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1. Background: SIMT Architecture
  Scalar threads are grouped into warps that operate with a 
common instruction sequence in lockstep. (e.g. NVIDIA's 
Tesla architecture [1] )

2. Motivation: Divergent Cache-accesses
• Cache  miss  caused  by  an  individual  thread  suspends  the 

entire warp.

• We subdivide a warp and allow threads that hit to proceed 
and  issue  more  memory  requests  in  parallel.  As  a  result, 
threads that missed the cache previously may  

        (i)     not have to stall , or 
      (ii)   only have to stall for a much shorter period upon the 
next memory request.

3. Challenges
•Compatibility with Branch Divergence Handling: 
◦ Upon conditional branches, the  reconvergence stack 

[1, 3] subdivides a warp as well.
◦ Predication  is  limited  to  non-nested  branches  and 

small  branch  sections.  Adaptive  slip proposed  by 
Tarjan et al. [2] relies on aggressive predication. 

•Pipeline Utilization: Aggressive subdivision leads to a 
large number of narrow warp-splits that only exploit a 
fraction of the SIMT pipelines.

•Latency  Hiding:  Warp-subdivision  may  not  be 
necessary  if  other  warps  can  hide  memory  latency 
sufficiently.
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4 Implementation and Optimizations
•Combining  Branch-  and 

Memory- Divergence
◦ Only  manipulate  active 

threads  marked  by  the  top  of 
the reconvergence stack

◦ Subdivided  warp-splits  are 
maintained  in  a  warp-split 
table (WST)

◦ Fall-behind  warp-splits  are 
resumed  when  their  requests 
are  fulfilled  and  merged  into 
the run-ahead warp-splits when 
they catch up

•Latency  Hiding  and  Pipeline 
Utilization: 
◦  LazySplit  subdivides  warps 

only when all the other warps 
are  waiting  for  memory. 
Pipeline under-utilization  may 
still occur.

◦ LatSpec (latency speculation) 
dynamically  speculates  the 
remaining  miss-free  cycles 
(MFCs)  of  a  warp  to  make  a 
better  decision upon divergent 
cache-accesses. 

•Loop Bypassing
◦ Allowing  a  run-ahead  warp-

split  to  continue  across 
iteration  boundaries  to  exploit 
more MLP.

◦ Detecting loops using the reconvergence stack.
◦ A generalization of loop slip [3]

•Warp Scheduling
◦ SWF (shallowest warp first) policy first executes warp-splits that are 

likely to miss the cache in the near future. 

5 Results
Average speedup: 
•  1.44X  on  the  bulk-synchronous  cache  organization  with  a  maximum 

speedup of 2.47X
•   1.28X on a coherent cache hierarchy with a maximum speedup of 2.53X 
•Area overhead: < 2%.
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Speedup of various MLP optimizations on a bulk-
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Speedup of various MLP optimizations on a two-level 
coherent cache hierarchy.
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