikes are not predictable with sufficient

accuracy that reconfiguration decisions could be based on this. However, we do assume that arbi-

trarily steep spikes are either not present, or need not be supported by the cluster. If this assumption

does not hold, sleep states cannot be safely used to save energy because accommodating a step in-

crease in load would require immediate wakeup of some sleeping machines. Intuitively, a trade-off

exists between system responsiveness and the ability to exploit sleep states, which should be up to

the user (administrator) to control. Hence, we define a system parameter called maximum accom-

modated load increase rate (MALIR) to be the maximal rate of increase of the demand for cluster

capacity that must be met despite any power management activity. This essentially prescribes the

lower bound of responsiveness and the upper bound of energy savings. For simplicity, we assume

a CPU-bound workload with the demand and MALIR measured in CPU cycles per second (Hz). If

another resource is the bottleneck, it can be defined for that resource analogously.

A reconfigurable cluster may consist of multiple independent pools, from which machines may

be allocated to tiers on demand. Separate pools may be necessary to obey allocation constraints

imposed by the software setup (i.e., presence or absence of software and data on certain nodes) or

the network environment (e.g., location of firewalls), for instance. Assuming it is possible to mi-

grate nodes between tiers within a pool with negligible latency cost, it is sufficient to limit demand

increase for pools instead of for individual tiers. This is beneficial since it may smooth out load

fluctuations at the pool level. We denote the MALIR of a pool v by σv.

1Note, in ACPI terminology, demotion for C-states means the opposite: transitioning to a shallower state.
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5.3 Related Work

To provide some spare capacity to compensate for wakeup latency in their system, Pinheiro et al.

[68] assume that machines have a lower than actual capacity. To control the amount of spare ca-

pacity, a heuristic parameter can be used. They experiment with values 30 and 15%, the latter

being determined from the maximum rate of traffic increase for the trace they use (but no details

are provided on how this was obtained). Rajamani and Lefurgy [69] study how the availability

of spare servers affect energy savings in different workloads. They find that in workloads hav-

ing steep slopes, spare capacity is necessary, and dedicated spare servers may even reduce cluster

energy by allowing other machines to be better utilized. They also argue that the rate of change

of the load profile is a key workload characteristic for energy management studies. They do not,

however, attempt to derive the optimal number of spare servers. In their paper, Rusu et al. [72]

define the max load increase variable as the maximum slope of the cluster’s load, which can be

obtained through characterization. Based on its value and accounting for the wakeup latency, they

precompute a table of load values at which additional machines must be turned on.

The MALIR parameter we introduced in the previous section is conceptually similar to what

was independently proposed in the above papers. A key difference is that they do not address mul-

tiple sleep states, which we exploit for further energy savings. In general, it is not straightforward

to extend the techniques presented in previous work to multiple states, because the new trade-off

between wakeup latency and sleep power must be examined.

5.4 Optimal Spare Capacity

5.4.1 Energy Minimization

An optimal energy management policy should be able to decide under what conditions it is worth-

while to enter some sleep state, such that the real-time performance constraints are satisfied with

minimal energy consumption. This is determined in general by two factors: the spare capacity

needed and the transition overheads (time and energy) involved. The spare capacity needed de-
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termines the upper bound of capacity to enter into each sleep state such that steady-state power is

minimized while observing the MALIR constraint, whereas the overheads determine the timing of

transitions that results in best overall energy efficiency. In terms of these components, total cluster

energy is given by:

total energy = active energy+ sleep energy+ transition energy. (5.1)

Assuming a reasonable energy management policy for the active cluster capacity, which involves

determining the most energy-efficient cluster configuration, i.e. the set of machines to be kept active

and possibly their DVS states, active energy is dictated by load and it is not affected by the other

terms in Equation (5.1). As long as sleeping machines can be waken up in time to meet demand,

energy optimization of the rest of the cluster (i.e., the non-active nodes) can be decoupled and

treated as a separate concern.

Minimization of transition energy is considerably less important in typical Internet server

workloads than in desktop systems. This is because load fluctuations occur on a larger time scale

(i.e., daily or longer), which means transitions are infrequent and their energies remain an insignif-

icant fraction of total energy. Prior works have implicitly ensured that this assumption holds by

smoothing out short bursts using exponentially weighted moving averaging and imposing a mini-

mum time between cluster reconfigurations [32, 68].

Therefore, we focus on minimizing the sleep energy component through spare capacity opti-

mization. Since it is decoupled from the other components, optimal steady-state energy is achieved

by optimizing for power. This means, because of the property pi ≤ pi−1, that each spare (un-

allocated) server should be put to the deepest possible state (greatest i), subject to the MALIR

constraint.

5.4.2 Feasible Wakeup Schedule

Our problem becomes that of determining the minimum number of spare servers for each sleep state

such that if the offered load increases with rate σv, a feasible wakeup schedule still exists. Before
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we can formulate this more precisely, we must begin with definitions. Let cv(t) and dv(t) denote

cluster capacity and demand, respectively, for pool v at time t. Further let t0 be the time at which

load begins to increase. Assume that both cv(t0) and dv(t0) are known (e.g., from measurements

and estimation). Then, from the definition of σv:

dv(t) = dv(t0)+σ
v(t− t0). (5.2)

Next, in order to determine whether a feasible wakeup schedule exists, it is sufficient to consider

the case when all spare servers are waken up at time t0—if this does not result in a feasible schedule,

then one does not exist. Let Sv
i stand for the number of spare servers in sleep state i, and f v

max the

maximum CPU frequency for pool v. For the case described, capacity can be obtained from the

recursive formula:

cv(t0 +ωi) = cv(t0 +ωi−1)+Sv
i f v

max. (5.3)

(The formula terminates at ω0 = 0.) Phrased in words, cluster capacity at the expiration of the

wakeup latency of some state increases by the maximum capacity of all machines in that particular

state. From this, and observing that dv(t) continuously increases while cv(t) is stepwise, we can

formulate that a feasible wakeup schedule exists iff:

cv(t0 +ωi)≥ dv(t0 +ωi+1), 0 ≤ i < n. (5.4)

5.4.3 Spare Servers

Since we want to put spare servers in the deepest possible sleep states, we examine the limit case

of Equation (5.4):

cv(t0 +ωi) = dv(t0 +ωi+1), (5.5)

so that no slack time is allowed before waking up spare servers in case of a load spike. Because this

requires the set of greatest still feasible wakeup latencies, it also results in the smallest feasible over-

all power due to the monotonicity of ωi and pi in i. Substituting Equation (5.5) into Equation (5.3),
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we get:

dv(t0 +ωi+1) = dv(t0 +ωi)+Sv
i f v

max, (5.6)

which can be simplified by applying Equation (5.2) to get:

σ
v
ωi+1 = σ

v
ωi +Sv

i f v
max. (5.7)

After rearrangement, we obtain the optimal number of spare servers for each sleep state as follows:

Sv
i = σ

v ωi+1−ωi

f v
max

. (5.8)

The above formula is in the continuous domain, whereas a) cluster reconfiguration is typically

performed periodically; and b) only whole machines can be transitioned to sleep states. Hence, the

formula is discretized to yield the final solution:

Sv∗
i =

⌈
σ

v T (ωi+1)−T (ωi)
f v
max

⌉
, 0 ≤ i < n, (5.9)

where T (ω) = dω/Te · T and T is the control period. This accounts for both that wakeups will

only be initiated, and that the cluster will only be reconfigured to include the awakened machines,

at controller activation.

Finally, it is worth noting that, depending on the system, some sleep states may not be beneficial

and should be excluded from the optimization. Specifically, if pi = pi−1, or if ωi = ωi+1, then state

i does not provide any benefit. In addition, all states should be made optional since their individual

usefulness may be application dependent.

5.5 Algorithm Design and Implementation

We developed two policies for comparison: Optimal, which is based on our optimization result

above, and Demotion, which gradually demotes spare servers after some fixed timeouts. The reason

for this choice is as follows. The state of the art in DPM techniques addressing multiple sleep states
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consists of predictive and stochastic approaches. The fixed timeout-based predictive technique is

the most common power management policy [8]. It basically assumes that after an idle period of

at least the timeout, the system will likely stay idle for enough time to compensate for the extra

energy spent on the sleep and wakeup transitions. More complex predictive techniques have been

proposed [e.g., 16, 17], but they target interactive workloads.

To ensure a fair comparison, a wakeup scheduling algorithm is used together with both policies

that always wakes up machines when needed to meet the expected future load based on the MALIR

parameter. The difference is that while the Optimal policy attempts to ensure that machines can

be awakened by the time they are needed, the Demotion policy does not. Below, we describe the

design of our policies.

5.5.1 Optimal Capacity-based Policy

The design of the optimal capacity-based (“Optimal”) policy is relatively simple. An algorithm

precomputes Sv∗
i for each server pool and each system power state (0 ≤ i < n) allowed by the user

at initialization. Then, the policy is invoked in each control period with the list of nodes determined

by the main energy management algorithm to be idle. Our policy is responsible for assigning these

to sleep states as necessary. We start by checking if there are more idle machines in the On state than

the optimum Sv∗
0 . If so, each surplus machine must be assigned to one of the sleep states. Going

from shallow to deep states, we assign as many surplus machines to each as necessary for it to reach

its optimum. Finally, any remaining surplus machines are assigned to state n (which is the implicit

optimum for this state).

5.5.2 Fixed Timeout-based Policy

The main idea of the Demotion policy is that whenever a machine becomes idle a timer is started,

and as it reaches each timeout, the machine is demoted into the corresponding sleep state. There are

two problems with directly applying this approach in a cluster. First, it is not scalable to maintain

individual timers for each machine in a large cluster; and second, unless the activation of idle nodes

is always done in a predetermined order (e.g., by rank), it is suboptimal. To see this, consider
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an example where demand fluctuates between 1 and 2 machines, but whenever it increases to 2,

a different node is activated in a round robin fashion (e.g., for thermal load distribution). If this

happens frequently enough, timers may never reach any timeouts, even though most of the cluster

is always idle.

Therefore, instead of per-node timers, our solution is to just maintain the count of idle machines

together with the time each smaller count was first seen. More precisely, we define a (per-pool) list

of timestamps named idle since, which is initialized empty and then maintained as follows. If

the number of idle machines at the current time t is greater than the size of idle since, then t

is appended to its end as many times as the difference. If it is smaller, then as many elements as

the difference are removed from the list’s end. Then, for each list element e, its timeout for state

i has been reached if t > e + ωi. Summing up the number of elements by the deepest state they

reached, we obtain the timeout count for each state. Taking the difference between the number of

nodes currently in each state and that state’s timeout count, we get the number of surplus nodes (or

deficit) in each state. Then, working our way from the On state to deeper states, surplus nodes are

demoted to states with a deficit, filling up deepest states first.

5.5.3 Service Preloading

In practice, sleep state wakeup latency is not the sole factor determining the time to activate a system

(resume latency). Service start latency must not be ignored since it can be significant compared to

the wakeup latency. For example, the start latency of the application server in our testbed was 25–

72 s (95th percentile: 40 s), from over 2800 samples. This would have to be added to all wakeup

latencies when calculating the optimal spare capacities.

However, with hibernation states, we can take advantage of the preserved program state they

offer. As a first step, services should not be stopped before hibernation, so that after wakeup only the

load balancers need to be updated. However, to also be able to reduce spare capacity requirements,

one has to ensure that any spare servers contain the suspended service and thus can be activated

faster. To this end, we preload the service prior to entering any hibernation state if not already

loaded. This means that the service start latency only has to be added to the wakeup latency of non-
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hibernation sleep states (i.e. Soft-Off), resulting in smaller resume latencies and lower optimal

spare capacities. Naturally, our wakeup scheduling algorithm is also aware of what services are

suspended on each node and calculates time to activation accordingly.

5.6 Experimental Evaluation

5.6.1 Experimental Setup and Policies

Our experimental setup is identical to the one described in section 4.6.1 (on page 79). In addition,

our PCs support four ACPI system power states:

• On (S0): Normal operating mode, with DVS available to manage power.

• Hibernate-to-RAM (S3): System state is saved in RAM, which must remain powered, while

most other components can be shut down. On wakeup, no boot is required.

• Hibernate-to-Disk (S4): System state is saved on hard disk, and all components can be shut

down (except those necessary for initiating wakeup) as in Soft-Off mode. A partial boot is

required before the system image can be restored on wakeup.

• Soft-Off (S5): Same as the conventional (mechanical) Off mode, except that components

necessary for initiating wakeup are powered. A full boot is required after wakeup, and all

processes must be reloaded.

We have one pool of machines shared by the Web and application server tiers. For realistic

evaluations, we use the same trace-driven workload approach based on the TPC-W benchmark as

previously (see section 4.6.3). For each experiment, we calculate the correct MALIR for the pool,

based on the trace and an estimate of the server capacity required per EB (this only needs to be

determined once).

As our baseline, we consider a traditional cluster statically provisioned for peak load (i.e., not

overprovisioned overall), which serves as our reference in energy efficiency and performance. We

are interested in finding out what additional gains can be realized by using multiple states, over

previous approaches that only exploit one state (S5). Hence, we experiment with two different

cases for both the Optimal and the Demotion policy for comparison: a case when multiple states
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Policy Description

Baseline Statically provisioned for peak load.
Demotion (Off) Demotion policy using the Off state only.
Demotion (Multiple) Demotion policy using Multiple states.
Optimal (Off) Optimal policy using the Off state only.
Optimal (Multiple) Optimal policy using Multiple states.

Table 5.1: List of policies compared.

are used (Multiple), and another with only the Soft-Off state allowed (Off). As we will see, in

the Multiple case, the S5 state is not beneficial and thus it is not used. The policies are listed in

Table 5.1.

5.6.2 Determining Optimal Timeout Values

For a fixed-timeout policy, careful selection of timeout values is crucial. We follow the methodology

proposed by Benini et al. [8], who define the break-even time TBE for each sleep state, which is the

minimum inactivity time required to compensate for the transition energy. Based on the theoretical

result on competitive algorithms for the analogous spin-block problem by Karlin et al. [42], they

suggest the optimal choice for timeout (yielding 2-competitive energy savings) is equal to the break-

even time. To obtain this for each state, characterization of the system is necessary to obtain the

following parameters: time to enter and exit the state (TEnter and TExit), average power while entering

and exiting (PEnter and PExit), and average power while in the state (PSleep).

t0 t1

t2

ON

S3

S4

S5

t3

t4 t5 t6

t7 t8 t9

Time

TEnter,S3 TExit,S3

TEnter,S4 TExit,S4

TEnter,S5 TExit,S5

Figure 5.1: Characterization experiment of sleep state power and transition latency parameters.

We perform the experiment depicted in Figure 5.1 to measure the parameters. During the ex-
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State PSleep (W) TEnter (s) PEnter (W) TExit (s) PExit (W) TBE (s)

Multiple States

S0 64.88
S3 2.55 4.79 46.72 14.78 64.97 20
S4 1.43 26.35 64.73 66.17 77.43 5980
S5 1.43 84.24 73.70 83.40 75.42 ∞

Soft-Off Only

S0 64.88
S5 1.43 18.06 60.76 83.40 75.42 114

Table 5.2: Sleep state parameters and break-even times.

periment, the time at points t0–t9 must be recorded, and power consumption must be continuously

measured. Timestamping points marked with a dot is trivial, however the points demarcating when

entering a state has finished (t1, t4, and t7) can only be inferred from the power samples, which we

performed during offline analysis. From the data collected, calculating the above-mentioned pa-

rameters is trivial. Finally the break-even times (i.e. the timeouts) are calculated using the formula

given in [8]. A similar experiment is performed for the case when only the Soft-Off (S5) state is

used. The parameters and results are shown in Table 5.2. Importantly, with multiple states allowed,

the S5 state is not beneficial because its power level is identical to that of S4—correspondingly, its

break-even time is infinity, i.e. it should never be entered. Hence, it is excluded from both policies.

5.6.3 Results

We perform comparison studies along three dimensions, to understand how certain aspects affect

the performance of each policy. We consider different workload profiles, then varying the peak

load intensity, and the rate of load fluctuations. The performance of each policy, including energy

savings, energy-delay product (i.e. energy efficiency), average end-to-end latency, and error rate (i.e.

timeouts), is compared. As explained in section 4.6.4, errors are partly caused by losing sessions of

servers being put to sleep—a limitation of our testbed setup. However, in other cases they are signs

of an important weakness of a policy: the inability to meet demand in time, which we will note.
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5.6.3.1 Shape of Load Fluctuations

To study the effect of different load profiles, we experiment with several different traces listed in

Table 5.3. Each trace has a unique shape of daily load fluctuations, giving rise to different energy

saving opportunities. The peak load for each trace is identical (400 EBs), sized to total cluster

capacity. All traces are accelerated 20× to shorten experiments. Results are shown in Figure 5.2.

Note, despite several attempts, the Demotion (Multiple) policy running the week-long wcw8 trace

invoked so many transitions over its 8 h 24 m duration that the (not fully stable) ACPI support in

our test machines could not handle, causing a node to eventually crash, and so this data point is not

available.

A number of key observations can be made. First, exploiting multiple states yields significant

extra energy savings in the range 6–14% (Figure 5.2(a)). Average gain is 10% for Demotion and

7% for Optimal. Second, the workload sensitivity of Optimal (i.e., range of extra savings across

workloads) is substantially smaller than that of Demotion (7–9% vs. 6–14%), which means a more

predictable performance can be expected from it. Third, Optimal overall outperforms Demotion in

all aspects (with one data point exception), by up to 7% in energy savings. An extended period of

epa has such a light load that no spare capacity is needed at all, giving an advantage to Demotion.

The other traces have a slightly smaller dynamic range (in load level), where that advantage is lost,

and Optimal wins by putting most nodes into deep sleep immediately instead of waiting for a long

timeout. Finally, due to the common wakeup scheduling algorithm, all policies manage to maintain

the expected performance with the fluctuations present in these workloads. The error rates only

reflect lost sessions, as explained above. (It is worth noting that the Off-only policies’ failure to

Name Length Service

epa 1 day The EPA WWW server at Research Triangle Park, NC;
Aug. 30, 1995 (Wed).

sdsc 1 day The SDSC WWW server at the San Diego Supercomputer
Center in San Diego, CA; Aug. 22, 1995 (Tue).

wcd37 1 day 1998 World Cup Web site [4]; Jun. 1 (Mon).
wcw8 1 week 1998 World Cup Web site; May 3–9 (Sun-Sat).

Table 5.3: Description of Web traces used in our experiments.
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Figure 5.2: Comparison of the energy efficiency and performance of the experimental policies run
against several traces. Peak load is 400 EBs (full capacity), traces are accelerated to 20×. Data for
wcw8 running under Demotion (Multiple) could not be obtained.

meet the latency target with wcw8 is due to the fact that during the long experiment some of the

reboots take unexpectedly long; for the most part, latency is well controlled.)

The most important points are that Optimal is better than Demotion for the majority of traces,

and that using multiple states is always beneficial in terms of energy efficiency.

5.6.3.2 Peak Load Intensity

In many instances, the daily peak load does not approach cluster capacity, thereby increasing energy

management opportunities. For example, there are weekly and seasonal load variations, or the

cluster may be heavily overprovisioned. Although we cannot simulate realistic seasonal changes in

reasonable time frames, we can run the same daily trace scaled to various peak levels to gain insight
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into policy performance at lighter loads. We use the epa trace accelerated to 60× and vary peak

load from 100 (very light) to 400 EBs (full capacity). Results are shown in Figure 5.3.
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Figure 5.3: Effects of varying the peak load intensity (from very light to full capacity) on energy
efficiency and performance of different policies. The epa trace is used at 60× speed.

Again, we observe significant extra energy savings from exploiting multiple states, in the range

7–23% (Figure 5.3(a)); average gain is 20% for Demotion and 10% for Optimal. As seen in the

previous results, for this trace Demotion (Multiple) outperforms Optimal (Multiple) by 1–5%. How-

ever, Demotion (Off) is highly inefficient—Optimal (Off) outperforms it by up to 9%. Moreover,

with anything higher than very light load, it has worse energy efficiency than the baseline (more

clearly seen in Figure 5.4(b)), and it exhibits poor performance: it fails to meet the target latency

requirement and has a very high error rate. This is caused by the policy’s inability to meet demand
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in time, because it does not leave the necessary spare capacity to absorb load while machines are

waken up. In contrast, Optimal (Off) works with the same wakeup latencies, but has excellent per-

formance because of its correct provisioning of spare servers. Note that there was no performance

problem with Demotion (Off) in the previous experiments using a 20× speedup factor with the

same trace. This raises the question of how this factor affects results, which we will explore in

the next section. Also note that Demotion (Multiple) still has good performance (its errors are due

to lost sessions only). The reason is that, even though it does not ensure sufficient spare capacity,

wakeup from S3 in our system is sufficiently fast (< 15 s) in practice to accommodate fluctuations

even at 60× speed.

In summary, using multiple states improves energy efficiency, and the improvement is greater

with higher peak loads. The reason is that higher peaks mean steeper load increases, requiring

greater MALIR and more spare capacity, and multiple states allow more effective spare server

energy optimization. Multiple states also help alleviate some of the performance problems of De-

motion, because the impact of late wakeups is significantly reduced by the much shorter wakeup

latency. Finally, it is worth noting that with peak load 1/4 of the full capacity, over 50% total cluster

energy savings are achieved.

5.6.3.3 Time Scale of Fluctuations

Previous trace-based experimental studies on cluster energy efficiency have picked arbitrary accel-

eration factors in order to shorten experiments, without evaluating its impact on the results. How-

ever, different factors yield workloads where the time scale of fluctuations is different relative to

system invariants such as wakeup latencies, service startup times etc., which cannot be accelerated.

As we have seen in the previous section, this can lead to marked differences in policy performance.

Therefore, it is imperative to study sensitivity with respect to the speedup factor.

The epa trace is used again, peak load scaled to full capacity (400 EBs). Each policy is tested

with several acceleration factors: 5×, 10×, 20×, 30×, and 60×. The results are presented in

Figure 5.4.

The most important observation is that the speedup factor has a major influence on energy
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Figure 5.4: Effects of different trace acceleration factors on energy efficiency and performance of
different policies. The epa trace is used with peak load of 400 EBs (full capacity).

savings and efficiency. The reason is that the higher this is, the greater the MALIR must be to

maintain performance, which in turn requires more spare capacity, resulting in diminished energy

savings. How optimally the policy handles that MALIR requirement, is what makes a difference in

energy use. Specifically, policies using multiple sleep states handle it very efficiently because lower

transition latencies of shallower states allow them to enter some sleep state for a greater portion

of time, and because even the shallowest state affords significant power reduction. Conversely,

with greater time scale (slower) fluctuations, little spare capacity is necessary, and the difference

between policies becomes minor (assuming a MALIR-based wakeup scheduling algorithm is used).

The results also show that spare capacity optimization is especially important in Off-only systems

with high rates of workload fluctuations, where a Demotion-like naive policy should clearly not
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be used because of significant performance degradation. However, it should also be noted that if

fluctuations (and load increase) are very slow, good results can be achieved even by simple Off-only

policies.

5.7 Conclusion

Energy management for reconfigurable clusters can be separated into two independent concerns:

the management of active and spare capacity. Spare capacity optimization minimizes energy of

idle nodes subject to responsiveness constraints. In contrast with existing ad-hoc approaches only

addressing a single Off state, we theoretically analyzed the problem in the context of multiple sleep

states, and designed an optimization policy based on the results.

Our policy was validated by measurements on a realistic testbed with appropriate workloads

and using actual hardware sleep states. Extra energy savings of up to 16% over the Off-only ver-

sion of the same policy were observed in highly dynamic workloads with negligible performance

impact. We also carefully designed and implemented a fixed-timeout policy (the most widely used

predictive policy) optimized for clusters. Comparisons with different traces show that our policy

outperforms it in energy efficiency with the majority of workloads. In addition, our policy is su-

perior because it: (i) avoids unavailable periods inevitable with timeout-based policies due to late

wakeups; (ii) guarantees responsiveness to the user-specified level (MALIR) with the least amount

of energy; and (iii) does not rely on workload prediction, and therefore handles unexpected bursts

and typical expected load fluctuations equally well.

An important implication of our results is that energy savings reported from policy studies using

different trace acceleration factors may not be directly comparable (unless equal spare capacity was

provisioned). A sensitivity analysis with respect to this factor is desirable to help interpret such

results. Further, it is not clear how results from accelerated traces in small testbeds apply to real-

time workloads in large-scale clusters because, even if spare capacity is the same, it represents a

very different fraction of total cluster energy.

In this work, we focused on minimizing sleep energy, decoupled from transition energy. How-
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ever, transitions typically incur machine wear costs as well, and therefore minimization of both the

number and energy of transitions is a desirable goal. In future work, we would like to integrate the

analysis presented here with a transition cost model, such as:

transition cost = transition energy+machine wear cost,

which will allow cost savings beyond energy. Machine wear cost has been quantified and controlled

in existing work using heuristics that minimize the number of reboots over time [15]. We expect

such a model to further emphasize the benefits of our optimizing policy, which inherently avoids

superfluous transitions typical of the (purely opportunistic) timeout-based policies.



Chapter 6

Fault Tolerance of Power Management Algorithms

6.1 Introduction

A significant concern in connection with machine performance control (e.g. as part of an energy

management policy) is how faults affect the control strategy. It is desired that whenever external

disturbances are present, the controller automatically attempt to minimize their effects on the sys-

tem. Disturbances can come from different sources: for example, simple machine or component

failures, CPU throttling due to thermal emergency, or even from malicious load injection following

a security breach.

Pipelined parallelism refers to the coarse-grained parallelism of a computation that has been

partitioned into processing stages (e.g., producer and consumer processes). A major source of

performance gains of pipelining come from the ability to replicate processes in a given stage, al-

lowing parallel processing of the incoming workload (i.e. scalability). For example, in multicore

systems, compile-time techniques have recently been proposed to statically allocate cores to pro-

cesses [27, 79]. Another form of pipelined parallelism is multi-tier processing in server clusters,

where requests flow through different types of servers before a response is sent to the client. Here,

allocation of machines to tiers (stages) is typically done as part of capacity planning or through

dynamic provisioning [89].

The growing importance of power management, not only in data centers but also in individual

CMP machines, is widely known. At the chip level, area is scaling down faster than power due

107
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to non-ideal voltage-supply scaling and non-ideal capacitance scaling. This means greater power

density and, for same chip area, greater total power [40]. Thermal constraints will likely require

aggressive DVS scaling in future CMP machines with a large number of cores [49]. Hence the role

of the power management policy will be emphasized. However, unexpected conditions (e.g., ther-

mal overload) may interfere with it by influencing the same power management controls (actuators)

that the policy uses, such as DVS, without its knowledge. For example, a thermal overload condi-

tion may override any application-requested DVS state, inhibit higher power states (or even enforce

a factory defined low-frequency state in an attempt to cool the processor core). Such transparent

reductions in machine processing capacity may produce severely suboptimal power management

behavior if the policy is not tolerant with respect to them. While it is highly desirable for a policy

not to degrade the performance of the original system significantly, past works have not evaluated

robustness under such conditions. In this chapter, we consider the fault tolerance of power manage-

ment policies in multi-tier server clusters because they represent an application category of huge

commercial importance.

Feedback control is a proven method grounded in theory, which has been shown effective for

server performance control in general [15, 32, 65]. Its key strength comes when combining it with

models constructed from a priori analysis, where it can improve a complex system by compensating

for inevitable model or parameter errors. While prior work has applied feedback control in pipeline-

parallel systems [e.g., 65], the effectiveness of this approach for overload or anomaly response has

not been studied. In the following sections, we shall demonstrate that by utilizing feedback control,

our algorithm remains effective even despite such adverse events. This result is not immediately

apparent since the behavior of a feedback loop when the system’s actuators are partially disabled

can be affected in non-obvious ways.

The importance of this result, with respect to the energy management solutions described in

previous chapters, comes from the fact that they all incorporate DVS, a technique that is directly

impacted by dynamic thermal management, and load estimation, which is impacted by aberrant

load. Since both assume an integral role in performance control, it must be investigated whether

performance goals can be met despite these impacts. The main contribution of this chapter is the
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empirical investigation of these issues. We experimentally evaluate our policy’s fault tolerance

properties under capacity-limiting overload conditions. Our work shows that besides realizing ex-

cellent power savings, it also has robust response against aberrant behavior. We further demonstrate

via comparison with an open-loop version of the system that closed-loop control is essential to this

property.

6.2 Related Work in DTM

Dynamic thermal management (DTM) has become an active research area due to increasing power

densities that may result in thermal emergencies. Temperature-aware workload distribution has

been proposed to prevent and deal with such thermal overload events [59]. This approach was

shown to be useful for reducing cooling costs over a long period by optimizing the placement of

workload units among machines in a data center. The algorithms typically require long calibra-

tion experiments. Our work is different in that our algorithm does not directly affect workload

placement, only the active capacity (number of active machines and their frequencies), driven by

performance-constrained power optimization. A combination of the two solutions could further im-

prove the thermal properties of our algorithm by the controlled selection of nodes in the data center

to provide the necessary capacity.

Weissel and Bellosa [86] studied application-level DTM techniques to prevent emergencies and

to optimize system-wide energy efficiency. However, their work does not address sudden changes

in ambient temperature (e.g., due to equipment failure) that trigger immediate action to reduce core

temperature, and its performance ramifications. A related approach [44] explored the performance

benefits of application-level DTM that proactively reduces core temperature so that the penalties

of hardware DTM can be reduced. Our work instead focuses on performance evaluation of our

algorithm after hardware DTM has been activated.
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6.3 Baseline

For our baseline evaluations, we use the same energy management policy and experimental setup

as in chapter 4. We slightly modify the test parameters as follows. The target delay (i.e., setpoint)

for the PI controller is increased to 5 s. Correspondingly, various server timeouts are increased

to prevent server errors resulting from overload as much as possible. The clipping of the integral

component of the controller was also increased from 8.8 GHz to 15 GHz, which is approximately the

total reconfigurable capacity in the cluster—this will allow larger controller reactions necessary to

deal with larger errors effectively. We do all of this because, for these evaluations, we are interested

in observing aberrant load effects rather than ensuring optimal performance.
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Figure 6.1: Baseline delay with proposed feedback control and no aberrant load. “Output”: total
output of PI controller; “I”: integral component of PI controller. The delay target is 5000 ms. Start
and End marks delineate the measured period (after warm-up).

With no unexpected overload events, Figure 6.1 demonstrates that the algorithm causes the

latency to quickly converge around the setpoint (5000 ms) and maintains it until the end of the

experiment. This is achieved by keeping the number of active machines relatively steady, with only

minor variations reflecting those in the client workload. We also observed that the application server

machines spent most of their time at the two highest available CPU frequencies (2 and 2.2 GHz).

In the next section, we will examine the consequences of a thermal overload, which forces these

machines to run at their lowest possible frequency.

It is worth noting that the algorithm achieves the expected level of energy savings of up to 45%
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in a lightly loaded cluster, with unchanged throughput and only a negligible increase in average

server delay, still well within tolerable limits at little over 300 ms.

6.4 Thermal Overload

6.4.1 Hardware DTM Scenario

Thermal overload occurs when a thermal sensor on a processor core detects that one of the factory

preset temperature limits has been exceeded. In the simpler case, there is only one limit, which

protects the processor from damage and causes it to immediately shut down once exceeded (this

is called a thermal emergency). However, in some (as of this writing, Intel) designs, there is an

additional limit, which serves as an early detection of a possible future thermal emergency, and

instead of immediate shutdown, it forces the processor to enter a power-saving state. In the case of

Intel’s TM2 technology, the processor will first attempt to cool itself down by entering its lowest-

frequency DVS state. If this is not sufficient, clock cycle modulation (throttling) will be engaged

subsequently.

To create a reproducible scenario, we emulate the first measure taken in TM2. To do so, we

utilize a feature of the Linux frequency scaling framework that allows one to restrict the range

of allowable frequencies. At some point during the experiment (after 20 minutes), we simply set

the top of this range to the minimum supported frequency of the processor in each cluster node.

This simulates a global cooling system degradation, which affects an entire set of machines. We

verify that all machines suddenly drop to the minimum frequency (1.0 GHz) as a result, drastically

reducing server capacity. Although this is not an entirely realistic scenario in a well-designed data

center, it serves as a worst-case example, where algorithm performance is examined with respect to

the greatest possible step decrease in capacity.

6.4.2 Thermal Overload Results

The algorithm’s response, specifically the PI controller output and cluster capacity evolution can be

examined in Figure 6.2. Immediately after the beginning of the thermal overload condition, server
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Figure 6.2: Algorithm behavior before and during thermal overload.

delay sharply increases because the frequency reduction causes a proportional increase in CPU

utilization. Hence, as the total estimated load remains approximately constant, the optimization

algorithm computes that it is only necessary to increase the frequencies back. However, as the

machines reject any frequency increases and delay continues to exceed the target, the feedback

controller keeps increasing the estimated load for the optimization algorithm until it computes that

additional machines need to be activated to meet that load.

As the figures show, this relatively quick controller reaction activates the available (sleeping)

machines, thus successfully managing to reverse the surge, and continues to maintain a stable la-

tency level about the target. Although the latency slightly exceeds that of the baseline, notice that

no further spare capacity exists, all 12 machines are already activated and therefore additional delay

reduction is not possible. Further note that the algorithm is completely unaware that the frequencies

temporarily cannot be increased (and in fact assumes they can), but nevertheless performs exactly as

expected. The reason is that as long as the optimization algorithm is unable to bring down latency

through attempts at increasing the frequencies, the integral part of the PI controller accumulates

and ensures progressively larger capacity additions (resulting in additional machine allocations) by

producing continuously increasing adjustments to the estimated demand.

For additional insight, we also compared the algorithm with the same system running under

open-loop control. We performed an exhaustive search via experiments to find the best machine

and frequency allocation for a particular offered load. Then, we emulated the same hardware DTM

event as before, but now with the cluster running at that allocation. As shown in Figure 6.3, even
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though the best allocation has much greater margin for the delay, it suffers a huge performance hit

after the event. This demonstrates the importance of closed-loop control in dealing with thermal

overload and DTM.
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6.5 Aberrant Workload

6.5.1 External Load Scenario

A different scenario, in which a cluster’s available capacity can be reduced, is when an aberrant

workload occupies that capacity. This can occur inadvertently: for example, a software bug can

manifest itself in an infinite loop, or a user can make a mistake in a command. The external work-

load can also come from malicious activity, deliberately injected in order to cause denial-of-service.

In our experiment, we create an aberrant load by starting a shell process running an infinite loop

on the machines. Unlike in the thermal overload experiment, not all machines are overloaded, since

that would leave no room for any algorithm to recover—the cluster could not meet the performance

goal, no matter how many machines were activated. We can evaluate a more interesting scenario

by leaving a few (three) machines unaffected. We verified in our logs that all except three machines

become 100% utilized after the external load event.

6.5.2 Aberrant Workload Results

Figure 6.4(a) shows that shortly after the external load is introduced, the algorithm activates all 12

machines. The reason, as we can see in Figure 6.4(b), is the sharp increase in delay, recognized



Chapter 6. Fault Tolerance of Power Management Algorithms 114

 0

 2

 4

 6

 8

 10

 12

 14

 0  500  1000  1500  2000  2500

M
ac

hi
ne

s

Time (s)

Start at 650 End at 2450External Load
start at 1247

Active
Shortage

(a) Trace of cluster capacity.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  500  1000  1500  2000
 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

D
el

ay
 (

m
s)

O
ut

pu
t (

kH
z)

Time (s)

Start at 611 End at 2411External Load
start at 1208

Delay
Output

I

(b) Delay control performance.

Figure 6.4: Algorithm behavior before and during aberrant external load.

by the feedback controller. After activation (and optimal allocation) of the 3 unaffected machines,

latency is quickly brought down. Importantly, due to very high measured utilization, all machines

are kept active through the entire event despite the delay becomes low. This is reasonable since

the algorithm does not distinguish whether the load is aberrant, and therefore does not know which

machine’s capacity can be safely reduced. Recognizing the nature of arbitrary loads would increase

application dependencies (and complexity), which we strived to avoid. Additionally, this simplic-

ity still implicitly results in the expected behavior, assuming we are conservative with respect to

performance (i.e. if we prefer acceptable performance to acceptable energy savings, which is the

typical case).

Finally, Figure 6.5 presents the request throughput of the system over time. Overall through-

put remains remarkably close to the baseline. Further, it is clearly seen that the injected load only

temporarily disrupted service. Thanks to the algorithm’s behavior, original service rates are quickly

restored (in only about 4 minutes) and original throughput is maintained thereafter, despite the con-

tinuous overload. It should be noted that service disruptions (response time spikes and throughput

drops) seen in our experiments are easily abridged with spare idle servers. We deliberately did not

leave spare servers in order to illustrate performance impacts.
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Figure 6.5: Throughput (web interactions per second) before and during aberrant external workload
experiment. Dots: samples; Solid line: moving average.

6.6 Conclusions

With an increasing emphasis on DTM to overcome deficiencies of average-case cooling, the in-

teraction between power management algorithms and DTM will become more pronounced in the

future. The interplay is especially interesting in pipeline-parallel applications (whether in multi-tier

server clusters or many-core PCs) since more complex reconfigurations are possible. The same is

true for other overload conditions that limit system capacity similarly to DTM. Our work focused

on exploring both.

We evaluated the resilience of our algorithm to certain unexpected events (i.e., DTM and load

injection) that result in system overload. Fault tolerant behavior is desired such that the algorithm

remains effective and does not further compromise the system during such events. We found that

feedback control is a key element in enabling this fault tolerance. Even though the algorithm has no

direct knowledge of these circumstances, its feedback controller allows it to perform successfully,

without the need to explicitly monitor that the actual state of the system is in correspondence with

the algorithm’s view. These properties make these kinds of algorithms robust to aberrant capacity

reduction in general, and therefore they are much more attractive in practical settings. Conversely,

we also found that simple open-loop algorithms may not be able to preserve system performance in



Chapter 6. Fault Tolerance of Power Management Algorithms 116

a DTM-intensive (or otherwise limited) system.

These basic insights are likely applicable to other workloads: for instance, task parallelism in

multicore chips that support per-core DVS and perhaps a few possible sleep states, is a promising

research direction for future work. With a multi-tier set of tasks running on a single chip, tasks can

be assigned to cores and cores can individually be put in different power states or be shut down.



Chapter 7

Conclusions

7.1 Summary

We have explored several open problems within the relatively new field of server energy manage-

ment and offered novel solutions to them. A unique approach was taken by addressing multi-tier

servers, a more general class of systems than conventional servers, which is widely used for its

greatly improved scalability. Because in practice most large-scale services are multi-tier, these

workloads are very important to consider. We relied on formal optimization to build a theoretical

foundation under our policies and algorithms, which was reinforced by feedback control to correct

for modeling inaccuracies and to help tolerate aberrant node behavior. We started with a rather

limited system model, characterized using simple theoretical power and delay functions. Gradu-

ally, this was generalized into a fully realistic reconfigurable cluster model with refined machine

and workload characterization based on actual system measurements. Our final model is capable of

describing large-scale multi-tier server farms with modern power management features, for which

we provide practical, effective energy management solutions. Our results naturally also apply to

single-tier servers as a special case.

The importance of this work is also affected by a number of factors. Since we control only

server-side latency, if network latency from the clients to the data center, or client-side processing

is the overwhelming portion of client-perceived latency, then our solutions have limited impact on

it. Note that this would allow even more aggressive server energy management, since the relative
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client-perceived performance impact is smaller. Another factor is memory and disk power usage.

This is typically not dominant in current systems, but if a very large number of these components

is being used per server, relative energy savings from controlling CPU power would be reduced.

Still, cluster reconfiguration would remain effective because system sleep states affect all of these

components. Finally, as future CPUs will have many cores, different strategies may be necessary to

optimize energy consumption. While the effectiveness of DVS may diminish, new techniques such

as per-core sleep modes might be exploited.

7.2 Limitations and Lessons Learned

Early on in the project, we identified that since end-to-end delay is the most important client-

perceived performance metric, our goal must be to maintain it below a given setpoint or deadline.

We then proceeded to model it using simple queuing theory, and later using non-linear regression.

Additionally, in our earliest work, we achieved soft real-time performance by empirically calculat-

ing the conditional probability of future deadline misses, solely from the current latency samples.

While these approaches were somewhat successful (i.e., we obtained acceptable latency results), by

now it has become clear to me that they are not the best ways to achieve latency control. The inher-

ent problem lies in the fact that a multi-tier server cluster is much more complex than what these

simple techniques can capture (e.g., resource saturation leads to errors instead of long latencies, we

have limited control over many timeout mechanisms, there are sophisticated request proxying algo-

rithms, query caching, etc.). In other words, these techniques are easily broken just by adjusting a

few system parameters, such as connection pool sizes, timeouts, etc. Systems require careful tuning

to get good results. The reason is that using only service delay as the performance constraint proves

to be too restrictive in practice. The well-studied inherent burstiness of Web workloads results in

short-term overloads even when average delay stays constant.

What is needed, instead, is a scheme that can cope with the non-ideal realities of complex server

software behavior. Even the per-tier latency distributions are bursty and self-similar [56]. Condens-

ing end-to-end performance into a tractable yet accurate function seems unrealistic. Instead of a
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utilization-delay characteristic function, simple load thresholding techniques that limit the number

of connections or sessions on each server to a safe value, were apparently used successfully [69]. In

multi-tier servers, the limit should be allocated dynamically to each tier, based on a new tier equal-

izing condition derived form this constraint instead of our current delay function. Although harder

to argue about its energy efficiency, one should keep in mind that meeting SLAs is normally always

more important than optimal energy goals. Other possibilities include using additional inputs to

help better estimate demand. We took a step in this direction by adding a server error sensor into

our feedback control loop, and it markedly improved performance. The drawback is that, being

a feedback controller, it cannot avoid errors altogether. Other indicators for server performance

control could supplement our design in order to avoid overload, such as server queue length, which

has been successfully applied before. Incorporating this would only require a simple extension to

our feedback controller.

An additional limitation of our system model is that it does not directly incorporate I/O perfor-

mance control. This might be a problem with reconfigurable tiers running completely I/O-bound

applications, in which CPU utilization is a bad indicator of delay. This limitation can be overcome

by extending the performance and power models with I/O utilization measurements.

An implementation-related limitation and corresponding lesson is regarding session manage-

ment. In the reconfigurable cluster setup, the assumption was made that servers selected for tran-

sitioning to sleep state do not have to drain their sessions (i.e., wait until all sessions are finished).

I believe this is a reasonable assumption, since doing so could take an arbitrary and unpredictable

(client-dependent) amount of time, during which that node falls out of energy management—a

clearly undesirable situation. However, I did not implement a mechanism to hand off the involved

session data, resulting in a server error for the next request in each of those sessions. This turned

out to be unfortunate, because in the spare capacity optimization study, the error rate would be

an interesting metric if these session-related errors could be separated. Even worse, after shutting

down a server, the increased error rate is noticed in our own feedback controller, which will try to

compensate for it. Luckily, this effect was not frequent enough to make a major difference in the

results. However, it makes it hard to argue about the error figures.
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A further limitation related to sessions is that with cluster reconfiguration, session distribution

incurs additional overhead when adding machines, which overhead decreases energy efficiency.

Therefore, this will need to be accounted for in the analysis, which is an important area for future

work. Sessions or other large distributed data sets stored in a tier also place limitations on migration

between tiers, since data synchronization on migration might be overly costly to be beneficial alto-

gether. This may typically apply to database server tiers. Note that for this reason, in our prototype,

we disallowed migration from the database tier.

One issue with interpreting our results is that it is not straightforward to accurately extrapolate

them to real-life data centers at realistic scales. The difficulty arises because of differences in

workload fluctuations (e.g., slower relative demand changes, significant long-term fluctuations) and

a much smaller ratio of necessary spare machines to total machines. That said, I do not expect large-

scale results to be fundamentally different, since savings from DVS are per-machine, and assuming

the same workload profile, a similar portion of the machines would be unnecessary, resulting in

similar relative savings from sleep states as well.

As far as our workloads and results are concerned, I would now focus more on how to empha-

size the benefit of the multi-tier optimization over simple heuristic algorithms. Even some simple

tweak in an otherwise static workload that causes a dynamic imbalance, similar to what we used in

section 4.6.5, should give better results than what we obtained with the static load profiles, which

do not highlight the benefits. By the time I was working on the reconfigurable cluster setup, I

realized that we needed much more realistic workloads for the results to be convincing, which is

reflected in the trace-driven TPC-W approach we first used there. However, to convincingly show

why multi-tier energy management must be treated separately, an ideal workload would have, for

instance, different request types that place different loads on the tiers, so that varying the request

mix would produce a dynamic shifting of tier loads, highlighting the benefits of dynamic allocation.

Finally, it is worth noting that experimentation on a real testbed was extremely time-consuming.

There are significant setup costs, tuning both the system under test and the experiment timings,

including diagnosing performance problems, isolating and fixing their causes. Instabilities, crashes

frequently occur, especially with the still immature power management technology. Even when
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everything works smoothly, producing an interesting number of data points usually requires weeks

of pure run time. Simulation should be considered as an alternative. Nevertheless, the insight and

experience I have gained in the process is invaluable, and ultimately this methodology gave the

results much more credibility than simulation alone would have.

7.3 Future Work

Research we are aware of has not yet addressed joint optimization of peak power and energy. How-

ever, in real data centers, both may be desired. Thus, it would be interesting to formally analyze the

joint problem to determine whether their trivial combination is optimal.

A significant portion of total system power is attributed to disks. In fact, in most typical systems

disks are the second largest power consumers after CPUs. Still, traditional disk power management

capabilities are very limited, only allowing the disk to be spun up and down. When the disk is

spun down, no activity can take place on it, which severely limits the usefulness of this technique

due to the high spin-up latency involved. Fortunately, recent research has led to the DRPM [29]

technique, which allows the disk rotation speed to be dynamically changed, analogously to the

DVS technique in CPUs. Given the importance of disk power, it would be worthwhile to extend

our analysis with the model of such variable-speed drives, and derive the optimal combination of

power states, including disk speed, that minimizes the total energy usage of the cluster.

For our reconfigurable cluster policy, we did not incorporate support for multiple client classes

and request classes. Adding this would be beneficial for handling workloads where the request mix

dynamically changes over time.

Additional issues arise from virtualization. When virtual machines (VMs) are present, several

individual OS power management policies may attempt to control the same hardware feature (e.g.

DVS) due to VM consolidation. To handle this, power management could be performed at the

VM monitor (VMM) level. This requires hooks that allow the individual VMs to express their

objectives, enabling global power optimization by the VMM. One such alternative is for the VMM

to export virtual DVS states for each VM, and then take the individual VM’s settings as hints
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for the global policy [63]. Also, cluster reconfiguration may be simplified by the virtualization

layer if it can automatically move data and network addresses when consolidating services, thus

retaining sessions associated with the server being moved. The consolidation of tiers may provide

for additional optimization opportunities, because the VMM has knowledge that the separate VMs

are actually cooperating to meet a common global objective.

Multicore architectures also have new issues and provide new opportunities. For instance,

placement of threads on the cores becomes a significant factor in both performance and energy con-

sumption. This is especially true because of different communication costs between cores within

the same chip and those on different chips, which further affects load balancing and power man-

agement algorithms. Specifically, the two algorithms might cooperate to increase overall energy

efficiency by consolidating threads such that better communication performance is achieved, and

at the same time entire chips can be put into a sleep state, as opposed to only individual cores but

with all chips active. In summary, for good cluster-level energy management, more sophisticated

machine-level algorithms are needed in a multicore environment.



Appendix A

Glossary

ACPI Advanced Configuration and Power Interface. Establishes industry-standard interfaces en-

abling OS-directed power and thermal management. Defines device-, CPU-, and system-level

power states.

CMP Chip Multiprocessor. A CPU with multiple processing cores.

DPM Dynamic power management. A design methodology for automatically setting the appropri-

ate power state for components based on the workload. Decisions about power state transi-

tions are made by a power management policy.

DTM Dynamic thermal management. A design methodology for dynamically reducing power

dissipation of a component (CPU) if its temperature exceeds a certain value, in an attempt to

prevent further heat buildup or damage.

DVS Dynamic voltage scaling. A power management technique involving setting discrete CPU

voltage and frequency combinations during operation.

DVFS Dynamic voltage and frequency scaling. An alternate name for DVS.

Hibernate-To-Disk The ACPI S4 power state, whereby volatile program state (in the RAM and

CPU registers) is saved to disk and most components can be shut down. Its power demand is

similar or identical to the Soft-Off state but the wakeup time may be shorter because programs

are already loaded and initialized in the saved RAM image.
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Hibernate-To-RAM The ACPI S1 or S3 power state, in which CPU state is saved to RAM and

many components (such as CPUs and disks) can be shut down. The RAM is still powered to

maintain contents. Power demand can vary based on implementation and on the amount and

type of RAM modules. Wakeup time is fast as it mostly involves the initialization of CPUs

(and other devices).

P-state ACPI CPU performance state, which is the ACPI terminology for DVS state.

PI control Proportional-Integral control. A widely used feedback control mechanism, which de-

termines its output based on the current error and the sum of recent errors.

Pipeline-parallel system A system where computation has been partitioned into processing stages.

The stages can work in parallel, yielding substantial speedup.

S-state System-level power state in ACPI, such as Hibernate-To-RAM, Hibernate-To-Disk, and

Soft-Off.

SLA Service Level Agreement. A specification of the performance requirements for a hosted In-

ternet service.

Soft-Off The ACPI S5 power state, in which all except a few circuits in a computer are shut down.

The active circuits allow non-mechanical wakeup, for example by pressing a keyboard button

or by the network adapter through Wake-On-LAN. In contrast to the mechanical off state

where all circuits are completely disconnected from power, the Soft-Off state requires a small

amount of power.

Wake-On-LAN A protocol for waking up a machine remotely, over the network. The network

interface listens for an appropriate wakeup packet even in Soft-Off state.

Ziegler-Nichols tuning method A manual P, PI, or PID controller tuning procedure that deter-

mines stable controller gains based on measurements on the system.
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