
Dynamic Warp Subdivision for Non-Speculative Runahead SIMT Gather
Jiayuan Meng, Kevin Skadron

Department of Computer Science, University of Virginia
1. Background: SIMT Architecture
 Scalar threads are grouped into warps that operate with a
common instruction sequence in lockstep. (e.g. NVIDIA's
Tesla architecture [1])

2. Motivation: Divergent Cache-accesses
• Cache miss caused by an individual thread suspends the

entire warp.

• We subdivide a warp and allow threads that hit to proceed
and issue more memory requests in parallel. As a result,
threads that missed the cache previously may

 (i) not have to stall , or
 (ii) only have to stall for a much shorter period upon the
next memory request.

3. Challenges
•Compatibility with Branch Divergence Handling:
◦ Upon conditional branches, the reconvergence stack

[1, 3] subdivides a warp as well.
◦ Predication is limited to non-nested branches and

small branch sections. Adaptive slip proposed by
Tarjan et al. [2] relies on aggressive predication.

•Pipeline Utilization: Aggressive subdivision leads to a
large number of narrow warp-splits that only exploit a
fraction of the SIMT pipelines.

•Latency Hiding: Warp-subdivision may not be
necessary if other warps can hide memory latency
sufficiently.

References
[1] NVIDIA Corporation. Geforce GTX 280 specifications. 2008.
[2] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and
scheduling for efficient GPU control flow. In MICRO '07, pages 407-420, Washington, DC,
USA.
[3] David Tarjan, Jiayuan Meng, and Kevin Skadron. Increasing memory miss tolerance for
SIMD cores. To appear in SC '09

4 Implementation and Optimizations
•Combining Branch- and

Memory- Divergence
◦ Only manipulate active

threads marked by the top of
the reconvergence stack

◦ Subdivided warp-splits are
maintained in a warp-split
table (WST)

◦ Fall-behind warp-splits are
resumed when their requests
are fulfilled and merged into
the run-ahead warp-splits when
they catch up

•Latency Hiding and Pipeline
Utilization:
◦ LazySplit subdivides warps

only when all the other warps
are waiting for memory.
Pipeline under-utilization may
still occur.

◦ LatSpec (latency speculation)
dynamically speculates the
remaining miss-free cycles
(MFCs) of a warp to make a
better decision upon divergent
cache-accesses.

•Loop Bypassing
◦ Allowing a run-ahead warp-

split to continue across
iteration boundaries to exploit
more MLP.

◦ Detecting loops using the reconvergence stack.
◦ A generalization of loop slip [3]

•Warp Scheduling
◦ SWF (shallowest warp first) policy first executes warp-splits that are

likely to miss the cache in the near future.

5 Results
Average speedup:
• 1.44X on the bulk-synchronous cache organization with a maximum

speedup of 2.47X
• 1.28X on a coherent cache hierarchy with a maximum speedup of 2.53X
•Area overhead: < 2%.

 Acknowledgements
This work was supported in part by SRC grant No. 1607, NSF grant nos. IIS-
0612049 and CNS-0615277, a grant from Intel Research, and a professor partnership
award from NVIDIA Research.

Speedup of various MLP optimizations on a bulk-
synchronous organization

D-$

On-chip Network

Last Level Shared Cache

D-$ D-$

Main Memory

...

Thread Warp
Thread Warp

Thread Warp

...

Decode

...

I-cache

Writeback

La
ne REG

ALUMEM

ALU

REG

ALUMEM

ALU

REG

ALUMEM

ALU

WPU WPU WPU

Speedup of various MLP optimizations on a two-level
coherent cache hierarchy.

Divergent Cache-access Divergent Cache-
access

Thread A:

Thread B:

Running:
Previous Memory Access:
Next Memory Access:

Idle:

Time:

Split Merge

Split Merge

(i)

(ii)

LAVA Lab

A / 11111111

B / 11111001

D / 00111001 D / 11000000

E / 11111001

F / 11111111

Hit mask

xor

11000000 D 108 Wait Mem
00111001 D 108 Running

Active Mask PC Inst. Count Status

Reconv. PC Next PC Active Mask

TOS

11111001 B 0 Running

Active Mask PC Inst. Count Status

11111001 E 160 Running

Active Mask PC Inst. Count Status

C / 00000110

(a) Warp-splits of an example program

(b) Reconvergence Stack

(c) WST's initial state at instruction B

(d) WST after splitting at instruction D

(e) WST after merging at instruction E

Diverged control flow

Diverged cache access

- A 11111111
F C 00000110
F B 11111001

Hit mask
00111001

