
Multi-mode Energy Management for Multi-tier Server
Clusters

Tibor Horvath
tibor@cs.virginia.edu

Kevin Skadron
skadron@cs.virginia.edu

Department of Computer Science
University of Virginia

Charlottesville, VA 22904

ABSTRACT
This paper presents an energy management policy for recon-
figurable clusters running a multi-tier application, exploit-
ing DVS together with multiple sleep states. We develop
a theoretical analysis of the corresponding power optimiza-
tion problem and design an algorithm around the solution.
Moreover, we rigorously investigate selection of the optimal
number of spare servers for each power state, a problem that
has only been approached in an ad-hoc manner in current
policies.

To validate our results and policies, we implement them
on an actual multi-tier server cluster where nodes support
all power management techniques considered. Experimental
results using realistic dynamic workloads based on the TPC-
W benchmark show that exploiting multiple sleep states re-
sults in significant additional cluster-wide energy savings up
to 23% with little or no performance degradation.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
D.4 [Operating Systems]: General

General Terms
Algorithms, Design, Experimentation, Management, Perfor-
mance

Keywords
energy management, internet servers, multi-tier applications,
reconfigurable clusters, end-to-end latency, dynamic power
management, dynamic voltage scaling, sleep states

1. INTRODUCTION
Large data center operating costs arising from the steadily

increasing energy consumption of recent server hardware
have prompted the consideration of cluster-level energy man-
agement policies by researchers. Current solutions increase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

overall cluster energy efficiency through dynamic power man-
agement techniques such as DVS and dynamic cluster re-
configuration. DVS may increase the efficiency of individual
machines by reducing their power and performance when
they are not fully utilized. On the other hand, reconfigu-
ration strategies reduce total cluster power by consolidating
load on a subset of machines and turn off the remaining
ones.

A key observation is that these existing policies are fo-
cused on energy management of the active portion of the
cluster: based on the current load, they determine what
the active capacity should be. The inactive (idle) portion
is simply turned off (except for a few spare servers). How-
ever, newer systems already contain support for multiple
sleep states with various latencies and standby power levels.
Exploiting the benefits of these extra states requires energy
management of the inactive portion, which allows minimiz-
ing the total energy consumption of sleeping machines sub-
ject to responsiveness constraints. The resulting multi-mode
energy management solution can achieve the same level of
responsiveness as existing policies using a single sleep state
(Off) only, but with significantly less energy. Despite this
potential, we are not aware of any research that has explored
the benefits of multiple sleep modes. Yet our promising re-
sults indicate that multi-mode energy management might
become an important necessity in future energy-aware clus-
ters.

The main contribution of this paper is the presentation
of a comprehensive theoretical analysis, design, and evalua-
tion of multi-mode energy management for multi-tier server
clusters. This includes developing the active energy opti-
mization and the sleep energy optimization policies, as well
as experimental studies on an actual cluster, in which we
compare the energy efficiency and performance of several
policies.

2. RELATED WORK
Pinheiro et al. [12] design a power management scheme

for reconfigurable clusters based on distributing demand for
resources to a subset of the cluster. Transient demand varia-
tions are compensated for with PID feedback control. They
report energy savings of 45%, however their static web work-
load was network interface-bound with peak CPU utiliza-
tions of only about 25%. To provide some spare capacity to
compensate for wakeup latency, they assume that machines
have a lower than actual capacity. To control the amount
of spare capacity, a heuristic parameter was used. Elnozahy
et al. [4] propose cluster reconfiguration combined with DVS,

270

skadron
Text Box
This is the authors' copy; the definitive copyappears in the Proceedings of PACT'08.

skadron
Text Box

assuming a cubic relation between CPU frequency and power,
evaluated by simulation. They conclude that the cluster
uses least energy when all machines operate in an optimal
frequency range, not necessarily using the least number of
active machines, which is in contrast with our observations
(due to our different power model). The work by Raja-
mani and Lefurgy [14] is highly relevant to ours. They point
out critical workload factors (e.g., peak load) that must be
properly selected for valid evaluations of energy manage-
ment schemes. Hence, we use a similar methodology in our
evaluations. They also study how the availability of spare
servers affect energy savings in different workloads, but do
not attempt to derive the optimal number of spare servers.

Heterogeneous clusters were also addressed in the liter-
ature. Heath et al. [7] developed a solution based on a
complex system model built from extensive characterization.
Implementing an adaptive Web server that takes advantage
of the model, they achieve 42% energy savings on a small
cluster with two types of machines, serving mostly static
requests. One shortcoming is that their model does not in-
corporate DVS. Rusu et al. [16] report 45% energy savings
in a small heterogeneous cluster combining reconfiguration
and local (independent) DVS. The rely on power, execution
time, and server capacity characterization to provide energy
management with soft real-time performance. They define
the max_load_increase variable as the maximum slope of
the cluster’s load, based on which they precompute a table
of load values at which additional machines must be turned
on.

Complementary to our research are efforts by Ranganathan
et al. [15] directed at dealing with cluster-level power pro-
visioning. While our work addresses the power optimiza-
tion problem under performance constraints, their work ad-
dresses the opposite: the performance optimization prob-
lem under power constraints. Fan et al. [5] employed power
modeling to attack data center-level power provisioning in-
efficiencies. These approaches are useful for saving on power
delivery and cooling infrastructure costs, while our work is
useful for saving additional operational energy costs. Such
solutions can be combined; Raghavendra et al. [13] investi-
gate a coordinated design, which ensures that the various
power and performance optimizing controllers at different
levels of the data center hierarchy can correctly interoper-
ate. However, their work does not discuss spare capacity or
multi-mode energy management.

Our work is different from the above in that (i) we address
multi-tier clusters with highly dynamic workloads, (ii) we
perform active energy optimization using coordinated recon-
figuration and DVS based on theoretical analysis, (iii) we use
feedback control to correct for estimation errors, and (iv) our
policy is evaluated with a realistic trace-driven benchmark
with the peak load correctly sized to our cluster’s capac-
ity. Another key difference is that we address multiple sleep
states. In general, it is not straightforward to extend the
techniques presented in previous work to multiple states, be-
cause the new trade-off between wakeup latency and sleep
power must be examined.

3. SYSTEM MODEL
We consider multi-tier server clusters, consisting of a con-

stant number of tiers, each of which are composed of a vari-
able number of machines. All machines in one tier run the
same application, and requests go through all tiers. The

end-to-end server performance must meet a predefined ser-
vice level agreement (SLA). We assume a simple SLA spec-
ifying a target average end-to-end server delay D. Finally,
each machine optionally supports multiple P-states (DVS).

In order to simplify the problem, we make a few impor-
tant assumptions. First, we assume that machines within
a single tier have identical power and performance charac-
teristics; in other words tiers are homogeneous in terms of
hardware. This is a reasonable assumption because, even
though whole data centers are typically heterogeneous, it is
normally preferred that groups of servers running the same
application and being load balanced (i.e. the equivalent of
a tier) are identical—this simplifies load balancing, among
others. The second, related assumption is that there is per-
fect load balancing within a tier such that the CPU uti-
lization of the constituent machines is equal. While this is
idealistic, it is only required for analytical tractability, and
based on our empirical observations the impact of moderate
imbalances on actual performance is insignificant.

As an implication of the assumptions above, we do not
need to model individual machine CPU frequencies—it is
sufficient to use a single value per tier. This is because,
since power is a convex function of frequency [8], setting the
same frequency on all nodes within a tier is equally or more
power-efficient than setting different values. Further, the
performance effects of frequency scaling are not greater than
its effects on power [9], therefore there is no performance
or energy-efficiency benefit from different settings within a
(homogeneous) tier either. Therefore, we limit our study
to the model where each tier is operated at a single CPU
frequency.

3.1 Power Model
In our system model, two variables have a significant effect

on the power draw of an individual active machine: its CPU
utilization and frequency (which also affects core voltage).
Other variables may have an indirect effect by influencing
these. To obtain a predictive model for machine power, Pi,
we analyzed the actual power measurements from a large
pool of characterization experiments, in which a machine
operates at a varying CPU utilization (Ui) and frequency
(fi). Figure 1 shows the resulting curves. We found that Pi

is approximately linear in both Ui and fi for any fixed fi

and Ui, respectively. The relationship between power and
CPU frequency is in reality slightly super-linear (as expected
from the CMOS power model [11] assumed throughout the
literature, e.g., [2, 4, 10]), however a linear approximation
was sufficiently accurate for our purposes and preferable for
its simplicity.

From analysis of the curves, we obtain our power model:

Pi(fi, Ui) = ai3fiUi + ai2fi + ai1Ui + ai0. (1)

Parameters aij are determined by curve fitting. Power es-
timation for our test system using this model was fairly ac-
curate (confirmed by the coefficient of determination R2 =
0.9879), with average error of 1% (worst case < 4%).

3.2 Service Latency Model
The service latency of short requests in concurrent servers

is mostly a function of CPU utilization. Hence, in order to
predict latency for various cluster configurations and per-
formance states, we first need to model CPU utilization in
those configurations. Given our assumptions on perfect load

271

55

65

75

85

95

0 0.2 0.4 0.6 0.8 1
CPU utilization

A
vg

 s
ys

te
m

 p
ow

er
 (W

)

1000 MHz
1800 MHz
2000 MHz
2200 MHz

(a) Average system power vs. CPU uti-
lization.

55

65

75

85

95

900 1200 1500 1800 2100
CPU frequency (MHz)

A
vg

 s
ys

te
m

 p
ow

er
 (W

) 0-10% 10-20%
20-30% 30-40%
40-50% 50-60%
60-70% 70-80%
80-90% 90-100%

(b) Average system power vs. CPU fre-
quency.

Figure 1: Average system power measurements.

balancing and equal CPU frequencies in a tier, the relation
between offered load λi, CPU utilization Ui, tier size mi and
frequency fi can be estimated using:

λi = mifiUi. (2)

Prediction is achieved through a two-step process: we first
estimate the current λi from measurements, and then based
on this we can predict Ui for the selected configurations (mi,
fi). This model produced fairly accurate predictions in our
test system (R2 = 0.9690).

Building on this, service latency Wi can also be predicted
for any tier configuration. To obtain our latency model, we
performed nonlinear regression analysis using a heuristically
decided format. After computing the fitting coefficients (via
curve fitting to our measurements) we obtained the following
model (R2 = 0.9968):

Wi(Ui) =
wi1

(1− Ui)2
+ wi0. (3)

4. MULTI-MODE ENERGY MANAGEMENT
In multi-mode energy management, the energy use of both

active and idle nodes must be considered. In general, total
cluster energy is given by:

Etotal = Eactive + Esleep + Etransition. (4)

Assuming a reasonable energy management policy, Eactive

is dictated by load and is not affected by the other terms.
As long as sleeping machines can be waken up in time to
meet demand, optimization of Esleep can be treated as a
separate concern. Minimization of Etransition is considerably
less important in typical Internet server workloads, since
load fluctuations occur on a larger time scale (i.e., daily or
longer). Prior works have ensured that it remains an in-
significant fraction of total energy by smoothing out short
bursts and imposing a minimum time between cluster recon-
figurations [12, 7].

4.1 Active Energy Optimization
An energy management strategy is considered optimal if

it assigns machines to tiers and determines their operating
frequencies such that the total power consumption of the
system is minimal while the SLA is still met. This is more
formally expressed as the following minimization problem:

min
mi,fi

Ptot =

sX
i=1

miPi

„
fi,

λi

mifi

«
(5a)

subj. to Wtot =

sX
i=1

Wi

„
λi

mifi

«
≤ D (5b)

and

sX
i=1

mi ≤ M. (5c)

We solve the problem using the method of Lagrange multi-
pliers. Setting ∀i : ∇mi,fiL = 0, where L(mi, fi, l1, l2) is the
Lagrangian function (with multipliers l1 and l2), we get for
each i:

∂L

∂mi
= ai2fi + ai0 + l1

∂Wi

∂mi
+ l2 = 0, (6a)

∂L

∂fi
= ai2mi − ai1

λi

f2
i

+ l1
∂Wi

∂fi
= 0. (6b)

Substituting Equation (3) and solving for l1 results in our
optimality criterion:

G(mi, fi) = (1− Ui)
3 mi

wi1

„
ai2fi

Ui
− ai1

«
= 2l1. (7)

This means that, assuming the constraints are active (i.e.,
the total latency can potentially exceed the deadline), total
cluster power use can only be optimal if G are equal across
all tiers, more formally if:

∀i, j : G(mi, fi) = G(mj , fj). (8)

4.2 Sleep Energy Optimization
Machines support n system sleep states, each character-

ized by a distinct power level and wakeup latency. The
power dissipation and wakeup latency of state i is denoted
as pi and ωi, respectively. We assume that ∀i, 0 < i ≤ n :
pi ≤ pi−1 ∧ ωi ≥ ωi−1, where state 0 is the On state with
ω0 = 0. As an example, recent ACPI-compliant hardware
may support up to 5 system sleep states (S-states).

With respect to the workload, we assume that load spikes
can be unpredictable, but arbitrarily steep spikes need not
be supported (note, accommodating a step increase in load
would require immediate wakeup capability). Intuitively, a
trade-off exists between system responsiveness and the abil-
ity to exploit sleep states, which should be up to the user to
control. Hence, we define a system parameter called max-
imum accommodated load increase rate (MALIR, denoted
as σ) to be the maximal rate of increase of the demand for
cluster capacity that must be met despite any power man-
agement activity. For simplicity, we assume a CPU-bound
workload with the demand and MALIR measured in CPU
cycles per second (Hz). If another resource is the bottleneck,
it can be defined for that resource analogously.

We minimize the Esleep component through spare capacity
optimization. Since it is decoupled from the other compo-
nents, optimal steady-state energy is achieved by optimizing
for power. This means, because of the property pi ≤ pi−1,
that each spare (unallocated) server should be put to the

272

deepest possible state (greatest i), subject to the MALIR
constraint.

4.2.1 Feasible Wakeup Schedule
Our problem becomes that of determining the minimum

number of spare servers for each sleep state such that if the
offered load increases with rate σ, a feasible wakeup schedule
still exists. Let c(t) and d(t) denote cluster capacity and
demand, respectively, at time t. Further let t0 be the time
at which load begins to increase. Assume that both c(t0) and
d(t0) are known (e.g., from measurements and estimation).
Then, from the definition of σ:

d(t) = d(t0) + σ(t− t0). (9)

In order to determine whether a feasible wakeup schedule
exists, it is sufficient to consider the case when all spare
servers are waken up at time t0—if this does not result in a
feasible schedule, then one does not exist. Let Si stand for
the number of spare servers in sleep state i, and fmax the
maximum CPU frequency. For the case described, capacity
can be obtained from the recursive formula:

c(t0 + ωi) = c(t0 + ωi−1) + Sifmax. (10)

In other words, cluster capacity at the expiration of the
wakeup latency of some state increases by the maximum
capacity of all machines in that particular state. From this,
and observing that d(t) continuously increases while c(t) is
stepwise, a feasible wakeup schedule exists iff:

c(t0 + ωi) ≥ d(t0 + ωi+1), 0 ≤ i < n. (11)

4.2.2 Spare Servers
Since we want to put spare servers in the deepest possible

sleep states, we examine the limit (equality) case of Equa-
tion (11) so that no slack time is allowed before waking up
spare servers. Because this requires the set of greatest still
feasible wakeup latencies, it also results in the smallest fea-
sible overall power due to the monotonicity of ωi and pi in
i. Substituting into Equation (10), we get:

d(t0 + ωi+1) = d(t0 + ωi) + Sifmax, (12)

which, after simplification by applying Equation (9) and re-
arrangement, yields the optimal number of spare servers for
each sleep state as follows:

Si = σ
ωi+1 − ωi

fmax
. (13)

The above formula is in the continuous domain, whereas
a) cluster reconfiguration is typically performed periodically;
and b) only whole machines can be transitioned to sleep
states. Hence, the formula is discretized to obtain the final
solution:

S∗i =

‰
σ
T (ωi+1)− T (ωi)

fmax

ı
, 0 ≤ i < n, (14)

where T (ω) = dω/T e·T and T is the control period. This ac-
counts for both that wakeups will only be initiated, and that
the cluster will only be reconfigured to include the awakened
machines, at controller activation.

5. POLICY DESIGN
We designed energy management policies that take advan-

tage of our predictive models and theoretical results. The

policies are periodically invoked, when they obtain basic
measurements from the system, apply the models, compute
the optimal power states, and initiate the necessary power
state transitions.

5.1 Active Capacity Policy
A simple approach to computing the optimal power states

would be to perform an exhaustive search over the possible
cluster configurations, selecting the one that best matches
the optimality criterion derived in section 4.1. However,
there are two issues with this. Firstly, the criterion is only
a necessary condition of optimality, and may not be a suf-
ficient condition. Secondly, an exhaustive search does not
scale up to large cluster sizes, or to large numbers of pos-
sible frequencies. Therefore, to address these issues, we de-
signed a greedy heuristic search algorithm to perform the
optimization.

5.1.1 Heuristic Optimization
The algorithm relies on an additional assumption regard-

ing the power characteristics of the hardware: it assumes
that the static system power dissipation is large enough that
turning on an additional machine and lowering the common
CPU frequency such that CPU utilization is kept constant,
never saves power. More formally:

(mi + 1)Pi(
λi

(mi + 1)Ui
, Ui) ≥ miPi(

λi

miUi
, Ui), (15)

which reduces to ai1Ui + ai0 ≥ 0. This is a very realistic
assumption with current server hardware. For instance, the
machines in our testbed clearly satisfy it, and prior work has
relied on similar findings [12].

The optimization can be performed in two rounds. The
first round finds the minimum number of machines in each
tier so that the end-to-end performance constraint Wtot ≤ D
is satisfied using the highest frequency for the machines. We
start from computing a minimum allocation that only en-
sures that any one tier will not exceed the end-to-end dead-
line in itself. Then, we continue the search by incrementally
assigning machines to tiers one by one, until the predicted
total latency meets the constraint. At each step, we need
to decide which tier to add a machine to. We base this de-
cision on our optimality criterion: we choose the tier that,
with the added machine, would result in the “most equal”
values G(mi, fi). More precisely, we choose the assignment
for which StdDev(Gi) is minimal. In the second round, tier
frequencies are decreased one at a time in a similar fash-
ion, as long as Wtot ≤ D is still met. The decision which
tier to affect at each step, is guided by the same objective:
select the change that minimizes StdDev(Gi). (The two-
round structure of our heuristic is similar to the queuing
theory based heuristic proposed by Chen et al. [3].)

5.2 Spare Server Policies
We developed two policies for comparison: Optimal, based

on our sleep energy optimization result (section 4.2), and De-
motion, which gradually demotes (transitions into a deeper
state) spare servers after some fixed timeouts. The fixed
timeout-based predictive technique is the most common DPM
policy [1], and it also addresses multiple sleep states, which
are the reasons for our choice. To ensure a fair comparison,
a wakeup scheduling algorithm is used together with both
policies that always wakes up machines when needed to meet

273

the expected future load based on the MALIR parameter.
The difference is that while the Optimal policy attempts to
ensure that machines can be awakened by the time they are
needed, the Demotion policy does not.

5.2.1 Optimal Policy
The design of the Optimal policy is relatively simple. An

algorithm precomputes S∗i for each system power state (0 ≤
i < n) allowed by the user at initialization. Then, it is
invoked in each control period with the list of nodes deter-
mined by the active capacity policy to be idle. The Optimal
policy is responsible for assigning these to sleep states as nec-
essary. We start by checking if there are more idle machines
in the On state than the optimum S∗0 . If so, each surplus ma-
chine must be assigned to one of the sleep states. Going from
shallow to deep states, we assign as many surplus machines
to each as necessary for it to reach its optimum. Finally,
any remaining surplus machines are assigned to state n.

5.2.2 Demotion Policy
The main idea of the Demotion policy is that whenever a

machine becomes idle, a timer is started, and as it reaches
each timeout the machine is demoted into the corresponding
sleep state. There are two problems with directly applying
this approach in a cluster. First, it is not scalable to main-
tain individual timers for each machine in a large cluster;
and second, unless the activation of idle nodes is always done
in a predetermined order (e.g., by rank), it is suboptimal.
To see this, consider an example where demand fluctuates
between 1 and 2 machines, but whenever it increases to 2,
a different node is activated in a round robin fashion (e.g.,
for thermal load distribution). If this happens frequently
enough, timers may never reach any timeouts, even though
most of the cluster is always idle.

Therefore, instead of per-node timers, our solution is to
just maintain the count of idle machines together with the
time each smaller count was first seen. More precisely, we
define a list of timestamps named idle_since, which is ini-
tialized empty and then maintained as follows. If the number
of idle machines at the current time t is greater than the size
of idle_since, then t is appended to its end as many times
as the difference. If it is smaller, then as many elements
as the difference are removed from the list’s end. Then, for
each list element e, its timeout for state i has been reached if
t > e+ωi. Summing up the number of elements by the deep-
est state they reached, we obtain the timeout count for each
state. Taking the difference between the number of nodes
currently in each state and that state’s timeout count, we
get the number of surplus nodes (or deficit) in each state.
Then, working our way from the On state to deeper states,
surplus nodes are demoted to states with a deficit, filling up
deepest states first.

5.3 Load Estimation
Estimation of the offered load is crucial for predicting la-

tency in a target cluster configuration. However, calculat-
ing it from the current CPU utilization has a limitation:
demand that is higher than total CPU capacity cannot be
detected from utilization measurement because it saturates
at 100% (and in practice even lower). Therefore, relying
on this method only would result in unacceptable underes-
timation of offered load as the system got into saturation.
Hence, other inputs are needed to detect this condition. We

chose to add two types of performance monitoring: one to
detect when response times exceed D, and another to detect
service errors resulting from overload (e.g., timeouts), both
meaning our estimate of λi is low. Once detected, we rely
on feedback control to increase our load estimates, in order
to quickly and reliably drive performance within the SLA
specification. The addition of our feedback controller is also
beneficial since it allows the performance target to be met
despite errors in modeling, characterization inaccuracies, pa-
rameter variations, and practical issues such as server errors
due to overload.

Error rate > 0
Error

PI Controller
Yes

Delay

PI Controller
No

Tier Load

Estimator

Tier utilizations

Service error rate

Service delay

Target delay
-

+

Control

output

Power Optimization

Algorithm

Tier

loads

Spare Capacity

Optimization

Algorithm

Required tier capacities

Multi-tier

Server Cluster Target

power states

Figure 2: Design of the energy management policy
with closed-loop control.

Our feedback control loop, sketched in Figure 2, is de-
signed as follows. The controlled system (or “plant”) is a
multi-tier server cluster. Each period, three kinds of mea-
surements are taken from it: tier CPU utilization, end-to-
end service delay, and service error rate. These are all easy
to obtain in practical systems: end-to-end response time
samples are collected at the front-end tier and averaged
across servers (weighted by the number of samples from
each server), while error rates are summed. We employ
two Proportional-Integral (PI) feedback controllers: one re-
sponds to latency violations, and one to service errors. (The
reason to separate them is that they require different gains.)
If service errors were observed, their rate is fed to the error
controller, otherwise delay error is calculated by subtracting
the target delay D from the measured average delay, which
is fed to the delay controller. The final control output is
produced by adding the selected controller’s output and the
other controller’s integral component. Since the service er-
ror rate can never go below its target (i.e. zero), the integral
component of the error controller is exponentially decayed
(halved) when the rate is zero.

Next, the tier load estimator takes the utilization mea-
surements and calculates an estimated offered load for each
tier (section 3.2), adding the control output (if positive).
The increment is distributed between reconfigurable tiers
proportionally to their measured utilization, which ensures
convergence to the true load plus any compensation added
by the controller to correct steady state error. Then, the
estimated tier loads are input to the active capacity policy
(section 5.1), which determines the new energy-optimal al-
location, reflecting minimal tier capacities required to main-
tain the required performance. Any extra machines are as-
signed to the appropriate power state by the spare server
policy (section 5.2). Finally, the determined target power
states are applied to the cluster, affecting the service and
thereby closing the loop.

274

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup

6.1.1 Hardware
Our testbed uses a 12-node cluster composed of Linux-

based PCs. Each PC has a DVS-capable AMD Athlon 64
processor, which supports the frequencies 1.0, 1.8, 2.0, and
2.2GHz, as well as an Ethernet interface that supports the
Wake-On-LAN protocol for remote wakeup capability. In
addition, our PCs support four ACPI system power states:
On (S0), Hibernate-to-RAM (S3), Hibernate-to-Disk (S4),
and Soft-Off (S5). The machines also have 512MB RAM,
a hard disk, and a simple display adapter, but no monitor
in order to keep the setup more realistic. A Watts Up Pro
power meter is connected to the main power strip, measuring
the AC power draw of the entire cluster.

6.1.2 Software
The cluster is set up as a 4-tier Web server consisting of

the following tiers:
1. A front load balancer tier with 1 machine statically

allocated. It runs the Linux Virtual Server (LVS) high-
performance load balancer. The power draw of this tier
was not measured because in a real-life cluster it would
represent a much smaller fraction of total power than
in our setup, thus our results would be skewed if we
included it.

2. A Web (HTTP) server tier with dynamic machine al-
location. This runs Apache with the mod_jk connector
module, which forwards dynamic requests to the load
balanced backend servers. We also developed a load-
able module, which reports end-to-end latency samples
to our controller.

3. An application server tier, also with dynamic machine
allocation, which runs the JBoss enterprise Java appli-
cation server. It uses the MySQL Java connector to
forward queries to the backend database cluster.

4. A database cluster tier with 3 machines statically allo-
cated. The MySQL Cluster scalable database package
is used with 3 data nodes, over which the data set is
partitioned. An SQL node (through which the cluster
can be accessed) is co-located with each application
server.

For each tier, standard versions of server software are used
with no modifications necessary.

6.1.3 Policies
As our baseline, we consider a traditional cluster stat-

ically provisioned for peak load (i.e., not overprovisioned
overall), which serves as our reference in energy efficiency
and performance. This is first improved by applying our ac-
tive capacity policy with only DVS enabled, modeling a non-
reconfigurable cluster for comparison. Then, the two spare
server policies are tested, each with both multiple states and
with only the Off state allowed. This has two goals: to find
out what additional gains can be realized by using multiple
states over previous approaches that only exploit the Off

state; and to compare the spare server policies themselves.
The policies are listed in Table 1.

Table 1: List of policies compared.

Policy Description

Baseline Statically provisioned for peak load.
DVS Baseline with DVS added.
Demotion (Off) Demotion policy using the Off

state only.
Demotion (Multiple) Demotion policy using Multiple

states.
Optimal (Off) Optimal policy using the Off state

only.
Optimal (Multiple) Optimal policy using Multiple

states.

6.2 Parameter Selection

6.2.1 Control Parameters
Our goal is to design a highly responsive controller, there-

fore we opt for an 8-second control period that can be con-
sidered very short in server applications. Hence, care must
be taken when choosing the controller gains to avoid un-
stable behavior (i.e., oscillations between extremes). Since
the controlled process is complex and dynamic, it is prefer-
able not to rely on a detailed model when determining the
gains. We use the classic Ziegler-Nichols tuning method,
which although imperfect [6], has the advantage that it re-
quires very little information about the system. In the final
controller, the total integral component is clipped to be-
tween 0 and 8.8GHz. Such clipping is typically performed to
prevent excessive response in Integral controllers that may
exhibit steady state error due to system constraints (e.g.,
not enough machines are available to reach the target). Af-
ter experimenting with our system, we chose 250ms for the
average latency target, which is reasonable both in terms of
user expectations of an interactive website, and compared
to the 120–140ms baseline with no energy management.

6.2.2 Optimal Timeout Values
We follow the methodology proposed by Benini et al. [1],

who define the break-even time TBE,i for each sleep state
i, which is the minimum inactivity time required to com-
pensate for the transition energy. They suggest the optimal
choice for timeout (yielding 2-competitive energy savings) is
equal to TBE,i. To calculate this for each state, characteriza-
tion of the following parameters is necessary: time to enter
and exit the state, average power while entering and exit-
ing, and average power while in the state. From these, for
the Demotion (Multiple) policy we obtain TBE,S3 = 20 s and
TBE,S4 = 5980 s. Here, the S5 state was found not beneficial
because its power level is identical to that of S4 and thus it
is excluded. Separate characterization is performed for the
case when only the S5 state is used, yielding TBE,S5 = 114 s
for the Demotion (Off) policy.

6.3 Trace-driven Dynamic Workload
A 3-tier implementation of the TPC-W benchmark was

used as the test workload. It models a realistic bookstore
website where all types of pages are dynamically generated
using fresh data from the database, and also contain typi-
cal web images (buttons, logos, item thumbnails, etc.). The
server establishes sessions with shopping carts, and ensures

275

Table 2: Description of Web traces used in our ex-
periments.

Name Length Service

epa 1 day The EPA WWW server at Research
Triangle Park, NC; Aug. 30, 1995
(Wed).

sdsc 1 day The SDSC WWW server at the San
Diego Supercomputer Center, CA;
Aug. 22, 1995 (Tue).

wcd37 1 day 1998 World Cup Web site; Jun. 1
(Mon).

wcw8 1 week 1998 World Cup Web site; May 3–9
(Sun-Sat).

all transactions within the same session are routed to the
same application server (session stickyness). A separate
client machine is used to generate load for the servers. It can
emulate hundreds of independent emulated browsers (EBs),
each navigating through pages as guided by a stochastic
transition matrix. Retrieving a page and all images refer-
enced by it is defined as one web interaction. Server through-
put is measured in web interactions per second (WIPS), and
latency in web interaction response time (WIRT).

Instead of a static load as in performance-oriented studies,
we are interested in performance and energy efficiency dur-
ing realistic operation, which includes significant periods of
off-peak load conditions. Hence, we simulate load variations
found in real-life Web server traces, but using our dynamic
benchmark—to create a trace-driven dynamic workload. We
calculate the hourly average loads (in requests/s) for the
trace in question, scale them by a constant factor to obtain
the corresponding number of EBs such that the maximum
equals the desired peak load, and then run experiments in
which the number of EBs is varied over time to match the re-
sulting sequence. Between data points, we linearly interpo-
late to achieve smooth fluctuations. A similar trace-driven
approach was used by Rajamani and Lefurgy [14].

6.4 Results
We perform comparison studies along three dimensions,

to understand how certain aspects affect the performance of
each policy. We consider different load profiles, then vary-
ing the peak load intensity, and the rate of load fluctua-
tions. We experiment with several different traces listed in
Table 2. The performance of each policy, including energy
savings, energy-delay product (i.e. energy efficiency), and
average end-to-end latency, is compared.

6.4.1 Performance and Energy Efficiency
We begin by validating the effectiveness of the active ca-

pacity management policy compared to the baseline setup
and the DVS-only policy. The Optimal (Off) spare server
policy is used so that results are comparable with previ-
ous ad-hoc spare server approaches. We ran the epa trace
with peak load of 400 EBs (full capacity) and speedup fac-
tor of 5×, by which the day-long trace is simulated in 4.8
hours. Performance results are shown in Figure 3. As ex-
pected, our algorithm leaves sufficient margin over the es-
timated load when determining demand (Figure 3(a)), so

that tier utilizations stay low enough to meet the target la-
tency. Importantly, capacity follows demand without lag,
which indicates the success of the spare server policy. Aver-
age latency for both the DVS and the Optimal (Off) policy
was 227ms, within the 250ms target. (Baseline was 139ms.)
The power traces are compared in Figure 3(b). Looking at
pure cost reduction, Optimal (Off) achieved 34% total clus-
ter energy savings by dynamically turning off some machines
when fewer could handle the load, compared to 11% with
DVS only. To compare energy efficiency, we must factor in
performance degradation as well. We use the energy-delay
product, a widely used metric, defined as energy per request
multiplied by the inverse of throughput (calculated from av-
erage power divided by the square of throughput). From
this, we obtained 0.996 Js for Optimal (Off), a substantial
improvement over the energy efficiency of both Baseline with
1.475 Js and DVS with 1.342 Js.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
C

ap
ac

ity
 (G

H
z)

Time (h)

Capacity
Demand
Load

(a) Evolution of total cluster capacity (avail-
able machines), demand (optimal capacity
as computed by the policy), and estimated
load.

300
400
500
600
700
800
900

1000

0 1 2 3 4 5

Time (h)

Po
w

er
 (W

)

Baseline
DVS
Optimal (Off)

(b) Comparison of cluster power traces.

Figure 3: Power and performance results with the
active capacity policy.

6.4.2 Shape of Load Fluctuations
Each trace has a unique shape of daily load fluctuations,

giving rise to different energy saving opportunities. The
peak load for each trace is identical (400 EBs), sized to total
cluster capacity. All traces are accelerated 20× to shorten
experiments. Results are shown in Figure 4. (Note, the data
point of Demotion (Multiple) with wcw8 is not available due
to testbed instability.)

A number of key observations can be made. First, ex-
ploiting multiple states yields significant extra energy sav-
ings in the range 6–14%. Average gain is 10% for Demotion
and 7% for Optimal. Second, the workload sensitivity of

276

0%
5%

10%
15%
20%
25%
30%
35%
40%

epa sdsc wcd37 wcw8

Trace

To
ta

l E
ne

rg
y

Sa
vi

ng
s

(%
) Demotion (Multiple) Demotion (Off)

Optimal (Multiple) Optimal (Off)

Figure 4: Cluster-wide energy savings of the exper-
imental policies run against several traces, relative
to the baseline.

Optimal (i.e., range of extra savings across workloads) is
substantially smaller than that of Demotion (7–9% vs. 6–
14%), which means a more predictable performance can be
expected from it. Third, Optimal overall outperforms De-
motion, by up to 7% in energy savings. The explanation of
the one data point exception is that an extended period of
epa has such a light load that no spare capacity is needed at
all, giving an advantage to Demotion. The other traces have
a slightly smaller dynamic range (in load level), where that
advantage is lost, and Optimal wins by putting most nodes
into deep sleep immediately instead of waiting for a long
timeout. Finally, due to the common wakeup scheduling al-
gorithm, all policies managed to maintain the expected per-
formance with the fluctuations present in these workloads.

6.4.3 Peak Load Intensity
In many instances, the daily peak load does not approach

cluster capacity, thereby increasing energy management op-
portunities. For example, there are weekly and seasonal load
variations, or the cluster may be heavily overprovisioned.
Although we cannot simulate realistic seasonal changes in
reasonable time frames, we can run the same daily trace
scaled to various peak levels to gain insight into policy per-
formance at lighter loads. We use the epa trace accelerated
to 60× and vary peak load from 100 (very light) to 400 EBs
(full capacity). Results are shown in Figure 5.

Again, we observe significant extra energy savings from
exploiting multiple states, in the range 7–23%; average gain
is 20% for Demotion and 10% for Optimal. As seen in the
previous results, for this trace Demotion (Multiple) outper-
forms Optimal (Multiple) by 1–5%. However, Demotion
(Off) is highly inefficient—Optimal (Off) outperforms it by
up to 9%. Moreover, with anything higher than very light
load, it has worse energy efficiency than the baseline (1.81 Js
vs. 1.49 Js at 400 EBs), and it also fails to meet the target
latency (Figure 5(b)). This is caused by the policy’s inabil-
ity to meet demand in time, because it does not leave the
necessary spare capacity to absorb load while machines are
being waken up. In contrast, Optimal (Off) works with the
same wakeup latencies, but has excellent performance be-
cause of its correct provisioning of spare servers. Note that
there was no performance problem with Demotion (Off) in
the previous experiments using a 20× speedup factor with
the same trace. This raises the question of how this factor af-
fects results, which we will explore in the next section. Also

0%

10%

20%

30%

40%

50%

60%

70%

100 200 300 400

Peak Load (EBs)

To
ta

l E
ne

rg
y

Sa
vi

ng
s

(%
) Demotion (Multiple)

Demotion (Off)
Optimal (Multiple)
Optimal (Off)
DVS

(a) Cluster-wide energy savings compared to
the baseline.

100

150

200

250

300

350

400

450

100 200 300 400

Peak Load (EBs)

A
vg

 R
es

po
ns

e
Ti

m
e

(m
s)

Demotion (Multiple)
Demotion (Off)
Optimal (Multiple)
Optimal (Off)
DVS
Baseline

(b) Average client-perceived latency
(WIRT).

Figure 5: Effects of varying the peak load intensity
(from very light to full capacity) on energy efficiency
and performance of different policies.

note that Demotion (Multiple) still has good performance.
The reason is that, even though it does not ensure sufficient
spare capacity, wakeup from S3 in our system is sufficiently
fast (< 15 s) in practice to accommodate fluctuations even
at 60× speed. Finally, it is worth noting that with peak
load 1/4 of the full capacity, over 50% total cluster energy
savings are achieved.

6.4.4 Time Scale of Fluctuations
Previous trace-based experimental studies on cluster en-

ergy efficiency have picked arbitrary acceleration factors in
order to shorten experiments, without evaluating its impact
on the results. However, different factors yield workloads
where the time scale of fluctuations is different relative to
system invariants such as wakeup latencies, service startup
times etc., which cannot be accelerated. As we have seen
in the previous section, this can lead to marked differences
in policy performance. Therefore, it is imperative to study
sensitivity with respect to the speedup factor. The epa trace
is used again, peak load scaled to full capacity (400 EBs).
Each policy is tested with several acceleration factors and
the results are presented in Figure 6.

We observe that the speedup factor has a major influence
on energy savings. The reason is that the higher this is,
the greater the MALIR must be to maintain performance,
which in turn requires more spare capacity, resulting in di-
minished energy savings. How optimally the policy handles
that MALIR requirement, is what makes a difference in en-
ergy use. Conversely, with greater time scale (slower) fluc-
tuations, little spare capacity is necessary, and the difference

277

0%
5%

10%
15%
20%
25%
30%
35%
40%

0 10 20 30 40 50 60

Trace Speedup Factor

To
ta

l E
ne

rg
y

Sa
vi

ng
s

(%
)

Demotion (Multiple)
Demotion (Off)
Optimal (Multiple)
Optimal (Off)

Figure 6: Effects of different trace acceleration fac-
tors on cluster-wide energy savings of different poli-
cies.

between policies becomes minor (assuming a MALIR-based
wakeup scheduling algorithm is used).

7. CONCLUSIONS
Energy management for reconfigurable clusters can be

separated into two independent concerns: the management
of active and spare capacity. Spare capacity optimization
minimizes energy of idle nodes subject to responsiveness con-
straints. In contrast with existing ad-hoc approaches only
addressing a single Off state, we theoretically analyzed the
problem in the context of multiple sleep states, and designed
an optimization policy based on the results. Our results
show that spare capacity optimization is especially impor-
tant in Off-only systems with high rates of load fluctuation,
where a Demotion-like naive policy should clearly be avoided
because of significant performance degradation.

Our policies were validated by measurements on a realistic
testbed with appropriate workloads and using actual hard-
ware sleep states. The key result is that exploiting multiple
sleep states affords substantial energy benefits. Extra en-
ergy savings of up to 23% over the Off-only version of the
same policy were observed in highly dynamic workloads with
negligible performance impact. Further, total energy sav-
ings over 50% were measured with lighter load. In addition,
we found that the Optimal policy is superior to Demotion
because it: (i) outperforms Demotion in energy efficiency
with the majority of traces; (ii) avoids unavailable periods
inevitable with Demotion due to late wakeups; (iii) guar-
antees responsiveness to the user-specified level (MALIR)
with the least amount of energy; and (iv) does not rely
on workload prediction, and therefore handles unexpected
bursts and typical expected load fluctuations equally well.

An important implication of our results is that energy
savings reported from policy studies using different trace
acceleration factors may not be directly comparable (unless
equal spare capacity was provisioned). A sensitivity analy-
sis with respect to this factor is desirable to help interpret
such results. Further, it is not clear how results from accel-
erated traces in small testbeds apply to real-time workloads
in large-scale clusters because, even if spare capacity is the
same, it represents a very different fraction of total cluster
energy.

8. ACKNOWLEDGMENTS
This research was supported in part by NSF grant nos.

CNS-0306404 and CNS-0615277, Army Research Office grant

no. W911NF-04-1-0288, and a grant from Intel MRL. We
would like to thank Tarek Abdelzaher for helpful discussions
in the development of our approach and the anonymous re-
viewers for their constructive feedback.

9. REFERENCES
[1] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of

design techniques for system-level dynamic power
management. IEEE Trans. VLSI Syst., 8(3):299–316,
2000.

[2] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler,
C. Lefurgy, and R. Rajamony. The case for power
management in web servers. In R. Graybill and
R. Melhem, editors, Power-Aware Computing,
Kluwer/Plenum series in Computer Science. Kluwer
Academic Publishers, Jan. 2002.

[3] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam,
Q. Wang, and N. Gautam. Managing server energy
and operational costs in hosting centers.
SIGMETRICS Perform. Eval. Rev., 33(1):303–314,
2005.

[4] E. Elnozahy, M. Kistler, and R. Rajamony.
Energy-efficient server clusters. In Proc. Workshop on
Power-Aware Computing Systems, Feb. 2002.

[5] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In Proc.
34th Annual ACM/IEEE International Symposium on
Computer Architecture, pages 13–23, 2007.

[6] C. Hang, K. Astrom, and W. Ho. Refinements of the
Ziegler-Nichols tuning formula. IEE Proceedings D,
Control Theory and Applications, 138(2):111–118,
Mar. 1991.

[7] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and
R. Bianchini. Energy conservation in heterogeneous
server clusters. In Proc. 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 186–195, 2005.

[8] C. hsing Hsu and W. chun Feng. When discreteness
meets continuity: Energy-optimal dvs scheduling
revisited. Technical Report LA-UR 05-3104, Los
Alamos National Laboratory, Feb. 2005.

[9] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter,
M. Kistler, and T. W. Keller. Energy management for
commercial servers. IEEE Computer, 36(12):39–48,
2003.

[10] A. Miyoshi, C. Lefurgy, E. V. Hensbergen,
R. Rajamony, and R. Rajkumar. Critical power slope:
understanding the runtime effects of frequency scaling.
In Proc. 16th International Conference on
Supercomputing, pages 35–44, 2002.

[11] T. Mudge. Power: A first-class architectural design
constraint. IEEE Computer, 34(4):52–58, 2001.

[12] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath.
Dynamic cluster reconfiguration for power and
performance. In L. Benini, M. Kandemir, and
J. Ramanujam, editors, Compilers and Operating
Systems for Low Power. Kluwer Academic Publishers,
2002.

[13] R. Raghavendra, P. Ranganathan, V. Talwar,
Z. Wang, and X. Zhu. No ”power” struggles:
coordinated multi-level power management for the

278

data center. SIGARCH Comput. Archit. News,
36(1):48–59, 2008.

[14] K. Rajamani and C. Lefurgy. On evaluating
request-distribution schemes for saving energy in
server clusters. In Proc. IEEE International
Symposium on Performance Analysis of Systems and
Software, pages 111–122, 2003.

[15] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade
servers. Proc. 33rd Annual ACM/IEEE International
Symposium on Computer Architecture, pages 66–77,
2006.

[16] C. Rusu, A. Ferreira, C. Scordino, and A. Watson.
Energy-efficient real-time heterogeneous server
clusters. In Proc. 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages
418–428, 2006.

279

