Dynamic Warp Subdivision for Non-Speculative Runahead SIMT Gather

Jiayuan Meng, Kevin Skadron
Department of Computer Science, University of Virginia

" 1. Background: SIMT Architecture w N
Scalar threads are grouped into warps that operate with a 4 Implementation and Optimizations
common 1nstruction sequence 1n lockstep. (e.g. NVIDIA's e Combining  Branch-  and
Tesla architecture [1] ) Memory- Divergence A 11111111
/ P 7 SIS J Warp O Only maniplﬂate active Diverged control flow % *
- Thread Warp threads marked by the top of B/11111001  C/00000110
the reconvergence stack Diverged cache access
AR L Thread Warp o Subdivided warp-splits are | |
D$ | D$ D-$ Icaihe maintained in a warp-split = _ D/00111001  D/11000000
\ _ -
b b T table (WST) e/ 11111001 =
On-chip Network \ — o Fall-behind warp-splits are
\ v v v d wh hei > F/ 11111111 <
i i i - ( REG REG REG resumed when their reqqests |
Last Level Shared Cache \” ALU | ALU “°°  ALU are fulfilled and merged Into (@) Warp-SpIis ofan example program
i \\ MEM 'MEM MEM the run-ahead Warp-spllts When Reconv. PC Next PC Active Mask
Ve . they catch up
Main Memory ! oi—— d d . 1 - A 11111111
S \ B La.te.ncy. Hiding and Pipeline = C 00000110
Utilization: T0S F B 11111001
2. Motivation: Divergent Cache-accesses I °  LazySplit subdivides warps (b) Reconvergence Stack
. . only when all the other warps
* Cache miss caused by an individual thread suspends the .. |
SV, warp are  waiting for memory. Active Mask PC Inst. Count  Status
.° Pipeline under-utilization may 11111001 B 0 Running =
Runmng: dle: = = = - Stlll OCCULT. Hit mask L : :
Previous Memory Access: - mom . 00111001 (c) WST's initial state at instruction B
o LatSpec (latency speculation)
Next Memory Access: :
dynamlcally speculates the ctive Mask PC Inst. Count Status
. remaining  miss-fr |
Thread A: Il B B EE NI " " E EEEEENENGB® cma g SS cC CyC CS 11000000 D 108 Walt Mem
(MFCs) of a warp to make a 00111001 | B 08 S
Thread B: TR better decision upon divergent e AT
Time: Divergent Cache-access Divergent Cache- . cache-accesses. (E) WAL AU P ML P S o 1D
* We subdivide a warp and allow threads that hit to proceed * Loop Bypassing Active Mask PC Inst. Count  Status
and 1ssue more memory requests in parallel. As a result, o Allowing a run-ahead warp- 11111001 E 160 Running
threads that missed the cache previously may split to continue  across () WST after merging at instruction E
(1) not have to stall , or iteration boundaries to exploit
(11) only have to stall for a much shorter period upon the more MLP.
next memory request. o Detecting loops using the reconvergence stack.
i EEEEEEE o A generalization of loop slip [3]
1 1.
o * Warp Scheduling
Split e O .SWF (sha}lﬂ.owest warp first) policy first executes warp-splits that are
\ likely to miss the cache 1n the near future. /
(11) H B B EE N3 CEEL R
S Results
Average speedup:
Split Merge ¢ 5P P . , . ,
N ¢ 1.44X on the bulk-synchronous cache organization with a maximum
speedup of 2.47X
/ 3. Challepggs | | | \  1.28X on a coherent cache hierarchy with a maximum speedup of 2.53X
* Compatibility with Branch Divergence Handling: e Area overhead: < 2%
o Upon conditional branches, the reconvergence stack 5 _ N
.« . Bl Aggress(LoopBypass+RR) 3
[1, 3] subdivides a warp as well. . B o2, S(LoopBpass+RR)
i ) i i i O SlipAdapt(RR) i
© Predication 1s limited to non-nested branches and ISlipAdap(SIF)
small branch sections. Adaptive slip proposed by = | . B CetSpec(LoopBypass RR)
Tarjan et al. [2] relies on aggressive predication. AR || B
* Pipeline Utilization: Aggressive subdivision leads to a g4 M
large number of narrow warp-splits that only exploit a 1
fraction of the SIMT pipelines.
. 4 C. 0.6F IR
* Latency Hiding: Warp-subdivision may not be
necessary lf Other Warps can hlde memory latency O'%\velrage FI|=T Fillter Hotépot L|U Melrge ShlortKMel,ans S\I/I\/I O.%\ ' ' - ' ! ' ! ' '
. . . . . verage FFT Filter HotSpot LU Merge ShortKMeans SVM
\ SufﬁCIentIY° / Speedup of Vazfﬁl:rgfl%fagﬁzlﬁljr?;gﬁs on a two-level Speedup of various MLP optimizations on a bulk-

synchronous organization

References
[1] NVIDIA Corporation. Geforce GTX 280 specifications. 2008.

[2] W. W. L. Fung, |I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and A.CknOWledgements ,

scheduling for efficient GPU control flow. In MICRO '07, pages 407-420, Washington, DC, This work was supported in part by SRC grant No. 1607, NSF grant nos. IIS-

USA. 0612049 and CNS-0615277, a grant from Intel Research, and a professor partnership LAVA Lab
[3] David Tarjan, Jiayuan Meng, and Kevin Skadron. Increasing memory miss tolerance for award from NVIDIA Research.

SIMD cores. To appear in SC '09



