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Abstract
Even sophisticated branch-prediction techniques necessarily

suffer some mispredictions, and even relatively small mispredict
rates hurt performance substantially in current-generation proces-
sors. This suggests the study ofmultipath execution, in which the
processor simultaneously executes code from both the taken and
not-taken outcomes of a branch.

This paper describes HydraScalar, a simulator built on the
SimpleScalar toolkit (version 2.0) to accurately model a wide-
issue, out-of-order execution multipath processor. The paper de-
scribes the simulator’s mechanisms for instruction fetch, branch
handling, branch-confidence prediction, and multiple-path man-
agement. Because multipath execution is so sensitive to branch
prediction, HydraScalar significantly expands SimpleScalar’s
modeling of branch and instruction-fetch effects, therefore adding
a number of features that are beneficial regardless of whether mul-
tipath or conventional superscalar, out-of-order execution is being
modeled.

1 Introduction

1.1 The Need for Multipath Execution
Modern processors employ a variety of sophisticated branch-

prediction schemes to avoid delay penalties imposed by
conditional-branch resolution. Correct predictions of branch out-
comes can almost eliminate these penalties. But mispredictions
that remain still cause serious disruptions in instruction flow, as
the processor wastes time following the wrong path until the mis-
prediction is detected. As issue widths increase and processor
pipelines deepen, the misprediction penalty increases.

Despite many advances in branch prediction, many programs
still suffer a substantial number of mispredictions. Since the de-
lays caused by conditional-branch mispredictions remain a serious
problem, we [1] and other groups [7, 12, 13, 31, 32, 33] have in-
vestigated a different kind of remedy: the simultaneous execution
of both the taken and not-taken instruction sequences following a
conditional branch, with cancellation of the one that turns out to
be incorrect when the branch is finally resolved. Because addi-
tional branches are likely to be encountered before the first branch
is resolved, most of these research efforts consider the possibil-
ities and potential benefit of executing more than two paths si-
multaneously. Each timemultipath executionforks successfully, it
eliminates a misprediction, although possibly with the expense of
increased hardware contention.

Ideally, forking would happen only on mispredicted branches.
A confidence predictor[9] attempts to evaluate the likelihood that
a branch has been correctly predicted. Multipath execution uses
confidence prediction to reduce hardware contention: instead
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of forking, the processor speculates conventionally past higher-
confidence branches, following only the predicted path.

�This work was done while both Skadron and Ahuja were in the De-
partment of Computer Science at Princeton University.

Multipath execution requires additional hardware (and simula-
tion detail) throughout the processor, of course. The most affected
section is the instruction fetch unit, which needs extra resources
for each path. Since more instructions will be in flight at once,
additional functional units, registers, cache ports, and so on are
also needed, but the structure and control of this part of the ma-
chine (and simulator) are very much like contemporary multi-issue
dynamic-execution processors.

Our experiments [1] showed that multipath execution can of-
fer sizeable IPC improvements over more traditional single-path
execution models: 4 paths yield speedups of up to 30% on future-
generation processor configurations. For programs with very high
accuracies which are unlikely to benefit from multipath execution,
our experiments show that performance does not decrease. Al-
though 4-path speculation would have a significant hardware cost,
there are extensive overlaps with the hardware required by multi-
threading approaches such as simultaneous multithreading (SMT)
[16], and combinations of multipath and multithreading make ef-
ficient use of such hardware [33].

We also demonstrated that total instruction fetch bandwidth is
a key lever on performance, and that heuristics to devote extra
fetch resources to probably-correct execution paths can help fur-
ther improve performance. Klauser and Grunwald [11] and Santos
et al. [21] have further explored how to tune a multipath processor
to gain additional performance increases.

1.2 HydraScalar
In this paper we describe HydraScalar, the simulator we used

for our multipath studies and subsequent work on branch predic-
tion. It is derived from the Wisconsin SimpleScalar 2.0 toolkit’s
sim-outordersimulator [2]. HydraScalar models multipath execu-
tion, including confidence prediction, return-address-stack man-
agement, fetch from multiple paths, register renaming, and the
intermingling in the processor core of instructions from different
paths. It also includes features to model speculative branch-history
update with fixup [24] and speculative return-address-stack update
with fixup [22], as well as additional features for modeling today’s
aggressive pipeline organizations.

In addition to the core simulator, the HydraScalar distribution
augments the SimpleScalar toolkit in several ways, like the addi-
tion of new branch-predictor models.

HydraScalar is made publicly available under the same terms
as the SimpleScalar toolkit. It is therefore free for non-commercial
users and is subject only to the restrictions that the copyright notice
must accompany all re-releases of HydraScalar and that third par-
ties are forbidden to place any additional distribution restrictions
on extensions to HydraScalar. It is distributed “as is” in the hope
that it will be helpful to the research community. It comes with no
warranty, and no author or distributor accepts any responsibility
for the consequences of its use. It can be obtained by contacting
the authors. Note that a copy of SimpleScalar 2.0 is also required
for use of HydraScalar.

The remainder of this paper is structured as follows. The next
section describes the basic structure of HydraScalar and gives an



overview of its new features. Section 3 then describes in detail the
additional support required to model multipath execution, and Sec-
tion 4 describes new capabilities for modeling branch prediction
and branch-history update timing. Finally, Section 5 concludes
the paper.

2 HydraScalar Mechanics

2.1 SimpleScalar Toolkit

HydraScalar is built on the SimpleScalar 2.0 toolkit, which pro-
vides a set of modules for building processor simulators, as well
as several sample simulators. SimpleScalar-based simulators in-
terpret executables compiled bygccversion 2.6.3 for a virtual in-
struction set closely resembling MIPS IV [19] called the “portable
instruction set” or PISA. These simulators instantiate a virtual ma-
chine and emulate the object program’s execution in order to ac-
curately simulate behavior on mis-speculated paths.

Its speed, flexibility, and portability mean that SimpleScalar
now enjoys widespread use for both research and teaching pur-
poses. The toolkit’ssim-outordersimulator in particular has re-
ceived widespread use in the research literature. It models a wide-
issue, out-of-order processor. Unfortunately, it is not well suited
to work on multipath execution, because it cannot simultaneously
manage multiple paths or track rollback of mispredicted branches
that already lie on a mis-speculated path. (State is only maintained
for a branch that beings mis-speculated execution, so rollback due
to subsequent mispredictions on that mis-speculated path is lost.)
HydraScalar therefore uses the pipeline model from sim-outorder
but re-implements the way sim-outorder tracks state, and HydraS-
calar also adds a number of new features, especially in the area of
branch prediction.

2.2 HydraScalar Extensions

Like a real processor (and sim-outorder), HydraScalar con-
ceptually checkpoints necessary state as it encounters branches
and then proceeds down the predicted path or down both paths,
executing wrong-path instructions as appropriate. In fact, Sim-
pleScalar and HydraScalar emulate instruction outcomes early in
the pipeline so that they can detect early which branches are mis-
predicted and simplify later pipeline modeling. This means they
need only checkpoint state for mispredicted branches (or, with
multipath execution, any forked branch). Unlike sim-outorder,
HydraScalar checkpoints state for all mispredicted branches, even
if they already lie on a mis-speculated path. These later mispre-
dicted branches may actually resolve before their predecessors, so
HydraScalar can model the effects of their rollback. The check-
pointing is actually performed by detecting mis-speculated exe-
cution and having all updates to architected state write to scratch
state that can simply be discarded once the mis-speculation is dis-
covered. To track multiple levels of mis-speculation, HydraScalar
simply keeps multiple levels of scratch state.

Upon detecting a mispredicted branch or a forked branch,
wrong-path instructions are squashed, and recovery from the
checkpointed state is straightforward. Instruction fetch is redi-
rected; the appropriate paths are terminated; the appropriate num-
ber of levels of scratch state are discarded; and in-flight instruc-
tions from terminated paths are squashed. Because instructions
from multiple paths are interleaved in the instruction window,
squashed instructions leave holes that are eventually freed at com-
mit. This is accomplished by broadcasting the path ID of the mis-
speculated path. The construction of the path IDs results in that
path and all child paths’ being terminated. This is described in
further detail in the next section along with other aspects of mod-
eling multipath execution. The rest of this section describes the
core HydraScalar model.

HydraScalar Features. In addition to modeling multipath
execution, HydraScalar extends sim-outorder in the following
ways:

� Modeling the effects of multiple levels of mis-speculation.
(Described above)

� Modeling different options for branch-history update timing,
as described in [24]. (Section 4.2)

� Modeling different options for return-address-stack update,
as described in [22]. When modeling multipath processors,
private copies of the return address stack are given to each
path. (Section 4.1)

� Modeling a cap on the number of in-flight branches to ac-
count for finite shadow state. (Section 4.3)

� Modeling a set-associative branch history table (BHT). (Sec-
tion 4.3)

� Modeling alloyed branch prediction, as described in [26].
(Section 4.3)

� Modeling a more flexible hybrid branch predictor, as de-
scribed in [3]. (Section 4.3)

� More accurate modeling of the interaction between the
instruction-fetch engine and the instruction cache. (See be-
low)

� More detailed modeling of an out-of-order processor’s
pipeline, including extra pipeline stages and separate integer
and floating-point issue constraints. (See below)

� Modeling a finite number of MSHRs. (See below)

� Support for reduced simulation times. (See below)

Instruction Fetch. In modeling the interaction between
instruction-fetch and the I-cache, HydraScalar takes account of the
fact that in superscalar processors, the unit of instruction fetch is
larger than a single instruction (e.g., 4 instructions). This gives
more realistic I-cache miss data. HydraScalar also improves fetch
modeling by recognizing that any particular fetch block should
come from a single cache line. Of course, to facilitate wide-
issue multipath processing, different paths can fetch from differ-
ent cache lines, and individual paths can fetch multiple contigu-
ous blocks. In other words, a particular path can predict multiple
branches per cycle and fetch past not-taken branches, but cannot
fetch past taken branches.

The confidence predictor responds in a single cycle. This is
plausible because this matches the response time of the branch
predictor, and our confidence predictors use simpler hardware. In-
struction fetch down the forked path’s speculative path can com-
mence on the cycle after the fork decision.

Pipeline and Issue. HydraScalar also allows modeling of vari-
able pipeline lengths. Under the assumption that the simplest oper-
ations still take a single cycle to execute, the additional stages are
added after decode. These allow for the modeling of additional de-
coding, renaming, enqueuing, and so forth. Additional stages for
fetch (due to a multi-cycle I-cache) can be added by modeling the
longer cache latency and the corresponding increase in the branch
misprediction penalty. The HydraScalar pipeline therefore looks
like

IF ... ID ... EX WB CT
with branches resolved at the end of the EX stage and recovery
taking place during WB.1 Note that an extra stage for register read
is not modeled, something that would further boost the model’s
flexibility.

1IF = fetch, ID = decode, EX = execute, WB = writeback, CT = commit.
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Renaming looks in a register mapping table to determine
whether operands reside in the RUU or have been committed to
architectural state. This mapping table is copied when a new path
is forked, and a shadow copy of the table must be saved each time
the processor speculates past a branch. If all a path’s shadow maps
are full, fetch stalls for that path. As mentioned, the number of in-
flight branches (and hence the amount of number of shadow-state
entries that are modeled) is a parameter.

HydraScalar also allows modeling of different instruction-
window and issue topologies. HydraScalar can model either a
single, unified, reorder-buffer and issue-window for all instruction
types (aregister update unitor RUU [28]), which is the basic sim-
outorder model and resembles the HP PA-8000 [8] for example;
or a separate reorder buffer with smaller integer and floating-point
issue queues, which resembles the Alpha 21264 [5] and the Intel
Pentium-Pro/II/III [4] for example. Regardless of the model, issue
selects the oldest ready instructions, independent of path.

Cache. HydraScalar uses SimpleScalar’s cache model but ex-
tends its model of non-blocking loads by adding MSHRs [14] to
model a finite number of in-flight loads. The bus model has also
been extended to model a split transaction bus. Different levels
of cache can have different bus latencies. The latency account-
ing has also been extended to separate the time to probe the cache
for hit/miss from the time for data transfer. Frontside/backside
off-chip caches can be modeled by setting this parameter appro-
priately.

Simulation Support. Because cycle-level simulations are
slow, and HydraScalar is even slower than sim-outorder, bench-
marks cannot typically be run to completion. This necessitates
some method of reducing execution time. Use of small inputs,
like the SPEC [29] “test” or “train” inputs, is controversial, so we
have followed the practice of identifying a representative segment
of the program’s execution and simulating that. This approach is
described in [23]. The most important aspect of this approach is
to fast-forward past any unrepresentative behavior while the pro-
gram starts up, because many benchmarks exhibit startup phases.
Otherwise this unrepresentative startup behavior will be dispro-
portionally represented in the sampled simulation. A number of
benchmarks exhibit such unrepresentative behavior; SPECint95’s
compressandperl are particularly stark examples of this. Once
simulation has been fast-forwarded to the desired portion of the
program, a segment of any desired length (e.g., 50 million instruc-
tions) can be simulated in full detail and then the simulation can be
terminated. During fast-forwarding, cache and branch-predictor
state are updated to avoid unrealistic cold-start effects in these
large structures. After switching to full-detail mode, the simulator
structures can be primed for a further period of time (to warm up
the instruction window, etc.) before statistics-gathering begins.

3 Modeling Multipath Execution

At those conditional branches where it is difficult to predict the
correct execution path, simultaneously executing both paths pre-
vents losing cycles to misprediction and recovery. Each resulting
path may reach further branches; given sufficient hardware, con-
trol may fork once again. Branches which do not or cannot fork are
predicted and speculated conventionally. Once a branch resolves,
the wrong path and any of its child paths are squashed. The ben-
efits from eliminating mispredictions in this way are tempered by
the increased contention for resources as paths divide.

3.1 Differences from Conventional CPUs

The baseline hardware modeled by HydraScalar has three main
differences from current high-performance CPUs:

Confidence Prediction and Fork Control Unit. At each
conditional branch, deciding whether to fork an additional path de-
pends on(i) whether there are any path resources currently free and
(ii) whether the branch is likely to be mispredicted. Item(i) is easy
to track, but item(ii) is more difficult. A simple policy would be to
spawn a new path at every conditional branch as long as resources
are available; but we found that thisnaiveforking performs poorly
because it consumes the available path contexts with unnecessary
forks. The upper bound on the performance of all such schemes
is demonstrated by a strategy that forks precisely at the right time,
on every branch misprediction (when path resources are available).
We refer to this asomniscientforking. Note that this can still per-
form worse than omniscient branchprediction: forking can still
create resource contention, and if mispredictions are tightly clus-
tered, forking contexts may be exhausted. More realistic and elab-
orate policies try to reduce hardware requirements by being more
precise in determining when the branch will be mispredicted. For
these policies, we model a dynamic confidence-prediction unit that
operates in parallel with the branch-prediction unit.

HydraScalar can model forking that is based on several differ-
ent types of hardware-based confidence predictors as well as naive
and omniscient forking. While the branch predictor returns its pre-
diction of whether or not the branch will be taken, the confidence-
predictor returns its prediction of whether or not the branch predic-
tor will be correct. If a context is available and a fork is indicated,
HydraScalar performs the fork, initializing a new context and as-
signing new path IDs toboth the taken and not-taken paths (see
below for more information about path IDs).

Confidence Prediction Options. Confidence-based forking
mechanisms can be constructed from two orthogonal components:
a policy for counting mispredictions of recent branches, and a pol-
icy for applying this counting history.

Ways to count mispredictions were first discussed by Jacob-
sen, Rotenberg, and Smith in [9]. HydraScalar supports combina-
tions of the following, with configurable table sizes and thresholds.
Overall, we found that profiling approaches worked almost as well
as the basic mechanisms from [9].

Hardware State:
No Hardware Table.If no hardware state is kept, then we either

revert to the naive policy discussed earlier or use a static, profile-
based scheme discussed below.

Ones Counter.The simple hardware-based confidence predic-
tors considered here use a table indexed by the branch PC. With
a ones-countingscheme, each entry in the table is ann-bit shift
register. These bits represent the accuracy of the branch predictor
for the lastn branches that mapped to this entry. If the number
of “corrects” exceeds a certain threshold, the confidence predictor
predicts high confidence.

Saturating Counter.Each time a branch is correctly predicted
or mispredicted, the entry’s contents are incremented or decre-
mented. A value greater than a specified threshold indicates high
confidence.

Resetting Counter. As with saturating counters, correctly-
predicted branches cause the contents of the appropriate table en-
try to be incremented, but when a branch is mispredicted, the en-
try’s contents are reset to 0, not merely decremented.

Means for Applying Confidence State:
We can extend the basic techniques above by incorporating

policies forapplyingknowledge from the hardware state.
No Policy.This reverts to one of the basic techniques above.
Profile-Based. Any of the above schemes can be applied in

a profile-based manner. In profile-based approaches, each condi-
tional branch is classified based on observed misprediction statis-
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tics from a pre-run profiling step. Profile-based confidence can be
performed without a hardware table [9]—branches are statically
placed in either the “do not fork” or “fork aggressively” categories.
The processor attempts to fork only when a branch from the latter
category is encountered. We found that assigning all branches with
a greater than 35% misprediction rate to the “fork aggressively”
category is successful. Other cutoffs (e.g.,40%, 50%, 70%, etc.)
were also tried, with lesser success, although that may change for
non-SPEC95 programs.

When combining profiling with dynamic confidence history,
each category of profiled branches has a different forking thresh-
old. The count for a branch’s table entry is compared to the thresh-
old for its class; if the former exceeds the latter, the CPU does not
fork.

Resource-Based.With a finite number of path contexts, the
CPU cannot always fork when it wants to. If the CPU has reached
its forking capacity, subsequently-fetched branches cannot fork
until some contexts are freed. Therefore the CPU should some-
times refrain from forking on a branch that is marginally low-
confidence, in case an even lower-confidence branch soon follows.
Resource-based schemes address this. These schemes use the
same counting tables discussed above, but with multiple thresh-
olds to determine whether to fork. When fewer contexts remain
free for forking, these schemes use stricter (i.e., lower) forking
thresholds. This makes it easier for a branch to be rated high con-
fidence, reducing the likelihood that the CPU will be unable to
fork on a truly low-confidence branch later on.

Combining Profile-Based and Resource-Based Approaches.
Incorporating hardware availability (i.e., number of forking con-
texts available) with a profile-based predictor is also possible. Pro-
filing now categorizes branches into, categories, say 0, 1, 2, and 3.
The lower the category, the lower the confidence (and the more ag-
gressive the attempt at forking). When deciding whether to fork,
a branch’s category is now compared with the number of available
forking contexts. If the branch’s category is less than the number
of free contexts, then fork. Thus, category-0 branches are always
forked if any free contexts are available. Category-N branches are
never forked given a machine withN contexts.

Multiple Path Contexts. Multipath execution assumes mul-
tiple path contexts to allow several control flows to execute con-
currently. In particular, the fetch unit must fetch from multiple
paths each cycle.

The essential hardware for each path is:

� a program counter

� a copy of, or its own port into, elements of the instruction-
fetch unit, including the instruction cache, branch predictor,
and confidence predictor

� a separate return-address stack—nota port into a unified one
(Section 4.1)

� a register map, and shadow register maps sufficient for any
unforked (conventionally speculated) branches which execu-
tion might have to unroll

The fetch unit tags instructions with a path ID. Since each path
has its own register map, renaming remains essentially unchanged
from a conventional CPU; there are no renaming dependencies
among paths. Predecode bits can be maintained in the instruction
cache, indicating dependencies among instructions fetched for a
particular path. This further speeds up renaming and ensures that
all the instructions fetched in a cycle can be renamed quickly.

The instruction window contains a mixture of instructions from
active paths. Instructions are tagged with a path identifier. One
could instead provide separate instruction windows per path, but
that approach would give poor performance when only a small

number of paths are active,i.e., when the program has few mispre-
dicted branches.

Issue remains unchanged. Renaming ensures a coherent view
of the register space, so instructions may arbitrate for execution
as soon as their operands become ready. Context tags in the load-
store queue ensure that paths see data flow through memory from
only the appropriate path.

Path IDs and Selective Misprediction Recovery. In a
single-path processor, the CPU handles a mis-speculated path by
squashing all the instructions in the RUU after the mispredicted
branch. In a multipath processor, however, instructions from many
paths—including the correct path—may exist simultaneously and
interleaved in the RUU. The CPU must have the ability to selec-
tively squash only those instructions that belong to a particular
mis-speculated path and its children. To accomplish this, every
path has a uniquepath ID which encodes the forking history of
recent branches using binary-prefix notation. New IDs are cre-
ated when a branch forks, and IDs can be recycled. If a forking
branch’s ID isx, then the taken path’s ID isx1, and the not-taken
path’s ID isx0. When that branch resolves, it broadcasts the cor-
rect path’s ID, sayx1. The CPU then squashes all instructions that
follow the branch and are on the wrong path or a descendent,e.g.
on pathsx0, x00, x01; instructions fromx1, x10, x11, etc. are
spared. A similar idea was independently proposed by Klauser,
Paithankar, and Grunwald [12] and Kol and Ginosaur [13]. Non-
forking, conventionally-speculated branches broadcast similarly,
but for a mispredicted branch no instructions from the correct path
exist. Squashed instructions turn themselves into NOPs. The re-
sulting “holes” propagate like normal instructions but are ignored
until commit, when they are reclaimed.

The path IDs are implemented as circular bitmaps, with a
global head pointer and a per-instruction tail pointer. The global
head pointer indicates the oldest active forked branch. An in-
struction’s tail pointer indicates how many subsequent branches
have forked. Together, the pointers indicate what portion of any
bitmap contains useful information: newer instructions, for exam-
ple, have a tail pointer farther from the global head pointer, be-
cause more intervening branches have been seen. Since branches
may resolve out of order, and the global head pointer cannot ad-
vance until the oldest forked branch retires, bitmaps could grow
until the tail pointer would overtake the head. Forking halts at this
point. But the bitmap length is equal to the depth of the forking
tree: unless the tree is long and narrow and some branch takes an
unusually long time to retire, bitmap length is not a problem. A
bitmap needs to be at least as long as thelog2 of the maximum
number of outstanding paths.

A per-branch pointer must be stored as well, indicating which
bitmap position corresponds to each branch. When a branch retires
and its path’s local head pointer matches the global head pointer,
the global head pointer can be advanced.

3.2 Similarities to Conventional CPUs

It is important to note that the back end of a multipath CPU
is essentially a conventional CPU augmented with extra issue and
execution capacity to handle the extra running paths, and HydraS-
calar can therefore use most of sim-outorder’s pipeline model and
all of its functional simulation.

3.3 Fetch Bandwidth

To avoid wasting fetch resources along incorrect paths, Hy-
draScalar also supports several heuristics for priority-based alloca-
tion of fetch bandwidth among the executing paths. While we can-
not know the correct patha priori, we can note that the predicted
path—the path indicated by the branch predictor—is correct most
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of the time. Since the paths other than the predicted one are often
wrong, performance often improves when the predicted path gets
more I-fetch bandwidth than other paths. Applied too extremely,
however, paths starve and behavior reverts to the single-path case.

Four schemes are supported: a simple round-robin policy
(“simple”), a round-robin policy that ensures the predicted path
can fetch every cycle (“pred-pri”), a predicted-path-priority pol-
icy that allows non-predicted paths to fetch only one cache line
per cycle, while the predicted path gets any left-over bandwidth
(“pred-extra”), and a policy that gives the most fetch bandwidth to
the path with the fewest number of instructions in the RUU (“pred-
ruu”, similar to a technique described in [30]. Fetch schemes fa-
voring the predicted path require that the predicted path can be
known and looked up at any time. This can be implemented using
a set of per-path bitmasks similar to path IDs.

In [1], we found that giving more priority to the predicted path
helps performance slightly— a few percent in most cases. Pred-
extra outperforms the other two policies for all but one application.
Among the SPECint95 benchmarks,gosees the least improvement
from priority-based fetch schemes. This is becausegohas the least
accurate branch prediction, so it is less likely to properly allocate
fetch resources to the appropriate path.

4 Branch Prediction Issues

Because multipath execution attempts to reduce the penalties
associated with mispredictions, accurate modeling of both predic-
tion accuracy and timing effects are important. This section de-
scribes extensions in HydraScalar to the return-address stack, the
modeling of branch-history update timing, and additional options
for modeling different branch predictors.

4.1 Return-Address Stack
Return-address stack accuracy can be an especially strong lever

on multipath performance. A single, unified stack does not func-
tion properly in a multi-path processor. With concurrent paths si-
multaneously modifying the stack, entries are popped and pushed
by both correct and incorrect paths, making corruption almost cer-
tain. For example, after a fork, both paths might encounter calls
to printf() . Both push a return address, even though only one
return address belongs on the stack (only one call toprintf()
eventually commits). Neither mechanisms for repairing a return-
address stack after mis-speculation [10, 22] nor per-path copies of
the top-of-stack pointer can prevent this sort of corruption.

Per-path copies of the entire return-address stack are the best
solution. Multipath execution already requires path contexts; the
return-address stack is merely an additional element in the path
context. Copying the stack should be no more expensive than sav-
ing and restoring the register map. A further consideration is that
copying the stack need not take place in a single cycle; if the new
stack only receives a correct top-of-stack pointer and value, the
new path can begin popping or pushing, and deeper stack values
can then be copied over in a more leisurely fashion.

HydraScalar also supports a unified stack with per-path top-of-
stack pointers and a unified stack that only the predicted path can
modify, but in [22] we found that these approaches are substan-
tially inferior to per-path copies of the stack.

For uniprocessors, management of the return address stack is
also important. Although we need only deal with one stack, a
simple FIFO structure fails in the presence of speculative execu-
tion. The stack needs to be pushed and popped in the fetch stage—
i.e., speculatively—because otherwise return instructions will re-
ceive predictions based on a stale version of the stack. But only in
the writeback stage do we know whether preceding branches have
been correctly predicted. If not, speculative pushes and pops will
have been invalid and have corrupted the stack.

Saving some shadow state with each in-flight branch solves this
problem. The ideal solution would simply save and restore the
entire return-address stack. Better yet, we have found that it is
sufficient to save and restore only the top-of-stack contents and the
pointer to the top-of-stack. Indeed, saving and restoring only the
top-of-stack pointer [18] works reasonably well too. HydraScalar
models all these solutions. These return-address-stack issues and
solutions are described in more detail in [22].

4.2 Speculative History Update and Fixup
In addition to update timing for the return address stack, update

timing also matters for the branch history in two-level predictors.
This was shown by Hao, Chang, and Patt in [6]. A subsequent
paper by Jourdan, Stark, Hsing, and Patt [10] also showed that up-
date timing doesnotmatter much for the table of two-bit counters,
because the two-bit counters provide adequate hysteresis.

The problem for branch history is that if the history is updated
when branches resolve at the end of the execution stage, a long
time may elapse between the branch’s prediction and its resolu-
tion. The branch must traverse the pipeline, and may in the mean-
time spend an arbitrary amount of time waiting for issue. In the
meantime, subsequent branches see stale predictor state. For se-
quences of correlated branches, the global history may therefore
show an inaccurate prior history that does not expose the correla-
tion, and the correlated prediction is disrupted as a consequence.
For individual branches with repeating patterns, the local history
may show an inaccurate prior history that reflects the wrong point
in the pattern, and the local-history prediction is disrupted.

Jourdanet al. describe some solutions for global history [10],
and we extend this work and describe some solutions for local his-
tory in [24]. For both global and local history, the key is to update
the branch history speculatively, as soon as the prediction is made.
Of course, if execution is following a mis-speculated path, this will
result in corrupted history. The solution for global history is to
save and restore the global history value as shadow state for each
in-flight branch. For local history, each modified location needs
to be protected. Rather than saving and restoring many values in
shadow state, anoutstanding branch queueor OBQ can be used
(also proposed in [20]). The table of per-branch histories (BHT)
now stores only committed histories. Changes that are associated
with in-flight branches go into the OBQ. When a branch commits,
its OBQ entry is committed to the BHT. If it mispredicts, subse-
quent OBQ entries are simply discarded. New branch predictions
must check both the BHT and the OBQ for the most up-to-date
local history.

These approaches work because all instructions after the mis-
predicted branch are squashed. When they are re-executed, they
see the corrected history. Of course, if there was no misprediction,
the speculative history is in fact correct. HydraScalar supports
both mechanisms.

4.3 Other Branch Modeling

HydraScalar includes other extensions to branch handling. To
support modeling a finite amount of shadow state, the proces-
sor can be restricted to a maximum number of in-flight branches.
To support various branch prediction schemes, a tagged, set-
associative branch history table (BHT) can be modeled. Two new
types of branch prediction are supported as well. In addition to
the two-level/bimodal hybrid branch predictor [17], GAg, GAs,
PAg, PAs [34], gshare [17], bimodal [27], and static predictors
supported by SimpleScalar, HydraScalar adds a hybrid predictor
with two different two-level prediction components, as described
by Chang, Hao, and Patt in [3], and analloyedpredictor that com-
bines global and local history in the same two-level structure, de-
scribed in [26].
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The new hybrid predictor allows the use of both global and
local history. Changet al. showed that it outperformed the
global-history/bimodal organization proposed by McFarling, and
we found the same to be true [25]. This is true because most pro-
grams have some branches that do well with global historyand
some branches that do well with local history [26].

Alloyed prediction also exposes global and local history, but it
does so in an organization that resembles a conventional two-level
predictor. This is done by concatenating the global- and local-
history values and some branch-address bits before indexing the
table of two-bit counters. Alloying is actually a generalization of
bi-modeprediction [15] and can therefore be used to model that
organization as well. In fact, alloying outperforms bi-mode pre-
diction because bi-mode’s “choice bits” are a restricted form of
local history; alloying uses true local history and therefore incor-
porates more information.

5 Summary
This paper has described HydraScalar, which is made avail-

able under the same terms as the SimpleScalar license. HydraS-
calar is built on the SimpleScalar version 2.0 toolkit. It uses the
same pipeline model as the toolkit’ssim-outordersimulator, but
the handling of speculative execution has been re-implemented to
support the greater detail that the modeling of multipath execu-
tion requires. A variety of other extensions to sim-outorder are
also included, such as more detailed modeling of branch-predictor
update, new branch predictors, and additional pipeline detail. Hy-
draScalar can be obtained by contacting the authors.

HydraScalar grew out of our research on multipath execution
and branch prediction, and served as the simulation platform for
a number of research projects. Some of these results have been
briefly described here as explanation for the new features incor-
porated in HydraScalar. This work was supported in part by NSF
grant CCR-94-23123, NSF Career Award CCR-95-02516, and an
NDSEG Graduate Fellowship (Skadron). We wish to thank Doug
Clark and Margaret Martonosi for their advice in development of
the simulator.
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