
On-Demand Solution to Minimize I-Cache
Leakage Energy with Maintaining Performance

Sung Woo Chung, Member, IEEE Computer Society, and Kevin Skadron, Senior Member, IEEE

Abstract—This paper describes a new on-demand wake-up prediction policy for reducing leakage power. The key insight is that

branch prediction can be used to selectively wake up only the needed cache line. This achieves better leakage savings than the best

prior policies while avoiding the performance overheads of those policies, without needing an extra prediction structure. The proposed

policy reduces leakage energy by 92.7 percent with only 0.08 percent performance overhead on average. The branch-prediction-

based approach requires an extra pipeline stage for wake up, which adds to the branch misprediction penalty. Fortunately, this cost is

mitigated because the extra wake-up stage is overlapped with misprediction recovery. This paper assumes the superdrowsy leakage

control technique using reduced supply voltage because it is well suited to the instruction cache’s criticality. However, the proposed

policy can be also applied to other leakage-saving circuit techniques.

Index Terms—Microprocessor, instruction cache, leakage, branch predictor, wake-up policy.

Ç

1 INTRODUCTION

POWER dissipation has emerged as a major concern both
for high-end processors and for embedded processors

since higher power incurs higher packaging, power
delivery, and cooling costs. Recently, power dissipations
have become high enough to cause serious thermal
challenges, possibly even resulting in a project cancellation
[31]. As process technology scales down, leakage energy
accounts for a significant part of the total energy. The 2001
International Technology Roadmap for Semiconductor [29]
predicts that, for the 70 nm technology, leakage may
constitute as much as 50 percent of the total energy
dissipation. In particular, the leakage energy for on-chip
caches is crucial since they comprise a large portion of the
chip area. For instance, 30 percent of the Alpha 21264 and
60 percent of the StrongARM are devoted to cache and
memory structures [15]. However, cache size cannot be
decreased to reduce leakage power since cache size is
directly related to the performance.

There have been four major circuit techniques to reduce
leakage energy dynamically: Adaptive-reverse Body Biasing
(ABB) MTCMOS [19], Data-Retention Gated-ground (DRG)
[1], Gated-Vdd [20], and DVS for Vdd (which is also called
drowsy cache) [4]. In the ABB MTCMOS technique, the
threshold voltage is dynamically changed, but the wake-up
penalty between the active mode and the leakage saving
mode is long, making it difficult to use in L1 caches [5]. DRG

retains the data while reducing leakage by gating ground
and using the remaining leakage to operate the cells in
subthreshold mode and to retain cell contents. It is
promising for less timing-critical caches such as L2 [12],
but, again, the wake-up penalty is long, making it difficult
to use in L1 caches. The Gated-Vdd technique reduces the
leakage power by breaking the connection from the supply
voltage (Vdd) or ground (the difference compared to DRG
is that a larger sleep transistor is used and cell contents are
not preserved) when the cell is put to sleep. Although this
technique dramatically reduces the leakage, its main
disadvantage is that it does not preserve the state of the
data in the sleep mode [5]. If the line is put to sleep
prematurely and is needed later, it must be refetched from a
lower level memory, which leads not only to additional
dynamic energy consumption but also to performance
degradation [7]. To prevent these costs, conservative
prediction policies must be employed [26], [27]. Gated-
Vdd may, however, be suitable for some L1 data caches
where the refetch penalty is short [13]. Another leakage
saving technique is to lower the supply voltage to a level
near the threshold voltage. In this technique, data is not lost
when the cache line is in the leakage saving mode (called
the “drowsy” mode). In the drowsy mode, data is retained,
although it cannot be accessed for a read or write operation.
Fortunately, most cache lines are unused for long periods
due to temporal locality. Thus, by putting infrequently used
cache lines into the drowsy mode and keeping frequently
accessed cache lines in the active mode, much power
leakage is reduced without significant performance degra-
dation. There is a wake-up penalty to restore the voltage
level of the Vdd from the drowsy mode into the active
mode. However, the wake-up penalty is expected to be one
cycle in the 70 nm process technology [4].

Among the above four techniques, the drowsy technique
appears most suitable for L1 instruction caches since it
retains data and has a short wake-up penalty. In order to
alleviate the wake-up penalty of the drowsy cache, many

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008 7

. S.W. Chung is with the Division of Computer and Communication
Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-
713, Korea. E-mail: swchung@korea.ac.kr.

. K. Skadron is with the Department of Computer Science, School of
Engineering and Applied Science, University of Virginia, 151 Engineer’s
Way, PO Box 400740, Charlottesville, VA 22904-4740.
E-mail: skadron@cs.virginia.edu.

Manuscript received 17 Mar. 2006; revised 7 Jan. 2007; accepted 13 June
2007; published online 18 July 2007.
Recommended for acceptance by M. Dubois.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0105-0306.
Digital Object Identifier no. 10.1109/TC.2007.70770.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

prediction policies have been proposed. The easiest policy
is “no prediction”: to place all the cache lines into the
drowsy mode periodically and restore the voltage level of
the Vdd of the accessed cache lines, suffering the wake-up
penalty. It performs well with data caches because they
have high temporal locality, leading to little performance
loss, and out-of-order processors can often tolerate the extra
latency from waking up lines [4]. For instruction caches,
however, this “no-prediction” technique does not perform
well because any wake-up penalty that stalls fetching
directly impacts the performance. Many prediction policies
have been proposed for instruction caches. (Details will be
explained in the next section.) None of them has simulta-
neously shown consistent leakage energy reduction and
negligible performance degradation. In this paper, we
propose and evaluate a new on-demand wake-up prediction
policy [3] for an instruction cache. By on-demand, we mean
that only the cache lines currently in use need to be awake. This
technique takes advantage of the fact that we can accurately
predict the next cache line by using the branch predictor.
Good wake-up prediction accuracy is therefore achieved
using branch predictors, which have already proven highly
accurate [16]. A further advantage compared to previous
policies is that the proposed policy does not require an
additional predictor. To utilize the branch predictor for
wake-up prediction, we can allow a new pipeline stage
between branch prediction and instruction cache fetch. On
most branch mispredictions, the extra wake-up stage is
overlapped with misprediction recovery, so performance is
only affected on target-address mispredictions. Note that
the extra stage does not affect branch predictor accuracy.
For further details, see Section 3.

This work focuses on the use of the drowsy mode (actually,
the superdrowsy mode [10], explained in Section 2) as the
leakage-saving circuit technique. In this paper, we distin-
guish the wake-up prediction policy from the leakage-saving
circuit technique. The wake-up prediction policy predicts
which cache line will be woken up, whereas the leakage-
saving circuit technique is the mechanism for putting lines to

sleep and waking them up, independent of the prediction
policy. Although not evaluated here, the on-demand policy
would work well with other leakage-saving techniques.

The rest of this paper is organized as follows: Section 2
explains the concept of the drowsy/superdrowsy cache, the
reliability of the drowsy instruction cache, and previously
proposed prediction policies. Section 3 proposes a new on-
demand wake-up prediction policy by using branch
prediction information. Section 4 presents the analytical
model for evaluation and simulation environments. Sec-
tion 5 evaluates the energy/performance for the proposed
policy. Finally, Section 6 concludes the paper.

2 BACKGROUND WORK

2.1 Drowsy/Superdrowsy Cache Circuit Technique

The drowsy cache technique [4] has received a great deal of
attention because it retains data while providing a short
wake-up penalty. When the cache line is not expected to be
used in the near future, the supply voltage of the cache line
is reduced to a lower value typically close to the threshold
voltage, leading to lower leakage power. In the active mode
with nominal voltage, the cache line operates the same as in
a conventional cache. In the drowsy mode, however, the
cache line cannot be accessed even though data is retained.
After being awakened, the cache line can be accessed. Since
the drowsy mode does not fully turn off the supply voltage,
the drowsy cache does not reduce the leakage power as
much as the gated-Vdd, but data retention implies that the
drowsy cache does not need to refetch instructions and
allows a more aggressive sleep policy. Moreover, the wake-
up penalty is short: One cycle is expected in the 70 nm
technology [4].

Kim et al. proposed a refinement of this technique, called
the superdrowsy cache [10]. As shown in Fig. 1 [10], a single-
Vdd cache line voltage controller with a Schmitt trigger
inverter replaces multiple supply voltage sources in order
to alleviate the interconnect routing space. In addition, the
on-demand gated bitline precharge technique [25] is

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 1. Implementation of the superdrowsy cache line.

employed to reduce the bitline leakage. We apply our
prediction policy to the superdrowsy cache because it is the
most advanced circuit technique for instruction cache
leakage control as far as we know.

2.2 Reliability of the Drowsy Instruction Cache

There has been concern that the drowsy cache is more
susceptible to soft errors than conventional caches [11].
Some researchers are reluctant to adopt the drowsy (or
superdrowsy) cache circuit technique since the error rate is
exponentially dependent on the decrease of the supply
voltage. Without a special error detection/correction
technique, the reliability of the drowsy cache is lower than
that of a conventional cache. However, this is true only in
the case of write-back data caches, where even single-bit
soft errors in the modified data of the data cache are critical.
Instruction caches usually are not write-back. Errors can be
detected using per-line parity and faulty lines can be
refetched [24]. Double-bit errors are relatively rare: Li et al.
reported one order of magnitude difference between the
rates of single and double-bit errors [11]. Parity protection is
implemented in any case and the overhead is fairly small.

2.3 Previous Wake-Up Prediction Policies

The success of the drowsy-style cache depends on how
accurately the next cache line can be predicted and
awakened. Especially for an instruction cache, accuracy is
crucial since the accuracy directly affects performance
degradation. A simple policy is noaccess [4]: This uses per-
line access history and puts all of the unused lines into the
drowsy mode periodically. For a more accurate wake-up
prediction, two prediction policies were proposed for a
drowsy instruction cache [9]—Next Subcache Prediction
Buffer (NSPB) and Next Subcache Predictor in Cache Tags
(NSPCT). Additional storage is required to predict the next
subbank (not a cache line) using NSPB, whereas cache tags
are extended to provide the subbank predictor in NSPCT.
Therefore, NSPCT requires less hardware overhead, but is
comparable to NSPB in accuracy (performance loss is
0.79 percent). However, leakage reduction is weak [9] due
to large subbank turn-on energy. Zhang et al. proposed the
Loop policy [27], where all cache lines are put into the
drowsy mode after each loop is executed. This bears some
similarity to the Dynamic HotSpot Based Leakage Manage-
ment (DHS) policy, which was proposed in [6]. DHS makes
use of the branch target buffer (BTB) since branch behavior
is an important factor in shaping the instruction access
behavior. In the DHS policy, the global turn-off (drowsy)
signal is issued when a new loop-based hotspot is detected.
Thus, this policy can lower the supply voltage of unused
cache lines before the update window expires by detecting
that execution will remain in a new loop-based hotspot. The
DHS-Per Access (DHS-PA) policy employs a Just-In-Time-
Activation (JITA) strategy on top of the DHS policy [6]. The
JITA strategy is to wake up the next sequential line, exploiting
the sequential nature of the code. However, this is not
successful when a taken branch is encountered. The DHS-
Bank-PA policy [6] issues the global turn-off signal at fixed
periods, when the execution shifts to a new bank or when a
new loop hotspot is detected. It attempts to identify both
spatial and temporal locality changes. It also employs hotspot

detection to protect active cache lines and the JITA policy for
predictive cache line wake up. As shown in [6], although the
DHS-Bank-PA reduced leakage energy significantly, the
average performance degradation is as much as 2.3 percent,
which incurs extra dynamic and leakage power.

The conventional superdrowsy cache deploys the noac-
cess-JITA policy and, in order to achieve high accuracy [10],
up to a 32,000-cycle update window for next cache line
prediction. The noaccess-JITA puts only lines that have not
been accessed during a fixed time period into the drowsy
mode and activates the first sequential cache line. The
superdrowsy cache also deploys an additional Next Target
SubBank Predictor (NTSBP) that predicts the next subbank
whose bitlines are to be precharged in advance since the on-
demand gated precharge incurs an extra penalty to enable
an inactive subbank and this can result in a significant
runtime increase. The noaccess-JITA/NTSBP with a 32,000
cycle update window size is a leakage energy reduction
policy with the most accurate wake-up prediction but with
modest leakage energy reduction. However, the accuracy of
the noaccess-JITA/NTSBP is so dependent on program
behavior, especially locality, that the accuracy of noaccess-
JITA/NTSBP is poor in some applications. By slightly
modifying noaccess-JITA/BTSBP, wake-up prediction can
be adopted for more accuracy. When the way predictor can
have two read ports in order to predict the next cache line
that will be awakened as well, the prediction accuracy is
higher and the NTSBP is unnecessary (in this paper, we call
this policy noaccess-JITA utilizing way predictor).

In this paper, we compare the proposed on-demand
policy to noaccess-JITA (utilizing way predictor) and DHS-
Bank-PA since the former is the most accurate and the latter
is known to reduce leakage most. For a fair comparison, we
apply the gated bitline precharging technique to all of the
policies. All of these policies are explained in Table 1 to
prevent possible confusion.

3 NOVEL WAKE-UP PREDICTION POLICY: UTILIZING

BRANCH PREDICTION INFORMATION

In conventional drowsy (including superdrowsy) instruc-
tion caches, branch predictors are only used for conven-
tional branch direction/target prediction. In previous wake-
up prediction policies for leakage savings, additional
predictor structures are required in order to wake up a
cache line and accessed cache lines usually remain active for
a long time. The accuracy of the previous policies is
therefore highly dependent on the locality and the portion
of active leakage is still large. As shown in Fig. 2a,
additional predictors such as JITA [6], NSPB [9], NSPCT
[9], and NTSBP [10] are accessed before looking up the
branch predictor in order to hide the wake-up penalty. The
accuracy of these predictors has generally been problematic.

Instead, for near-optimal leakage energy reduction and
performance, we propose a new wake-up prediction policy
that enables on-demand wake up. The key is that the branch
predictor already identifies which line needs to be
awakened. No additional wake-up-prediction structure is
needed. In the proposed policy, as shown in Fig. 2b, the
instruction cache is therefore accessed one or more cycles

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 9

later in order to provide time to wake up the line identified

by the branch predictor. The data part and tag part of the

instruction cache are accessed at the same time and the

leakage-saving technique can be applied to both. During the

wake-up stage, the next branch prediction is made. It is

important to point out that the critical path of the branch

predictor is unaffected and this approach has no impact on

branch predictor accuracy.
The performance cost of the on-demand policy is

therefore limited to control-flow mispredictions. For the

case of direction misprediction (with correct target predic-

tion), there are two wake-up prediction policies (Figs. 3b

and 4b), depending on the architectural options in the

branch resolution. When a branch turns out to be mis-
predicted in the execution stage, some time is usually
required to clean up the misspeculated state and generate
the next fetch address (Fig. 3a), but, depending on exactly
where during the branch-resolution cycle the misprediction
is detected, it may be possible to complete this without any
extra overhead, for example, Fig. 4a. This makes the impact
of the wake-up penalty essentially negligible. As we will
show later, in this case, performance degradation is mostly
caused by target address misprediction since there is no
way to identify a mispredicted target address before the
actual address calculation.

Additional penalty for recovery after the execution

stage. In some pipeline designs, recovering from a branch
misprediction may require an extra clock cycle. As shown in

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 2. Pipeline stage comparison. (a) Conventional drowsy instruction

cache. (b) Proposed drowsy instruction cache.

TABLE 1
Prediction Policies, Including the Policies for Comparison

Fig. 3. Pipeline structure (when there is a one-cycle penalty for effective

address calculation). “a” represents the branch-resolution latency.

(a) Conventional pipeline. (b) Proposed pipeline.

Fig. 3, in the next pipeline stage after the execution/branch-
resolution stage of some instruction n, cleanup, effective
address calculation, and (in the on-demand scheme) wake
up occur simultaneously. For recovering from incorrectly
predicted taken branches, the branch instruction address to
wake up the not-taken path (sequentially next address) is
usually carried with the instruction. For recovering from
incorrectly predicted not-taken branches, the target address
is needed. This can either be carried with the instruction or
reside in some dedicated storage. This capability must exist
anyway in current microprocessors because every taken
branch in flight must be able to check whether the target
address obtained from the BTB is correct or not and quickly
redirect fetch after a misprediction. Because the wake-up
cycle is overlapped with the other misprediction-recovery
tasks, the on-demand scheme does not increase the
misprediction penalty.

No penalty for recovery after the execution stage. If
branches are resolved sufficiently early in the branch-
resolution stage to allow recovery to be completed by the
end of the stage, we want to avoid introducing an extra
cycle of misprediction penalty. As shown in Fig. 4, this can
be achieved if branches are resolved sufficiently early to
allow wake up to complete by the end of the branch-
resolution stage or (the more likely case) if we are willing to
speculatively wake up the alternative path. This means that
sometimes two lines (current instruction path and the other
path) are awake. Since branch instructions account for a
small portion of the total instructions and turn-on energy is
negligible, the turn-on energy of one more cache line for
branch instructions is negligible. In addition, requiring at
least one cycle for cleanup and fetch-address generation
(Fig. 3a) appears to be common [28]. For this reason, we
selected the on-demand policy in Fig. 3 for our evaluations
in the remainder of this paper.

We have now established that branch direction mis-
predictions generally need not incur an additional mis-
prediction penalty due to the on-demand policy. There is
only one case in which the on-demand scheme encounters

an additional penalty in case of a branch direction mispredic-
tion (as previously explained, we cannot hide the penalty in
case of a branch target misprediction). Since the stored cache
line address awakened is not that of the mispredicted
branch instruction address þ4, but the mispredicted branch
instruction address itself, there is a penalty when the
resolved branch instruction is at the end of the cache line
and the correct next instruction is in the sequentially next
cache line. It is possible to make use of the instruction
address þ4, but it requires an extra adder or storage for the
instruction address þ4. Even though this hardware cost
may be minor, in this paper, we do not use an extra adder
or extra storage since the probability that a mispredicted
instruction is at the end of the cache line is not so high (for
example, in the case of a 32-byte cache line and a 32-bit
instruction, the probability is 12.5 percent).

In the on-demand policy, only the one cache line (or at
most two cache lines in Fig. 4) expected to be accessed exists
in the active mode and all the other cache lines are in the
drowsy mode. After a new line is selected for wake up, the
currently awake line is put to sleep. For a set-associative
cache, the entire set could be awakened, but, to save energy,
only one way should be awakened. We adopt a way
predictor [21] that employs an MRU bit and integrates the
way predictor and BTB for high accuracy, which is known
as one of the most accurate way predictors [21]. For
conventional drowsy instruction caches, the way predictor
is also used to predict the way that will be awakened. The
way predictors for conventional drowsy instruction caches
only wake up the cache lines that are sequential. Non-
sequential cache lines are expected to still be awake based
on cache lines that were previously awakened and remain
active. In the noaccess-JITA (utilizing way predictor), the
way predictor can have two read ports for wake-up
prediction, as well as precharging and fetching. In DHS-
Bank-PA, way prediction is not required in case of an actual
cache read since the whole subbank is put in sleep mode
when execution jumps from one subbank to another,
resulting in the overlap of the wake-up penalty and
precharging penalty. In the proposed policy, the branch
predictor and the way predictor are accessed simultaneously,
which results in no need for another way prediction to read
the instruction cache since only one awakened cache line can
be read in the proposed on-demand policy. Note also that, in
this paper, we apply the on-demand wake-up policy to the tag
part of the instruction cache. However, when the tag part is
always in the active mode, the tag access can be moved to the
wake-up stage, leading to tag matching in the wake-up stage.
Although this provides a 100 percent accurate way prediction
without any way predictor, we take the more pessimistic
approach and assume that a way predictor is needed for set-
associative caches.

Fig. 5 shows one example of the proposed policy for the
Fig. 3 option. After a misprediction by incorrect target
address, the recovered target address (0x00182f10) is
awakened in cycle n. At the same time, the branch predictor
is looked up to predict the next fetch block. In the
conventional pipeline, the first branch predictor access is
done in cycle nþ 1. There is no predicted taken branch in
the fetch block (0x00182f10), leading to waking up the next

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 11

Fig. 4. Pipeline structure (when there is no penalty for effective address

calculation). (a) Conventional pipeline. (b) Proposed pipeline.

sequential fetch block (0x00182f20) in cycle nþ 1. In

cycle nþ 1, the branch predictor is accessed for the block

(0x00182f20), which should be accessed in cycle nþ 2 in the

conventional pipeline. In this case, the fetch block

(0x00182f20) has a predicted taken branch. Thus, the target

address from the BTB is used for the wake-up address.

Accordingly, the block (0x001820a0) is awakened in

cycle nþ 2 and fetched in cycle nþ 3. Please note that the

proposed policy does not affect the branch prediction

accuracy.

4 EXPERIMENTAL METHODOLOGY

4.1 Analytical Models

Leakage-related energy includes the leakage energy in the

active mode, leakage energy in the drowsy mode (including

the super-drowsy mode), turn-on energy for prediction,

turn-on energy for the correction of a wake-up mispredic-

tion (turn on means changing the cache line from the

drowsy mode into the active mode and is due to the need to

charge the capacitance of the line back to Vdd), and total

extra energy expended due to any change in runtime.

Equation (1) provides an expression for leakage-related

energy, and Table 2 summarizes the notation used there:

Eleakage related ¼ �Pi
�ANi

�Tþ Pturn-on
�

ðTNprediction þ TNcorrectionÞ;
ð1Þ

where i ¼ factive mode; drowsy mode; bitline gating mode;
super-drowsy mode ðdrowsy modeþ bitline gating modeÞg.

In the base model, all of the cache lines are always in the
active mode. The policies use predictions to reduce the
leakage-related energy by decreasing the number of cache
lines in the active mode. In the on-demand policy, all of the
cache lines except the next fetch cache line are in the drowsy
mode in which some of them are bitline-gated and others
are not.

In order to compare the on-demand policy to the
theoretically best policy, the optimal policy is presented in
this paper. The optimal policy is assumed to have perfect
knowledge of the future address trace. Thus, its perfor-
mance is the same as the base model and its leakage-related
energy is least. Not only minimizing the number of cache
lines in the active mode but also reducing the unnecessary
turn-on energy is the goal of the optimal policy. If the turn-
on energy is more than the active leakage energy (in other
words, if the time until the cache line is reused is short
enough), it is more efficient to leave the cache line in the
active mode instead of putting it in the drowsy mode.
Accordingly, the optimal policy can save more energy than
the on-demand policy. Using (2), extended from [17], the

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 5. Example operation of the on-demand wake-up prediction policy in which fetch resumes at address 0x0018sf10 after a misprediction.

TABLE 2
Notation Description

optimal point can be found. If the reuse interval ðIreuseÞ for a

cache line satisfies the following formula, it is more energy

efficient to leave the cache line in the active mode:

Ireuse
�Pactive mode < Ireuse

�Pdrowsy mode þ Pturn-on: ð2Þ

4.2 Simulation Environment

We extended SimpleScalar 3.0 [2] to evaluate energy and

performance. The processor parameters model a high-

performance microprocessor similar to Alpha 21264 [8], as

shown in Table 3. Table 3 also gives the technology and

power/energy parameters used in this paper for modeling

the instruction cache. The power/energy parameters are

based on the 70 nm/1.0 V technology [10]. We only

specifically model power in the cache and omit a detailed

cycle-by-cycle whole-processor power model with Simple

Scalar to make it easier to generalize conclusions about cache

leakage to other processor configurations. We therefore

consider whole-processor energy efficiency and the impact

of extra runtime in terms of the ratio of leakage-related power

in the instruction cache to total processor power.
We use all integer and floating-point applications from

the SPEC2000 benchmark suite [30] and use their alpha

binaries and reference inputs for execution. SimPoint [23] is

used to find representative samples of program execution.

Each benchmark is first fast-forwarded 300 million instruc-

tions and then simulated for the next billion instructions.

We selected gshare for a branch predictor since gshare

performs fairly well and it is suspected to be used for

commercial microprocessors [18]. However, if a more

accurate branch predictor was selected for evaluation, the

proposed policy would perform even better, whereas it

would not help wake-up prediction accuracy for other

policies. Using gshare instead of a more accurate branch

predictor actually sets a higher bar for evaluating our

proposed policy.
We selected two prediction policies (noaccess-JITA

(utilizing way predictor) and DHS-Bank-PA) for compar-

ison. We use the same details of the policies as proposed in

[6], [10]. The noaccess-JITA (utilizing w.p.) has a 32 K cycle

update window to periodically update the mode of each

cache line. Although execution moves from one subbank to

another subbank, the precharge circuits of the previous

subbank remain on for 16 cycles to prevent the mispredic-

tion of the subbank. After 16 cycles, the bitline of the

subbank is isolated. The DHS-Bank-PA has 2 K cycle update

window and its hotness threshold (when the access count

exceeds this value, the cache line is considered to be a

hotspot and all other cache lines except this hotspot basic

block are turned off) is 16.

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 13

TABLE 3
Architecture/Circuit Parameters

5 SIMULATION RESULTS

This section presents simulation results comparing the
proposed on-demand policy to other policies in terms of
energy reduction and runtime impact. Then, we explore the
effects of the proposed policy on the total processor energy
and the policy’s potential effect on other leakage-saving
circuit techniques.

5.1 Drowsy Fraction and Gated Bitline Precharging
Fraction

Fig. 6 shows the drowsy fraction—the percentage of cache
lines in sleep mode—in the direct-mapped instruction
cache. In the on-demand policy, only one cache line is in
the active mode and the others are in the drowsy mode,
resulting in a 99.9 percent drowsy fraction on the average.
Since the update window size of the noaccess-JITA
(utilizing way predictor) is as large as 32 K, the drowsy
fraction is relatively small (on the average, 65.3 percent). In
the DHS-Bank-PA, the average drowsy fraction is 97.7 per-
cent. The reason is that the update window size is as small
as 2 K and, additionally, cache lines are put into the drowsy
mode when a new hotspot is detected.

In the case of the four-way set-associative instruction
cache, the drowsy fraction of the on-demand policy is
99.9 percent, but the drowsy fraction of the noaccess-JITA
(utilizing way predictor) is 69.6 percent, which is again less
than that of other policies. In general, the drowsy fraction is
not sensitive to the cache associativity. We do not show the
average drowsy fraction for the 4-way set-associative cache
since it looks almost identical to that in Fig. 6.

In case of bitline precharging prediction, there is no
energy penalty, but there is a one cycle timing penalty when
mispredicted. In the 4-way set-associative caches, the bitline

precharging prediction is the same as the way prediction for
noaccess-JITA (utilizing way predictor) and on-demand
policy (or next subbank prediction for DHS-Bank-PA).
Consequently, the fraction of isolated bitlines in the 4-way
set-associative cache is always 87.5 percent (one subbank/
eight subbanks). Since a way predictor is used for subbank
prediction for the direct-mapped cache, the fraction of gated
bitline precharging is always 87.5 percent (one subbank/
eight subbanks), even in the direct-mapped cache.

5.2 Total Leakage-Related Energy

Figs. 7 and 8 show normalized leakage-related energy to the
base model in the direct-mapped cache (as explained in
Section 4.1, the base model is a conventional cache that does
not perform leakage control), reflecting the increased
runtime. The noaccess-JITA (utilizing way predictor) shows
inconsistent and relatively small reductions depending on
applications, whereas the other policies show very consistent
reductions. The average leakage-related energy reduction is
70.0 percent, 90.6 percent, 92.66 percent, and 92.71 percent in
the noaccess-JITA (utilizing way predictor), DHS-Bank-PA,
on-demand, and optimal policies, respectively.

In the on-demand policy, the next cache line is awakened
on demand. Thus, the leakage energy in the active mode is
minimized, whereas the turn-on energy by prediction is
expected to be larger due to more frequent sleep/activation
round-trips compared to the other previous policies, such
as the noaccess-JITA (utilizing way predictor) and the DHS-
Bank-PA. However, the turn-on energy in the on-demand
policy still accounts for a small portion of the total leakage-
related energy. Consequently, the average difference in
leakage-related energy between the on-demand policy and
the optimal policy is only 0.05 percent. In contrast, the
average leakage-related energy difference between the JITA

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 6. Average drowsy fraction in the instruction cache (direct-mapped).

(utilizing way predictor) and the optimal policy is 22.7 per-

cent and the difference between DHS-Bank-PA and the

optimal policy is 2.2 percent (2.2 percent seems acceptable,

but we should consider the extra runtime shown in

Section 5.4).
Figs. 9 and 10 show normalized leakage-related energy

to the base model in the 4-way set-associative cache. The

base model does not use any leakage-saving policy, but it

has a way predictor. The average leakage-related energy

reduction is 72.3 percent, 90.8 percent, 92.65 percent, and

92.70 percent in the noaccess-JITA (utilizing way predictor),

DHS-Bank-PA, on-demand, and optimal policies, respec-

tively. These results are similar to the results in the direct-

mapped cache.

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 15

Fig. 7. Normalized leakage-related energy for SPEC2000 INT applications (direct-mapped).

Fig. 8. Normalized leakage-related energy for SPEC2000 FP applications and total average (direct-mapped).

5.3 Wake-Up Prediction Accuracy

Table 4 shows the branch prediction accuracy and the

branch instruction ratio (the number of branch instruc-

tions/the number of total instructions) for SPEC2000

applications. On average, the branch prediction accuracy

is 94.7 percent and the branch instruction ratio is 8.9 percent.

Recall that the wake-up misprediction in the on-demand

policy is mainly caused by a branch misprediction by

incorrect target address. As the number of branch instruc-

tions gets smaller, the branch prediction accuracy affects the

wake-up prediction accuracy less. For example, vortex and

applu show similar branch prediction accuracy, but the

branch instruction ratio of applu is much less than that of

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 9. Normalized leakage-related energy for SPEC2000 INT applications (4-way set-associative).

Fig. 10. Normalized leakage-related energy for SPEC2000 FP applications and total average (4-way set-associative).

vortex, resulting in the higher wake-up prediction accuracy
of applu in Figs. 11 and 12.

Fig. 11 shows the wake-up prediction accuracy (the
number of fetches with a target-mispredicted branch/the
number of fetches) in the direct-mapped cache. The average
wake-up prediction accuracy of noaccess-JITA (utilizing
way predictor) is as high as 97.1 percent, although, for eon,
the prediction accuracy is only 91.0 percent. On the other
hand, the average wake-up prediction accuracy of the DHS-
Bank-PA is 81.2 percent. In the proposed on-demand policy,
the average wake-up prediction accuracy is as high as
98.8 percent. Even in the worst case, the wake-up prediction
accuracy is no worse than 95 percent.

Fig. 12 shows the wake-up prediction accuracy, includ-
ing bitline precharging and way prediction accuracy, in the
four-way set-associative cache. The accuracy of the optimal
policy implies the way prediction accuracy. Please note that
the results are not per instruction but per fetch. The average
accuracy of the noaccess-JITA (utilizing way predictor) is
97.5 percent since a set-associative cache makes it more
difficult to predict subbank precharging. The on-demand
and optimal policies show 87.5 percent and 88.7 percent
accuracy, respectively, where there is little difference. The
accuracy of DHS-Bank-PA is as low as 59.5 percent on the
average, which might result in severe performance degra-
dation. This is caused by flushing the previous subbank

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 17

TABLE 4
Branch Prediction Accuracy and Branch Instruction Ratio

Fig. 11. Wake-up prediction accuracy per fetch, including the bitline precharging accuracy (direct-mapped).

when execution jumps from one subbank to another since

the subbank hoppings are much more frequent in a set-
associative cache.

5.4 Runtime Increase

Even a small increase in runtime leads to a substantial
increase in the total processor energy consumption. This

might outweigh the reduced L1 instruction cache leakage

because the increased runtime extends the power dissipa-

tion of the entire processor. Note that, when a wake-up

misprediction (including precharging misprediction and

way misprediction) and an instruction cache miss occur at
the same time, the wake-up penalty is hidden by the cache

miss penalty. This means that the wake-up prediction

accuracy is not quite proportional to the runtime.
Fig. 13 shows the runtime normalized to the base model

in the direct-mapped cache. The noaccess-JITA (utilizing

way predictor) increases runtime by 0.08 percent on

average, but recall that leakage reduction is only 70.0 per-

cent—much smaller than the other policies. The DHS-Bank-
PA shows a 1.5 percent runtime increase on average. Even

worse, in some applications, runtime is increased by more

than 8 percent. The proposed on-demand policy increases

the runtime by only 0.08 percent on the average. In

perlbmk, the runtime of the on-demand policy is increased

by 1.7 percent. This means that wake-up mispredictions are

not overlapped with cache misses in the on-demand policy.
Fig. 14 shows the runtime normalized to the base model

in the four-way set-associative cache. The increases of the
average runtime are 0.11 percent, 3.33 percent, and

0.07 percent for noaccess-JITA (utilizing way predictor),

DHS-Bank-PA, and the proposed on-demand policy,

respectively. In crafty, the DHS-Bank-PA degrades the

performance as much as 17.3 percent, which is especially
severe.

5.5 Total Processor Energy and ED2

Figs. 15, 16, 17, and 18 show the average total processor
energy and average ED2 ðEnergy�Delay2Þ for all SPEC2000
applications in the direct-mapped cache, including the cost
of increased runtime on whole-processor energy. Note that
the “on-demand” graphs are almost overlapped with the
“optimal” graph in the figures. The leakage-related energy
of the x-axis in the above figures represents the leakage-
related energy (leakage in the active mode, leakage in the
energy-saving mode, and turn-on energy) in the instruction
cache, as explained in (1) in Section 4.1. The total processor
energy includes the dynamic leakage energy of the
instruction cache, as well as the dynamic leakage energy
consumed in other processor components except for the
instruction cache. For example, supposing that the instruc-
tion cache accounts for 10 percent of the total processor
energy and leakage comprises 50 percent of the instruction
cache energy, the ratio (leakage-related energy)/(total
processor energy) is 5 percent.

Since the on-demand policy and the optimal policy show
similar performance and leakage-related energy reduction
as shown in the previous sections, the total energy and ED2

are also similar, regardless of the leakage-related energy
ratio. Only in the case of perlbmk can we differentiate the
on-demand policy and the optimal policy. This is due to the
significantly increased runtime (1.7 percent) of the on-
demand policy. However, even in this case, the on-demand
policy generally shows the least total processor energy and
ED2. The total energy difference between the on-demand
policy and the noaccess-JITA (utilizing way predictor) is
only 0.5 percent when (leakage-related energy)/(total

18 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 12. Wake-up prediction accuracy per fetch, Including bitline precharging and way prediction accuracy (4-way set-associative).

processor energy) is 2 percent. However, if the leakage-
related energy accounts for a larger portion of the total
processor energy, the difference becomes larger. Thus, in
the embedded processor that may not have an L2 cache, the
proposed on-demand policy is much more energy efficient.

Although Section 5.2 indicated that DHS-Bank-PA
reduces the leakage-related energy about as well as the
on-demand policy, the total processor energy of the

DHS-Bank-PA is largest among the three policies due to
its severely increased runtime. Even worse, for a (leakage-
related energy)/(total processor energy) ratio of 2 percent,
the ED2 of the DHS-Bank-PA is worse than the base model
with no leakage-saving mode.

In the four-way set-associative cache, the DHS-Bank-PA
has larger total processor energy and ED2 due to the more
increased runtime compared to the direct-mapped cache.

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 19

Fig. 14. Normalized runtime (4-way set-associative).

Fig. 13. Normalized runtime (direct-mapped).

The other graphs are almost identical to the graphs in

Figs. 15, 16, 17, and 18 (we do not show the total processor

energy and ED2 for the four-way set-associative cache).
The on-demand policy does incur the extra energy of an

extra pipeline register due to the additional wake-up stage.

This is not included in the above total processor energy and

ED2 because its magnitude is small and because we can

only approximately estimate its precise value. We estimate

the energy cost of the extra pipeline register (approxi-

mately, 100 bits � instruction width (instruction, PC, poten-

tial target, and a few control bits)—400 bits for the 4-wide

processor studied here) to be about 0.1 W at 1.0 V and

20 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 15. Total processor energy for SPEC INT applications (direct-mapped). Note that the “on-demand” graphs are almost overlapped with the

“optimal” graph.

Fig. 16. Total processor energy for SPEC FP applications (direct-mapped). Note that the “on-demand” graphs are almost overlapped with the

“optimal” graph.

2.5 GHz. Even if we allow a substantial margin of error in

this estimate, the cost of the pipeline register in micro-

processors is negligible. This is based on the latch modeling

data obtained by Li et al. using Nanosim for our work in

[14], in which we verified that the power for a latch array

scales almost linearly with the bit width and the number of

words/entries and observed that writes are about 20 percent

more expensive than reads (we assume one read þ one

write per cycle here).
Considering the extra energy overhead, the on-demand

policy consumes much less overall processor energy than

the noaccess-JITA (utilizing way predictor), where at least

an additional 1,000 bits are required for wake-up prediction

(details are explained in Table 5). The DHS-Bank-PA

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 21

Fig. 17. ED2 for SPEC INT applications (direct-mapped). Note that the “on-demand” graphs are almost overlapped with the “optimal” graph.

Fig. 18. ED2 for SPEC FP applications (direct-mapped). Note that the “on-demand” graphs are almost overlapped with the “optimal” graph.

already shows noticeable differences in terms of the total
processor energy and the ED2, compared to the on-demand
policy. After considering an additional 11,000 bits for wake-
up prediction (details are explained in Table 5) that is much
more than the extra hardware (400 bits) in the on-demand
policy, the difference becomes much larger. The on-demand
policy therefore becomes much more energy efficient after
reflecting the extra energy overhead of the additional
hardware required.

5.6 Combining with Other Leakage-Saving Circuit
Techniques

The proposed on-demand policy can be adopted for other
leakage-saving circuit techniques that might have a longer
wake-up penalty or more leakage saving. Even for other
techniques such as ABB MTCMOS [19] and DRG [1] that
have a longer wake-up penalty, the proposed on-demand
policy can be used to reduce leakage energy. Fig. 19 makes
it possible to estimate how much leakage energy is reduced
when other leakage-saving circuit techniques are applied.
We normalized the average instruction cache leakage
energy to the base model for SPEC2000 applications, where
the leakage energy due to extra runtime is captured, but the
energy consumption from the other processor components,
except for the instruction cache and the dynamic energy

consumption in the instruction cache, are not considered
(please note that “on-demand (one-wake-up-latency)”
graphs are almost overlapped with the “on-demand (two-
wake-up-latency)” graph).

Regardless of the wake-up latency, the on-demand
policy consistently reduces the leakage energy most since
its accuracy is high enough and its energy reduction is near
optimal. When the wake-up latency is changed into two, the
on-demand policy still reduces more leakage energy than
the other policies.

5.7 Comparison of Hardware Overhead

For a wake-up prediction policy, hardware overhead is
inevitable in addition to the DVS control circuitry.
Noaccess-JITA (utilizing way predictor) requires one bit
per cache line in order to detect whether the cache line is
accessed or not in the fixed time period. In addition, for
associative caches, it needs a two-read port way predictor
(instead of the baseline one-port way predictor) for bitline
precharging (subbank) prediction. In the DHS-Bank-PA,
one bit per cache line is also required to store the access
history. Additionally, 10 bits (half for the target basic block
counter and the other half for the fall-through basic block
counter) are required to locate a hotspot [6]. Since the BTB
has 1,024 entries, the total storage overhead is 10,000. For

22 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

TABLE 5
Hardware Overhead for the Policies

Fig. 19. Instruction cache leakage reduction combined with other leakage-saving circuit techniques. Note that the “on-demand” graphs are almost

overlapped with the “optimal” graph.

the proposed on-demand policy, a small register (for
example, 10 bits for our 1,024-entry cache) that records
the most recently accessed cache line and another pipeline
register (400 bits) are needed. If the alternate path is
awakened speculatively, as in Fig. 4, a two-read port way
predictor is required. Otherwise, for the Fig. 3 option that is
more common [28], the baseline one-read port way
predictor is enough. Table 5 presents the total hardware
overhead for each policy. The hardware overhead is crucial
since it not only increases chip area but also incurs extra
dynamic/leakage energy.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose an on-demand wake-up predic-
tion policy using the branch prediction information. Our
goal is not only less energy consumption but also consistent
near-optimal performance. Noaccess-JITA (utilizing way
predictor) shows competitive performance, but its energy
consumption is more than three times that of the proposed
policy on average. DHS-Bank-PA reduces energy close to
the optimal policy, but it increases the runtime severely. In
some cases, it increases the runtime by more than 15 percent.
The proposed policy degrades the performance by only
0:06 � 0:08 percent on average and 2.0 percent in the worst
case. At the same time, active leakage energy is almost
eliminated since only one cache line is active, whereas all
other lines are in the drowsy mode. The leakage-related
energy reduction by the proposed policy is, on average,
92.7 percent, almost identical to the reductions by the
optimal policy. This is especially beneficial for controlling
leakage in future instruction caches, which might be much
larger. The total processor energy and the ED2 of the
proposed policy are also almost identical to those of the
optimal policy. Therefore, we conclude that the proposed
on-demand wake-up prediction policy is near optimal. We
believe that there is no reason to try to reduce the remaining
leakage by adopting non-state-preserving techniques at the
risk of severe performance degradation.

In this paper, we apply the on-demand wake-up policy
to the tag portion of the instruction cache. However, when
the tag array is always in the active mode, the tag access can
be moved to the wake-up stage, leading to tag matching in
the wake-up stage. This results in a 100 percent accurate
way prediction without any way predictor. The trade-off
between the reduction of leakage energy in the tag part and
perfect way prediction will be an interesting research topic.
Another interesting topic is to combine the proposed on-
demand policy with a trace cache [22]. Since the branch
direction/target can be known at least several cycles earlier
in the trace cache, the proposed on-demand policy
combined with the trace cache can hide a multicycle
wake-up penalty of other circuit techniques. Even with
the trace cache, the noaccess-JITA (utilizing way predictor)
still has large active leakage consumption and DHS-Bank-
PA cannot hide the penalty due to its low wake-up
prediction accuracy.

ACKNOWLEDGMENTS

This work was funded by the US National Science
Foundation under Grant CCF-0429765, the US Army
Research Office under Grant W911NF-04-1-0288, a grant

from Intel Microprocessor Research Laboratories (MRL), an
IT National Scholarship Program from the Institute of
Information and Technology Assessment (IITA) and Min-
istry of Information and Communication (MIC), Korea, and
a Korea Research Foundation Grant of the Korean Govern-
ment (KRF-2006-D00452). The authors would like to thank
Karthik Sankaranarayanan for his help in using SimPoint
and in estimating the extra energy consumption of an
additional pipeline stage. They would also like to thank
Nam Sung Kim for his helpful comments on validating their
simulation model. Finally, they would like to thank the
anonymous reviewers for their helpful feedback.
S.W. Chung is the corresponding author for this paper.

REFERENCES

[1] A. Agarwal, L. Hai, and K. Roy, “A Single-Vt Low-Leakage Gated-
Ground Cache for Deep Submicron,” IEEE J. Solid-State Circuits,
vol. 38, pp. 319-328, Feb. 2003.

[2] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infra-
structure for Computer System Modeling,” Computer, vol. 35,
pp. 59-67, 2002.

[3] S.W. Chung and K. Skadron, “Using Branch Prediction Informa-
tion for Near-Optimal I-Cache Leakage,” Proc. 11th Asia-Pacific
Computer Systems Architecture Conf., pp. 24-37, 2006.

[4] K. Flautner, N.S. Kim, S. Martin, D. Blaauw, and T. Mudge,
“Drowsy Caches: Simple Techniques for Reducing Leakage
Power,” Proc. 29th Int’l Symp. Computer Architecture, pp. 148-157,
2002.

[5] F. Hamzaoglu, Y. Ye, A. Keshavarzi, K. Zhang, S. Narendra, S.
Borkar, M. Stan, and V. De, “Analysis of Dual-VT SRAM Cells
with Full-Swing Single-Ended Bit Line Sensing for On-Chip
Cache,” IEEE Trans. VLSI Systems, vol. 10, pp. 91-95, Apr. 2002.

[6] J.S. Hu, A. Nadgir, N. Vijaykrishnan, M.J. Irwin, and M.
Kandemir, “Exploiting Program Hotspots and Code Sequentiality
for Instruction Caches Leakage Management,” Proc. Int’l Symp.
Low Power Electronics and Design, pp. 593-601, 2003.

[7] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power,” Proc.
28th Int’l Symp. Computer Architecture, pp. 240-251, 2001.

[8] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, pp. 24-
36, 1999.

[9] N.S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Circuit and
Microarchitectural Techniques for Reducing Cache Leakage
Power,” IEEE Trans. VLSI Systems, vol. 12, no. 2, pp. 167-184,
Feb. 2004.

[10] N.S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Single-VDD
and Single-VT Super-Drowsy Techniques for Low-Leakage High-
Performance Instruction Caches,” Proc. Int’l Symp. Low Power
Electronics and Design, pp. 54-57, 2004.

[11] L. Li, V. Degalahal, N. Vojaykrishnan, M. Kandemir, and M.J.
Irwin, “Soft Error and Energy Consumption Interactions: A Data
Cache Perspective,” Proc. Int’l Symp. Low Power Electronics and
Design, pp. 132-137, 2004.

[12] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M.J.
Irwin, and A. Sivasubramaniam, “Leakage Energy Management
in Cache Hierarchies,” Proc. 11th Int’l Conf. Parallel Architectures
and Compilation Techniques, pp. 131-140, 2002.

[13] Y. Li, D. Parikh, Y. Zhang, K. Sankaranarayanan, M. Stan, and K.
Skadron, “State-Preserving vs. Non-State-Preserving Leakage
Control in Caches,” Proc. Design, Automation and Test in Europe
Conf. and Exhibition, pp. 22-27, 2004.

[14] Y. Li, M. Hempstead, P. Mauro, D. Brooks, Z. Hu, and K. Skadron,
“Power and Thermal Effects of SRAM vs. LatchMux Design,”
Proc. ACM/IEEE Int’l Symp. Low-Power Electronics Design, pp. 173-
178, 2005.

[15] S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating:
Speculation Control for Energy Reduction,” Proc. 25th Int’l Symp.
Computer Architecture, pp. 132-141, 1998.

[16] S. McFaring, “Combining Branch Predictors,” Technical Note TN-
36, Digital Equipment Corp., June 1993.

[17] Y. Meng, T. Sherwood, and R. Kastner, “On the Limits of Leakage
Power Reduction in Caches,” Proc. 11th Int’l Symp. High-
Performance Computer Architecture, 2005.

CHUNG AND SKADRON: ON-DEMAND SOLUTION TO MINIMIZE I-CACHE LEAKAGE ENERGY WITH MAINTAINING PERFORMANCE 23

[18] M. Milenkovic, A. Milenkovic, and J. Kulick, “Demystifying Intel
Branch Predictors,” Proc. Workshop Duplicating, Deconstructing and
Debunking, 2002.

[19] K. Nii et al., “A Low Power SRAM Using Auto-Backgate-
Controlled MT-CMOS,” Proc. Int’l Symp. Low Power Electronics
and Design, pp. 293-298, 1998.

[20] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and N. Vijaykumar,
“Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-
Submicron Cache Memories,” Proc. Int’l Symp. Low Power
Electronics and Design, pp. 90-95, 2000.

[21] G. Reinman and B. Calder, “Using a Serial Cache for Energy
Efficient Instruction Fetching,” J. Systems Architecture, vol. 50,
no. 11, pp. 675-685, 2004.

[22] E. Rotenberg, S. Nennett, and J.E. Smith, “A Trace Cache
Microarchitecture and Evaluation,” IEEE Trans. Computers,
vol. 48, no. 2, pp. 111-120, Feb. 1999.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behavior,” Proc.
10th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, 1997.

[24] S.H. Shin, S.W. Chung, and C.S. Jhon, “On the Reliability of
Drowsy Instruction Caches,” Proc. 11th Asia-Pacific Computer
Systems Architecture Conf., pp. 445-451, 2006.

[25] S. Yang and B. Falsafi, “Near-Optimal Precharging in High-
Performance Nanoscale CMOS Caches,” Proc. 36th Ann. IEEE/
ACM Int’l Symp. Microarchitecture, 2003.

[26] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vijaykumar, “An
Integrated Circuit/Architecture Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches,” Proc. Seventh Int’l
Symp. High-Performance Computer Architecture, pp. 147-157, 2001.

[27] W. Zhang, J. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan,
and M.J. Irwin, “Compiler-Directed Instruction Cache Leakage
Optimization,” Proc. 35th Ann. IEEE/ACM Int’l Symp. Microarch-
itecture, pp. 208-218, 2002.

[28] ARM, ARM 1136 Technical Reference Manual, http://www.arm.
com, 2007.

[29] ITRS (Int’l Technology Roadmap for Semiconductor), http://
public.itrs.net, 2001.

[30] Standard Performance Evaluation Corp., http://www.specbench.
org, 2007.

[31] VAR Business, Intel Clears Up Post-Tejas Confusion, http://
www.varbusiness.com/sections/news/breakingnews.jhtml?
articleId=18842588, 2007.

Sung Woo Chung received the BS degree in
computer engineering and the PhD degree in
electrical and computer engineering from Seoul
National University, Korea, in 1996 and 2003,
respectively. He worked as an academic visitor
for the IBM T.J. Watson Research Center,
Yorktown Heights, New York, in 2002. From
2003 to 2005, he worked for Samsung Electro-
nics as a senior engineer. In 2005, he worked as
a research scientist at the University of Virginia

at Charlottesville. He joined the Division of Computer and Communica-
tion Engineering at Korea University, Seoul, as an assistant professor in
2006. His research interests include technology-aware design for
microarchitecture and SoC (system on chip) and architectural supports
for flash memories. He is a member of the IEEE Computer Society.

Kevin Skadron received the BSEE degree and
the BS degree in economics from Rice Uni-
versity, Houston, Texas, and the MA and PhD
degrees from Princeton University, Princeton,
New Jersey. He joined the Department of
Computer Science at the University of Virginia
at Charlottesville in 1999 and is now an
associate professor. His research interests
focus on the implications of technology trends
and physical constraints (for example, power,

temperature, and reliability) for future highly multicore architectures. He
is a cofounder and associate editor-in-chief of the IEEE Computer
Architecture Letters. He recently served as program or general cochair
of the PACT ’06, MICRO ’04, and PACT ’02. He was a coauthor the
articles that won Best Student Paper Awards at ISCA ’03, RTSS ’03, and
SHAMAN ’02. He is a senior member of the IEEE and a member of the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

24 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

