
Lumos+: Rapid, Pre-RTL Design Space Exploration
on Accelerator-Rich Heterogeneous Architectures

with Reconfigurable Logic
Liang Wang

University of Virginia
Email: lw2aw@virginia.edu

Kevin Skadron
University of Virginia

Email: skadron@cs.virginia.edu

Abstract—We propose Lumos+, an analytical framework for
power and performance modeling of accelerator-rich heteroge-
neous architectures. As accelerators proliferate, the search space
becomes too expensive for brute-force search. We describe a
novel and highly accurate genetic search algorithm. We then
use Lumos+ to explore the tradeoffs between using fixed-function
accelerators and reconfigurable logic blocks, while accounting for
diverse workload characteristics, hardware overheads, and sys-
tem constraints, and show that reconfigurable logic can improve
power and performance while improving overall system flexibility
and the ability to adapt to diverse and changing workloads.

I. INTRODUCTION

Integration of accelerators to create heterogeneous proces-
sors is becoming more common for both power and perfor-
mance reasons. In most systems today, a design with only
conventional CPU cores cannot meet performance targets
without exceeding power constraints. Fixed-function accel-
erators can provide dramatic speedups over CPU cores, but
sacrifice flexibility and programmability. Reconfigurable logic
(e.g. FPGAs) is more flexible, so that the same hardware
block can accelerate various functions. Another advantage
of reconfigurable logic is that hardware can be updated to
fix bugs, further optimize performance or power, or adapt
to changing kernel characteristics. However, the overheads of
reconfigurability reduce the performance and power-efficiency
compared to fixed-function logic.

Various fixed-function and reconfigurable accelerators have
been recently proposed in both industry [1] and academia [2],
[3], [4], [5]. The increasing variety of both types of accel-
erators leads to an exploding design space in selecting how
many CPU cores, fixed-function accelerators, and how much
reconfigurable logic to provision, as well as the choice of opti-
mal operating voltage. Furthermore, heterogeneous processors
must serve increasingly diverse workloads. An efficient, auto-
mated pre-RTL design-space search methodology is needed to
help identify the best configuration.

The Lumos [6] design-space exploration framework is a
first-order analytical modeling framework for exploring the
design space of accelerator-rich heterogeneous architectures,
in order to determine the best mix of cores, fixed-function
accelerators (FF-Accs), and reconfigurable logic (RL). Lumos
extends existing hardware models from [7] and [3] with a sta-
tistical workload model and a fine-grained voltage-frequency

scaling model calibrated by circuit simulation. Lumos+ ex-
tends Lumos with GAopt, a genetic search heuristic, to find
the accelerator allocation that achieves the best throughput for
diverse workloads. Lumos+ also adds modeling of the memory
hierarchy, more detailed modeling of the reconfigurable logic,
and more detail in the workload model. Finally, we propose a
performance metric, volatility, to evaluate performance sensi-
tivity to workload variations.

In addition to the GAopt search method, the primary
contributions of this paper are: 1) To show the importance
of performance volatility as an evaluation metric for het-
erogeneous architectures. An architecture with low volatility
achieves close-to-optimal performance across a majority of
applications, even though it may not be best for any single
application. 2) For general-purpose applications with a large
number of kernels with diverse characteristics, we show that
systems equipped with reconfigurable logic achieve the best
overall performance and lowest volatility.

II. LUMOS+

In the Lumos+ model, a processor consists of conventional
general-purpose cores of various size and performance lev-
els, and optionally, one or more hardware accelerators. For
simplicity, we assume there is only one reconfigurable block
that can be shared in time or space (the latter is left for
future work). Various figures of merit can be optimized, but
in this paper, we maximize performance subject to power and
area constraints. For each candidate hardware organization,
voltage, and hence frequency, are determined so that the power
constraint is met. Performance is determined according to
the frequency and a model for performance as a function of
workload characteristics.

A. Technology Scaling Model

We employ circuit simulations to determine energy-delay
characteristics of a given technology process and derive a
map of frequency and power as a function of voltage. This
is achieved by simulating a 32-bit ripple-carry adder using
SPICE, for various supply voltages. The complexity of an
adder makes it a better approximation for logic with multi-
ple critical paths than a simple inverter chain. We use the
predictive technology model (PTM) from [8].

skadron
Typewritten Text
This is the authors' final version. The authoritative version will appear in IEEE Xplore.

skadron
Typewritten Text

B. Performance Model

To model the performance of a kernel running on cores, we
take a similar approach to the validated model in [9]. This
model extends Amdahl’s law by factoring cache hit rate and
latency into the multicore performance scaling. The model is
summarized as follows:

Perf = N
freq

CPIexe
µ

where N is the number of active cores subject to the power
constraint, CPIexe is the effective cycles-per-instruction (CPI)
excluding stalls due to cache accesses, which are considered
separately in core utilization (µ). µ is calculated by factoring
in the average memory access latency, (t) and the percentage
of memory instructions (rm):

µ =
T

1 + t rm
CPIexe

t = (1−mL1tL1 +mL1(1−mL2)tL2 +mL1mL2tmem

mL1 =

(
CL1
TβL1

)(1−αL1)

and mL2 =

(
CL2

NTβL2

)(1−αL2)

where mL1 and mL2 are the miss rates, tL1 and tL2 are the
access latencies, CL1 and CL2 are the capacities, α and β are
parameters.

To model the speedup and the power consumption of a
hardware accelerator (FF-Acc or RL), Lumos+ uses a pair
of parameters (η, φ) for each kernel, following [3], [6]. φ is
the power efficiency normalized to a single, baseline core,
and η is the relative performance normalized to the same
baseline. The cost of data movement is lumped implicitly into
the performance parameter (η) of an accelerator. In general,
hardware accelerators are much more power-efficient than
cores. The area allocated to a hardware accelerator also tends
to be small. We do not yet model complex task graphs
so that different accelerators can be in use concurrently; in
applications we have studied, such task-level parallelism is
small enough not to affect the eventual design. Although the
CPU cores can together be power-limited and need to run
at lower voltage for a parallelizable task, an accelerator will
rarely be power limited. The goal of Lumos+ is to explore the
best potential configuration of cores and accelerators, so we
assume the memory bandwidth is always sufficient. With these
assumptions, we model the relative performance of an acceler-
ator proportional to its area, which is a simplifying first-order
approximation suitable for tasks with plentiful parallelism, but
overlooking synchronization and data-transfer overheads for
more complex algorithms.

For simplicity, Lumos+ assumes that the power and the
area of all un-core components remain a constant ratio to the
whole system. For this study, we study processor design for
datacenter workloads and, following [10], assume that 50%
of both the total thermal design power (TDP) and the die
area are available for processing units, with the rest allocated
to memory controllers, I/O, etc. We use the Oracle SPARC
T4, a representative server-class design, with TDP and area

of 120W and 200mm2, to set our power and area budgets
(i.e., 60W and 100mm2). For the CPU cores, the Niagara2-
like in-order core is used, as it is the latest design supported by
McPAT and a close predecessor to SPARC T4. At the baseline
45nm, a single core consumes 7.2W and takes 7.65mm2. We
scale these according to McPAT rules for more recent nodes.
Latency parameters for memory subsystem are extracted from
the Intel Nehalem reported in [9].

C. Workload Model

A workload consists a set of N kernels (K1,K2, . . . ,KN)
and M applications (A1, A2, . . . , AM). For each application
Ai, the normalized execution time of the kernel Kj using a
single baseline core is denoted as tij . tij = 0 if application Ai
does not include kernel Kj . We use Sai to denote the speedup
of the application Ai by a given system configuration, and
calculate Sai as:

Sai =
1∑M

j=1
tij
sj

(1)

where sj is the speedup of the kernel Kj achieved by the
given system configuration. In the case that more than one
computation units are available for a given kernel (Kj), its
speedup is defined as the highest performance achieved among
all computation units:

sj = max(sMP
j , sRL

j , s
FF
j) (2)

where sMP
j is the speedup achieved by many core paralleliza-

tion, sRL
j is the speedup achieved by RL, and sFF

j is the speedup
achieved by an FF-Acc. Finally, the speedup of a workload is
defined as a weighted average of speedup achieved for every
applications within the workload.

In order to compose state-of-the-art representative work-
loads, we derive applications from kernels in the Sirius
suite [11]. This suite consists of kernels extracted from Sirius,
an open end-to-end standalone speech and vision based intel-
ligent personal assistant (IPA). It includes speech recognition,
image matching, natural language processing, and intelligent
question-and-answer systems. We adopt micro-architectural
parameters of each kernel from machine measurements on
a server equipped with Intel Xeon X7550. Finally, for this
study, we adopt the speedup of reconfigurable accelerators
from reported data in [11]. To obtain speedups of FF-Accs,
we scale up the speedup by a constant ratio from the RL
implementations of the same size. We use 5x and 40x as
conservative and aggressive values, as they represent the range
of performance ratios from literature.

D. Reconfiguration Overhead

The performance model of the reconfigurable accelerator
described in the previous section implicitly ignores the re-
configuration overhead. It can be justified by the assumption
that each kernel within an application takes sufficient time to
dominate the time spent on setting up the execution context.
Unfortunately, this is not always the case. To consider the
reconfiguration overhead of a kernel within an application,

we introduce a pair of parameters to denote the number of
reconfiguration operations (N rc) and the associated overhead
(T rc). The power overhead of reconfiguration tends to be
trivial compared to the overall system power budget. As a
result, we only focus on the latency overhead associated with
reconfiguration operations. According to the cost model of
FPGA reconfiguration in [12], we model the latency overhead
as proportionally to the size of the reconfigurable accelerator.
After factoring in the overhead, the runtime of the kernel Kj

in the application Ai by reconfigurable acceleration can be
expressed as:

tRL
ij =

tij
sRL
j

+N rc
ij · T rc

ij (3)

where sRL
j is the speedup achieved by a reconfigurable ac-

celerator. N rc
ij is the reconfiguration count of the kernel Kj

when it presents in the Application Ai. Its value is at least 1
if tij is none-zero, because the reconfigurable fabric has to be
reconfigured at least once when the targeted kernel is invoked
at the first time. Finally, T rc

ij is the reconfiguration overhead
of the kernel Kj within the application Ai. T rc

ij is normalized
to the length of the application executed by a single baseline
core. Therefore, the performance calculation in Equation 1 is
rewritten as:

Sai =
1∑M

j=1 min(
tij
sMP
j

, tRL
ij ,

tij

sFFj
)

(4)

Note that Equation 4 is idetical to Equation 1 when T rc equals
to 0 for every kernels among all applications.

In this paper, we extract the reconfiguration time from [12]
by averaging all reported numbers for a wide range of recon-
figuration setups.

III. DOMAIN-SPECIFIC APPLICATIONS

We define domain-specific applications to be applications
that share a small set of kernels, with these kernels likely
to present in each application. To conduct the design space
exploration on domain-specific applications, we synthesize a
set of applications using all seven kernels from the Sirius
suite [11]. We use a synthetic kernel, “serial”, to model the
serial computation of applications. The “serial” kernel can
only be executed on a single conventional core. Further, we
introduce another synthetic kernel, “coreonly”, to lump to-
gether computations that can be accelerated only by many-core
parallelization but not any types of hardware specialization.
We employ a Monte-Carlo sampling approach to generate
10,000 applications from a pool composed of seven Sirius
kernels and the two special synthetic kernels that are only
applicable for conventional cores. In this section, we first
describe a simple brute-force search scheme, named BFopt;
then we use BFopt to explore the best system configuration
among synthetic applications as just described.

A. BFopt

Since the number of FF-Acc candidates is small, it is
possible to conduct a brute-force search on the design space
to find the optimal system configuration that delivers the best

performance. We call this scheme BFopt. To make it more
practical, we employ two heuristics to trim down the space
of system configurations. First, we limit the area allocation
for FF-Accs. This is because the throughput of an FF-Acc
is generally much better than many-core parallelization and
reconfigurable accelerators. A small FF-Acc is good enough
to speedup its targeted kernel significantly. In our study, we
set the upper limit of area allocations on an FF-Acc to be
10% of the total system area budget. Second, we assume
that conventional cores cannot be eliminated completely. In
reality, an application typically has some portion that can only
be executed by conventional cores (e.g. the “serial” and the
“coreonly” synthetic kernels). In our study, we set the area
allocated to cores to be at least 20% of total the overall
processing area budget.

As a result, we set up BFopt in such a way that the area
allocation of each FF-Acc ranges from 0 to 10% with a step
size of 2%, while the area allocation of RL ranges from 0
to 70% with a step size of 10%. After removing candidates
that lead to less than 20% of total area budget for cores, the
effective search space is around 1.4 million configurations.
Thanks to the fast evaluation of Lumos+, the brute-force
search takes minutes rather than days on standard servers.

B. Area Allocations on Accelerators

As a validation to the heuristics we applied to BFopt,
we first look at the area allocated to accelerators across
optimal configurations for 10,000 synthetic domain-specific
applications. For each application, we invoke BFopt to find
the optimal configuration of area allocations on accelerators
and cores.

We use a box-plot to show the results, where the box extends
from the lower to upper quartile values of the data, with a line
at the median, and with whiskers indicating min/max of the
data. As shown in Figure 1a, when the performance advantage
of an FF-Acc is as large as 40x over its RL counterpart, the
optimal area allocations for a majority of FF-Accs are less
than 8%, validating the first heuristic that the optimal area
allocation for an FF-Acc is small. In Figure 1b, the over-
all accelerator allocations of each optimal configuration are
mostly in the range of 15% to 45%, with outliers reaching up
to 70%. Even considering these outliers, the total allocations
are still well below 80%, corroborating the second heuristic
that conventional cores cannot be eliminated completely (i.e.,
more cores are provisioned than the heuristic baseline of
20%). When the performance advantage of FF-Acc’s is 5x,
we observe a similar shape of the resulting data set. We omit
plots of 5x for succinctness.

C. Number of Dedicated Accelerators

As dedicated accelerators are generally more expensive
to design and manufacture, it is critical to understand the
optimal number of FF-Accs to achieve the best performance
in a cost-effective way. We study the same set of optimal
configurations obtained from the previous analysis, and use a
pie chart to summarize the number of FF-Acc’s in each optimal

FFAcc allocations
0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
e
r-

A
cc

.
A

re
a
 a

llo
ca

ti
o
n

(a) FF accelerators.

Total Acc. allocations
0.0

0.2

0.4

0.6

0.8

1.0

P
e
r-

C
o
n
fi
g
.

A
re

a
 a

llo
ca

ti
o
n

(b) FF-Accs. and RL

Fig. 1: Area allocation with BFopt for accelerators with a
domain-specific workload, with an FF-Acc speedup of 40X.
The box extends from the lower to upper quartile values of the
data, with a line at the median, and the whiskers indicating
min/max of the data. (a) distribution of per-accelerator area
allocations on FF-Accs within these optimal configurations.
Allocations on FF-Accs range from 2% to 10% with a step
size of 2%. (b) distribution of total accelerator allocations
(including RL and FF-Accs) of each optimal configuration.

configuration. In Figure 2a, where the performance ratio of
FF-Accs to RL is 5x, most of the optimal configurations
end up with no more than one dedicated accelerator. This is
because an RL accelerator with a large allocation outperforms
the corresponding dedicated accelerator with a small area
allocation, and the large allocation on RL is justified by its
flexibility in acceleration across a range of kernels. However,

N
u
m

b
e
r

o
f

A
S
IC

s

1

2

3

4-7

(a) Perf. ratio: 5x

N
u
m

b
e
r

o
f

A
S
IC

s

7

5

6
3-4

(b) Perf. ratio: 40x

Fig. 2: Number of dedicated ASIC accelerators in optimal
configurations, plotted in pie charts.

when the performance ratio of the FF-Acc is large enough, e.g.
at 40x, a small allocation on FF-Acc is more than enough to
deliver a substantial kernel speedup, leaving non-accelerating
kernels (e.g. “coreonly” and “serial”) the new performance
bottleneck. Therefore, as plotted in Figure 2b, a majority of
optimal system configurations include dedicated accelerators
for all seven Sirius kernels, and avoid any RL allocations at
all.

D. Performance Volatility

The overall throughput of a heterogeneous system, espe-
cially when it is loaded with FF-Accs, depends heavily on
the frequency of its targeted kernels in each application.
More specifically, the system performs best on applications in
which the targeted kernels are heavily weighted, and suffers
in applications within which the targeting kernels have lower
weights. To study the performance heterogeneity of a system
configuration across applications, we propose a new metric,
volatility, to describe the performance stability of a heteroge-
neous system across a workload. Volatility (V) is defined as
the sum of “square residuals” of system performance across

Fig. 3: Distribution of performance volatility of optimal con-
figurations for ASIC performance ratio of 5x, and 40x. The
box-plot setting is the same as described in Figure 1.

all applications within a workload:

V =
1

N

N∑
i=1

(
1− sai

Sopt
i

)2

(5)

where sai is the performance of the system on application
Ai, S

opt
i is the performance of the system that achieves the

highest throughput on application Ai, and 1 − sai /S
opt
i is the

performance “residual” for the application Ai. The value of V
ranges from 0 to 1. The smaller the V , the higher likelihood
of a system configuration to deliver close-to-optimal (if not
optimal) performance for applications within a workload. For
example, when V = 0.01, due to the square of “residual”,
it implies that the configuration performs within 90% of the
optimum on an average basis. We show the distribution of
performance volatility of optimal configurations from previous
analysis in Figure 3. The performance volatility values of
optimal configurations in both cases (5x and 40x) are as low
as 0.01. This is because most of the optimal configurations
for domain-specific applications are similar in the number of
accelerators as well as the type of accelerators. A configuration
that is optimal for one application performs close-to-optimal
for other applications as well, resulting in a low performance
volatility across the workload.

IV. GENERAL-PURPOSE APPLICATIONS

Next we extend our exploration to general-purpose appli-
cations. In contrast to domain-specific applications, where the
set of kernel behaviors is limited and can be more carefully
characterized, general-purpose applications vary significantly
in the variety of potential kernels, meaning that applications
can differ substantially.

We can use the same approach to synthesize applications
for our design space exploration. In addition to the special
kernels of “coreonly” and “serial,” we create a pool of 100
kernels whose RL speedups are evenly sampled from the range
determined by the seven Sirius kernels. Then we synthesize
500 applications by randomly sampling kernels out from
this pool for each application. We first explore designs with

applications that have 15 kernels per-each. Then we show a
sensitivity study on applications that have 10 and 20 kernels.

Because the number of kernel candidates across these
general-purpose applications is so large, the prior exhaustive
search mechanism is no longer practical. We propose a heuris-
tic search using a genetic algorithm to find the best allocation
of cores, FF-Accs, and RL.

A. GAopt

Genetic algorithms (GAs) are search heuristics that mimic
the process of natural selection. To solve a problem using
GAs, one first needs to define an “individual” and initialize a
population as the start point. The GA then applies a combi-
nation of the user-defined mutation and crossover operations
to breed a “child” generation from the “parent.” At the end
of each iteration, the new child generation goes through a
selection process to choose the best “individual” judged by
a user-defined fitness function. This genetic evolution process
iterates until either the new population has converged or a
preset maximum of iterations has been reached. To solve our
area allocation problem, we set up a GA as follows:

1) An individual is defined as a vector of [a0, a1, . . . , an],
where a0 is the area allocation for the reconfigurable
block, and a1 through an are the area allocations for the
n FF-Acc candidates. Any of the [a0 . . . an] can be zero.
In this study, we assume that each kernel can have its
own FF-Acc, and there are n kernels. Note that the area
allocation on conventional cores is implied as 1−

∑
ai.

2) We initialize the population by generating individual
vectors with random area allocations, and discard vec-
tors that imply a less-than-20% area allocation for
the cores. This is consistent with the second heuristic
presented in Section III-A.

3) The crossover operation just selects two random ded-
icated accelerators and exchanges their allocations be-
tween the two individuals. The mutation operation se-
lects a new, random allocation for each accelerator.

4) The fitness function of each individual is the perfor-
mance of the candidate system configuration on the
given application.

5) The selection process select the k best individuals for
the next generation, where k is the population size. This
is chosen empirically to optimize the speed and accuracy
of GAopt.

We implement GAopt using the DEAP framework [13], and
use parameters summarized in Table I. The first three param-
eters in Table I are chosen to ensure the GAopt to find the
optimal results in a reasonable amount of solving time. In our
experiments, GAopt finds no better configuration with a larger
population size or more generations. The last two probability
parameters adopt the typical values suggested by the DEAP
framework.

We compare GAopt results against BFopt on application-
specific applications studied in the previous section. The
results obtained from GAopt match closely to the results from
BFopt, with the worst-case relative performance of 0.98 and

Pop. Size of new number of Crossover Mutation
size generation generations prob. prob.
300 600 100 0.6 0.3

TABLE I: Parameters for GAopt using DEAP framework

0.99 for performance ratio of 5x and 40x, respectively. In
some cases, GAopt is even slightly better than BFopt. This
is because BFopt searches for a more coarse-grained space
due to our pruning heuristics. GAopt solves for the optimal
configuration for a single application in 262.91s on a server
with an Intel Xeon X5550 processor using a single thread,
while BFopt spends 8027.66s to solve for the same application
on the same server. GAopt achieves a 30x speedup. For a
workload consisting of 500 applications, BFopt is prohibitively
expensive, while GAopt completes in 1.5 days.

B. Importance of Reconfigurable Accelerators

Heterogeneous architectures with FF-Accs can provide sub-
stantial performance and power-efficiency improvements over
conventional multicore organizations. However, the high de-
velopment, qualification, and chip-area cost of a dedicated
accelerator cannot be justified unless the target kernel is

(a) Per-application optimal config-
urations

(b) RL-only configurations

Fig. 4: Performance volatility comparison between per-
application optimal configurations and RL-only configurations.
Performance ratio of FF-Accs is 40x.

prevalent across applications, so only a limited number of
accelerators can be provisioned. Furthermore, general-purpose
workloads may need a wide range of accelerators, and very
few FF-Accs are likely to receive high utilization. Even its
speedups are lower, RL is often a better use of area, because
it can provide speedups and power-efficiency benefits for a
wide range of kernels.

To explore this tradeoff space for general-purpose applica-
tions, we characterize the distribution of performance volatility
across 500 applications in a box-plot on the left in Figure 4,
using the same settings as described in Figure 1. Each of the
500 applications are synthesized by randomly selecting 15 out
of the 100 kernels. Performance ratio of FF-Accs is 40x, since
RL has already dominated allocations on accelerators in the
optimal configurations when the ratio is 5x (see Section III-C).
The plot suggests that most of the optimal configurations
have a performance volatility larger than 0.2. This suggests
that the performance of these configurations are worse than
the optimal by more than 40% on average. Then we look
at the performance volatility of systems composed of only
reconfigurable accelerators. In the right plot, X-axis indicates
the area allocation on reconfigurable accelerators, in terms of
percentage to the total area budget. It shows that configurations
with a considerable amount of allocation on a reconfigurable
accelerator have a much lower performance volatility (the min-
imum volatility is 0.031 when RL accounts for 35% of total
area budget). These configurations may not give the optimal
speedup for any single application, but performance is close to
the optimal for a majority of applications. More specifically,
the configuration with RL allocation of 35% achieves at least
80% of the optimal performance for 80% of applications. In
the worst case, the configuration still achieves 65% of optimal
performance, showing much better performance potential than
configurations that include both RL and FF-Accs.

Next, we explore the optimal area allocation for the RL. We
test this for three workloads, one with 10 randomly selected
kernels per application, one with 15, and one with 20. From
the previous analysis, we learn that RL-only configurations
are sufficient in most cases. Therefore, we focus on RL-only
configurations in this study. The remainder of the area is
therefore dedicated to CPU cores.

As shown in Figure 5, the lowest performance volatility is
achieved when 35% of chip area is allocated for RL. (The
remaining 65% of area supports 55 CPU cores, at 0.86V .)
As the number of kernels per-application increases from 10
through 20, the minimum performance volatility decreases
from 0.055 to 0.015, suggesting that RL-only configurations
provide better performance stability across applications as the
number of kernels per application increases.

V. RECONFIGURATION OVERHEAD

One drawback to RL is that reconfiguration overhead can
compromise overall performance significantly. To study the
impact of reconfiguration overhead to the performance volatil-
ity of RL-only configurations, We use the same set of general-
purpose synthetic applications that have been used in the last

Fig. 5: Performance volatility comparison between per-
application optimal configurations and RL-only configurations.
Performance ratio of FF-Accs is 40x.

10 20 30 40 50 60

RL allocation in percentage

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

rc_count

10

100

1K

10K

0.1M

None

Fig. 6: Impact of reconfiguration overhead on performance
volatility of RL-only configurations, as a function of the
number of reconfiguration options per application. “None”
means that reconfiguration overhead is ignored. When the
reconfiguration count is 10, the curve almost overlaps with
the case that ignores the overhead. This suggests that a small
reconfiguration overhead has little impact to the values of
performance volatility for RL-only configurations.

section. We only show the results for applications that average
15 kernels per each, and we obtain similar conclusions for
applications with 10 and 20 kernels. As shown in Figure 6,
when the reconfiguration count is small (e.g. rc count=10),
its impact on performance volatility is minimal. As the re-
configuration count increases, the RL allocation in the system
that achieves the lowest performance volatility decreases. This
is because a larger RL requires more time to reconfigure,
compromising its performance benefit over a smaller RL.
When the reconfiguration count is embarrassingly high (e.g.
0.1M), the performance volatility of systems with RL-only
accelerators are constantly high across all RL allocations,
suggesting that systems loaded with RL-only accelerators
perform sub-optimally across target applications.

The negative performance impact of reconfiguration over-

head advocates mitigation techniques in order to make re-
configurable accelerators beneficial. These overheads can be
mitigated at the application or architecture level. At the
application level, it is very important to design RL-friendly
algorithms that minimize either the amount of reconfiguration
or the time of each single reconfiguration process. At the
architecture level, it may be preferable to reduce the area of
any particular accelerator on the reconfigurable block, so that
multiple accelerators can be instantiated concurrently, allowing
for greater reuse without intervening reconfiguration opera-
tions. The effectiveness of this approach will be limited by the
diversity of kernels, but temporal locality in execution may still
allow for significant reuse, for the same reasons that instruction
caches are effective for CPUs. Partial reconfiguration can help
exploit temporal locality, by dynamically adapting the mix of
kernels currently instantiated on the RL to match application
use patterns, replacing one kernel at a time. Compile-time
or run-time prediction can also allow pre-fetching of kernels,
so that they can be installed before they are needed. Partial
reconfiguration also allows accelerators to grow and shrink as
needed.

VI. DISCUSSION AND LIMITATIONS

Lumos+ expands the capabilities of Lumos to allow search-
ing a larger portion of the design space, by taking advantage
of a novel search algorithm. The primary goal of Lumos+ is
to enable rapid, early-stage design-space exploration to help
the designer identify interesting regions of the design space
that merit more detailed evaluation. However, the Lumos+
approach remains a work in progress, with various limitations
and opportunities for future work. In particular, we note the
following issues:

• Lumos+ so far only considers a single reconfigurable
logic block. Despite this architectural limitation, the
paper has shown performance gains from reconfigurable
accelerators in various scenarios. As more and more
kernels adopt RL acceleration, algorithms that subdivide
a large RL block among several concurrent kernels, or
architectures composed of multiple RL blocks would
become more interesting.

• The paper motivates inclusion of RLs in heterogeneous
systems based on fairly abstract performance models and
our survey of performance reported in prior literature,
and leaves many important details of implementation to
future work.

• Lumos+ so far assumes that sufficient memory bandwidth
can be achieved by advanced technologies such as 3D-
stacking. However, recent studies in GPGPU acceleration
have confirmed memory bandwidth as a limiting factor
for further performance scaling. Therefore, it is important
to extend Lumos+ to model the memory subsystem in
more details, to support studies on practical scenarios.

• The paper assumes a homogeneous architecture for con-
ventional CPU cores, to focus on exploring the design
space of accelerators. Lumos+ does have the capability to
model heterogeneous core architectures (e.g. Big.Little),

and could be used to study the trade-offs in related
scenarios.

• The model validation has been limited so far, due to
the lack of detailed, publicly-available information about
accelerator-rich heterogeneous architectures.

VII. RELATED WORK

Hardware accelerators have attracted a great interest from
both industry and academia. For example, Catapult [1] is
an FPGA-based reconfigurable accelerator for Microsoft’s
Bing service; In [11], personal intelligent assistant kernels
from Sirius suite are accelerated by FPGA implementations;
Diannao [2] is an application-specific accelerator implemented
for common operations in Neural Networks. All these have
reported substantial performance and efficiency improvements
over conventional many-core systems, strongly motivating
heterogeneous architectures with accelerators to cope with
increasingly stringent power constraints.

Recently, researchers have proposed infrastructures to un-
derstand the architectural design trade-offs introduced by
hardware accelerators. Aladdin [4] extracts accurate models
from applications’ execution traces, enabling explorations of
designs on dedicated accelerators for any given application.
On the other hand, PARADE [14] takes advantage of high-
level synthesis (HLS), and integrates the accelerator models
with a cycle-accurate simulator (Gem5). As a result, PA-
RADE can simulate end-to-end applications running on a user-
defined accelerator-rich architectures. Lumos+, which extends
Lumos [6], is complementary to Aladdin and PARADE in
two aspects: first, we use analytical models for power and
performance, trading off precision for fast evaluation time;
secondly, we explore the design space at a higher level to find
the optimal system configurations given a number of accel-
erator candidates. Our work can benefit from Aladdin’s more
accurate power-performance characterization of accelerators,
and our work can narrow down system configurations for
PARADE’s more detailed but time-consuming evaluations.

VIII. CONCLUSIONS

In this paper, we use an analytical framework called Lumos+
to explore the design space of heterogeneous architectures
composed of hardware accelerators. With the help of a ge-
netic algorithm based search heuristic, we show that dedi-
cated accelerators are only beneficial when their performance
premiums are large enough (e.g. 40x) to compensate for
limited programmability, or when only a few kernels need
acceleration. However, systems equipped with reconfigurable
logic are promising to achieve close-to-optimal performance
consistently across applications with a wide range of kernel
characteristics, an important implication for rapidly evolving,
general-purpose workloads.

IX. ACKNOWLEDGMENTS

This work was funded in part by NSF grant no. EF-1124931
and C-FAR, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and

DARPA. We would also like to thank the anonymous reviewers
for their helpful feedback.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,” in
International Symposium on Computer Architecture, 2014.

[2] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in International Conference on Architectural Support
for Programming Languages and Operating Systems, 2014.

[3] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, fpgas,
and gpgpus?” in International Symposium on Microarchitecture, 2010.

[4] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in International Symposium
on Computer Architecture, 2014.

[5] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The
architecture and design of a database processing unit,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2014.

[6] L. Wang and K. Skadron, “Implications of the power wall: Dim cores
and reconfigurable logic,” IEEE Micro, 2013.

[7] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, 2008.

[8] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring
sub-20nm finfet design with predictive technology models,” in Design
Automation Conference, 2012.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Inter-
national Symposium on Computer Architecture, 2011.

[10] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in International
Symposium on Microarchitecture, 2009.

[11] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars,
“Sirius: An open end-to-end voice and vision personal assistant and
its implications for future warehouse scale computers,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2015.

[12] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial
reconfiguration in fpga systems: A survey and a cost model,” TRETS,
2011.

[13] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “Deap: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, 2012.

[14] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate
full-system simulation platform for accelerator-rich architectural design
and exploration,” in International Conference on Computer-Aided De-
sign, 2015.

