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Abstract

This dissertation introduces techniques for quantitatively reasoning about cache capacity and
accelerating sampled microarchitecture simulation. By reducing the time spent warming up
the simulated hardware state, Minimal Subset Evaluation warm up (MSEwarmup) and its
successor, Memory Reference Reuse Latency (MRRL) are able to substantially reduce over-
all simulation running times. Warm up is commonly used prior to modeling cycle-accurate
simulation sample clusters to prevent cold-start bias from compromising the accuracy of
simulated state in large structures like caches and branch predictor, and thereby preserve
simulation accuracy. Unfortunately, warm up can be very time consuming, often repre-
senting 50% or more of total simulation time. Previous simulation strategies have warmed
up the entire pre-cluster interval (i.e., modeled all cache and branch predictor interactions
prior to each actual sample cluster) to obtain accurate hardware state; this is the full-
warmup approach. While accurate, this time-consuming alternative may be prohibitive for
large parameter-space searches. Other techniques have chosen a short but ad-hoc warm up
length that reduces simulation time but may sacrifice accuracy.

Minimal Subset Evaluation (MSE) is a novel framework for quantitatively assessing the
minimally sufficient number of unique memory references that must be handled within the

cache in order to touch a certain proportion of the cache blocks with some user-chosen
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probability. (The aforementioned MSEwarmup technique adapts MSE to forge a solution
to the problem of accurately warming up L1 cache state.) This dissertation describes the
mathematical underpinnings of MSE and demonstrates MSEwarmup’s use for quickly and
accurately warming up both single-large-cluster and multiple-cluster simulation styles for
small L1 caches. My experiments show that MSEwarmup yields errors of less than 1% in
IPC measurements with cycle-accurate simulation.

MRRL builds upon MSE and MSEwarmup, but rather than using statistical methods,
MRRL analyzes the lag time between consecutive references to each unique memory address
in each pre-cluster—cluster benchmark partition. With this data MRRL is able to choose
a point during the pre-cluster instructions to engage cache warm up (at all levels in the
hierarchy, regardless of block size, associativity, or separation) and branch predictor warm
up. Because of MRRL’s applicability to all levels of the cache hierarchy regardless of orga-
nization as well as dynamic branch prediction, it supersedes MSEwarmup as a method for
achieving accurate state quickly and accurately. MRRL yields an average error of less than
1% in IPC measurements relative to fullwarmup simulation, and reduces warm up by an
average of 90% of the mazimum potential speed up.

Starting cache and branch predictor modeling late in the pre-cluster instruction stream
allows both MSEwarmup and MRRL to capitalize upon the observation that only the branch
predictor and cache interactions that occur nearest to a cluster are germane to simulation

activity during the cluster itself.



Chapter 1

Introduction, Background and

Motivation

This dissertation introduces Minimal Subset Evaluation (MSE) [17, 20] and Memory
Reference Reuse Latency (MRRL) [18, 19]. MSE is a rigorous analytical framework
for assessing cache occupancy based entirely upon the cache dimensions and the count
of unique reference addresses handled within the cache. By calculating the number
of unique references necessary to touch a certain proportion of L1 cache blocks, MSE
can be used to accelerate sampled microarchitecture simulation. Rather than making
a probabilistic determination of occupancy, MRRL attempts to measure the “amount
of temporal locality.” MRRL uses this information to accelerate sampled simulation
by accelerating warm up in all levels of the cache hierarchy as well as the branch
predictor.

Developing actual hardware is profoundly expensive. This practical consideration



CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION )

makes experimentation with new ideas in hardware prohibitive. Through simulation
on the other hand, ideas may be developed, tested, discarded or refined repeatedly
with infinitely more ease, speed, and at a modicum of the cost of such experimenta-
tion with hardware prototypes. It is precisely this vastly superior flexibility offered
by simulation that makes software simulators a fundamental tool for computer archi-
tecture research. Simulation is especially beneficial for exploring radically new ideas
that may not be feasible to prototype [43, 44].

Unfortunately, the flexibility of software simulation trades away speed. Detailed
software simulation is orders of magnitude slower than native hardware execution.
Thus, rather than simulating the full execution of a program in detail, researchers
typically estimate the performance of a simulated microarchitecture by simulating
only a sample of program clusters (contiguous segments of the dynamic instruction
stream) in detail. By reducing the amount of time spent warming up simulated pro-
cessor state, MSEwarmup and MRRL achieve further acceleration, thereby enhancing
the value of software simulation as a tool for microarchitecture research.

This chapter introduces software simulation, strategies for making it more tractable,
performance evaluation, declares my research thesis, and concludes with an overview

of the research presented in this dissertation.

1.1 Software Simulation
Relative to native execution, simulation in software is very slow, introducing slowdown

factors of hundreds or thousands even on today’s fastest microprocessors. The amount
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of slowdown is inversely proportional to the level of detail captured by the simulation.
Simple instruction-level simulation, for example, executes much more rapidly than
highly detailed circuit-level simulation. This is because the ratio of native (i.e., host)
instructions to simulated instructions increases along with level of detail. In other
words, simulation imposes a trade-off between speed and detail.

In software simulation, execution is emulated in a fetch—decode—execute loop: one
by one, instructions are read from the binary, their operands acquired, and their pre-
scribed operation simulated. However, whereas the elements of this loop are handled
automatically in native hardware, many hundreds or thousands of native instructions
are required to emulate these elements in software. In the simplest case, functional
simulators such as SPIM [34] and the sim-safe component of the SimpleScalar [2, 4]
software suite, model only the architected state of the microprocessor. For load—store
architectures such as the MIPS [46] and the Alpha [52] (modeled by SPIM and sim-
safe, respectively), this state consists of the contents of the register file and main
memory. By tracking only the bare-minimum state necessary to execute a binary,
functional simulation is one of the fastest software simulation methods. Functional
simulators are excellent tools for compiler research, allowing developers to construct
experimental compiler technology for non-native or unrealized hardware.

For more detailed simulation, it is necessary to maintain state beyond the register
file and main memory. Experiments with cache or translation look-aside buffer (TLB)
organization, for instance, require tracking cache and TLB state (i.e., sim-cache [2]).

Maintaining this state adds several hundreds more native instructions per simulated
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instruction beyond the aforementioned fetch-decode—execute loop for implementing
lookup, detecting and rerouting misses, choosing a victim and performing evictions.
Tracking branch predictor state (i.e., sim-bpred [2]) introduces similar complexities
and further augments the number of native instructions required per simulated in-
struction. An example of a simulator that models cache and branch predictor state in
addition to architected state is the Mipsy component of the SimOS software suite [23].

Detailed studies that attempt to estimate the overall performance of an experi-
mental microprocessor require cycle-accurate simulation. Cycle-accurate simulation
models the step-by-step flow of instructions through a synchronous microprocessor
pipeline. In synchronous microprocessors, instruction flow occurs discretely, synchro-
nized by the pulse of an on-chip clock distribution network. Each pulse of the clock
occurs at a constant rate (e.g., 3.06GHz = 3,060 cycles/second) and is counted as one
cycle. Hence for synchronous microprocessors, a key performance metric—instruction
throughput—is measured in units of instructions per cycle (IPC) (i.e., average number
of committed instructions per on-chip clock pulse). (Other, less desirable metrics will
be discussed in 1.3, and a case will be made for instruction throughput.) The research
described in this dissertation studies the simulation of synchronous microprocessors.

Cycle-accurate simulation is terribly slow. With cycle-accurate simulations, run-
ning many of the SPEC95 benchmarks to completion with reference inputs takes days
or weeks [54], and running some of the SPEC 2000 benchmarks takes many weeks
even with today’s fastest systems [29]. Because cycle-accurate simulation models the

movement of individual instructions through the pipeline, the state of many more
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on-chip structures beyond the register file, main memory, cache, TLB and branch
predictor must be maintained. In a wide-issue out-of-order pipeline, these structures
include the instruction reorder buffer, issue logic, result forwarding network, register
renaming hardware, functional units, store queue, and commit logic, to name just a
few.

The apex of simulation detail is to model the flow of signals along wires to intercon-
nected logic elements that compose on-chip structures and pipeline elements. For this
level of detail, VHDL [45, 73] (Very High-speed Integrated Circuit Hardware Design
Language) is the language of choice for coding the actual hardware description; and
TyVIS [63] is an example of a software package that can simulate a microprocessor
design coded in VHDL. Its cost is prohibitive for microarchitecture research; hence
it is used for circuit-level work. The research discussed in this dissertation does not
perform simulation in such detail; it is mentioned here for completeness.

To summarize, a microprocessor can be simulated at varying levels of detail, each
more suitable to specific types of research. Functional simulation does not model any
of the details of a specific processor organization beyond the architected state. This
makes instruction-level simulators well-suited, for instance, to compiler research, en-
abling experimentation with non-native or even unrealized instruction sets. Microar-
chitectural simulators model the inner workings of all or part of an actual processor,
including the pipeline, cache hierarchy, and branch predictor at the component level.
These simulators are appropriate for estimating the performance of actual hardware

components (individually and in collaboration), and are suitable for architecture and
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pipeline organization research. Finally, circuit-level simulators model the low-level
implementation details of hardware components. Used in concert with the VHDL
specification language, these simulators are useful for the development, analysis, and

verification of architectural components.

1.2 Simulation Strategies: Sampling versus Reduced Inputs
To combat cycle-accurate simulation’s long running times, most simulation strategies
either take samples of multiple short clusters of contiguous groups of instructions from
the dynamic instruction stream, “fast-forwarding” between clusters [8, 51], or else
fast-forward to a single, large simulation cluster of 50—-100 million instructions [50, 54].
Both techniques save time by executing in cycle-accurate detail only those instructions
contained in the sample clusters. In contrast, during the pre-cluster phase (i.e.,
during the emulation of instructions prior to each cluster) cycle-by-cycle modeling of
individual instructions through the pipeline is not performed. The result is a much
faster-running simulation.

Another approach to reduce simulation times is to use reduced inputs [20, 29, 30]: a
shrunken input set based upon a benchmark’s reference inputs, intended to execute in
less time while exhibiting behavior similar to the full reference inputs. Reduced inputs
however, raise the question of the reduced input’s accuracy. In joint research with the
KleinOsowski and Lilja at the University of Minnesota [20], we compare the accuracy
of simulations with their MinneSPEC reduced inputs against sampled simulations

using the original reference inputs for several SPEC CPU2000 benchmarks.
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benchmark_input | IPCyrye | IPCsampiing | IP Creducedinput
art_110 0.5984 -0.45% -9.09%
art_470 0.5974 0.64% -8.94%
gzip_graphic 1.3645 -1.69% 3.79%
gzip_log 1.4620 -1.41% 7.91%
gzip_program 1.3884 0.44% -1.52%
gzip_random 1.3187 1.39% 0.18%
gzip_source 1.3609 0.71% 1.06%
vortex_lendianl 1.0918 0.24% -14.81%
vortex_lendian2 1.0573 -0.52% -12.58%
vortex_lendian3 1.0890 -0.59% -14.62%
vpr_place 0.8460 0.50% 11.42%
vpr_route 1.0232 1.73% 39.28%
MEAN 0.86% 10.43%

Table 1.1: Accuracy: Sampling versus reduced inputs [20]. Percent-error in IPC

(100% - W) measures the deviation from end-to-end cycle-accurate simu-

lation (IPCyrye). MEAN calculated from the absolute values of error measurements.

As Table 1.1 shows, sampling is more accurate, generating IPC values that are closer
than reduced inputs to those obtained by complete, end-to-end cycle-accurate runs of
the benchmarks on the reference inputs (IPCy.e). The strategy of 50 equidistantly
spaced samples of 10 million instructions apiece yielded a maximum error of 1.73%
for vpr_route and an average error of 0.86%. The reduced inputs, however, did not
consistently yield such high fidelity, with a maximum error of 39.28% for vpr_route and
an average error of 10.43%. Table 1.2 shows that both reduced inputs and sampling
significantly lessen simulation running time, with neither running for more than 4%
of the time required for end-to-end cycle-accurate simulation. In terms of accuracy

however, sampling is the clear victor; hence, my research focuses on this approach.
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benchmark_input tirue | Yotsampling | Yotreducedinput
art_110 756507 sec. 1.36% 3.06%
art_470 801815 sec. 1.40% 2.89%
gzip_graphic 829097 sec. 0.49% 1.73%
gzip_log 380475 sec. 1.24% 1.62%
gzip_program 953154 sec. 1.36% 1.76%
gzip_random 733661 sec. 1.17% 1.77%
gzip_source 673621 sec. 1.15% 1.95%
vortex_lendianl 890519 sec. 3.04% 1.49%
vortex_lendian2 971445 sec. 3.18% 1.37%
vortex_lendian3 954585 sec. 3.15% 1.39%
vpr_place 1050041 sec. 1.47% 1.53%
vpr_route 997469 sec. 1.18% 1.04%
MEAN 1.68% 1.80%

Table 1.2: Running time: Sampling versus reduced inputs [20]. Percentage of run-
ning time (100% - ;) measures the fraction of end-to-end cycle-accurate simulation

running time (tyye)-

Table 1.3 documents further experiments, where I compared the running time of
end-to-end cycle-accurate simulation to end-to-end cold (i.e., modeling register file
and main memory updates), and end-to-end warm (i.e., modeling register file, main
memory and cache interactions), in addition to the running times of two sampling dis-
ciplines: 50 equidistantly-spaced at 1 million instructions apiece and 10 equidistantly-
spaced at 5 million instructions apiece. (These experiments were run on different,
faster hardware than those from Tables 1.1 and 1.2; hence, the shorter running times
for tyye.) End-to-end cold simulation is unwaveringly the fastest, in all cases exe-
cuting in less than 11% the time required for end-to-end cycle-accurate simulation.

End-to-end warm performs well also, completing in less than 20% the time required
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benchmark_input tirue | Potsox1 | %ot1oxs | Dotwarm | Yoteold
art_110 153937 sec. | 12.01% | 11.88% | 15.84% | 8.93%
art_470 169606 sec. | 11.99% | 11.89% | 15.96% 8.93%
gzip_graphic 192591 sec. | 12.35% | 12.33% | 18.10% | 9.91%
gzip_log 72822 sec. | 13.48% | 13.78% | 19.81% | 10.70%
gzip_program 252959 sec. | 13.10% | 13.11% | 19.07% | 10.27%
gzip_random 152678 sec. | 12.30% | 12.29% | 17.91% | 9.76%
gzip_source 138742 sec. | 13.14% | 13.14% | 19.15% | 10.33%
vortex_lendianl 401396 sec. | 13.13% | 13.11% | 19.21% | 10.56%
vortex_lendian2 | 460819 sec. | 13.10% | 14.37% | 19.09% | 10.47%
vortex_lendian3 | 448293 sec. | 13.60% | 13.53% | 19.19% | 10.53%
vpr_place 274529 sec. | 11.94% | 11.85% | 17.09% | 9.51%
vpr_route 232330 sec. | 11.17% | 11.22% | 16.84% 9.34%
MEAN 12.61% | 12.71% | 18.10% 9.94%

Table 1.3: Running time: 50 x 1 and 10 X 5 sampling versus end-to-end warm versus

end-to-end cold. Percentage of running time (100% - ﬁ) measures the fraction of

end-to-end cycle-accurate simulation running time (tyye)-

by end-to-end cycle-accurate simulation. Notice however, that experiments from the
two sampling disciplines complete in even less time than end-to-end warm simula-
tion. These experiments implement MSFEwarmup, one of the simulation acceleration
techniques discussed later in this dissertation.

The accuracy of simulation within each cycle-accurate sample depends on avoiding
cold-start bias. Cold-start bias is the name given the phenomenon whereby sampled
data tend to be skewed when environmental state is inaccurate or unrepresentative
at the beginning of a sample cluster [8]. In a microprocessor, performance is deeply
affected by cache and branch predictor performance [21]: if the requested data are in

the cache(s) and the branch predictor makes accurate predictions, then the processor
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benchmark (suite) fast-forward interval
bzip2 (SPEC CPU2000) 1,733
hydro (SPEC CPU95) 36
tomcat (SPEC CPU95) 144
vortex (SPEC CPU2000) 330
vpr (SPEC CPU2000) 746
wave (SPEC CPU95) 1,036

Table 1.4: Sample of pre-cluster intervals (in 100s of millions of instructions) used for

simulations reported by Sherwood et al. [50].

will spend fewer clock cycles executing a program. Hence, to defeat cold-start bias
the processor “environment” (i.e., the state contained in the cache hierarchy and
the branch predictor) needs to be as close as possible to the state that would have
resulted from executing the entire pre-cluster phase in cycle-accurate detail. In other
words, cold-start bias can be defeated by allowing a period of warm up prior to each
cycle-accurate cluster.

One warm up technique for achieving accurate pre-cluster processor environment
involves modeling all pre-cluster cache and branch predictor interactions, in addition
to the architected state. I call this technique fullwarmup because it defeats cold-
start bias by “warming up” the simulated cache hierarchy and branch predictor state
throughout the pre-cluster instructions. The accuracy of the cache and branch pre-
dictor state under fullwarmup is unimpeachable; just as would have occurred using
cycle-accurate simulation during the pre-cluster phase, all cache and branch predictor
interactions are modeled. Thus, for the remainder of this research fullwarmup is used

as the baseline reference for all accuracy measurements.
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Unfortunately, while much faster than cycle-accurate simulation, fullwarmup is still
expensive. As described before, modeling all cache and branch predictor interactions
adds many more hundreds or thousands of native instructions beyond those required
to model only the architected state. This causes the simulator to run longer and makes
fullwarmup prohibitive, especially for large state-space searches requiring multiple
simulations with varying parameters. fullwarmup’s expense is also a problem when the
cycle-accurate clusters occur deep within a benchmark’s dynamic instruction stream.
To elucidate the latter point, consider Table 1.4 which shows the pre-cluster fast-
forward distances prescribed by Sherwood et al. [50]. For each of these benchmarks,
the target sample cluster begins many hundreds of millions of instructions from the

start of execution.

1.3 Processor Performance Evaluation
Before describing the tools and techniques commonly used to evaluate microprocessor
performance, it is essential to establish a metric by which performance can be usefully
measured. As mentioned in 1.1, the metric of choice for this research is instruction
throughput, measured in units of completed instructions per clock cycle. Two less
desirable metrics [21, 60] are millions of instructions per second (MIPS) and billions
of floating-point operations per second (GFLOPS).

The former is calculated as the quotient of dynamic instruction count divided by
wall-clock running time (in microseconds) of the benchmark. While straight-forward

to calculate, MIPS is not meaningful because dynamic instruction count can vary
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widely between different instruction set architectures. Say, for instance, that some
program’s source is compiled for two unique CPUs from vendor A and vendor B
into binaries, biny and bing. If vendor A’s CPU uses a minimalist instruction set
that emphasizes simplicity whereas vendor B’s CPU uses a richer instruction set,
featuring operations that atomically perform complex manipulations, bin4 will likely
have a larger footprint than bing. Finally, suppose that bins and bing on the same
input, execute in the same amount of time; while neither vendors’” CPU finishes sooner
than the other, vendor A’s CPU—using MIPS—would be branded the clear victor
because it executed more instructions per unit of time on average, than vendor B’s
CPU. Although contrived, this example vividly illustrates the deceptive nature of the
MIPS performance metric [21].

GFLOPS is a deceptive metric for similar reasons. Programs do not all share
the same proportion of floating-point operations and therefore cannot be meaning-
fully compared. Software that calculates the stresses placed upon cables and anchor
blocks in suspension bridges, for instance, will likely spend the overwhelming majority
of its time performing numerous floating-point calculations; software that minimizes
Boolean logic functions, however, will likely perform almost none. Hence, the bridge-
modeling software will score much higher than the logic minimizer in GFLOPS units.
Furthermore, back to the issue of instruction set architectures, the same source code
compiled for two different CPUs may still yield two binaries with substantial dif-
ferences in the count of floating-point operations if the two instruction sets do not

implement the same floating-point operations. Those operations not implemented
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as native hardware instructions may be doable as a combination of simpler floating-
point operations, emulated in software, or passed to an off-chip coprocessor. In either
case, it is difficult to develop a compelling argument that the two binary’s GFLOPS
performance ratings are comparable.

For these reasons, MIPS and GFLOPS have been largely abandoned for scien-
tific, scholarly discussion of microprocessor performance. In the context of software
simulation however, still more complications arise from their use. Specifically, these
metrics calculate a rate per unit time. While it is possible to develop a framework for
mapping cycle-accurate simulation events to equivalent real-time durations, this pro-
cess is lengthy and the results contingent on a plethora of unimportant technological
peculiarities (e.g., capacitance, feature size). Rather, software simulation requires a
higher-level, more abstract notion of performance; instruction throughput meets this
requirement nicely.

The average number of completed instructions per clock cycle measures perfor-
mance by describing how fully a pipeline utilizes its maximum instruction retiring
capacity. A superscalar pipeline design capable of retiring four instructions per cy-
cle, for instance, has a theoretical maximum IPC of 4. By corollary, the minimum
IPC of 0 indicates a CPU making no progress whatever. Instruction throughput is
a very complete performance metric, well suited to software simulation. Particularly
attractive is its independence from real-time considerations and that measurements of
actual performance are tightly coupled to the theoretical maximum; the latter gives

valuable context to all performance measurements, as the ratio of the measured IPC
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and the theoretical maximum IPC gives the pipeline’s operational efficiency.
Furthermore, for a given clock speed, a benchmark’s true running time is easily cal-
culated by dividing the number of instructions executed by the product of instruction

throughput and clock frequency, i.e.,

. #instructions
~ (cycles/second)(1PC)

The second part of processor performance evaluation is choosing the binary or set
of binaries that will be executed to gather the performance measurements. Hennessy
and Patterson [21] describe several categories of these benchmark binaries, toy pro-
grams, kernels, synthetic programs, and real programs. Toy programs are very small
executables that implement simple algorithms such as sorting algorithms and binary
search. Hennessy and Patterson immediately dismisses toy programs, calling them
most appropriate as programming assignments for beginning programmers. Their tiny
size and simplistic nature prevent them from posing any serious challenge worthy of
performance measurements.

Kernels and synthetic programs are held in slightly higher regard than toy pro-
grams. Kernels are small, key components of actual programs. The Lawrence Liver-
more Loops [38] were once widely used for processor performance evaluation. Dhry-
stone [71] and Whetstone [10] on the other hand, are two examples of synthetic
benchmarks. Synthetic benchmarks are artificial programs whose instruction mix is
intended to match the instruction mix profile characteristics (e.g., opcode frequency,

basic-block size) of a large collection of real programs. Kernels are derived from
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actual programs, but may fail to exhibit the same characteristics of their parent pro-
gram. Synthetic benchmarks are only very loosely related to any real software; thus,
their performance appraisal cannot be expected to yield useful measurements that
are representative of real programs.

By far, the most respected class of benchmark programs are real programs. The
reasoning behind this is simple. Most users will not spend money on computer systems
merely to run toy programs, or synthetic programs, or to extract the innermost loops
of real software and only execute them. Most users will want to run real programs;
therefore, the most reliable source of truly representative performance measurements
will come from real programs. The range of real programs is quite large and very
diverse, ranging from compute-bound software such as ray tracers to I/O-bound word
processors. The general consensus among computer architects is to make performance
judgments from measurements made on a wide assortment of real benchmark pro-
grams or benchmark suites. These benchmark suites have the advantage of masking
the weaknesses of any one of its members by the inclusion of the others [21].

One very popular benchmark suite for evaluating CPU performance on compute-
intensive (integer and floating-point) workloads is SPEC CPU [57, 58], from the Stan-
dard Performance Evaluation Corporation. The most recent edition, SPEC CPU2000,
includes programs for compiling, combinatorial optimization, FPGA circuit layout
and routing, chess playing, data compression, quantum chromodynamics modeling,
shallow water simulation, image recognition, primality testing, computational chem-

istry, pollutant distribution, and several others. Earlier editions of the SPEC CPU
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benchmark suite were introduced in 1995, 1992, and inarguably in 1989 in response
to the growing need for a realistic, uniform, performance evaluation standard.

As Hennessy and Patterson [21] describes, a particular set of benchmarks will
likely not remain valid gauges of performance indefinitely. In their quest to address
precisely this caveat of all benchmark suites, SPEC released these incarnations of
SPEC CPU in an attempt to address several specific issues [9] including: running
time, application size, and application type. The dynamic instruction count of several
SPEC CPU95 benchmarks, while impressive at their introduction, were very tiny
on more recent hardware, sometimes running for less than a minute. Such brief
executions provided no challenge for contemporary microprocessor technology. In the
five years since SPEC CPU 95, there had also been advances in software sophistication
and complexity in addition to the advances made in hardware. This made it necessary
to include programs with larger resource requirements as well as programs from new
application areas.

As in earlier generations, SPEC CPU2000 programs are loosely grouped into two
categories: integer and floating-point. Together, these two categories establish the
aforementioned balance afforded by using a collection of multiple programs in the
benchmark suite. The floating-point intensive programs keep balance by correcting
the integer programs’ inability to stress a pipeline’s floating-point functional units.
Secondly, since there are numerous special-purpose compiler optimizations geared
toward floating-point computations, the integer programs maintain balance by pre-

venting the performance evaluation from being unduly skewed in favor of these very
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benchmark tuser | tsystem | Yo-system
art_110 246.700 0.188 0.076%
crafty 276.432 0.188 0.068%
equake 730.058 | 0.609 0.083%
facerec 482.358 | 0.693 0.143%
mgrid 665.514 | 1.871 0.280%
twolf 886.918 | 0.609 0.069%
vortex_lendian2 | 208.693 | 0.462 0.221%
vpr_route 407.248 | 0.393 0.096%

Table 1.5: Code execution time (in seconds) for several SPEC CPU2000 benchmarks
executed on an Alpha 21264 running OSF/1. System code accounts for less than
0.3% of the overall execution time in all cases; therefore, system code is often ignored

in software microprocessor simulation and performance evaluation.

specialized optimizations. Because of the good mix of real programs that stress
floating-point and integer performance—both of which rely heavily on accurate branch
prediction and good cache hit rates—I chose SPEC CPU95 and SPEC CPU2000 for
my experiments.

The third part of microprocessor performance evaluation is operating system per-
formance, but this piece of the performance puzzle is often ignored. While operating
system code efficiency does impact the execution time of programs running on real
hardware, for compute-intensive code this impact is usually insignificant. Table 1.5
shows the wall-clock running time of several SPEC CPU2000 benchmarks executed
on an Alpha 21264 running OSF/1, for the user code (tuser), and the system code
(tsystem) as reported by the time UNIX utility, as well as the percentage of system
code from the overall execution time (%-system).

The benchmark with the largest system time component is mgrid, but of the more
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than 11 minutes that this program executed, the 1.871 seconds of system time account
for only 0.28% of the overall running time. This is the chief reason that the operating
system contribution to the pipeline performance evaluation is largely ignored in mi-
croprocessor simulations; such a tiny contribution is safely ignored. (This is analogous
to approximating the binomial distribution by the Poisson or Gaussian distribution.)
It is difficult to justify the overhead of porting an operating system kernel, memory
management infrastructure, and device drivers for such a small amount of additional
precision. Even if operating system performance were significant however, meaningful
comparative analysis would require that the operating system performance among
various studies be nearly identical. Furthermore, inclusion of system-level perfor-
mance would make the performance analysis more “impure” by making it subject to
the influence of an additional source of noncomplicity outside the agreed upon suite

of benchmark programs.

1.4 The Importance of Adequate Warm Up to Measurement

Accuracy
The role of error and uncertainty in sampled microprocessor simulation is critical to
establishing the significance of this research. Sampling produces error because only
a subset of a population is measured rather than the entire population. As Conte
at el. [8] show, however, random cluster sampling is a useful tool for microprocessor
simulation, that is amenable to statistical methods which allow one to rigorously

gauge the amount of error and to quantitatively express confidence in the result,
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based on the assumption that all members of the population had equal probability
of being selected for inclusion in the sample. Specifically, random cluster sampling
establishes a confidence interval [[PC—q,IPC+a] within which the true IPC can be
assumed to exist with X% certainty (where « is a function of X).

For a well-chosen sample, a benchmark’s true IPC—as would have resulted if the
benchmark were simulated to completion in cycle-accurate detail—will fall inside the
confidence interval computed by fullwarmup simulation. This is because modeling all
cache and branch predictor interactions renders fullwarmup impervious to cold-start
bias. As will be shown in Chapter 5, MRRL does well at mimicking the behavior of
fullwarmup, deviating by a statistically insignificant’ amount. On the other hand,
for the exact same sample, an ineffective warm up technique can yield an estimated
IPC that significantly deviates from the fullwarmup estimation, and whose confidence

interval does not contain the benchmark’s true IPC.

1.5 Research Preview

Checkpointing simulation state at the beginning of each sample cluster is one solu-
tion for accelerating sampled simulation while conquering cold-start bias; fullwarmup
simulation would incur a one-time cost for each benchmark-input pair and the check-
point would be loaded at simulator initialization. Unfortunately, separate checkpoints
would be required for each desired combination of cache and branch predictor config-

urations, and for each set of simulation sample clusters for each benchmark program.

T prove claims of statistically (in)significant deviation from fullwarmup by application of the

matched-pairs t-test to actual benchmark simulations.
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To avoid this unattractive alternative, my techniques make use of information about
the branch-, instruction- and data reference streams. This will be discussed at length
in Chapter 3 and Chapter 4.

While very reliable, modeling all pre-cluster cache and branch predictor interac-
tions is unnecessary because of the principle of temporal locality [21, 27]. The chief
observation, which makes both MSE and MRRL useful for warm up acceleration, is
that only the latest pre-cluster cache and branch predictor interactions will be rel-
evant during the cluster itself. Determining a contiguous subset of the pre-cluster
instruction stream—bounded from above by the last instruction of the pre-cluster
phase—whose branch predictor, data cache and instruction cache accesses are likely
to impact the subsequent cluster allowed me to accelerate sampled simulation relative
to fullwarmup by splitting the pre-cluster instruction stream into two distinct phases.
In the first phase, the simulator only performs functional simulation, updating only
the architected state for each instruction. In the second phase, the simulator addi-
tionally models cache and branch predictor interactions. Then, during the cluster
itself, the simulator switches to cycle-accurate simulation. This is the three-phase
simulation strategy used in numerous previous works [8, 17, 18, 19, 20, 28, 42]. The
first, aggressively fast phase can be considered the “cold” phase; this is followed by the
“warm” phase, where cache and branch predictor interactions are modeled; and con-
cluded by the “hot” phase where cycle-accurate simulation of the processor pipeline
takes place. This is illustrated in Figure 1.1.

Current pre-cluster acceleration approaches [8, 28, 42] use crude heuristics or cum-
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Figure 1.1: Pre-cluster—cluster pair subdivided into cold, warm, and hot phases. Cold
phase models only architected state; warm phase models architected state, plus cache

hierarchy, plus branch predictor; hot phase models pipeline in cycle-accurate detail.

bersome methods to decide the size (measured in completed instructions) of the warm

phase. This motivates my

Thesis: Temporal locality suggests that those references occurring far from sample
clusters are diminishingly useful for cache and branch predictor warm up. MSE can
be adapted to mitigate cold-start bias by rigorously assessing a minimally sufficient
number of unique memory references that must be handled within a cache in order
to touch a proportion of cache blocks with probability p € (0,1), thereby ensuring
accurate warm up for large enough p. Similarly, MRRL ensures accurate cache hi-
erarchy and branch predictor state by engaging warm up early enough to model the
effect of references that fall within the reuse distance established by the measurement
of temporal locality. The capacity of both to reduce overall running time by accel-

erating warm up while preserving accuracy will enable MSE and MRRL to render
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sampled microarchitecture simulation more efficient and therefore a more valuable

tool for microarchitecture research.

The rest of this dissertation is organized as follows. The next chapter presents related
work. Chapter 3 presents MSE; Chapter 4 presents the MRRL approach. Chapter
5 presents the experimental methodology and results. A detailed description of the
software tools that were developed in the course of this research are described in
Chapter 6. Finally, research contributions are summarized, the dissertation concludes,

and potential avenues for future work are discussed in Chapter 7.



Chapter 2

Related Work

2.1 Benchmark Sampling Strategy
Because simulating benchmarks end-to-end in cycle-accurate detail is prohibitive,
several studies have explored ways to simulate only portions of the program’s overall
execution in cycle-accurate detail. Skadron et al. [54] used a sequence of heuristics to
find a single, short but representative simulation window of 50 million instructions.
The most important component of their approach is to exclude unrepresentative start-
up behavior from early in the benchmark’s execution; Skadron et al. [54] go on to
present a table of fast-forward instruction counts for the SPECInt95 benchmarks.
Lafage and Seznec [31] modify the sampling approach by using statistical classi-
fication methods to characterize the entire benchmark and provide a more rigorous
guarantee of the chosen sample’s representativeness. A potential problem with this
approach is that finding configuration-independent metrics for representativeness is

difficult.

26
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Sherwood et al. [50] propose Basic Block Distribution Analysis (BBDA). Their tech-

nique profiles the execution frequency characteristics of a benchmark’s basic blocks in
order to isolate a continuous subset of the dynamic instruction stream whose execu-
tion characteristics closely mimic the complete, end-to-end cycle-accurate execution
of the benchmark. BBDA'’s key insight is that periodic basic block execution fre-
quency reflects the periodicity of various architectural metrics such as IPC, cache
miss rate, and branch predictor accuracy in cycle-accurate simulation. In subsequent
work, Sherwood et al. [51] build upon the BBDA concept to create a technique that
automatically isolates multiple contiguous subsets of the dynamic instruction stream
since some benchmarks’ behavior is too complex to be characterized by a single in-
struction stream slice. In both cases, their aim is to reduce simulation running times
by only executing in cycle-accurate detail, a small representative subset of the dy-
namic instruction stream.

Conte et al. [8] take a different approach, and instead simulate multiple fixed-length
clusters of instructions selected randomly from the dynamic instruction stream. Be-
cause the execution clusters are chosen randomly (i.e., such that all parts of the
dynamic instruction stream have equal probability of being chosen), random cluster
sampling is amenable to statistical analysis and allows the determination of a confi-
dence interval. If one can safely assume that cold-start bias does not adversely impact
simulation accuracy, then with X% confidence, the true benchmark IPC is within the

confidence interval.
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2.2 Solutions to Cold-start Bias

Key to Conte et al.’s [8] technique is ensuring the accuracy of the state in large
structures like the caches and branch predictor. Their work addresses branch predic-
tion structures (assuming a perfect cache) and suggests that recycling stale predictor
state! from the previous cluster plus a short warm up interval [32] of at least 7,000
instructions prior to the next sample cluster is sufficient to minimize cold-start bias
in the branch predictor and achieve very small errors of a few percent between the
mean estimated IPC and the true IPC. Conte’s warm up approach is referred to as
shortwarmup in Chapter 5. Incidentally, because Conte does not treat cache effects,
assuming a perfect cache in the experiments presented, MSE and MRRL address
exactly the problem that Conte’s method does not.

Co and Skadron [7] revisit the problem of warming up the branch predictor, but in
a more modern scenario, addressing context switching. They investigated whether a
process’s performance could be hindered by branch predictor state loss resulting from
a second (or more) process’s acquisition of the CPU when the initial process reclaims
the CPU and is allowed to resume. Their data show that due to the high clock speeds
of modern CPUs, enough instructions are executed per quantum to reestablish branch
predictor state, rendering the adverse effects of context switching induced state loss
negligible. Specifically, they show that even large branch predictors train in as little

as 128K instructions—a mere fraction of the instructions executed per quantum in a

!By “stale state,” I mean that the hardware state as it appeared at the conclusion of the prior

cluster is used as the starting state of the current cluster.
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modern, fast CPU—even when a process’s branch predictor state is completely lost
prior to reclaiming the CPU.

As a part of their PARSIM parallel microprocessor simulation system, Nguyen et
al. [42] develop an analytical technique for computing warm up length. Their formula
calculates a function of the cache block width, associativity, the average population
density of memory references throughout the instruction stream, and the average
steady-state cache miss ratio, the latter of which unfortunately, implies a one-time
fullwarmup run to measure it. MSE improves upon this by making calculations based
only upon the cache dimensions (i.e., the number of sets, and degrees of associativity)
and is therefore free from even a one-time fullwarmup cost. PARSIM is also a trace-
driven system. In response to the much increased speed of microprocessors, however,
the Standard Performance Evaluation Corporation (SPEC) massively increased the
running length of the benchmarks chosen for the SPEC CPU2000 suite [9]. Generat-
ing, storing, and accessing the resultant enormous traces is unattractive in terms of
storage and access cost. MSE and MRRL were purposefully designed to avoid this
expensive requirement.

Other heuristics for reducing cold-start bias are studied by Kessler et al. [28]. They
consider using half of the pre-cluster references for warm up purposes; tracking only
entries that are known to contain good state; using stale state from the previous

cluster; and flushing state but estimating how much error this introduces.
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2.3 Analytical Simulation Frameworks

Thiébaut [66] describes premier work on the analytical assessment of the memory
reference stream and draws an insightful analogy between memory access patterns
and fractal random walks on the one-dimensional lattice. In Thiébaut’s model, the
one-dimensional lattice is emulated by main memory, and the stride of next reference
is described by random variable U; the “walk” of the memory reference stream is

fractal if [37]:

PlU > u| = (ug)_e,u > U
0

where 1y and € are constants computed from an analysis of a program trace. # is
called the fractal dimension of the random walk and describes whether the random
walk tends to sparsely (f < 1) or repetitively ( > 1) visit cells of the one-dimensional
lattice. From this framework, Thiébaut describes a method for accurately predicting
the miss ratio of fully associative caches. In later work [68], Thiébaut et al. builds
upon the fractal random walk framework to address the generation of purely syn-
thetic memory reference traces which accurately mimic the miss ratio of real program
traces. Finally Mendelson in collaboration with Thiébaut and Pradhan [39], describe
an analytical model for predicting the proportion of live? cache lines. Once again, the
authors build upon the fractal random walk using the hyperbolic probability distribu-

tion function given above to develop a model that estimates the cache’s steady state

2By live I mean a cache line that will be accessed at least once before being invalidated, evicted,

and refilled.
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behavior. All three of these works describe techniques that are dependent upon the
simulated cache block width. MSE shares this dependence; MRRL improves upon
this by being entirely independent of block width.

Strecker [62] extends the work of Easton et al. [11], who present a formal model for
computing the cold-start miss ratio of a fully-associative cache from the steady state
miss ratio. Strecker argues however, that in a multitasking environment a tumultuous
relationship exists between cache blocks belonging to different processes. If it can be
safely assumed that 100% of all cache blocks are valid, this results in numerous capac-
ity misses when an interrupted process resumes execution. (Thiébaut [67], calls the
collection of cache misses that occur when a process reacquires control of the CPU
the cache-reload transient.) Strecker’s model presents an analytical framework for
estimating the miss ratios of direct-mapped caches for multiple programs in a mul-
titasking environment based on each program’s instantaneous miss ratio. Thiébaut
et al. present the reload-transient model [67]. The reload-transient model proba-
bilistically estimates the cache-reload transient of two processes in a multitasking
environment as a function of the footprints® of the two competing processes and the
dimensions of the cache (e.g., number of sets, degrees of associativity). MSE shares
a dependence on the dimensions of the cache; MRRL is independent of the cache
dimensions.

Wood et al [72] establish the concept of cache generations. Each cache generation

begins immediately after a new line is brought into the cache and ends when the line

3By footprint, I refer to the number of cache lines belonging to a process.
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is evicted and replaced. Their notion of cache generations establishes a framework
for analytically estimating the unknown or cold-start reference miss ratio, p. They
further establish that p is substantially higher than the miss ratio of references chosen
at random. Armed with reliable fi—estimated unknown reference miss ratio—they
were able to accurately measure cache miss ratios in sampled trace-driven simulations.
Rather than attempting to estimate cache miss ratios, MSE and MRRL more directly
address the specific issue of determining how much warm up is necessary to preserve

simulation accuracy. MRRL is furthermore applicable to branch predictor warm up.

2.4 Important Insights from Cache Design

In their Cache Decay research, Kaxiras et al. [27] propose a technique of cutting power
to (heuristically presumed) dead cache lines, thereby reducing leakage power. Their
measurements show that for a 32KB L1 data-cache, the proportion of the cache lines’
dead time ranges from 45% to as much as 99% for the SPEC CPU2000 benchmarks.
Their work shows that most cache lines’ active lifetime is significantly longer than
their useful lifetime.

Lai et al. [33] describe a new hardware mechanism called the dead block predictor
(DBP) which—as its name suggests—heuristically estimates a cache block’s final
reference prior to being invalidated, evicted, and refilled. The DBP’s operation is
somewhat analogous to dynamic branch prediction. Each cache block is paired with
its own dead block signature: an encoded trace of the memory reference stream since

the cache block was first fetched. A table of two-bit saturating counters is used
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to gauge confidence in the dead block predictions. Their measurements show that
predicting the useful lifespan of individual cache blocks and initiating new block
prefetches well in advance of simple demand-fetching, results in substantial CPU

performance improvements.

2.5 Related Work Synopsis

In short, several techniques exist for sampling execution ([8, 31, 50, 51, 54]); these
methods demonstrate the effectiveness of sampling in reducing simulation times while
preserving accuracy, relative to end-to-end cycle-accurate simulation. Nevertheless,
all these techniques are dependent on accurate warm up of the cache and branch pre-
dictor state prior to each sample. While some heuristics for determining the amount
of the pre-cluster instruction stream to warm up have been described ([7, 8, 28, 42]),
I am not aware of any efforts to develop a more formal approach to minimizing warm
up lengths while preserving accuracy besides the cumbersome trace-driven technique
described by Nguyen [42]. Analytical frameworks for reasoning about cache behav-
ior have also been studied ([11, 39, 62, 66, 68, 72]), but these approaches only offer
insight into steady-state behavior. Finally, recent developments ([27, 33]) in cache
design propose insightful clues for determining the useful lifespan of individual cache

blocks.



Chapter 3

Minimal Subset Evaluation

Minimal Subset Evaluation [17, 20] (MSE) seeks to quantitatively assess the probabil-
ity of touching a certain fraction of cache blocks based only on the cache dimensions
and the count of unique memory reference addresses. This capability can be exploited
to determine warm phase length necessary to warm up a small L1 cache. Many fewer
native instructions are executed per simulated instruction in the cold phase than in
the warm phase (both of which combine to form pre-cluster phase); hence, accurate
speedup is achieved by expanding the length (in instructions) of the cold phase while
leaving enough of the warm phase to accurately establish L1 cache state, allowing the

cycle-accurate hot phase to execute, confident that cold-start bias has been defeated.

3.1 MSE Warm Up

The MSFEwarmup technique is an adaptation of Minimal Subset Evaluation to the
problem of deciding warm phase length. MSEwarmup makes this determination from
probability computations and data about the memory reference streams for instruc-

34
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tions and data. The MSE formula determines the probability that handling m cache

accesses by unique reference addresses will touch a given proportion of cache blocks.

The steps of the adaptation for MSEwarmup is enumerated below:

1. First, the user chooses the location of simulation sample clusters within the
benchmark. (Some approaches choose just a single cluster [31, 50, 54] whereas

others choose several [8, 17, 18, 19, 42, 51].)

2. The user selects a desired probability of accuracy p € (0, 1). This is a goal value.
Iteratively, calculations are performed to determine the minimal m necessary

to achieve probability p of touching a given proportion of the cache blocks.

3. The user profiles the benchmarks to characterize the occurrence of unique!
memory references. This is a one-time cost for each set of sample clusters
from a benchmark—input pair; these profiles are valid for any p, and L1 cache

configuration.

4. The user then examines the profile to determine, for each simulation sample
cluster, how many total instructions, ¢, prior to the sample must be executed

in order to observe the aforementioned MSE-prescribed m unique references.

5. The simulation can then be run in aggressive cold mode consisting of only func-
tional simulation in which just architected state is simulated. At ¢ instructions
prior to the beginning of the cycle-accurate hot phase, the cold mode changes

into warm mode, in which interactions with the L1 cache are also modeled.

!By “unique” I mean that no two memory references access the same address.
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Then, once the cluster is reached, the cache structures will with probability p

have the desired proportion of blocks touched.

To thoroughly discuss MSE it is helpful to define several more variables. Let N be
the number of sets in the cache and a be its associativity. (For direct-mapped caches,
a = 1.) The MSE formula is then used to determine m for any p, a and N; that is,
m = MSE(N, a, p).

Once a probability of accuracy p has been selected, the MSE formula is calculated
to arrived at the MSE-prescribed number of uniques (m). From this, t—the number
of instructions to execute during the warm up interval that contains m uniques—is
determined. t could be chosen, for instance, from a trace of the memory reference
stream. Such traces, however, rapidly become large and unwieldy. Elnozahy [12] has
addressed the cumbersome nature of traces and offers approaches that make their
use more viable. Instead of dealing with full (or even compressed) traces however, I
obtain ¢ using data gathered from the MSEprofiles.

As enumerated above, MSFwarmup uses a two-pass process. First, I run software
that I have developed which profiles the occurrence of unique memory references in
the instruction- and data reference streams of each pre-cluster—cluster pair, packing
that data into MSEprofiles. Second, when the cold—warm-hot simulator itself is
launched, it reads the MSEprofile for the appropriate benchmark—input pair and
begins simulation. The profiler works by maintaining an associative array for the
stream of instruction memory references and for the stream of data memory references.

Each associative array element operates like a single cache block of a fully-associative
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cache whose cache block size is equal to the block size used by the cold-warm-
hot simulator?. Each time a memory reference occurs, the corresponding associative
array entry is logically time-stamped with the completed instruction count. At the
conclusion of the profiling run, the set of timestamps are sorted in descending order;
the timestamp occurring m-th in the list is the number of instructions (¢) prior to the
cycle-accurate sample that must be executed in order to encounter m unique memory
references. In other words: ¢ = MSEwarmup(N, a,p, MSEprofile).

In the Chapter 5 experiments, I make the assumption that the pre-cluster phase
is long enough and accesses enough unique reference addresses that all Na cache
blocks are touched at least once prior to the cluster. Hence, MSE is used to find the
warm up interval ¢ that touches all Na cache blocks. In general, this is not a good
assumption. Some benchmarks will not touch all entries in a cache, especially a large
cache, regardless of the length of the pre-cluster interval; this is what limits MSE to
warming up only smaller primary (L1) caches. The problem is that for some fixed
p, larger caches require larger m to touch the designated proportion of cache blocks.
Thus, it becomes increasingly less likely that m or more unique references are accessed
during the pre-cluster phase. If fewer than the MSE-prescribed m unique references
exist among the pre-cluster instructions, a safe, conservative fallback is to let ¢ = 0.

That is, when fewer than m uniques are available for the current pre-cluster—cluster

2A common block width among contemporary L1 instruction- and data caches is 32 bytes; this is
the block size used for the experiments. Dependence on the cache block width is actually a limitation

of MSEwarmup that is remedied by MRRL.
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pair, MSEwarmup reverts to fullwarmup. This dearth of unique references is common
when attempting to warm up secondary (L2) caches which tend to be much larger
than Lls. To accommodate this, MSE employs two more variables, o, 8 € (0, 1].
These parameters tune N and a in the following way: ¢t = MSEwarmup(aN, Ba, p,
MSEprofile). Thus, if the user needs to calculate the number of unique references
necessary to touch only a fraction of sets and a fraction of blocks within each set,
a<land g <1.

The next section contains a thorough discussion of several important assumptions
and the critically important uniformity assumption that implicitly underlies the MSE

formula; the MSE formula itself, is discussed thereafter.

3.2 MSE Assumptions
The MSE formula (m = MSE(aN, fa,p)) calculates the probability that at least aN
sets of a cache will be touched at least Sa times. The formula however, is based
on the assumption that unique memory references are typically distributed uniformly
throughout the cache. This assumption does not contradict the well-known, empir-
ically demonstrated principle of locality. The critical difference is that the locality
principle considers the entire stream of memory references, L. My assumption, by
contrast, refers only to the subset of the memory reference stream that does not
contain duplicates, unique(L).

Indeed, uniform distribution of unique memory reference addresses is exactly the

ideal behavior for a cache because this would reduce the likelihood of conflicts (i.e.,
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having two different references map to the same location within the cache). In an

ideal direct-mapped cache, for instance, if all cache blocks are valid, data in any set

N-1

~ chance of surviving a unique incoming reference address; the larger

would have a
the N, the greater the chance of survival.

To verify the uniform distribution of unique(L) throughout the cache analytically,
I employed the x? goodness-of-fit test [13, 59, 64]. I developed software that counts
(based on some assumed cache block width) the number of references to each cache
set among the unique references only. From this, I first tallied the total number
of unique memory accesses, |unique(L)|, and calculated a best estimate expected
number of accesses per set

|lunique(L)|
N

I =
Using z, sets are grouped into bins such that the best estimate average number of
accesses per bin is at least 5 [13, 64]. Finally, I used these data to compute x?:
the observed x2. For all benchmarks and for every cache configuration tested, the
raw profile data passes the x? test of the null hypothesis that the distribution of
cache accesses among the unique references is uniform at the 1% level of significance.
Table 3.1 gives the x? values computed for each benchmark, each cache configuration
(N € {256,512,1024,2048}), the degrees of freedom and the corresponding 1% critical
value.

I also performed the same test on the profile data from the SPEC CPU2000 bench-

marks. Experiments on these benchmarks use multiple-cluster simulation; thus I was
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N = 256; df = 254,0’11()_01 = 309
X% P(X%.o1,254 > XZ)

compress 0.254 1.000
gee 149.098 1.000
go 296.164 0.036
ijpeg 135.636 1.000
m88ksim 3.556 1.000
perl 41.148 1.000

N = 512; df = 510,61)()_01 = 587
X2 | P(X3o1510 > x2)

compress 0.000 1.000
gee 140.250 1.000
go 0.000 1.000
ijpeg 161.670 1.000
m88ksim | 11.220 1.000
perl 149.940 1.000

N = 1024; df = 1022,cv9.01 = 1130
Xg P(X%.01,1022 > Xg)

compress 3.066 1.000
gce 945.350 0.958
go 0.000 1.000
ijpeg 247.324 1.000
m88ksim 0.000 1.000
perl 357.700 1.000

N = 2048; df — 2046,cv9 01 — 2197
X5 | P(XB.01.2016 = X2)

compress 0.000 1.000
gee 75.702 1.000
go 0.000 1.000
ijpeg 619.938 1.000
m88ksim 0.000 1.000
perl 716.100 1.000

Table 3.1: 2 for SPECInt95 benchmarks and various N; df is the number of degrees-

of-freedom; cvgg; is the critical value of x2 at the 1% level of significance.
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forced to perform the x? test for each pre-cluster phase individually. The results were
similar to those presented in Table 3.1: statistically close to uniform for the MSE
formula to yield reliable results. This assessment is additionally supported by the
successful application of MSEwarmup to multiple-cluster simulations (see Table 5.6).

A possible hole in the uniformity assumption is second-level (L2) caches. L2 caches
typically have a much larger volume and greater cache block capacity than L1 caches.
L2s are furthermore, typically unified, hosting instructions and data. It is possible
that some programs’ instruction- and data reference streams will destructively inter-
fere with each other in a unified L2, invalidating the assumed uniform distribution of
unique memory references. Hence, a second assumption is that the MSE formula is
performing calculations based on a non-unified cache.

The MSE profiler assumes a specific cache block width. For the MSEwarmup ex-
periments I chose a block size of 32 bytes. (This has become common in the L1
instruction- and data caches of some contemporary microprocessors including the
Pentium IIT [47], and UltraSPARC III [25]. Hence, for my experiments, L1 caches
are configured to use 32-byte blocks.) Because of the nature of cache behavior—
manipulating not single words or bytes of data, but whole data blocks—block width
defines uniqueness among memory references. Block width uniqueness for a 32-byte
block, byte-addressable cache, for example, is distinguished by the high 27 address
bits. (In other words, uniqueness is determined on the basis of the remaining ad-
dress bits after discarding the log232 = 5 least significant bits.) Restricting the

profiler to this single assumption was a conscious design decision that maximizes
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MSE’s applicability; the only other cache dimensions—mnumber of sets and degrees of
associativity—are perfectly flexible. Hence, the m returned by the MSE formulas for
a given p refers to a number of unique references based on block width granularity.

One final assumption, made not by MSE, but the MSE adaptation to cache warm up
is a method for discovering what proportion of sets (a € (0, 1]) and what proportion
of blocks within each set (5 € (0, 1]) would have been touched by fullwarmup a priori.
Unfortunately, block size alone is insufficient to discover o or 8 during the profiling
run.

Mendelson, Thiébaut, and Pradhan [39] developed a technique for analytically
predicting the steady-state proportion of live blocks within a cache. Steady state
behavior, however, may yield inaccurate results for MSFwarmup since the end-to-
end execution is partitioned into individual pre-cluster—cluster pairs. What if, for
instance, the live-dead behavior of the cache on a particular pre-cluster—cluster pair
diverges significantly from the steady state? Furthermore, Mendelson et al. [39] do
not determine liveness and deadness with respect to the number of sets and number
of blocks per set that are live, just the percentage of all cache blocks that are live.
Additionally, MSE’s definition of liveness differs subtly from Mendelson’s. MSE’s
notion of a live cache block is not merely one that will be reaccessed before being
evicted, but one that will be reaccessed during the next cluster before being evicted.
For these reasons, the techniques described by Mendelson et al. [39] are not obviously
useful for helping MSFEwarmup discover o and f.

If unable to find o and 8 a priori, one is forced to either guess, but unsubstan-
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tiated guessing may yield inaccurate results; or suffer a one-time cost of executing
fullwarmup to discover o and 3, but this defeats the purpose of finding a technique
that makes fullwarmup unnecessary; or set « = 3 = 1. While the latter choice is very
conservative, forcing some pre-cluster—cluster pairs to revert to fullwarmup, it does
not sacrifice accuracy and, for small enough caches—still simulates in less time than

fullwarmup.

3.3 The MSE Formula

The MSE formula calculates the probability that a/N Sa blocks of an a-way associative

cache with N sets will be touched at least once, thus:

Z[(wl,zz,T,wN,l) s.t. atleast [aN| z; > [ﬁa]]
- D (ml,zg,T,mN,l)

The denominator in the formula is a count of the number of ways to touch each of
the N sets in varying combinations, such that the sum of touches is equal to m. The
numerator is very similar, but filters away all cases for which more than aN sets
have fewer than Sa blocks per set are touched. Their quotient is the probability of
touching at least Sa blocks of at least /N sets, once or more.

The formula gives insight into the importance of m representing a number of unique
reference addresses. The MSE formula makes a probability calculation of the number
of sets that get touched and how many times each set is touched; duplicate references
are irrelevant because duplicates will always map to exactly the same set in the cache.

Notice the absence of absolute bounds on sum in both the numerator and the de-
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nominator. This is intentional and implies that the sum is over all valid configurations
of lower terms in the multinomial coefficient. (Basically, the sum of the lower terms is
less than or equal to m to be valid.) The complexity of this computation is bounded
by the complexity of calculating the sum in the denominator. The problem with
performing this computation however, is precisely the absence of explicit bounds on
the denominator sum which forces one to account for all valid combinations of lower
terms in the multinomial coefficient.

To combat this, I have tested brute-force multithreading techniques in conjunc-
tion with optimizations that exploit combinatorics to avoid “double-counting,” e.g.,
(1’2, 4) = <2’i1>. All these were ineffective however, as the number of valid multi-
nomial configurations goes exponentially in m. For instance, when executed on a
dual-CPU, 500 MHz Pentium III system this calculation took more than three weeks
for m = 64! If even this trivial number of unique references is intractable to work

with, this formula is useless in general. Hence, I developed the direct-mapped MSE

approzimation (so called because it assumes a = 1):

S () e
St () ke

The numerator in this formula counts the number of ways to touch only £ or fewer

p=1-

sets for k£ € [1, N —1]. In other words, the numerator counts the number of ways to
fail to touch aN sets. The denominator on the other hand, counts the number of ways
to touch as many as aN sets (i.e., k& € [1,aN]). In other words, the denominator

counts the number of ways to fail plus the number of ways to succeed to touch aN
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sets. Their quotient is the probability of failing to touch at least a/N sets at least

once; 1 minus this quotient is the probability of success.

I developed software that can calculate the direct-mapped approximation relatively
quickly even on an older, 180MHz Pentium Pro—the longest calculation I tried took
approximately 30 minutes. The formal MSE formula can be easily estimated by
multiplying the result of the direct-mapped MSE approximation by the associativity,
i.e., m = a- MSEapprox(aN, 1,p). This approximation essentially emulates the case
where the first m uniques successfully touch the required aN sets; the second m
uniques touch aN sets; ...; the a-th m uniques touch a/N sets. This approximation’s
imprecision is due to the fact that it does not ensure that the a/N sets touched after
each bundle of m uniques is the same a/N sets touched by the previous m uniques.
However, in the case that o = 1, this is a good and indeed conservative approximation.

Unfortunately, I have not found a closed-form solution for m given p for either the
MSE formula or the direct-mapped approximation. Instead, the software that I have
written iteratively tests values of m to find the appropriate m for a specified p, alV,

and Sa.

3.4 Minimal Subset Evaluation Summary

Minimal Subset Evaluation (MSE) is a tool for analytically reasoning about cache
occupancy based on the dimensions of a cache and the number of unique memory
references handled within the cache. Based on the assumption that unique references

are dispersed uniformly throughout the cache (as demonstrated in 3.2), the MSE
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formula calculates the probability of touching a/N cache sets and Sa blocks within
each set, where N is the number of cache sets, a is the set associativity, and «,
B € (0,1]. In other words, the MSE formula is useful for computing the probability
that m unique references will touch a certain proportion of cache sets, and a certain
proportion of blocks within each set. Unfortunately, the computational complexity of
the MSE formula is intractable, but the MSE direct-mapped approximation formula
makes the simplifying assumption that each set holds a single cache block, and can
be computed quickly. A good estimate of the number of unique references necessary
to touch aNa blocks with probability p is am, where m is the number of unique
references necessary to touch a/N sets of a direct-mapped cache as computed by the
direct-mapped approximation.

MSEwarmup adapts MSE for accelerated warm up by determining the number of
unique references necessary to touch a a/NSa cache blocks with probability p. By pro-
filing the count of unique references among the pre-cluster instructions, MSEwarmup
determines the warm phase duration of ¢ instructions that contains m unique mem-
ory references. Warming up the m unique references immediately preceding a sample

cluster, cache state will accurately establish cache state with probability p.



Chapter 4

Memory Reference Reuse Latency

Memory reference reuse latency [18, 19] (MRRL) is a technique for accelerating sam-
pled microarchitecture simulation which builds upon insights gained during the devel-
opment of Minimal Subset Evaluation. MSE was developed to quantitatively assess
cache occupancy as a function of the cache dimensions and the count of unique ref-
erences handled within the cache. The adaptation of this capability to establishing
good cache state (the MSEwarmup technique) unfortunately, is inconvenient. MSE’s
uniformity assumption is only verified for small L1 caches (see Chapter 3), which
limits the scope of MSEwarmup. The requirement that profiling occur with respect
to a specific block-width granularity can also be awkward. Even though 32-byte
blocks are standard fare for contemporary microprocessors’ L1 instruction- and data
caches [25, 47], some microprocessors have different L1 cache block sizes [40]. To
apply MSEwarmup it would be necessary to profile the benchmark twice according

to two block widths or, just as clumsy, profile according to both block granularities

47
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Figure 4.1: Reuse latency histogram of n mutually exclusive partition buckets of the
discrete interval [1, L] (where L is the number of instructions in the pre-cluster—cluster

pair); N x 100% of all references have reuse latencies of wy or fewer instructions.
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Figure 4.2: Pre-cluster—cluster pair as the discrete interval [1, L]; since N x 100%
of all reuse latency measurements have reuse latencies that fall within the interval
[1, wy], for large enough N, beginning warm up wy instructions prior to instruction

s (which borders the sample cluster) will accurately warm up state.

simultaneously. Finally, there is the unsolved problem of a prior: selection of tuning
variables & and 8. MRRL is a more flexible solution developed precisely for rapid
pre-cluster warm up. Rather than attempt to touch some proportion of cache blocks,
MRRL measures the “amount of temporal locality” and uses this to touch specifically
those blocks that are useful for warming up state prior to the sample clusters.
Memory reference reuse latency refers to the elapsed time between a reference to
some memory address M[A] and the next reference to M[A], where “time” is measured
in the number of completed instructions. For the following discussion, consider the

instructions in a pre-cluster—cluster pair as bijectively mapped to the discrete interval
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[1, L], such that instruction; — 1, instructiony — 2, ..., instruction;, — L as pictured
along the top line of Figure 4.2. Imagine further, that this interval is partitioned into
n < L mutually-exclusive buckets whose union is exactly [1, L], as depicted along the
top of Figure 4.1. Furthermore, let bucket; (i € {1,2,...,n}) represent the interval
subset [a,b] for a > 1 and b < L. Figure 4.1’s bucket; has the tallest bar, indicating
that the majority of consecutive reference accesses have reuse latencies that fall within
the interval subset [1,b]. In other words, most consecutive reference accesses occur
within a short time of each other, precisely as one would expect according to the

principle of temporal locality. Vanishingly few references occupy bucket; for increasing

I measured MRRLs for each pre-cluster—cluster pair of each benchmark using
custom-made MRRL profiling software (see Chapter 6). As the profiler simulates
each pre-cluster—cluster pair, the profiling software maintains several associative ar-
rays of memory reference addresses, M[A]—one for the instruction stream, one for
the data stream, and one for the stream of branch instructions. Each element of
the array is logically time-stamped with the number of instructions executed as of
the currently simulating memory or branch instruction; if a previously-encountered
address is reaccessed, the difference of the previous timestamp and the current num-
ber of executed instructions is temporarily stored as dinsn. These dinsn are used
to concurrently build a reuse latency histogram by incrementing the counter asso-
ciated with the bucket; that bounds dinsn. When each pre-cluster—cluster section

concludes, the profiler outputs the dinsn histogram. These histograms contain the
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complete memory reference reuse latency profile for each pre-cluster—cluster pair.

Each histogram gives the count of references for which the number of elapsed in-
structions between successive accesses lies within the interval subset bucket; for all
n buckets. That is, since bucket; represents the interval subset [a, b], if bucket; = C,
then it occurred C' times that a pair of references to a memory reference address M[A]
were referenced as few as a or as many as b instructions apart. From this, one can cal-
culate the percentage of reaccesses having reuse latencies that fall within an arbitrary
union of interval subsets represented by the bucket;s. Of particular interest is the
percentage of reaccesses having latencies within the interval [1,wy], where N € [0, 1]
and wy is the upper bound on one of the bucket; intervals. If N corresponds to a
percentage of reuse latency measurements, then 100N % of all reuse latency measure-
ments occur in fewer than wy instructions. In Figure 4.1 N x 100% of all references
have reuse latencies that fall within the interval [1,wy]. In other words, at the N-
th percentile (of reuse latency measurements) the amount of temporal locality is wy
wnstructions.

Not surprisingly, the MRRL histograms invariably tell the same story when plotted
regardless of the benchmark profiled: A far greater number of references are revis-
ited a small number of instructions after their most recent access i.e., the histogram
bucket with the largest population was always bucket;. (Histograms of MRRL pro-
files of actual SPEC CPU2000 benchmarks are located in Appendix C.) The more
instructions that complete between an access to M[A] and the beginning of a cluster,

the less likely M[A] is to be accessed again during the cluster. This is exactly as I
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had expected, in light of previously explored concepts [17, 27, 72].

Quantification of temporal locality is the basis for deciding the length of the warm
phase. Let wy — bucket; mean that the i-th partition bucket of the [1, L] interval is
upper-bounded at L — wy. This means simply, that of all the reference reaccesses in
the current pre-cluster—cluster pair, N x 100% have reuse latencies of wy or fewer
instructions.

Armed with this knowledge, simulation can begin; if the length of the pre-cluster
phase is s instructions, then the warm phase will begin after s — wy cold phase
instructions have completed. By engaging warm up wy instructions prior to the
pre-cluster—cluster boundary, for large enough N ! the overwhelming majority of
addresses M[A] that will be accessed during the eminent sample cluster will have
been initialized. I argue that if N x 100% of references require only wy instructions
between successive accesses, then it is pointless to model the pre-cluster cache and
branch predictor interactions that occur more than wy instructions before the cluster.

Thus, the steps of the MRRL sampled microarchitecture simulation acceleration

technique are:

1. First, the user selects the locations of the cycle-accurate sample clusters within

the benchmark; by corollary pre-cluster regions are selected simultaneously.

2. The user next profiles the benchmark to characterize, for each pre-cluster—

cluster pair, the reuse latency of all references that occur. As this profile data

LA discussion of “large enough” N appears in Chapter 5.
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is valid for any cache and branch predictor configuration, this is a one-time cost

for each benchmark sample.

3. Simulations can then be run in aggressive cold mode, simulating only archi-
tected state. At wy instructions prior to the cycle-accurate sample cluster,
the simulator begins modeling interactions with the cache hierarchy and branch
predictor (i.e., warm mode). Once the cluster is reached, the cache(s) and
branch predictor will contain accurate state and cycle-accurate simulation be-
gins (i.e., hot mode). Repeat three-phase cold-warm-hot simulation for each

pre-cluster—cluster pair.

4.1 Improvements over MSEwarmup
At the beginning of the chapter, I claimed that MRRL has superior flexibility and

applicability when compared to MSEwarmup. The reasons for this include:

1. Does not require probability computations. Even though I was able
to derive a tractable approximation to the MSE formula, these calculations
were still time-consuming because of the lack of a closed-form solution for m
(the required number of unique references to achieve probability p of touching
the stated proportion of cache blocks). Instead, I was forced to iterate to the
correct value of m. MRRL makes no such calculations, eliminating this overhead

altogether.

2. Utilizes fixed block-width granularity MRRLprofiles that can be used

with any cache block configuration. The MRRL profiler always profiles
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with word-width granularity. That is, the MRRL profiler always discards the

2 least significant bits as these contain the byte offset within each 32-bit word
address. Since MRRL does not need to calculate probabilities based on the num-
ber of unique references, the profiler maintains a single definition of “unique.”
Uniqueness was critically important to MSE because individual bytes and words
are not manipulated inside a cache; rather, whole blocks are fetched, invalidated,
and evicted. Block-width dependency would require that a benchmark be pro-
filed multiple times to obtain separate measurements if two or more regions of
the cache hierarchy used different block widths. This is exactly the case with the
MIPS R10000 [40], which has 64-byte L1 instruction-cache blocks, and 32-byte
L1 data cache blocks. MRRL can service an R10000-like cache organization

from a single profile.

3. Applicable to warming up branch predictors. Before discussing MSE-
warmup’s short-comings, I will briefly review hardware dynamic branch predic-
tion. While there are some variations on the theme, Hennessy and Patterson
describes the canonical branch prediction buffer (BPB) [21]. The BPB is a
small, special-purpose tagless cache of 2" entries, accessed during instruction
fetch, indexed by the n low-order program counter bits. The BPB foregos tags
for access rapidity; occasionally therefore, multiple branches will have the same
n low-order bits and collide within the BPB, but the likelihood of collisions
is mitigated by the fact that branches usually do not constitute a majority of

the dynamic instruction stream [21] and can be further alleviated by increasing
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the number of BPB entries. Each of the 2" BPB elements is a 2-bit saturating

counter, meaning that when incremented, their values never go above 115, and
when decremented, their values never go below 00,. When accessed, the BPB
returns the high-order bit from the indexed element. Once the corresponding
instruction is decoded, if it is discovered to be a branch, the fetch engine will
update the program counter according to this prediction bit. A 1 denotes that
the branch is predicted taken and fetching will begin from the target address;
a 0 denotes that the branch is predicted not taken and sequential fetching will
resume. If when the branch finally executes, it is taken, the BPB responds
by incrementing the corresponding saturating counter; if not taken, the corre-
sponding element is decremented. In this way, the BPB is “trained” to a certain

branching behavior.

One variation of the BPB described in Hennessy and Patterson is the two-level
branch prediction buffer (2LBPB). As branches execute, a 2LBPB records the
taken—not-taken history of the n most recent branches in a shift register. If
a branch is taken, the register shifts a 1 into the least significant position; a
0 is likewise inserted if the branch is not taken. The n-bit pattern of taken—
not-taken history is used to index into a table of 2™ 2-bit saturating counters.
As instructions are fetched and decoded, predictions are made based on the
high-order bit from these saturating counters in the same way as the original
BPB. Succinctly stated, BPBs predict from per-branch history, while 2LBPBs

predict from branch history globally, among all branches. This global branch
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history scheme divorces branch prediction from the temporal locality of branch
reference. Thus, it is difficult to imagine a technique for analytically estimating
some reduced amount of warm up necessary to establish accurate 2LBPB state.
Such a warm up technique would have to correctly initialize the “important”
entries in the table of saturating counters, and make its determination of impor-
tance independent of information contained in the branch addresses. (This may
be an interesting avenue for future research, but I doubt that the development
of such a technique would be possible. I additionally doubt that such research
would be worthwhile in light of prior research [7, 8] that suggests branch predic-
tor warm up can be accomplished in a trivial number of instructions.) Because
of the complications imposed by global history-based prediction, the follow-
ing discussion of MRRL’s applicability to branch prediction uses Hennessy and

Patterson’s baseline BPB.

MSEwarmup applies MSE in a brute-force attempt to touch a specific pro-
portion of cache blocks with some user-chosen probability. Unfortunately, it
is precisely MSFEwarmup’s brute-force approach that makes it difficult to use
in branch predictor warm up. To use MSE to warm up a BPB, one would
have to first calculate the MSE-prescribed m, for the number of BPB entries.
(The number of BPB entries is analogous to N—the number of cache sets.)
This becomes immediately problematic when one considers the immense size of
some branch prediction buffers; the UltraSPARC-III [55], for instance, contains

16K entries. Recall from Chapter 3, that to touch N entries with probabil-
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ity p = 99.9%, a good estimate for m is 16 N, which in this case yields: m

= 16(16384) = 262144. In other words, to touch all 16K entries with 99.9%
certainty, the simulator would have to warm up enough instructions to witness
262,144 unique branches—a daunting request for even the largest pre-cluster
phases! In fact, because many programs tend to spend much of their execu-
tion time in loops, finding 262,144 unique instructions in a given pre-cluster
region occurs infrequently. Furthermore, in the absence of a sound technique
to accurately calculate a (see Chapter 3), if the pre-cluster instructions contain
fewer than the MSE-prescribed m unique references, MSE degenerates to full-
warmup, completely trading away speed up for accuracy. Hence, MSEwarmup

is not useful for accelerating branch predictor warm up.

By profiling the reuse latency characteristics of the branch address stream
however, MRRL can determine the maximum reuse latency, MRRL,, (i.e.,
MRRL g0, or MRRL at N x 100% = 100%), among branches. Since reuse
latency is the count of completed instructions between consecutive accesses
to a given branch, MRRL,,,; is the count of instructions between consecutive
accesses to the branch that took the longest to revisit. This is an immediate im-
provement, over MSEwarmup. Whereas MSFEwarmup strives to model as many
instructions as contain m unique references—which may ultimately degenerate
to fullwarmup—MRRL can bound the warm up phase by MRRL,,,; instruc-
tions, which (according to the MRRL profile plots in Appendix C) usually does

not encompass all pre-cluster instructions.
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Furthermore, the principle of temporal locality also applies to branch instruc-
tions: recently accessed branches will likely be accessed again in the near future.
This accounts for the large amount of time programs spend in loops and is ver-
ified by Thiébaut [66] who showed that changes in the program counter value
can be reliably modeled as recurrent fractal random walks on a one-dimensional
lattice (see Chapter 2). Because recurrent fractal random walks are much more
likely to make short jumps (either forward or backward) between lattice cells
than long jumps, recurrent walks tend to stay among a limited grouping of cells
for a long time before moving to a new grouping. More concretely, main mem-
ory emulates the infinite one-dimensional lattice; its uniquely addressable units
(i.e., bytes or words) are the cells of the lattice; and a recurrent walk occurs
when a region of code is repeatedly revisited (as by looping) before moving to
a different region of the code. By bounding the warm phase by the profiled
MRRL,,,; among branches and given that the same branches will likely be vis-
ited again and again, MRRL-enabled simulation is able to warm up the BPB
accurately, training its entries in less time than fullwarmup. (Very short branch
predictor training times are corroborated by Co and Skadron [7] who show that
dynamic branch predictors can be accurately warmed up in as few as 128K

instructions.)

4. Directly applicable to any depth of cache hierarchy, regardless of
unified levels (e.g., unified L2/L3). The critically important uniformity

assumption, so easily verified in the L1 caches, does not necessarily hold in the
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usually much larger L2 cache. Furthermore, L.2s tend to be unified. Another,
more subtle assumption underling MSEwarmup is that the MSE formula is being
applied to a stream containing one type of reference: instruction fetches or data

loads and stores. MRRL does not impose these assumptions.

5. Unaffected by unique reference distribution or density. Consider the
case where the overwhelming majority of unique memory references are first ac-
cessed in an intense burst of start-up activity very early during the pre-cluster
instructions. Immediately ensuing is a steady-state period where these refer-
ences’ addresses are reaccessed again and again. Assuming m unique references
are available among the pre-cluster instructions, this front-loading of unique
references diminishes MSE’s ability to speed up the simulation. Since most
of the unique references occur at the beginning of the pre-cluster instructions
rather than near the end, ¢ will have to be chosen near the beginning of the
pre-cluster instructions to accommodate m; this scenario is depicted in Figure
4.3. A similar problem occurs when unique references are sparsely distributed
throughout the pre-cluster instructions; this flat-loaded scenario is depicted in
Figure 4.4. In summary, while MSE’s accuracy is sound regardless of the dis-
tribution of unique references, MSE’s ability to speed up a simulation hinges
upon a suitable number of unique references occurring toward the end of the pre-
cluster period; see Figure 4.5 for an illustration of such a back-loaded pre-cluster

period.
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Figure 4.3: Front-loaded pre-cluster contains a burst of first references to unique

addresses very early during the pre-cluster period, followed by a sparse population of

uniques. t therefore, encapsulates most of the pre-cluster period.
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Figure 4.4: Flat-loaded pre-cluster contains sparse, but steady appearance of first

references to unique addresses throughout the pre-cluster period. t therefore, encap-

sulates most of the pre-cluster period.
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Figure 4.5: Back-loaded pre-cluster contains a burst of first references to unique

pre—cluster cluster

addresses very late during the pre-cluster period. t therefore, requires only a small

portion of the pre-cluster period.



CHAPTER 4. MEMORY REFERENCE REUSE LATENCY 60

Because MRRL is able to immediately bound the amount of warm up by
MRRL;,,z, its ability to accelerate warm up does not depend upon the demog-
raphy of unique references, and naturally avoids the problems of front-loading
and flat-loading entirely. Instead, MRRL warms up instructions according to a
certain percentile of reuse latency measurements. Most reference addresses are
revisited a small number of instructions after their most recent access (temporal
locality); this leads to a clear majority of very short reuse latency measurements.
Hence, very high percentiles of reuse latency measurements have a very small
number of inter-reference instructions, which lead to the conclusion that: since
N x 100% of memory reference addresses require only wy instructions between
consecutive accesses, then warming up more than wy pre-cluster instructions

becomes increasingly less useful.

6. Does not require o or §. The large capacity of L2s (and even larger L3s)
typically preclude their being completely filled, leaving many L2 cache blocks
untouched. To accommodate this, MSE introduced the variables «, 5 € (0, 1],
which specify that only a fraction of the sets and a fraction of blocks per set
need to be touched. I was unable to find any straight-forward mechanism to
determine good « and 8 a priori, which would have forced me to either guess
or let « = f = 1. The former may generate inaccurate results. The latter,
due to a dearth of unique references, would usually revert to fullwarmup which

preserves accuracy, but fails to accelerate warm up.
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4.2 Evolution of MRRL from MSE & MSFEwarmup

Previous research defines any valid cache block whose data will not be reaccessed at
least once more before the block is invalidated, evicted and refilled as dead; any cache
block that is not dead is live. A substantial amount of work has been done in the
area of analytical characterization of memory reference behavior [11, 62, 66, 67, 68],
which has led to a technique for exploring live-dead cache block measurement [39].
Other work adapts dynamic branch prediction to generate informed guesses when a
cache block is dead [33].

It might seem that I could adapt this research to develop a technique to predict from
the profiles, those cache blocks that would likely remain untouched at the conclusion
of the pre-cluster instructions, allowing me to calculate the MSE tuning variables.
a would clearly be the quotient of touched sets to total sets. Calculating 8 would
be similar, but not as straight-forward. Should it be calculated as a quotient of the
maximum number of touched blocks of all sets? as the average number of touched
blocks of all sets? Both these approaches are immediately problematic. If for instance,
I chose to calculate § as the quotient of the maximum number of touched blocks inside
a set, I could very easily arrive at a situation where one or more sets had all their
blocks touched. This would make § = 1 and is of no help at all. Calculating an
average is still unappealing because averages tend to mask relevant trends, making £
untrustworthy.

As I wrestled with these issues, the notion occurred to me that I need only ensure

that those lines that would be accessed during the sample clusters—live and dead—
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would be in the cache during the clusters. (In fact, merely ensuring that the cache
contains live data would be tremendously incorrect. Accurately modeling cache be-
havior demands that I place the cache into a state that accurately represents or very
closely approximates the state that would have occurred had fullwarmup been used.
Accordingly, any warm up technique has a responsibility to ensure that dead lines
and untouched lines are also accurately represented at the beginning of each cluster.)
Further deliberation yielded the insight that measuring reuse latency trends would
betray a technique for efficiently and effectively warming up cache state at all levels
of the hierarchy without complex, time-consuming calculations and with far fewer
assumptions than imposed by MSE.

In light of this insight, I quickly abandoned my exploration of «, 3, and live-dead
analysis in favor of the more flexible, available MRRL technique. Hence, although
MRRL cannot displace MSE’s quantitative occupancy assessment contribution, it is

the general-purpose replacement for MSFEwarmup.



Chapter 5

Experimental Methodology and

Results

Multiple sets of experiments were performed during this research, first to verify ini-
tial hypotheses, and finally to gather actual performance data. In the first set of
experiments, [ sought to establish the validity and viability of MSE as a tool for
quantifiably reasoning about cache occupancy by using the pre-cluster intervals de-
scribed by Skadron et al. [54] for the SPECInt95 [58] benchmarks. In the second set,
I verified MSE’s flexibility by applying MSEwarmup to the multiple-cluster, uniform
sampling simulation technique discussed by Haskins and Skadron [17]; the bench-
marks for these experiments come from the more up-to-date SPEC CPU2000 [57]
suite. In the third set, I demonstrate MRRL’s speed, accuracy and superior avail-
ability by using the same multiple-cluster, uniform sampling strategy on a simulated

microarchitecture that includes a unified L2 cache and a dynamic branch predictor.
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The fourth set of experiments applies MRRL to SPEC CPU2000 samples given by

Sherwood et al. [51], and the final set tests MRRL’s speed and accuracy in random
cluster sampling, discussed by Conte et al. [8].

In all cases, the benchmarks were simulated using their respective reference in-
puts supplied in the SPECInt95 and SPEC CPU2000 suites. The tools I use in my
research were custom-built within the framework provided by the SimpleScalar [4]
software suite. These include sim-safe, a functional simulator that models purely
architected state; sim-cache, a multi-level cache hierarchy simulator; sim-mrriprofile,
an MSE/MRRL profiling tool built from sim-safe; sim-inorder, a 6-stage, in-order
issue processor core simulator built from sim-cache; and sim-outorder_mrrl, an out-
of-order issue processor core simulator (built from sim-outorder) extended to perform
three-phase, cold-warm-hot sampling and MSE/MRRL warm up techniques. I also
wrote software to perform the MSE calculations according to the MSE direct-mapped
approximation described in Chapter 3 that returns a warm phase interval ¢, given V,
a, p and MSEprofile data for a benchmark—input pair.

The data discussed in this chapter were gathered using the steps enumerated in
Chapter 3 and Chapter 4. All benchmark binaries were compiled into the Alpha
AXP instruction set and statically linked so that the simulations see all user-space
program behavior. For each set of experiments, the first step was to execute the
one-time profiling pass for each benchmark-input pair. Then, using the MSE/MRRL
software in conjunction with the MSEprofile/MRRLprofile data, I found for each

cache (and for MRRL, branch predictor configuration), an appropriate pre-cluster
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N m Am

512 | 5544 | -32.32%
p = 99.0% 1024 | 11803 | -28.02%
2048 | 25031 | -23.61%
4096 | 52906 | -19.27%
N m Am

512 | 4710 | -42.50%
p = 95.0% 1024 | 10135 | -38.14%
2048 | 21693 | -33.80%
4096 | 46230 | -29.46%

Table 5.1: m summary for p = 99.0% and p = 95.0% compared to a baseline of p =
99.9%.

point to engage warm up.

5.1 MSFEwarmup: Single-large-cluster Samples

As previously stated, the first set of experiments sought to experimentally verify
the mathematical principles underlying MSE. To demonstrate that MSE is an ef-
fective means for reasoning about cache capacity, the first set of experiments used
MSFEwarmup to decide the number of instructions prior to the clusters described by
Skadron et al. [54] to begin warm up such that all cache blocks would be touched.

I chose my baseline probability of accurate warm up, p, to be 99.9%, and also tested
MSEwarmup for p € {99.0%, 95.0%}. Table 5.1 shows for direct-mapped caches (with
number of sets, N € {512, 1024, 2048, 4096} ), the necessary m for lower probabilities
of accurate warm up 99.0% and 95.0%, and gives the change in m relative to the m
required for 99.9%.

The experiments used sim-cache to model direct-mapped caches, fast-forwarding
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past the cold-phase instructions, and engaging cache modeling at the MSE-prescribed

t instructions prior to each benchmark’s sample cluster. Once the sample cluster is
reached, if the number of cache blocks touched is at least N (I assume « = 1), the
experiment was successful, because MSEwarmup met its objective of touching all N
cache blocks.

With probability of accurate warm up chosen to be p = 99.9%, all N sets were
indeed touched after the MSE-prescribed ¢ warm up instructions for all benchmarks
tested. When the probability was adjusted to p = 99.0% and p = 95.0%, the MSE-
prescribed ¢t warm up instructions usually touched all N sets. When it did not how-
ever, only a very small number of sets (fewer than 10) were excluded. Of particular
interest in these experiments is the size of the warm phase as a percentage of all pre-
cluster instructions. Tables 5.2 through 5.5 give the percentage of IV sets touched and
the percentage of the pre-cluster interval that was warmed up for each benchmark.

For all benchmarks except go, fewer than 16% of the pre-cluster instructions suffices
to touch all or minutely fewer than N sets. go’s higher percentage of pre-cluster warm
up for N = 2048 with p = 99.9% and N = 4096 for all p, is due to its front-loaded
unique reference distribution (see Figure 4.3). Figure 5.1 illustrates the unique refer-
ence address distribution for go. Each point on the z-axis denotes some number (in
hundreds) of unique reference addresses; each corresponding y (along the logarithmic
y-axis) gives the number of instructions that must be completed in order to see 100z
unique reference addresses (i.e., each y gives the size of the cold phase necessary to

access 100z uniques).
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p = 99.9% » = 99.0% » = 95.0%
benchmark | % of N | % of pre-cluster | % of N | % of pre-cluster | % of N | % of pre-cluster
compress 100% 0.11% 100% 0.08% 100% 0.07%
gee 100% 4.16% 100% 3.28% 100% 3.05%
go 100% 0.08% 100% 0.08% 100% 0.07%
ijpeg 100% 0.28% 100% 0.12% 100% 0.12%
m88ksim 100% 1.43% 100% 1.06% 100% 0.05%
perl 100% 13.89% | 99.61% 12.42% | 99.02% 10.70%

Table 5.2: SPECInt95 benchmark summary for N = 512, p

€ {99.9%,99.0%,95.0%} .

p=99.9% p=99.0% p=95.0%
benchmark | % of N | % of pre-cluster | % of N | % of pre-cluster | % of N | % of pre-cluster
compress 100% 0.25% 100% 0.17% 100% 0.15%
gee 100% 5.61% 100% 4.39% 100% 4.33%
go 100% 1.98% 100% 0.35% 100% 0.10%
ijpeg 100% 0.51% | 100% 0.32% | 100% 0.30%
m88ksim 100% 2.51% 100% 1.80% 100% 0.12%
perl 100% 14.09% | 99.12% 13.95% | 99.84% 13.91%

Table 5.3: SPECInt95 benchmark summary for N = 1024, p

€ {99.9%,99.0%,95.0%} .

p = 99.9% » = 99.0% » = 95.0%
benchmark | % of N | % of pre-cluster | % of N | % of pre-cluster | % of N | % of pre-cluster
compress 100% 0.53% 100% 0.39% 100% 0.33%
gee 100% 9.88% 100% 8.16% 100% 6.44%
go 100% 31.90% 100% 4.79% 100% 2.53%
ijpeg 100% 0.94% 100% 0.74% 100% 0.69%
m88ksim 100% 5.03% 100% 3.95% 100% 3.59%
perl 100% 14.59% 100% 14.37% 100% 14.27%

Table 5.4: SPECInt95 benchmark summary for N = 2048, p € {99.9%,99.0%,95.0%}.

p=99.9% p=99.0% p=95.0%
benchmark | % of N | % of pre-cluster | % of N | % of pre-cluster | % of N | % of pre-cluster
compress 100% 0.96% 100% 0.77% 100% 0.69%
gee 100% 15.55% | 99.98% 13.83% | 99.98% 12.10%
go 100% 99.90% 100% 99.89% 100% 99.74%
ijpeg 100% 1.96% | 100% 1.63% | 100% 1.40%
m&8ksim 100% 10.05% 100% 7.90% 100% 7.16%
perl 100% 15.57% 100% 15.21% 100% 15.01%

Table 5.5: SPECInt95 benchmark summary for N = 4096, p € {99.9%,99.0%,95.0%}.
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Figure 5.1: MSE unique reference plot for go. The z-axis gives the MSE-prescribed
m (in hundreds of unique references); the y-axis gives the number of cold phase

instructions.

The pre-cluster period described by Skadron et al. [54] for go consists of the first
925 million instructions from the start of execution. Consider N = 512 and p = 99.9%
for go in Table 5.2; in this experiment, the warm phase is comprised of the last 0.08%
of the pre-cluster instruction stream. Since the MSE-prescribed m for N = 512 with
p = 99.9% is 8,192, the corresponding point on the Figure 5.1 curve—at roughly z =
82—is very close to y = 925 million; this indicates a very long cold phase of slightly
fewer than 925 million instructions suffixed by a very brief warm phase. Notice the
very sharp drop in the curve for x > 350, of nearly three orders of magnitude from
y = 10° to y = 10%. Since the y-axis gives the cold phase duration, this large drop

implies a marked increase in the warm phase duration for those go simulations whose
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MSE-prescribed m is greater than 35,000 unique references (i.e., for N = 4,096, with

Mp=95.0% = 46,230, Mp—g90% = 52,906, and my_g9 9% = 65,536). These experiments
had to engage warm up very early (after roughly 10° instructions) in the pre-cluster
instruction stream to encounter the MSE-prescribed m unique memory references.
This accounts for the 99%+ amount of the pre-cluster instruction stream occupied
by the warm phases shown in Table 5.5.

Unique memory reference address plots for all the SPECInt95 benchmarks used in
this dissertation are located in Appendix B. Notice that only go drops off so sharply
while the others fall only very slightly as = increases. For these other benchmarks

therefore, the cold phase contains of the majority of the pre-cluster instructions.

5.2 MSFEwarmup: Uniform Multiple-cluster Samples

Having vindicated MSE through experimentation with MSFEwarmup, the next step
was to apply MSEwarmup to uniform multiple-cluster sample simulation. In this sec-
ond set of experiments, my objective was to demonstrate that MSFEwarmup can obtain
simulation that closely mimics fullwarmup, but in less time. As stated in Chapter
1, simulation accuracy is predicated upon successfully defeating the cold-start bias.
This is accomplished by establishing accurate simulated state prior to actual data
gathering that occurs during the cycle-accurate cluster simulations. Modeling all
pre-cluster cache interactions makes fullwarmup impervious to cold-start bias since
cache state is perfectly maintained. The results of the previous set of experiments

indicate that MSEwarmup simulations should execute substantially faster than full-
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warmup because in general, only a small proportion of pre-cluster instructions were
necessary to touch all cache blocks. If the instruction throughput (IPC) obtained
through MSFEwarmup simulation is close to that obtained through fullwarmup simu-
lation and the MSFEwarmup simulations execute in less time than fullwarmup, then
MSEwarmup is a sound cache warm up strategy.

These experiments were conducted using sim-inorder—a custom-built cycle-accurate
processor simulator that models a 6-stage, 4-way, in-order issue pipeline with dynamic
branch prediction. The L1 instruction- and data-cache were configured to be 2-way as-
sociative with 1,024 sets and 32-byte blocks for a total capacity of 64 kilobytes apiece.
Each uniform multiple-cluster sample measured instruction throughput for the first 25
billion instructions from each benchmark. Each cluster was spanned 1 million instruc-
tions and preceded by 499 million pre-cluster instructions. To provide a thorough test
of MSEwarmup, both the instruction- and data-cache were flushed at the conclusion
of each cycle-accurate cluster. Doing so actually makes MSFEwarmup’s task harder
by rendering the simulations unable to take advantage of previously-fetched blocks
that would have otherwise remained in the cache. This is in contrast to the random
cluster sampling method proposed by Conte et al. [8] which opts instead to maintain
“stale” state between samples. I tested two probabilities of successful warm up: p
= 99.9% and p = 95.0%, and conservatively sought ¢ prior to each full-detail cluster
sufficient to touch all N sets at least twice (o« = 1, a = 2) using the direct-mapped
approximation described in the Chapter 3.

Critical to these experiments was the amount of cache warm up prior to making
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IPC measurements during the cycle-accurate clusters. Four warm up strategies were
tested: shortwarmup, MSEwarmupgs.oy, MSEwarmupgg ey and fullwarmup. short-
warmup warms up cache state (i.e., models cache interactions) for 7,000 instruc-
tions [8] prior to cycle-accurate simulation; MSEwarmupgs oy and MSEwarmupeg 9%
warm up cache state for their respective MSE-prescribed ¢ instructions prior to cycle-
accurate simulation; and fullwarmup warms up cache state during the entire pre-
cluster period.

I measured the goodness of MSEwarmup by two metrics. The first is IPC accuracy
measured as the percent-error between MSEwarmup and fullwarmup calculated:

IPCMSEwm‘mup - IPCfullwarmup
IPCfullwa'rmup

Table 5.6 (and Figure 5.2) shows the MSEwarmup IPC accuracy results and contrasts
them with the IPC accuracies obtained through shortwarmup. The second metric is

the fraction of fullwarmup simulation running time calculated: 100% - ({4sEwermup)

Lfullwarmup
Table 5.7 (and Figure 5.3) gives these results and contrasts them against the fraction
of fullwarmup simulation time necessary for shortwarmup. Both metrics are tightly
coupled; the latter is worthless without the former. In other words, reducing simula-
tion time is only useful if it is done while simultaneously preserving accuracy.

From Table 5.6 it is clear that the MSE-prescribed warm up yields superior IPC
precision relative to shortwarmup in general. Of fifteen benchmarks, fourteen yielded
IPCs that are closer (i.e., have a smaller absolute value percent error relative to

fullwarmup) than shortwarmup for both p = 99.9% and p = 95.0%. The singular

benchmark applu was probably adversely affected by the fresh-state approach the
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% error
benchmark | fullwarmup | shortwarmup | MSEwarmupgg oy, | MSEwarmupgs oy,
applu 0.7857 -1.425% -1.769% -1.769%
crafty 1.3946 -2.373% -0.029% -0.029%
equake 0.6146 0.358% -0.016% -0.016%
facerec 1.2042 -4.293% -0.008% -0.008%
fma3d 0.8492 1.896% -0.742% -0.565%
gee 1.0665 -7.979% -0.169% -0.291%
gzip 1.5224 -1.399% -0.085% -0.099%
lucas 0.7439 0.255% 0.121% 0.121%
mesa, 1.3797 -1.160% 0.210% 0.275%
parser 1.0851 -9.833% -0.065% -0.175%
perlbmk 1.0542 -1.916% 0.844% 1.157%
twolf 1.2008 -2.682% -0.167% -0.208%
vortex 1.1118 -1.727% 0.072% -0.063%
vpr 1.0675 -16.42% -0.019% -0.206%
wupwise 0.9783 -2.361% -0.020% -0.307%
MEAN 3.738% 0.289% 0.353%

Table 5.6: Result summary for 50-sample simulation IPCs. This table compares

the IPC from fullwarmup to the percent difference (IP?;éfif wtwermup) in TPC for both
witwarmup

shortwarmup and MSEwarmup. The mean of percent differences was calculated using

their absolute values.

experiments took, flushing the instruction- and data-cache at the conclusion of each
cycle-accurate cluster.

Clearly shortwarmup is superior in terms of simulation running time, never taking
longer than 22% of the time taken by fullwarmup simulation. The running times
obtained by MSEwarmup however, are also smaller than fullwarmup, taking only as
much as 86% or as little as 26% for p = 99.9% and as much as 69% or as little as
22% for p = 95.0% of the time required by fullwarmup. These running times reflect

the number of pre-cluster instructions that were used for warm up between the cycle-
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% of original running time
benchmark | fullwarmup | shortwarmup | MSEwarmupgg oy, | MSEwarmupgs oy,
applu 26572 sec. 17.53% 54.59% 38.98%
crafty 27175 sec. 19.80% 34.01% 27.00%
equake 27220 sec. 19.35% 63.14% 47.92%
facerec 26190 sec. 20.28% 55.11% 37.93%
fmadd 27591 sec. 17.65% 55.96% 42.17%
gce 28377 sec. 19.07% 42.10% 32.30%
gzip 27037 sec. 21.24% 62.73% 46.94%
lucas 25739 sec. 17.70% 84.07% 68.73%
mesa, 26602 sec. 20.30% 42.14% 32.48%
parser 27735 sec. 17.98% 35.48% 26.59%
perlbmk 27905 sec. 18.98% 26.27% 22.59%
twolf 27967 sec. 19.64% 47.90% 35.67%
vortex 28301 sec. 19.40% 25.49% 22.27%
vpr 28235 sec. 19.96% 85.53% 54.67%
wupwise 26173 sec. 17.66% 76.32% 54.93%
MEAN 19.10% 52.72% 39.41%

Table 5.7: Result summary for 50-sample simulation running times (in seconds). This
table compares the running times for fullwarmup to the percentage of this time for

both shortwarmup and MSEwarmup.

accurate clusters. In a simulation such as vpr (the longest running benchmark for
p = 99.9%), the explanation for its nearly 86% measurement is the fact that each
499-million-instruction pre-cluster phase was sparsely populated by unique memory
references. Therefore, the MSE-prescribed t memory references during the pre-cluster
intervals had to be large to capture the m necessary uniques in order to achieve
probability p of accurate warm up. In fact, for some of the benchmarks, several of
the pre-cluster intervals were so sparse with unique memory references that they did

not contain m uniques; for these intervals the MSFEwarmup spans the entire pre-cluster
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phase, degenerating to fullwarmup. When this occurs, no speed-up over fullwarmup
is realized for the current pre-cluster—cluster pair, but this is presumably preferable
to ad-hoc techniques that may achieve speed-ups at the expense of accuracy.
Compared to MSEwarmupgg 9%, shortwarmup reduced simulation times by roughly
a factor of 2.75 and by roughly a factor of 2.05 compared to MSEwarmupgs.o%; on the
other hand, MSEwarmupgg g% yields results that are roughly 12.9 times more accurate
than shortwarmup and MSEwarmupgs o is roughly 10.6 times more accurate (see the
MEAN entries of Table 5.6 and Table 5.7). This is an interesting result: A decreased
probability of accurate warm up (p = 95.0%) reduces simulation running time, yet in
general still achieves a more accurate IPC measurement than shortwarmup. As hy-
pothesized, MSE rigorous mathematical approach to determining suitable pre-cluster
warm up intervals is more reliable than previous, more ad-hoc methods. This is espe-
cially evident when one examines the IPCs achieved by individual benchmarks rather
than the average case. Notice that while shortwarmup has a mean error of only 3.7%,
outlying benchmarks such as gee, parser and vpr have much higher errors (8%, 9.8%
and 16.4%, respectively); this shows that shortwarmup cannot be trusted. On the

other hand, MSE never achieves an error greater than 1.8%.

5.3 MRRL: Uniform Multiple-cluster Samples
In the previous set of experiments, I used MSEwarmup to demonstrate the effective-
ness of the three-phase cold-warm-hot simulation strategy for accelerating warm up

while preserving simulation accuracy. This set of experiments builds upon those re-
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Component Configuration

Instruction cache || 64KB, 2-way, 32B blocks, 1 cycle access latency
Data cache 64KB, 2-way, 32B blocks, 1 cycle access latency
Unified L2 cache | 2048KB, 4-way, 32B blocks, 11 cycle access latency
Branch predictor || Hybrid: 4K BiMod & 12-bit GAg, 32-entry RAS

Table 5.8: Simulator cache hierarchy and branch predictor configuration for MRRL

experiments.

sults, but uses MRRL to delineate the boundary between the cold and hot phases of
simulation. Recall from Chapter 4 however, that MRRL can be used to warm up all
levels of the cache hierarchy and a dynamic branch prediction buffer. Hence, these
experiments utilize the more sophisticated CPU configuration shown in Table 5.8.

As enumerated in Chapter 4, benchmarks were first partitioned into pre-cluster—
cluster pairs and profiled to characterize the reuse latencies of each. Pursuant to this,
the warm phase was engaged wy instructions prior to the cluster. This process was
repeated for every benchmark for N € {0.950,0.990,0.995,0.999}.

This set of experiments used a multiple-cluster uniform sampling strategy different
from the previous set. The previous set simulated a fixed number (50) of 10-million-
instruction clusters, uniformly located throughout the first 25 billion dynamic in-
structions. Rather than limiting the range of the clusters to a fixed subset of the
dynamic instruction stream, this set of experiments samples 10% of the end-to-end
dynamic instruction stream in uniformly-spaced 10-million-instruction clusters. As
before, precisely the same pre-cluster—cluster partition information that was fed to

the profiler was also fed to the multiple-cluster simulator.
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On their reference input data, the dynamic instruction counts for the SPEC CPU2000

benchmarks are large, usually on the order of 10'°. Consequently, these experiments’
10% strategy simulated many more sample clusters than the previous set. This greatly
reduced the amount of achievable speed up since under the three-phase cold—warm—
hot simulation strategy, acceleration is accomplished by speeding up simulation of
pre-cluster instructions. This effect can be seen by comparing Table 5.7 and Ta-
ble 5.10. Notice in Table 5.7 that shortwarmup’s running time as a percentage of
fullwarmup is always less than 25%; compare this to Table 5.10, where nowarmup’s

percentage of fullwarmup running time is greater than 60% on average.

5.3.1 IPC accuracy and speed-up

Table 5.9 (and Figure 5.4) shows the percent error in IPC relative to fullwarmup using
the MRRL warm up technique and the nowarmup/stalestale technique, which—as its
name suggests—makes no effort to establish correct state prior to each sample cluster
other than recycling state as it appeared at the conclusion of the prior cluster [8]. (For
brevity, we shorten nowarmup/stalestate to nowarmup.) In other words, nowarmup
experiments did not model any cache or branch predictor interactions prior to the
clusters. This makes nowarmup susceptible to cold-start bias as is readily seen from
the benchmarks facerec and gce, and more dramatically from vpr and parser. Though
most benchmarks’ nowarmup IPC diverges by less than 1% from fullwarmup, the
benchmark parser qualitatively demonstrates the phenomenon of cold-start bias. Ac-
curate simulation is predicated upon establishing an accurate representation of the

simulation environment; if the environment is inaccurate, so will be the results of the
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IPC %-error

benchmark | IPCsuwarmup || nowarmup | MRRLg.gs0 | MRRLg 990 | MRRLg. 995 | MRRLg.999
art 2.0708 -0.7920% -0.1062% -0.0338% -0.0048% 0.0000%
crafty 2.3966 -0.0209% -0.0250% -0.0250% -0.0250% -0.0125%
facerec 1.6675 -2.4048% -0.1979% -0.1379% -0.0960% -0.0240%
fma3d 1.4186 -0.8248% -0.4582% -0.4018% 0.0141% 0.0000%
gee 1.9937 -2.6433% -1.2991% -0.7323% -0.4414% 0.0752%
gzip 21777 -0.1056% -0.0413% -0.0276% -0.0138% -0.0092%
lucas 0.9627 0.0831% 0.0312% 0.0208% 0.0208% 0.0208%
mesa 2.4695 0.3442% 0.3766% 0.4049% 0.3968% 0.3887%
parser 1.5248 -9.3061% -6.4861% -2.4200% -1.2133% -0.2689%
perlbmk 1.6350 1.2966% 1.3089% 1.3394% -0.0979% -0.0061%
twolf 1.5647 0.0000% -0.0192% -0.0128% -0.0128% -0.0128%
vortex 2.2447 -0.6593% -0.4990% -0.4767% -0.3742% -0.1114%
vpr 1.1182 -4.5698% -2.2447% -0.5187% -0.2236% -0.0179%
wupwise 1.8261 0.4600% 0.0000% 0.0000% 0.0055% 0.0000%
MEAN 1.6793% 0.9352% 0.4680% 0.2100% 0.0677%

Table 5.9: IPC accuracy as %-error relative to fullwarmup (100%

IPCMRRLN _IPCfullwarmup)
IPCfullwa'rmup :

of the %-error measurements.

Mean values were calculated from the absolute value

simulation. This intuitively establishes the untrustworthiness of insufficient warm up.
A quantitative, statistically rigorous demonstration of this untrustworthiness is the
topic of 5.6.

Notice from Table 5.9 that MRRLy shows an increasing trend toward enhanced
accuracy (i.e., smaller relative error absolute value) as N increases. This result be-
comes even more compelling when one observes the trend on the four nowarmup
experiments highlighted previously. The only exception to the monotone increasing
trend among the benchmarks is mesa. I speculate that this is the result of destructive

interference in the branch predictor which causes mesa to enter into one or more of its
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clusters with suboptimal branch predictor state. Nevertheless, in all cases, MRRLg.gg9
achieves an error of less than 0.4% deviation from fullwarmup; lower values of N were
less reliable, but in general, more accurate than nowarmup.

Before my discussion of MRRL’s ability to accelerate simulation running times, it is
important to establish the optimality of nowarmup’s runtime relative to fullwarmup.
Since nowarmup does not model any cache or branch predictor interactions prior
to the cycle-accurate clusters, the nowarmup simulations have no warm phase, only
cold and hot. The cold phase simulates in a lower level of detail than the warm
phase. (This translates into fewer native instructions per simulated instruction and
therefore, more rapid execution.) If the hot phase cannot be changed or removed,
then eliminating the warm phase altogether, minimizes execution time to is absolute
minimum under the three-phase cold-warm—-hot simulation strategy. By corollary,
under the same assumption of an indelible hot phase, eliminating the cold phase
altogether (as happened when MSEwarmup found fewer than m unique pre-cluster
references), yields the maximum cold—warm-hot simulation time.

Since nowarmup running time is the minimum possible running time it also repre-
sents the per-benchmark maximum potential speed-up. The %nowarmup column from
Table 5.10 (and Figure 5.5) shows that these potential speed-ups ranged from 59.83%
for art to 76.25% for fmadd, where these are the percentage of each benchmark’s

tnowaTmup

fullwarmup running time (100% - ). All MRRLy running time percentages

tfullwarmup

shown in Table 5.10 give the percentage of potential speed up that each simulation

achieved (100% - (1 — 2MRRLy “‘nowermup))

tnowarmup
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benchmark | ttuiiwarmup | Ponowarmup || OMRRLo.oso | OMRRILo.gs0 | OMRRLo.0os | ZOMRRLo 000
art 2761 sec. 59.83% 97.46% 95.58% 95.16% 92.62%
crafty 109873 sec. 68.76% 98.35% 98.35% 98.28% 96.21%
facerec 114071 sec. 67.06% 95.23% 93.39% 91.17% 84.70%
fma3d 171281 sec. 76.25% 99.14% 98.04% 96.89% 96.24%
gee 66856 sec. 69.80% 99.46% 98.55% 97.07% 91.23%
gzip 48673 sec. 62.37% 98.59% 96.29% 94.05% 90.86%
lucas 80891 sec. 66.54% 99.36% 98.68% 98.09% 97.07%
mesa 79019 sec. 67.37% 99.52% 98.92% 98.85% 90.00%
parser 327684 sec. 69.39% 99.77% 96.34% 92.96% 84.75%
perlbmk 16636 sec. 68.57% 99.07% 98.95% 90.72% 88.15%
twolf 213200 sec. 62.91% 97.84% 95.65% 94.20% 90.76%
vortex 77808 sec. 66.64% 99.06% 98.78% 98.16% 91.91%
vpr 57293 sec. 71.68% 99.99% 95.71% 91.77% 81.54%
wupwise 192069 sec. 69.55% 99.21% 98.91% 93.92% 87.60%
MEAN 98.72% 97.32% 95.09% 90.26%

tnowarmup) and
tfullwarmup
(1-

Table 5.10: Maximum potential (%nowarmup) acceleration (100% -

achieved percentage of potential (%urrr,) running time speed-up (100% -
tMRRLN _tnowarmup

))- Running times measured in seconds.

tnowarmup

Observe that for higher percentiles, the amount of achieved potential decreases.
This, of course, is due to the fact that higher N increase the size of the warm phase
while simultaneously decreasing the cold phase, causing an ever larger proportion
of pre-cluster cache and branch predictor interactions to be modeled. In spite of
this, achieved potential is still respectable, ranging from 81.54% for wvpr to 97.07%
for lucas at N = 0.999. These translate into running times of only 84.91% and
68.49%, respectively for each of these benchmarks relative to their fullwarmup running

times'. Thus, for all benchmarks and all percentiles N, running time was reduced by

a minimum of 15%.

'Percentage of fullwarmup = (14 (1 — %mrRrLy)) * Ponowarmup-
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5.3.2 Cache and branch predictor accuracy
Although instruction throughput and simulation running times were the primary met-
rics that were examined to gauge the effectiveness of MRRL, cache and branch predic-
tor performance statistics were also gathered during the simulations. The additional
measurements—shown in Table 5.11—help to elucidate the behavior of benchmarks
which yielded the most inaccurate IPCs for nowarmup and MRRL experiments with
a too low value for V. Specifically, this section discusses the benchmarks parser, vpr,
facerec, and gce. It is important to first note however, that these extra data were gath-
ered exclusively during the benchmarks’ cycle-accurate hot phases of simulation. This
was necessary because in general, for different N, in the pre-cluster instructions. By
gathering cache and branch predictor statistics exclusively at the intersection of their
active lifetimes (that is, exclusively during the hot phase), their performance mea-
surements are guaranteed to be comparable for all N. [Note: MRRLy = nowarmup.]

MRRL engages the cache and branch predictor warm up at different points de-
pending upon the simulator configuration (i.e., MRRL value of N), per benchmark it
was necessary to engage the measurement of cache and branch predictor performance
only upon the intersection of their active lifetimes: the hot phase. This—unlike tak-
ing measurements over the union of the warm and hot phases—guarantees that a
benchmark’s resultant measurements are comparable among all simulator configura-
tions.

Notice that Table 5.11 only contains cache performance statistics for the unified

secondary cache, and omits the primary instruction- and data cache, and branch
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%-error
benchmark | fullwarmup || nowarmup | MRRLg. 950 | MRRLg.g90 | MRRLg.995 | MRRLg 999
parser 0.1468 M/R 53.88% 36.10% 13.08% 6.68% 1.43%
vpr 0.1960 M/R 17.70% 8.27% 1.58% 0.66% 0.05%
facerec 0.3915 M/R 2.71% 0.41% 0.28% 0.20% 0.03%
gee 0.0419 M/R 25.06% 24.74% 6.21% 3.82% -0.72%

Table 5.11: Unified second-level cache miss rate %-error relative to fullwarmup; M/R

= misses per reference.

predictor performance data; these data were simply not interesting. For all N, the
2-way associative, 64KB primary instruction cache produced negligible miss rates of
less than 0.0010 misses/reference for all the benchmarks. These consistently low miss
rates did not reveal any additional insight. The primary data cache miss rates on the
other hand, were not uniformly low, but for all N were very similar, yielding percent
differences on the order of 107%. Just as with the uniformly low instruction cache miss
rates, the similarity of the data cache measurements did not reveal any additional
information. The branch predictor performance measurements also exhibited strong
uniformity?, in all cases yielding percent differences of less than 0.0207% for direction
prediction and less than 0.0106% for address prediction. Once again, this remarkably

uniform behavior did not further elucidate the experiments’ relative performance,

2The consistent accuracy of the branch predictor among multiple simulator configurations is
not surprising in light of Conte et al.’s work [8], which shows that reliable branch predictor warm
up can be achieved by as few as 7,000 warm up instructions; and is further corroborated by Co
and Skadron [7] who show (for a modern microprocessor that switches among multiple execution
contexts) that a branch predictor can train in as few as 128K instructions. This training duration

was negligible relative to the 10-million-instruction clusters.
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and they too have been omitted. Thus, I conclude that the key requirement which
must be satisfied for accurate warm up and therefore accurate instruction throughput
measurements is the miss rate of the unified secondary cache.

Consider the worst offender in terms of IPC accuracy, parser, with a -9.3% nowarmup
percent-error deviation from fullwarmup. Recall that the application of MRRL warm
up for progressively larger values of N steadily improved the IPC error to -0.3% for N
= 0.999. This trend closely mimics the trend shown in Table 5.11, where nowarmup’s
L2 miss rate deviates by 53.88% from fullwarmup’s and decreases with MRRL for
progressively larger values for NV, culminating at only 1.43% for N = 0.999. Precisely
the same trend arises for the other benchmarks as well, although seemingly not as
pronounced for facerec. Notice that facerec’s nowarmup percent error deviation from
fullwarmup is only 2.71%. Because the fullwarmup miss rate for facerec was so high
to begin with, however (0.3915 misses/reference), even a modest miss rate increase

was manifested as decreased instruction throughput.

5.4 MRRL: Basic Block Distribution Analysis Sampling

Having previously qualitatively and quantitatively established MRRL’s soundness as a
warm up technique, this set of experiments demonstrates another key objective of my
research: flexibility and utility with any sampling regime. Sherwood et al. [50, 51] have
developed a highly accurate technique for systematically choosing simulation clusters
from the a benchmark’s end-to-end dynamic instruction stream. When executed in

cycle-accurate detail, these simulation points yield reliable IPC measurements, while
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executing in significantly less time than end-to-end cycle-accurate simulation.

For these experiments, the sample clusters are the 100-million-instruction simula-
tion points determined in [51]. For each benchmark-input pair I tested the follow-
ing warm up methods: fullwarmup, nowarmup, MRRLg 999 and MRRLj gg9. Accu-
racy results are listed in Table 5.12 (and Figure 5.6). The first column gives the
weighted multiple-cluster IPC (calculated according to [51]) for fullwarmup; subse-
quent columns give the percent error deviation from fullwarmup. (Sherwood’s simu-
lation points [51] and MRRLg g99 warm up points for instructions, data, and branches
are listed in Appendix A.)

As expected, MRRL adapted easily to the different pre-cluster—cluster phases pre-
scribed by Sherwood et al. [51], never generating an error worse than -1.31% for N =
0.999. The highlight of Table 5.12 however, is the pristine performance of MRRL; ggq-
This unswerving accuracy is very easily explained: Choosing N = 1.000 captures the
mazimum memory reference reuse latency i.e., MRRL1 o090 = MRRL,,.;. Recall that
for some memory address M[A], the reuse latency is the count of completed instruc-
tions between consecutive accesses. MRRL,,,, therefore, is the count of completed
instructions between consecutive references to some M[A] with the longest latency for
the currently simulating pre-cluster—cluster pair. In other words, the 100-th percentile
of reuse latencies necessarily encompasses the maximum reuse latency.

Recall furthermore, the bijective projection of the pre-cluster—cluster period con-
taining L instructions to the discrete interval [1, L] and the partitioning of this interval

into mutually-exclusive bucket;s (i € {1,2,...,n}) whose union is exactly [1, L]. Let
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Figure 5.6: MRRL cache accuracy relative to fullwarmup with automatically-chosen
(BBDA) samples [51]. MEAN calculated from the %-error absolute values.
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samples [51].
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benchmark fullwarmup || nowarmup | MRRLo g0 | YOMRRL1 000
ammp 1.7985 -0.85% 0.00% 0.00%
applu 1.1744 0.03% 0.00% 0.00%
apsi 2.5419 -0.04% 0.00% 0.00%
bzip2_program 2.3517 -0.93% 0.11% 0.00%
bzip2_source 1.9159 -1.09% -0.36% 0.00%
crafty 2.4337 -1.15% -0.64% 0.00%
equake 0.5729 0.00% 0.00% 0.00%
facerec 1.6998 -0.88% -0.16% 0.00%
fmadd 1.0634 -0.08% 0.00% 0.00%
galgel 1.9898 -1.43% -0.01% 0.00%
gce_200 1.9767 -1.54% -0.34% 0.00%
gee_expr 2.1749 -1.24% -0.74% 0.00%
gzip_graphic 2.2688 -0.45% 0.00% 0.00%
gzip_program 2.3459 -0.48% -0.09% 0.00%
gzip_source 2.1670 -0.43% -0.09% 0.00%
lucas 0.9860 0.00% 0.00% 0.00%
mesa 2.3684 -0.41% 0.11% 0.00%
mgrid 1.1071 0.00% 0.00% 0.00%
parser 1.6241 -3.98% -0.73% 0.00%
swim 0.7661 -0.01% -0.01% 0.00%
twolf 1.5616 -0.54% 0.00% 0.00%
vortex_lendian2 2.3797 -2.36% -1.31% 0.00%
wupwise 1.9799 0.21% 0.01% 0.02%
MEAN 0.85% 0.24% 0.00%

Table 5.12: MRRL accuracy using automatically-chosen (BBDA) samples [51].
MEAN calculated from the absolute value of the %-error measurements.

w1000 — bucket;, where bucket; represents the interval subset [a,b] fora > 1,6 < L
and b is greater than or equal to the maximum reuse latency instruction count. My
objective is to accurately produce cache and branch predictor state at the beginning
of each sample cluster just as it would have appeared using fullwarmup. 1 assert
that if 100% of consecutive accesses to each unique M[A] that occur during the cur-

rent pre-cluster—cluster pair span wi ggp or fewer instructions, then those references
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benchmark Jullwarmup | nowarmup || Y%oMRRLo ose | ZOMRRL1 000
ammp 136652 sec. 48.31% 97.83% 52.96%
applu 88173 sec. 54.49% 97.60% 0.00%
apsi 103645 sec. 57.26% 97.33% 48.16%
bzip2_program 41055 sec. 45.81% 93.36% 51.20%
bzip2_source 24427 sec. 42.73% 93.73% 44.65%
crafty 44730 sec. 51.41% 96.00% 0.00%
equake 57487 sec. 55.50% 97.61% 35.42%
facerec 70352 sec. 46.71% 96.45% 0.00%
fmadd 62895 sec. 58.90% 97.86% 32.19%
galgel 163568 sec. 45.25% 96.99% 28.53%
gee_200 48385 sec. 48.20% 98.35% 3.89%
gee_expr 5221 sec. 60.83% 98.46% 59.86%
gzip_graphic 43311 sec. 43.01% 98.04% 31.95%
gzip_program 61388 sec. 41.34% 98.42% 26.43%
gzip_source 31862 sec. 42.71% 98.64% 41.85%
lucas 48603 sec. 47.80% 95.26% 52.02%
mesa, 119856 sec. 44.25% 97.22% 62.73%
mgrid 125315 sec. 56.55% 97.99% 68.36%
parser 229005 sec. 43.57% 97.75% 7.84%
swim 85202 sec. 48.05% 96.51% 34.10%
twolf 136146 sec. 41.54% 97.61% 0.00%
vortex_lendian2 | 44434 sec. 45.75% 97.87% 0.00%
wupwise 109109 sec. 51.46% 96.49% 55.56%
MEAN 48.68% 97.07% 33.02%

Table 5.13: MRRL achieved potential speedup on automatically-chosen (BBDA) sam-
ples [51]. Running time measured in seconds.

that occur more than w oo instructions prior to the cluster will not be reaccessed
during the cluster. I furthermore assert that these pre-w; go9 references are therefore
irrelevant to the cluster, and do not need to be modeled.

Hence, precisely as is demonstrated in Table 5.12, all the benchmarks except wup-
wise have MRRL1 gg9 percent error IPC deviations of zero. I speculate that wupwise’s

0.02% deviation is very likely due to the “stale” state simulation philosophy used in
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these simulations. Conte et al. showed [8] that flushing branch predictor state at the
conclusion of each sample cluster has a detrimental effect on the accuracy of mea-
surements taken during the clusters, and advocates a stale state approach whereby
cache and branch predictor state as it appeared at the conclusion of cluster n — 1
is preserved as the basis for warm up of pre-cluster region n. Thus, what probably
occurred in wupwise was that some small amount of cache or branch predictor state
that would have been altered or evicted by fullwarmup, managed to survive until the
next cluster, where it slightly bolstered instruction throughput.

Unfortunately, while MRRL{ gg0 achieves superior accuracy, it does not speed up
simulation as effectively as MRRLy for N € (0,1). Table 5.13 (and Figure 5.7)
shows the achieved potential speed up for MRRLg 999 and MRRL1 gg9. In every case,
MRRLjg 999 achieves more than 90% of the maximum possible speed up (represented by
nowarmup). MRRLj goo on the other hand, achieves much less of the potential, with
several benchmarks—applu, crafty, facerec, twolf, vorter_lendian2—seeing no speed up
at all, and two—gcc_200, parser—which achieve very little. This minute acceleration
is due to the large maximum reuse latency which is just as long as entire pre-cluster
phase; in these cases, MRRL go9 degenerates to fullwarmup. Nevertheless, MRRL; oo
still achieves roughly 33% of potential speed up on average which is respectable given
MRRL; ggo’s unimpeachable accuracy. On this final suite of experiments, the MRRL

technique once again vindicates itself nicely.
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Component Configuration

L1 Instruction cache | 64KB, 2-way, 32B blocks, 1-cycle access latency

L1 Data cache 64KB, 2-way, 32B blocks, 1-cycle access latency
Unified L2 cache 1024KB, 4-way, 64B blocks, 11-cycle access latency
Unified L3 cache 8192KB, 8-way, 128B blocks, 31-cycle access latency

Table 5.14: Simulator 3-level cache hierarchy configuration for MRRL experiments.

5.5 MRRL: Three-level Cache Hierarchy
As stated in Chapter 4 in the discussion of MRRL’s advances over MSE, MRRL is
able to accurately warm up any cache hierarchy depth regardless of unified levels
or cache block widths, from a single profile. To illustrate this point, I now include
MRRL speed up and accuracy measurements (both relative to fullwarmup) for exper-
iments conducted with a simulated 3-level cache hierarchy (reminiscent of the IBM
POWERA4 [65], and Intel Itanium [48]). The exact cache configuration is detailed in
Table 5.14. Both the second level and third level are unified, hosting both instructions
and data. Notice the different block widths for each level of the cache (i.e., primary,
32 bytes; secondary, 64 bytes; tertiary, 128 bytes). While admittedly contrived, this
setup makes an effective demonstration of MRRL’s indifference to block width.
Furthermore, as discussed in Chapter 4, per benchmark—input pair and sample,
MRRL can make repeated use of a single profiling run; to demonstrate this point,
these experiments recycle the BBDA samples and profile data from 5.4. MRRL’s one-
size-fits-all profiling advantage is especially beneficial because it allows researchers to
amortize profiling cost over many over experiments, with many pipeline configura-

tions. In these experiments the cache organization has been altered, but conceivably
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benchmark Jullwarmup || nowarmup | %rRRLo g00
ammp 1.9111 -1.29% -0.05%
applu 1.4291 -0.06% -0.01%
apsi 1.5756 0.25% -0.01%
bzip2_program 2.4470 -1.38% -0.23%
bzip2_source 2.2885 -1.87% -0.25%
crafty 2.4092 -1.33% 20.02%
equake 0.9949 -0.24% -0.01%
facerec 2.5364 -3.32% -0.06%
fma3d 1.3312 -0.29% 0.02%
galgel 2.1453 -1.34% -0.17%
gce_200 2.2865 -1.57% -0.83%
gce_expr 2.2831 -1.93% -1.05%
gzip_graphic 2.2788 -0.26% 0.00%
gzip_program 2.3497 -0.33% 0.00%
gzip_source 2.1616 -0.34% 0.00%
lucas 1.1080 0.00% 0.00%
mesa 2.6466 -0.68% -0.24%
mgrid 1.8048 -0.84% -0.01%
parser 1.7130 -6.56% 0.00%
swim 1.0229 -0.03% -0.01%
twolf 1.4950 -1.24% 0.00%
vortex_lendian2 2.5308 -3.83% -0.56%
wupwise 1.8661 -0.43% -0.01%
MEAN 1.25% 0.28%

Table 5.15: MRRLg 99 accuracy using automatically-chosen (BBDA) samples [51]
in a three-level cache. MEAN calculated from the absolute value of the %-error

measurements.
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benchmark Jullwarmup | nowarmup || % MRRLe ose
ammp 98684 sec. 55.15% 97.69%
applu 70376 sec. 57.02% 97.27%
apsi 126092 sec. 58.34% 97.32%
bzip2_program 49555 sec. 50.01% 96.84%
bzip2_source 19305 sec. 47.56% 86.85%
crafty 28809 sec. 52.30% 91.22%
equake 55432 sec. 53.57% 88.32%
facerec 75632 sec. 45.65% 96.99%
fma3d 33345 sec. 58.07% 97.26%
galgel 161327 sec. 52.38% 97.06%
gce_200 44052 sec. 55.74% 98.54%
gec_expr 5036 sec. 68.15% 97.47%
gzip_graphic 27217 sec. 52.99% 97.13%
gzip_program 60267 sec. 47.30% 92.65%
gzip_source 27675 sec. 51.88% 97.07%
lucas 34005 sec. 48.61% 96.61%
mesa 73539 sec. 50.69% 97.20%
mgrid 144767 sec. 57.72% 96.48%
parser 210676 sec. 50.11% 95.34%
swim 81925 sec. 49.57% 93.11%
twolf 136197 sec. 42.66% 95.15%
vortex_lendian2 | 31729 sec. 51.63% 97.63%
wupwise 79583 sec. 44.96% 91.60%
MEAN 53.10% 97.04%

Table 5.16: MRRLg 999 achieved potential speedup on automatically-chosen (BBDA)

samples [51] in a three-level cache. Running time measured in seconds.
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researchers could explore many more dimensions of the design space, including re-
order buffer depth, number and type of functional units, branch predictor organiza-
tion, commit bandwidth, issue capacity and algorithm, memory bandwidth, register
file size and access latency, and value prediction algorithms, all from a single profile.

Since MRRL with N = 0.999 proved so successful in terms of accuracy 2 and speed
in 5.4, other than fullwarmup and nowarmup, MRRLg 999 is the only configuration
modeled in these experiments. Table 5.15 (and Figure 5.8) illustrates that MRRLg 999
maintains simulation accuracy even when used to warm up three levels of cache, never
diverging by more than 1.05% (for gcc_expr) from the fullwarmup IPC. Table 5.15
also shows that while nowarmup’s mean percent-error (calculated from the absolute
values of the benchmark deviations) is small, at 1.25%, an individual benchmark such
as parser can diverge much more substantially. This once again demonstrates that
insufficient warm up cannot be trusted to produce accurate simulation.

Table 5.16 (and Figure 5.9) shows the achieved potential speed up of each bench-
mark. In nearly all cases, the MRRLj 999 achieved potential speed up is greater than
90%; the only exceptions, bzip2_source and equake, still achieve greater than 80%

nevertheless.

5.6 MRRL & MSFEwarmup: Statistical Accuracy Analysis

This section assesses the accuracy of MRRL and MSEwarmup with respect to full-

warmup. To facilitate this analysis, the experiments conducted for this section use

3In 5.6, I show that in terms of simulation accuracy, N = 0.999 varies by a statistically insignifi-

cantly amount from fullwarmup.
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random cluster sampling as described by Conte et al. [8] which is amenable to rigor-
ous statistical analysis (based on the fact that all regions of the end-to-end dynamic
instruction stream had uniform probability of being selected for inclusion in the sam-

ple). I exploit this amenability to quantitatively prove the null hypothesis

Hy: Instruction throughput (IPC) as measured by MRRL for N € {0.990,0.999} and
MSEwarmup for p € {95.0%,99.9%} deviates by a statistically insignificant amount

from instruction throughput as measured by fullwarmup at the 5% level of significance.

In other words, for a = 0.05, Ho: IPC punwarmup ~ IPCMRRL g .900,0.000) ,MSEqa5.0%.90.05 = 04
where « is the probability of failing to reject an untrue hypothesis.

In each experiment, clusters containing 1 million contiguous instructions apiece
were chosen at random from the end-to-end dynamic instruction stream of each bench-
mark; this is in contrast to the larger clusters used in the previous experiments. Conte
et al. use clusters of only 100,000 instructions apiece, and Sherwood et al. [50, 51]
use clusters with instruction counts that are integer multiples of 100 million. When
choosing a cluster size, it is important to choose a size that is not too small to mea-
sure interesting behavior. A cluster size of only 1,000 instructions for example, would
pose very little challenge for a modern pipeline capable of tracking one hundred or
more in-flight (i.e., partially-executed) instructions. My hypothesis was that smaller
clusters, more in line with [8] would cumulatively estimate the true, end-to-end IPC

with good accuracy. (For sufficiently large samples, the experimental data show that

this hypothesis is correct; a possible avenue for future research would be to exper-
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iment with MRRL using random cluster sampling with varying cluster sizes.) The
cluster size of 1 million instructions conservatively manipulated the random cluster
sampling approach used in [8] since increasing the cluster size increases the amount
of behavior modeled and measured per cluster.

To select the clusters, each benchmark was first simulated by sim-fast—the rapid
instruction-level simulator from the SimpleScalar [2, 4] toolset—to obtain the end-
to-end dynamic instruction count. Next, a simple Perl script was used to select
the 1-million-instruction clusters at random* from the discrete interval [1, L], where
L is the dynamic instruction count. The locations (as the number of completed
instructions relative to the start of execution) of the clusters were saved to a file,
and subsequently used to drive the multiple cluster profiling and simulation steps
enumerated in Chapter 3 and Chapter 4. For each benchmark, the same set of
sample clusters was used to experiment with all four warm up techniques (fullwarmup,
MRRL, MSEwarmup, and nowarmup).

Sampling (whether random, systematic, stratified, cluster, or multistage [22]) al-
ways produces error because only a subset of a population is measured rather than
the entire population. Hence, by sampling, one can only estimate the characteristics
of an entire population. Random cluster sampling allows one to rigorously gauge
the amount of error and the probability that the amount is significant, based upon

the assumption that all members of the population had uniform probability of being

4By “at random,” I mean such that all regions of the discrete interval [1, L] have equal probability

of being selected.
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included in the sample. Increasing the size of a sample increases the accuracy of the
estimation by drawing the estimation value asymptotically nearer to the true value®.
A key consideration therefore, was to determine the number of clusters to draw from
each benchmark. For most benchmarks, 50 clusters were sufficient to estimate® the
end-to-end IPC (i.e., IPCypye) when simulated with fullwarmup. For applu and galgel,
however, a larger sample had to be drawn to obtain good accuracy; for these, I used
samples of 500 1-million-instruction clusters.

For the MRRL simulations, the warm phase was engaged wy instructions prior
to each cluster for N € {0.990,0.999}. N = 0.999 has shown consistently good
performance in accurately mimicking the performance of fullwarmup. N = 0.990
was chosen to test whether the same performance could be demonstrated for a lower
value of N. If a lower value for N performs as well as N = 0.999 (i.e., also deviates
from fullwarmup by a statistically insignificant amount), then this lower value of N
establishes a tighter lower bound on the minimal necessary N to achieve accurate
simulation. If not, then the threshold minimal N can be said to exist somewhere in
the interval (0.990,0.999]. As will be shown in 5.6.3, the former scenario is true and
therefore establishes a tighter threshold N. I do not experiment with lower values for
N since, as was demonstrated in 5.3.1, MRRLg g0 achieves over 97% of the maximum
potential speedup on average and deviated from the fullwarmup IPC by only 2.42%

in the worst case.

5By “true value” I refer to the value that would be obtained by measuring the entire population.

6My threshold for a good estimate was to deviate from the end-to-end IPC by less than 5% when

the sample is simulated with fullwarmup.
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Cache Hierarchy
L1 Data 16KB; 4-way assoc., 32B lines, 2-cycle hit
L1 Instruction 8KB; 2-way assoc., 32B lines, 2-cycle hit
L2 Unified 1MB; 4-way assoc., 64B lines, 20-cycle hit
Combined Branch Predictor
Bimodal 8192 entries
PAg 8192 entries
Return Address Stack 64 entries
Branch Target Buffer 2048 entries; 4-way assoc.

Table 5.17: Configuration of simulated cache and branch predictor.

For the MSEwarmup experiments, I tested p € {95.0%,99.9%} as the probabilities
of accurate warm up. The other MSE parameters were dictated by the first-level
cache, shown in the cache and branch predictor configuration Table 5.17. While the
block width of both the L1 data cache and the L1 instruction cache are identical (32
bytes), the data cache has twice the capacity of the instruction cache. Since the data
cache is larger, its dimensions guided the MSE calculation thus: m = MSE(128,4,p).
Hence, warm up for the MSFEwarmup experiments was driven entirely by the first
level of cache. For the reasons cited in Chapter 4, MSEwarmup is not well suited
to warming up large structures or branch predictors. (Branch prediction defaulted
to fullwarmup for these experiments, thereby assuring sound warm up of the branch
prediction buffer.) Furthermore, the MRRL warm up intervals—which have been
shown to accurately initialize all levels of cache—are usually small, spanning only
a fraction of the lattermost pre-cluster instruction stream. If the warm up intervals
generated by MSFEwarmup for the first-level caches are larger than those generated by

MRRL, then the simulation accuracy will not be compromised; unfortunately, neither
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will the simulation running time decrease.

Once each benchmark’s sample was selected, the next step was to profile to gather
MSE/MRRL data for each benchmark. A Perl script was then used to extract the
MSEwarmup t and MRRL wy for each benchmark’s pre-cluster—cluster pairs. When
fed to the multiple cluster simulator, these data were used to demarcate the boundary
between the pre-cluster cold phase and warm phase. The previously chosen hot phases
(clusters) remained fixed just as they were during the profile.

The metrics used to measure MSEwarmup’s and MRRL’s merit are percent-error
IPC deviation from fullwarmup, accuracy with respect to the true IPC, statistical
significance of deviation by matched-pairs t-test, and running time as a percentage
of fullwarmup. For completeness and as a basis the concluding discussion of simula-
tion acceleration, I also include data arising from nowarmup for each of the metrics
aforementioned. (Recall that nowarmup merely recycles state from one cluster to the

next, and models caching and branch prediction solely during sample clusters.)

5.6.1 IPC Accuracy compared to IPCtyyarmup

For each benchmark, Table 5.18 shows the true end-to-end IPC7 (i.e., IPCy..) gener-
ated by simulating in cycle-accurate detail for the entire dynamic instruction stream,
Jullwarmup IPC (i.e., IPC fyywarmup) percent-error deviation relative to IPCy,., and

nowarmup IPC (i.e., IPCyoparmup) Percent-error deviation relative to IPC tyiwarmup-

"Most of these IPCs come from the SimPoint [49] Web site. They were generated for a specific
configuration of sim-outorder (linked to from the site). MSEwarmup, MRRL, fullwarmup, and
nowarmup experiments compared against these IPCs use the same sim-outorder configuration and

the same benchmark binaries.
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benchmark IPCirue | IPC tuitwarmup || IP Crowarmup
applu 0.831 -0.36% -1.09%
apsi 1.008 3.12% -2.23%
art_110 0.598 -0.57% 0.34%
crafty 0.569 -3.64% -0.80%
equake 0.310 0.42% 2.22%
facerec 1.446 -4.87% -10.46%
fmadd 0.535 -0.37% 1.57%
galgel 1.334 -0.60% -11.61%
gzip_graphic 1.365 -3.28% -0.52%
lucas 0.774 2.25% 0.23%
mcf 0.092 3.04% 0.84%
megrid 0.987 4.72% -1.87%
twolf 0.636 -1.08% -1.76%
vortex_lendian2 1.057 -3.18% -0.63%
vpr_route 1.023 0.18% -1.16%
MEAN 2.11% 2.49%

I

Table 5.18: IPC fyuwarmup Y%-error relative to IPCyye (100% - P Cfuuu;};gm:IPCtm)

IPC —IPCryn
1 ) nowarmup fullwarmup )
00% IPCfuiwarmup )

and IPC,oparmup Yo-error relative to IPC ryuwarmup (

MEAN calculations based on the absolute value of errors.

In other words, Table 5.18 compares the sample mean for IPCy,yqrmup to the sample
mean for IPC ¢yiiwarmup, Which is in turn compared to the end-to-end IPCy,,.. Notice
the nowarmup percent-error deviation from IPCtyyyarmup for the benchmarks fac-
erec and galgel of -10.46% and -11.61%, respectively. These deviations—substantially
larger than those of the other benchmarks—are evidence that inadequate warm up
can compromise simulation accuracy. More rigorous, quantitative evidence of the
unreliability of inadequate warm up will be given in 5.6.2 and 5.6.3.

Before developing a more formal framework for MSEwarmup and MRRL accuracy

analysis, it is important to define the components of error and their application to
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microprocessor simulation. Henry [22] separates error into two components: sam-
pling and nonsampling. Sampling error is an unavoidable consequence of the fact
that a sample can only approximately capture characteristics of an entire population.
Nonsampling error arises from a failure to ensure the representativeness of the envi-
ronment in which the sample measurements are taken. In other words, if the environ-
ment of the sample does not at least approximate the environment of the population,
the measurements taken by sampling will tend to be skewed. In a microprocessor
pipeline, the state of the cache and the branch predictor heavily influence instruction
throughput [21] and their state constitutes the instruction stream execution environ-
ment. Failure to accurately initialize state within the simulated cache and branch
predictor may adversely affect measurements taken during cycle-accurate simulation
of the sample clusters; this is the cold-start effect. By modeling all pre-cluster cache
and branch predictor interactions however, fullwarmup simulation is impervious to
nonsampling error; hence, my research objective can also be considered to develop
a warm up strategy that accelerates warm up without adding additional nonsam-
pling error (1.e., a warm up strategy that yields results that are identical or closely
approximate results generated by fullwarmup) [8].

Using Henry’s error component terminology, it can be stated that Table 5.18 qual-
itatively demonstrates that inadequate warm up (IPCyoparmup) generated substantial
additional nonsampling error for facerec and galgel. Table 5.19 on the other hand, in-
dicates that MSFEwarmup and MRRL do not generate a large amount of nonsampling

error. Table 5.19 lists the fullwarmup IPCs, and percent-error deviations therefrom
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%-error
benchmark IPCrutiwarmup | MRRLo.g99 | MRRLo.990 | MSEgg. 9y | MSEgs %
applu 0.828 0.01% 0.29% 0.00% 0.00%
apsi 1.039 -0.01% -0.04% 0.03% 0.03%
art_110 0.595 0.00% 0.00% 0.00% 0.00%
crafty 0.548 -0.02% -0.04% 0.09% 0.09%
equake 0.311 0.00% 0.00% 0.00% 0.00%
facerec 1.376 0.18% 0.36% 0.63% 0.98%
fma3d 0.533 3.90% 3.88% 3.94% 3.94%
galgel 1.326 -0.20% -0.62% 0.02% 0.02%
gzip_graphic 1.320 -0.09% -0.01% 0.01% 0.01%
lucas 0.791 -0.04% -0.13% -0.28% -0.28%
mcf 0.095 0.00% 0.00% 0.00% 0.00%
mgrid 1.034 -0.01% -0.01% -0.01% -0.09%
twolf 0.629 0.13% 0.14% 0.19% 0.19%
vortex_lendian2 1.023 0.06% 0.07% 0.31% 0.13%
vpr_route 1.025 0.00% 0.00% 0.00% 0.00%
MEAN 0.31% 0.37% 0.05% 0.33%

Table 5.19: IPC %-error relative to IPC fyuwarmup (

IPCx—IPC
100% - PO Crutiuernuz) \EAN
fullwarmup

calculations based on the absolute value of errors.

for MRRL at N = 0.999 and N = 0.990 (i.e., MRRLg 999 and MRRLg g90), and MSE-
warmup at p = 99.9% and p = 95.0% (i.e., IPCrrspy, 4, and IPCarsp,, o, ). For all
benchmarks except fma&d, the percent difference deviation from fullwarmup is less
than 0.7%. fma8d’'s seemingly drastic nonconformance however, is due to the small
numbers involved in the percent-error calculation. Take for example the largest de-
viation of 3.94%, due to MSEwarmup at p = 95.0% and p = 99.9%; IPC tuuwarmup

= 0.533, IPCyssg,, , = 0.554. The relative error, 100% -(253=0:533) — 3 94%

%,99.9% 0.533

makes the deviation look much worse than it really is when one considers that the

absolute error is so small: 0.554 - 0.533 = 0.021, or 21 thousands of an instruction
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benchmark IPCirue || IPCMRRLo.00o | IPCMERRLo000 | IPCMSEs o | IPCMSEy; on
applu 0.831 0.829+0.053 0.831+0.053 0.828+0.053 0.828+0.053
apsi 1.008 1.03940.063 1.039+0.064 1.040+0.064 1.040+0.064
art_110 0.597 0.595+0.029 0.595+0.029 0.595+0.029 0.595+0.029
crafty 0.569 || 0.548+0.014 | 0.548+0.014 | 0.549+0.014 | 0.549+0.014
equake 0.310 0.31140.104 0.311+0.104 0.3114+0.104 0.3114+0.104
facerec 1.446 1.37840.460 1.381+0.460 1.384+0.458 1.389+0.458
fma3d 0.535 0.554+0.058 0.554+0.058 0.554+0.061 0.554+0.058
galgel 1.334 1.323+0.112 1.317+£0.112 1.326+£0.112 1.326+£0.112
gzip_graphic 1.365 1.3194+0.094 1.3204+0.094 1.320£0.094 1.3204+0.094
lucas 0.774 0.79140.157 0.790+0.156 0.789+0.157 0.789+0.157
mcf 0.092 0.095+0.052 0.095+0.052 0.095+0.052 0.095+0.052
mgrid 0.987 1.034+0.106 1.034+0.106 1.034+0.106 1.033+0.106
twolf 0.636 || 0.629+0.004 | 0.630+0.004 | 0.630+0.004 | 0.630+0.004
vortex_lendian2 1.057 1.024+0.040 1.024+0.040 1.027+£0.040 1.025+0.040
vpr_route 1.023 1.0254+0.038 1.025+0.038 1.025+0.038 1.025+0.038

Table 5.20: IPC 95% confidence intervals centered around I PC (the overall sample
IPC), for MRRLgg99, MRRLg 990, MSEwarmupgg ey, and MSEwarmupgsqy. Bold

entries fail to accurately predict the amount of sampling error.

per cycle.

5.6.2 IPC Accuracy compared to IPC;,.,,

While MRRLg 999, MRRLg. 990, MSEwarmupgg g%, and MSEwarmupgs.qy are apparently
sound warm up strategies, and nowarmup apparently unsound, I will now rigorously
demonstrate these hypotheses. For each benchmark, the mean instruction throughput
was measured by counting the number of cycles consumed in executing the sample
clusters. Dividing the total number of executed instructions by this amount yielded
the overall sample IPC (i.e., IPC). For a well-chosen sample, this sample IPC will be
a good estimate of the end-to-end IPC. The standard error is a useful tool to analyze

the goodness of a sample estimate [13, 59]. The standard error is computed as the
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benchmark IPCirue || IPC futiwarmup | IPCrowarmup
applu 0.831 0.8284+0.053 | 0.81940.053
apsi 1.008 1.039+0.063 1.039+0.064
art_110 0.597 0.595+0.029 | 0.59740.029
crafty 0.569 || 0.548+0.014 | 0.544+0.014
equake 0.310 0.311+0.104 | 0.318%+0.110
facerec 1.446 1.376+0.460 | 1.232+0.135
fma3d 0.535 0.533+0.061 0.54240.055
galgel 1.334 1.326+£0.112 | 1.1724+0.104
gzip_graphic 1.365 1.3201+0.094 1.3134+0.094
lucas 0.774 0.791£0.157 | 0.793+0.144
mcf 0.092 0.095+0.052 | 0.096%0.050
mgrid 0.987 1.034+0.106 1.014+0.080
twolf 0.636 || 0.629+0.004 | 0.618+0.009
vortex_lendian2 1.057 1.023£0.040 1.017+0.040
vpr._route 1.023 1.025+0.038 1.0134+0.036

Table 5.21: 95% IPC confidence intervals centered around I PC (the overall sample
IPC), for fullwarmup, and nowarmup. Successful simulations contain IPCy,,. within

their confidence interval. Bold entries fail to predict the amount of sampling error.

quotient of the per-cluster sample standard deviation in IPC and the square root of

the number of clusters:

ag
S _
rPe \Y #cluster

I assume (as in [8]) that error is normally distributed®; hence, the 95% confidence
interval is IPC+1.96s75. In other words, for a well-chosen sample, one can assume
IPCypye € [IPC — sgpg, IPC + sypg] with 95% certainty.

Furthermore, let e = IPCyyye — I PC'; if [IPCypye — €,]PChrye +€] C [IPC—1.965755,

8The assumption of normality is safe since the samples contain 50 clusters apiece. Samples of 30

or fewer elements would use the Student’s-t distribution [59] with #jyuster — 1 degrees of freedom.
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IPC+1.96s7p¢], then the relative error between IPCy.,. and IPC was accurately

predicted by the 95% confidence interval. Table 5.20 shows that the relative error be-
tween IPCrrrRg.g90 aNd IPCypye, IPCrrrRLg 990 @Nd IPCirye, IPCarsgyg 4 and IPCipye,

and IPCugg,, ,, and IPCy,. was predicted by every benchmark’s respective 95%

%
confidence intervals except for crafty, and twolf (in bold typeface). Table 5.21 shows
however, that the 95% confidence interval failed to predict the relative error between
IPC fuiiwarmup and IPCy,., for these same two benchmarks! Since fullwarmup perfectly
models all pre-cluster cache and branch predictor interactions, it impervious to non-
sampling error; hence, its failure to predict the relative error for these benchmarks is
attributable to sampling error. Perfectly mimicking fullwarmup in this way is further
evidence that MRRL at N = 0.999 and N = 0.990, and MSEwarmup at p = 99.9%
and p = 95.0% do well at approximating fullwarmup. In other words, MRRLggg9,
MRRLg. 990, MSEwarmupgg 9%, and MSFEwarmupgs o do well at eliminating nonsam-
pling error.

In contrast, consider the IPC,parmup Sample means of facerec and galgel. The
nowarmup result does not successfully predict their relative error deviation from
IPCyrye- This evidence rigorously and quantitatively confirms the hypothesis that

their respective -10.46% and -11.61% percent-error deviations from the IPC yiwarmup

sample means are statistically significant.

5.6.3 IPC Accuracy according to Matched-Pairs ¢-test

Statistical hypothesis testing can also be used to demonstrate the statistical signif-

icance of the difference between IPCfyiparmup and the IPC generated by another
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warm up technique. In particular, I used the matched-pairs ¢-test to compare each
benchmark’s fullwarmup per-cluster IPCs against the per-cluster IPCs generated by
the other warm up techniques. In this test, the IPC of the i-th fullwarmup cluster is
paired with its counterpart i-th, MRRLy or MSEwarmup, cluster IPC. From this set
of pairs, the set of cluster IPC differences is calculated and used to compute a t-score
based on the difference of the means, the standard error of the means, and their
Pearson product-moment correlation coefficient [70]. If for example, one wishes to
compute a t-score for the matched-pairs difference between fullwarmup and MRRLy,

t is computed, thus:

t = Ux — py

\/Ugf —I—U%/ —2rxyoxoy

where px — py is the difference of the fullwarmup and MRRLy cluster means, o x and
oy are the standard errors among the fullwarmup and MRRLy cluster IPCs?, and
rxy is the Pearson product-moment correlation coefficient between the fullwarmup
and MRRLy cluster IPCs. This t-test takes into account that I am measuring the
effects of each warm up strategy as different “treatments” of the same sample popu-
lation [70]. This process was used to compare fullwarmup to MRRLg 999, MRRLg g9,
MSEwarmupgg 9%, MSEwarmupgs g%, and nowarmup.

At the 5% level of significance, the critical t-score'® for 50-cluster samples is 2.0096,

9For the matched pairs t-test, ux and py are computed differently from the sample IPC (TPC)
mentioned in 5.6.2; rather, they are computed as the mean of per-cluster IPCs. ox and oy are

computed using px and py, respectively, and are therefore also different from the o used in 5.6.2.

10 According to the Student’s-t distribution for 49 degrees of freedom and 499 degrees of freedom.



CHAPTER 5. EXPERIMENTAL METHODOLOGY AND RESULTS 107
t-score
benchmark MRRLg 999 | MRRLg.990 | MSEwarmupgg g% | MSEwarmupgs oy | nowarmup
applu 0.9120 1.4163 1.5872 0.8682 5.1690
apsi 0.9056 0.6891 0.7492 0.7524 2.8466
art_110 1.0474 0.0000 2.8243 2.8243 4.1805
crafty 1.3793 2.2331 12.249 12.249 4.5735
equake 1.5955 0.6286 1.1372 0.5753 1.3638
facerec 1.3834 1.7334 1.8663 1.7385 4.0786
fma3d 1.2416 1.2242 1.2791 1.2783 0.7473
galgel 0.5862 1.1256 1.9098 1.8489 15.593
gzip_graphic 1.9597 1.3249 1.5652 1.5652 2.0718
lucas 1.1194 0.9971 0.1789 0.1771 0.6455
mcf 0.5961 1.1372 1.8005 1.3845 1.4620
mgrid 1.3420 1.2976 1.1157 0.4260 1.7249
twolf 4.3945 6.4937 8.9313 8.9313 2.1865
vortex_lendian2 8.4219 8.9749 24.500 6.4753 3.3422
vpr_route 0.9410 0.9410 0.9410 0.9410 9.1317

Table 5.22: Matched-pairs ¢-test t-scores measuring the statistical significance of clus-
ter differences between fullwarmup and, MRRLg 999, MRRLg.990, MSEwarmupgg 9%,
MSEwarmupgs oz and nowarmup. At the 5% level of significance, the critical ¢-score
for 50-cluster samples is 2.0096, and the critical t-score for 500-cluster samples (applu

and galgel) is 1.9647. Entries in bold typeface exceed the critical ¢-score.

and the critical ¢-score for the 500-cluster samples (applu and galgel) is 1.9647. In
other words, any 50-cluster experiment that yields a t-score greater than 2.0096
and any 500-cluster experiment that yields a t-score greater than 1.9647 violates
the null hypothesis that the tested warm up technique varies by a statistically in-
significant amount from fullwarmup. Table 5.22 lists the ¢-scores of the benchmarks
calculated by pairing the cluster IPCs of MRRLg 999, MRRLg.990, MSEwarmupgg g%,
MSEwarmupgs. g%, and nowarmup with the fullwarmup cluster IPCs. nowarmup vi-
olates the null hypothesis for 10 benchmarks (applu, apsi, art_110, crafty, facerec,

galgel, gzip_graphic, twolf, vortex_lendian2, and vpr_route). Since the preponderance
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of experiments violate the null hypothesis, I conclude that the alternative hypothesis
is instead true of nowarmup: in general, nowarmup does not defeat nonsampling error,
causing its results to diverge by a statistically significant amount from fullwarmup.
This, combined with the large (and statistically proven significant) deviations from
fullwarmup for the benchmarks facerec and galgel are firm evidence that adequate
warm up is essential if sampled simulation results are to be trustworthy.

Recall fma3d’s relatively large percent-error deviation from fullwarmup for all of
MRRLg 999, MRRLg 999, MSEwarmupgg g9 and MSEwarmupes oz (5.6.1, Table 5.19).
I qualitatively drew the conclusion that although the percent-error deviation was
3.9%, that because the absolute error was so small—0.021 instructions per cycle—
the deviation was insignificant. Table 5.22 quantitatively confirms this conclusion
since the fmadd t-scores are less than the critical t-score for MRRLg 999, MRRLg 990,
MSFEwarmupgg. g, and MSFEwarmupgsgy. In other words, the differences between
the TPCs generated by these techniques and fullwarmup are statistically insignif-
icant at the 5% level. MRRLgg99 and MRRLg g9y violate the null hypothesis for
twolf, and wvortex_lendian?; and MRRLg 999 additionally violates the null hypothesis
for crafty. While initially alarming, further inspection reveals that although their
t-scores imply statistically significant deviation at the 5% level, the absolute differ-
ences (IPC tyuwarmup - IPCMRRL{O_QQO,O_QQQ}) for twolf and vortex_lendian2 are all 0.001.
That is, the MRRLg.g999 and MRRLg g9y estimates of the fullwarmup IPC for the
benchmarks twolf and vorter_lendian2 are off by 1 one-thousandth of an instruction

per cycle—an amount that I safely, albeit qualitatively assume to be insignificant.
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Speedup
benchmark tfuttwarmup || MRRLg.gge9 | MRRLg.gg0 | MSEwarmupgg 9% | MSEwarmupgs oy
applu 80887 sec. 64.30% 63.79% 100.0% 100.0%
apsi 120925 sec. 59.56% 59.46% 97.19% 96.88%
art_110 19613 sec. 36.94% 37.22% 98.82% 98.91%
crafty 78906 sec. 48.20% 48.71% 87.01% 86.24%
equake 54675 sec. 57.11% 57.80% 91.25% 91.87%
facerec 70587 sec. 51.98% 51.16% 95.40% 95.64%
fma3d 96462 sec. 61.38% 61.25% 96.66% 96.47%
galgel 162606 sec. 55.45% 55.70% 95.69% 96.27%
gzip_graphic 26643 sec. 34.58% 34.89% 97.81% 97.39%
lucas 46730 sec. 50.67% 50.79% 100.0% 99.21%
mcf 36014 sec. 46.45% 46.79% 89.09% 89.17%
mgrid 142334 sec. 60.50% 60.41% 100.0% 100.0%
twolf 133069 sec. 44.04% 44.35% 98.91% 98.82%
vortex_lendian2 | 64839 sec. 41.89% 38.06% 96.72% 98.78%
vpr_route 28358 sec. 44.08% 39.75% 98.63% 98.27%

Table 5.23: Random cluster sampling

t

centage: 100% T —

warmup

The absolute error between MRRLg 999

acceleration relative to fullwarmup as a per-

and fullwarmup for crafty is (to three decimal

places) 0.000—again, a qualitatively insignificant amount.

While the raw statistical evidence provided by the ¢-tests implies that N = 0.990

is less reliable than N = 0.999 (by exceeding the critical ¢-score for 1 extra bench-

mark), putting these results into perspective, vis-d-vis their absolute deviation from

the fullwarmup IPC, shows that N = 0.990 performs just as well as N = 0.999 at

eliminating nonsampling error. Coupled with the over 97% achievement of maximum

potential speedup demonstrated in 5.3.1, this makes MRRLg 999 the optimal warm up

technique. High accuracy is also true of the MSEwarmup experiments, but many of

these experiments achieved a negligible acceleration over fullwarmup. The scarcity of
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unique references made it difficult for MSEwarmup to model the MSE-prescribed m
uniques during the pre-cluster regions. Thus, for pre-cluster warm up, MSEwarmup
degenerated (or nearly so) to fullwarmup and completely traded away speed for ac-
curacy. Table 5.23 shows the speed up results relative to fullwarmup for the random

cluster sampling experiments.



Chapter 6

Tools

Integral to this research were the tools that were developed during the course of its

implementation:

1. MSE formula calculation software
2. sim-mrriprofile: MSE/MRRL multiple cluster profiling software

3. sim-inorder: MSE/MRRL-enabled multiple cluster sampling in-order issue sim-

ulation engine

4. sim-outorder_mrrl: MSE/MRRL-enabled multiple cluster sampling out-of-order

issue simulation engine

The MSE formula calculation software was developed independently; the profiler and
the simulation engines were developed through extensive modifications to existing
SimpleScalar [2] software. Specifically, sim-mrriprofile was built from the instruction-
level sim-safe simulator, sim-inorder was built from the cache hierarchy simulator

stm-cache, and sim-outorder_mrrl was built from sim-outorder. Both the profiler

111
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and the MRRL-enabled out-of-order simulation engine have been refined, tested, and
made available for public download from a page linked to from the Laboratory for
Computer Architecture at Virginia (LAVA) Web site at http://lava.cs.virginia.edu/.

(Figure 6.1 is a screen shot of the MRRL Web site.)

6.1 MRRL Profiler: sim-mrrlprofile

To measure the reuse latencies of individual reference addresses, sim-mrriprofile used
three associative arrays: one for instruction addresses, one for data addresses, one
for branch addresses!. Each element of each associative array is an ordered pair,
[A,# ma)) where #7141 is the count instructions that had completed when M[A] was
last referenced. As the profiler executes each instruction it performs an associative
lookup, using the memory address A (i.e., the current program counter value, PC)
as its key. If a corresponding array element is found, the quantity dinsn is calculated
as the difference between the current count of completed instructions and # a4
Thus, dinsn is a reuse latency measurement for M[A]. The use of dinsn will be
discussed shortly. If no such corresponding element is found, an unused element in
the associative array is inaugurated with PC' as its key and #xs4) = 0. An analogous
process takes place inside the associative array of branches when it is determined
that the fetched instruction is a branch, as well as within the associative array of

data references when it is determined that the fetched instruction is a load or store.

nstruction addresses and branch addresses refer to the program counter value (PC) at the time
the instruction (branch or otherwise) is fetched from the simulated main memory. Data addresses,

on the other hand, refer to the address loaded/stored from/to simulated main memory.
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enhancements, to enable Memory Reference
Reuse Latency within SimpleScalar
ss3b_mrrl-0.0.1.tar.gz, by, John Haskins, Jr.
and Kevin Skadron today!

What is Memory Reference Reuse Latency?

Memory Reference Reuse Latency (MRRL refers to the distance {in completed instructions) between
consecutive references to some memory location M) By measuring the reuse latencies of each unique address
accessed by a henchmark, we were ahle to select a point to hegin cache and branch predictor warm up prior to
each simulation sample cluster, Cache and branch predictor warm up assures accurate simulation; our delayed
warm up technique achieves accurate simulation in less time than modeling all cache and branch predictor
interactions prior to each sample cluster, For a moare in-depth description, please refer to our technical report
here and our ISPASS 2003 paper here.

What's the big picture and how well does MBRL work?

Vary briefly.. MRRL works very well for sampled simulations, because MRRL-driven warm up eliminates
nonsampling bias just as well as fullwarmug which models all pre-cluster instructions,

Less hriefly.. Conte et af. showed that random cluster sampling is an approapriate technique for
microarchitecture simulation that is amenable to statistical analysis. In random cluster sampling, a sample is
drawn by choosing clusters of a fired number of instructions from a benchmark's dynamic instruction stream
such that no reqion of the end-to-end execution is more likely than any other of bheing included in the sample,
Only these clusters are simulated in cycle-accurate detail,

For a well-chosen sample, simulation accuracy depends upon minimizing nopsameling Bias which is
accomplished by accurately establishing state within the simulated cache hierarchy and branch predictor prior
to each cycle-accurate cluster simulation. The most straight-forward such warm up technique models all pre-
cluster cache and branch predictor interactions, Fully warming up aff cache and branch predictor interactions
quarentees perfect state; hence, this approach is impervious to nonsampling bias, This appreach is time
consuming however, since cache and branch predictor interactions are expensive operations to model, MRRL
exploits temporal locality by modeling only those interactions that occur nearest to the clusters, that are maost
likely to be relevent to the simulation of the clusters, Medeling fewer interactions gives MRRL its speed
advantage.

Below, the SPEEDUP table gives the simulation running time of fuliwarmug {in seconds) and MRRL as a
percentage thereof, The ACCURACY table gives the end-to-end if.e, true) IPC, the IPC achieved by fullwarmup
on samples of S0 1-million-instruction clusters, and the MRRL IPC on the same samples as well as its percent-
error deviation from the fullwarmup IPC, The true IPCs come from the SimPoint Web site; therefore all

T

Figure 6.1: Screen shot of the MRRL Web site.
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Next, because I needed to be able to group reuse latency measurements by per-
centile, a histogram array was also added for each reference stream (instructions,
data, branches). Within a histogram array, each element corresponds to a mutu-
ally exclusive subset of the pre-cluster—cluster instructions currently being profiled.
(Recall from earlier discussion, that a sample of clusters is first drawn from a bench-
mark’s end-to-end execution; all instructions preceding each cluster, but following the
previous cluster constitute pre-cluster instructions. Together, these are a pre-cluster—
cluster pair.) In other words, let the currently simulating pre-cluster—cluster pair con-
sist of instructions a through b of the total end-to-end dynamic instruction stream,
and let these instructions bijectively map to the discrete closed interval [1,b — a + 1]

thus, instructiong — k —a + 1. If [1,b — a + 1] is partitioned into n + 1 subsets

[1, kl], [kl + 1,]172], [kQ + 1, k‘g], . [kn + 1,b —a—+ 1],

then each histogram array element can be mapped to one of these mutually exclu-
sive subset partitions. For instance, according to the [1,b — a + 1] partition shown
above the third histogram array element would hold a count of the number of reuse
latency measurements that spanned as few as £k, + 1 and as many as k3 completed
instructions between consecutive accesses. Whichever subset partition contains the
value of the reuse latency measurement dinsn has its corresponding histogram array
element incremented. Hence, if dinsn is the reuse latency measurement of a branch
and ko + 1 < dinsn < ks, then the third element of the branch histogram array is

incremented. When the profile of the current pre-cluster—cluster pair completes, the
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histogram array will contain a complete description of the reuse latency history of its
instructions, branches, and data references.

To make MSFEwarmup and MRRL applicable to any sampling strategy, the profiler
was constructed to allow any arbitrary partitioning of benchmarks into pre-cluster—
cluster sections. The alternative was to rely on MSE/MRRLprofile data gathered
from each benchmark’s end-to-end execution as a whole. I rejected this alternative
because a single end-to-end profile would likely only capture the benchmark’s average
behavior, losing the latency characteristics of the individual pre-cluster—cluster pairs.
This is undesirable because one of two scenarios may occur when the end-to-end data
is applied to specific pre-cluster—cluster pairs. First, end-to-end data may fall short
of potential speed up; second, end-to-end data may not identify the entire warm up
region, sacrificing simulation accuracy.

In the first case, suppose the benchmark is partitioned into several pre-cluster—
cluster regions that tend to access a small memory footprint in a tight loop. The
resulting pre-cluster—cluster pairs will tend to require very small wy to achieve an
MRRL percentile of N. Suppose further that end-to-end, the benchmark occupies
a much larger memory footprint whose access pattern appears sparse and more dis-
tributed; the wy isolated from the end-to-end data would be much larger. This ap-
proach would warm up too many references, but even though speed up is suboptimal,
IPC accuracy would remain intact.

In the second scenario, imagine that several pre-cluster—cluster partitions sparsely

access a very large memory footprint requiring large wy. The end-to-end memory
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reference behavior, however, tends to be less sparse resulting on average, in more
frequent revisits to memory addresses than within the aforementioned pre-cluster—
cluster pairs. If the end-to-end data are used to derive wy for these pre-cluster—cluster
pairs, the wy will fall short of the true number of instructions necessary to achieve
a MRRL percentile of N. While the simulations would run faster, IPC accuracy
may falter. Hence, I designed sim-mrriprofile to accept the same pre-cluster—cluster
parameters as are given to sim-outorder_mrrl; each region is measured and dealt with
individually.

While profiling with associative arrays did lead to the discovery of warm up inter-
vals that yielded highly accurate IPC measurements, associative lookup was painfully
slow. Sometimes profiling required more time than the simulations themselves! The
problem is that reuse latency measurements are taken for every unique memory refer-
ence address encountered during a pre-cluster—cluster pair. Uniquely identifying each
address requires a keyed associative lookup whose worst-case running time is linear in
the number of unique addresses. This rapidly becomes overwhelming for pre-cluster—
cluster pairs with large working sets. To rectify this, I mimicked true associativity
with “deeply” associative arrays.

The principle is identical to set associativity in caches: while conflict-free unique
reference identification is ideal, conflict-rarity is good enough in practice. With
associativity, conflicts are reduced by borrowing set theory’s notion of equivalence
classes [24, 61] in the form of limited amounts of true associativity within each cache

set among reference addresses with identical cache indez bits [21].
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In a finite machine such as defined by the Alpha AXP reference [52] with 32-bit

addressing, the cardinality of each equivalence class is determined by the width of
the cache index bit field and the cache block width. Thus, for n bits of index, if each

232-n—k glements in

cache block contains 2* independently addressable units, there are
each equivalence class. In my deeply associative cache implementation, the low 2 bits
of each reference address are discarded, yielding word-width uniqueness granularity.
Then, the next lowest n bits are used as an index to hash to a location in the array.
Finally, the highest 32 — (n + 2) bits are used as a tag to match against any of the a
associative buckets. Since the associativity of these arrays is fixed (a), the worst-case
lookup time is constant.

The first sim-mrriprofile implementation used an index width (n) of 16 bits and 128
degrees of associativity (a). With 128 degrees of associativity (thus the title deeply
associative), collisions between distinct reference addresses was a rare occurrence;
unique addresses that hash to the same array element may occupy any one of 128
fully associative buckets. While this high associativity did very closely mimic a fully
associative array, there was only a small speed-up over full associativity. I traced
this problem to poor performance in the native cache on the host platform executing
the profiler. In theory, worst-case linear search over a fixed domain of associativity
(i.e., 128 possibilities) is less expensive than worst-case linear search over virtually

230 possibilities). In practice however, when even fixed

unlimited associativity (i.e.,
associativity leads to poor cache performance, code runs slowly. To rectify this, I

drastically reduced the associativity to 32 degrees and quadrupled the number of
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array elements. This massive is new organization kept collisions at bay and did very
well at mimicking full associativity.

The 75% associativity reduction brought less garbage into the native cache on
failed lookups and yielded a handsome performance improvement. This final imple-
mentation of sim-mrriprofile is the version used to acquire the dissertation results,
and the version offered from the MRRL Web site. It enables very good warm phase
identification (especially at the 99-th percentile) that yields IPCs that are faithful to

fullwarmup’s.

6.2 Cycle-accurate Simulator: sim-outorder_mrrl
The primary goal of this research was to maintain the accuracy of IPC measure-
ments for sampled simulation achieved from fullwarmup, but in less time. Hence, it
was critically important to measure simulation running time as accurately as possi-
ble. To achieve high accuracy, the first modification to sim-outorder to create sim-
outorder_mrrl was to use the UNIX system call getrusage() [41] to monitor the CPU
time of each execution. CPU utilization measurement is engaged immediately after
the benchmark binary is loaded into the simulated virtual address space and ends
as soon as the main simulator loop exits. This modification enables accurate timing
analysis of the simulations even when the host system is heavily loaded.

Further modifications were necessary to incorporate the three-phase (cold-—warm-—
hot) simulation strategy described in Chapter 1; unlike the original sim-outorder, my

modifications also accommodate multiple clusters by allowing the simulator to jump



CHAPTER 6. TOOLS 119
from the hot phase back to either the cold phase or the warm phase.

A third enhancement was necessary because the warm phase varies in size for dif-
ferent MRRL percentiles (), as well as for nowarmup and fullwarmup causing the
amount of cache and branch predictor modeling to vary accordingly. Effective analysis
of cache and branch predictor statistics however, demands comparable measurements;
since the size and position of each cycle-accurate sample cluster is fixed for a given
benchmark these clusters are ideal for gathering cache and branch predictor statis-
tics. To enable fined-grained manipulation of cache and branch predictor statistics
gathering, code was added that facilitated engaging and disengaging statistics gath-
ering at arbitrary points during a benchmark’s simulation, for an arbitrary collection
of cache and branch predictor statistics (e.g., cache_dl1— misses, pred— addr_hits).
This code was then used to engage cache and branch predictor statistics gathering ex-
clusively during the hot phase; thus, cache and branch prediction data were gathered
precisely the same as IPC: during the clusters. This ensured that these measurements
were comparable among different simulator configurations, regardless of the amount
of cache and branch predictor warm up.

Finally, there are subtle caveats that arose when developing the mechanism for fine-
grained control over the branch predictor, instruction cache and data cache warm up.
First, since the profiler tracks MRRL data for three different reference streams three
different wy are necessary: Wn,... ..s WNiporuetion) Whae- VVhen the simulator exe-

cutes, branch predictor warm up is obviously engaged at wy;,,, , instructions prior

ch

to the hot phase. Elements of the cache hierarchy however, may not be entirely in-
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dependent and therefore, require special treatment. Consider for example, a cache
hierarchy composed of separate secondary caches for instructions and for data (just
as is typically done for first-level caches). In this setup, data caching and instruction
caching would be engaged independently, according to their respective wys. (The
same would be true of a cache hierarchy with independent first-level instruction- and
data caches that foregos second-level caches.) As shown in Table 5.8, on the other
hand, my experiments use a unified secondary cache, that houses both instructions
and data. In this environment, both instruction caching and data caching must be
engaged simultaneously, since engaging warm up of one reference stream before the
other gives the first an unfair opportunity to become established in the L2. The typ-
ically tumultuous relationship between the two warring factions—instructions and
data—would not be accurately modeled and may adversely influence their respective
miss rates during the hot phase. Therefore, in simulations that model a unified L2
(and/or unified L3), instruction cache and data cache modeling are engaged simulta-

neously at whichever stream’s wy is farther from the start of the hot phase.

6.3 Related Work

SimpleScalar is a very popular and widely-used [36] tool for computer architecture re-
search. In addition to sim-inorder, sim-mrriprofile and sim-outorder_mrrl, numerous
other cycle-accurate simulation tools have been built within the SimpleScalar frame-
work including sim-dmdt, to perform Differential Multithreading (dMT) research [15,

16]; Wattch [3], to perform microprocessor power analysis; and HydraScalar [53], to
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model multipath execution. SimpleScalar, however, is only one of many simulation
tools. Others include the MIPS instruction-level simulator SPIM [34], the SimOS [23]
toolkit, and the SMTSIM [69] simultaneous multithreading simulator. Proprietary
simulation software includes ARDI’s instruction-level Syn68k [26] which emulates bi-
naries compiled into the Motorola 680x0 [14] instruction set, and AMD’s SimNow! [1]
instruction-level simulator which simulates AMD’s new x86-64 instruction set.
Instruction-level simulators are not appropriate for cycle-accurate performance
evaluation because they do not model the synchronous movement of instructions
through a pipeline. Rather, instruction-level simulators merely emulate some in-
struction set architecture. Software-driven simulators such as SPIM, SimpleScalar’s
sim-safe perform this emulation by manipulating architected state iteratively, in a
fetch—decode—execute loop one instruction at a time. Simulators such as Syn68k, on
the other hand, use an advanced form of software instruction-level simulation called
binary translation [5, 6, 26]. The Syn68k software works by first converting the in-
structions of a 680x0 binary into equivalent “synthetic opcodes” that can either be
executed in a virtual machine or translated and executed as equivalent instructions on
the host architecture. While often faster than iterative simulators, because they do
not model pipeline state, binary translators are also inappropriate for cycle-accurate
performance evaluation. However, instruction-level simulation was very well suited
to the task of making reuse latency measurements because these measurements only
require information about the completed instruction count and reference addresses—

not pipeline state. MRRL’s evaluation as a warm up technique, on the other hand,
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required cycle-accurate instruction throughput analysis. This immediately disquali-
fied all instruction-level simulators. This explains why, sim-mrriprofile was developed
by by extending the instruction-level sim-safe tool, while sim-outorder_mrrl was de-
veloped by extending the more sophisticated sim-outorder pipeline simulator.

Another processes that is closely related to simulation involves applying modifi-
cations to the actual binary image of the benchmarks to be studied. Then rather
than emulating the binary opcodes and modifying some amount of virtual processor
state, the modified binary is executed natively. As the native execution proceeds,
the appended routines execute alongside the original code, gathering statistics in re-
sponse to specific microprocessor events. Research that studies data cache miss rates
for instance, would modify a benchmark binary to trap to a routine that records the
source/destination address of each load/store instruction. This address record can
either be manipulated on-line, inside the recording routine, passed to another routine,
or stored as a trace for off-line processing.

Srivastava and Eustace’s ATOM [56] is a binary instrumentation tool that facilitates
customized program analysis. ATOM allows analysis code to be inserted anywhere
inside a binary by modifying the object files of the target benchmark. Once these
manipulations have been completed, the object files are linked into an instrumented
binary. Research that requires knowledge about basic block execution frequency (such
as the tools used in Sherwoord et al’s research [50, 51]) would insert code prior to
every basic block that traps to a routine to increment a counter corresponding to each

basic block.
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Larus and Schnarr’s Executable Editing Library (EEL) [35] is similar to ATOM,

but directly modifies fully linked binaries. EEL is able to both remove code and
insert additional code that observes or alters a benchmark’s execution. EEL pro-
vides a collection of high-level abstractions that hide specifics such of the hardware
instruction set, binary file formats, and the reorganization of hard-coded references
after binary modifications have been applied. Two of EEL’s key abstractions are
control-flow graphs (CFGs) and snippets. A CFG maps a binary’s execution paths as
a directed graph whose nodes correspond to basic blocks, and whose edges correspond
to branches. A tool build with EEL modifies a binary by either deleting instructions,
or appending code snippets to its CFG.

Binary modification is a useful tool for microarchitecture research, and in general
has a tremendous speed advantage over software binary emulation, because of native
hardware execution. Unfortunately, precisely that which is responsible for its speed
advantage causes serious drawbacks. First, non-native binaries cannot be studied.
(Researchers with x86-only computing resources cannot study 680x0 binaries.) Sec-
ond, only those instructions that actually commit in the pipeline of the native host
will be seen. This is because most modern microprocessors employ speculation. By
predicting the destination of branch instructions that have not yet been resolved,
the native processor is able to keep many more partially executed instructions in
the pipeline. When these partially executed instructions finally complete, their re-
sults are buffered until the outcome of the preceding branch is know. If the processor

guested its destination correctly, then the buffered results are committed to the actual
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hardware state; otherwise, the buffered results are discarded and execution restarts
along the opposite path of the offending branch. Since only perfect pipeline state is

captured, detailed pipeline analysis is impractical with binary instrumentation.



Chapter 7

Contributions, Conclusion &

Future Work

Software simulation is a flexible tool for microarchitecture research. The tremendous
slowdown factor of cycle-accurate simulation relative to native hardware execution,
however, has driven the microarchitecture research community to search for methods
to accelerate this process. One popular acceleration approach interleaves slow cycle-
accurate simulation with much faster, low-detail simulation. If one or more sample
clusters from the dynamic instruction stream can be identified that reliably mimic
the end-to-end execution of the entire benchmark, then only this sample of clusters
needs to be simulated in cycle-accurate detail.

Cache and branch prediction profoundly impact the cycle-by-cycle movement of
instructions through the pipeline (i.e., instruction throughput) [21]. Hence, reli-

able performance measurements from sampled simulation requires that the simulated

125
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cache hierarchy and branch predictor perform during the sample clusters precisely or
at least approximately as they would have if the entire benchmark were simulated
in cycle-accurate detail. This is the responsibility of warm up. One way to guar-
antee accurate cache and branch predictor state is to simulate non-sample instruc-
tions using fullwarmup, which augments functional simulation by modeling the cache
and branch predictor interactions required for instruction fetch, load/store instruc-
tions, and control flow instructions. While substantially faster than cycle-accurate
simulation, fullwarmup is still slow and can be prohibitive if research requires large
state-space searches.

This dissertation demonstrates that fullwarmup is often unnecessary and offers tech-
niques for selecting a smaller warm up phase that still preserves simulation accuracy.

The major contributions of this research are

1. MSE—a rigorous mathematical framework for quantitatively reasoning about
the probability of touching a certain proportion of cache blocks based solely
on the dimensions of the cache and the number of unique memory references
handled in the cache. MSEwarmup adapts this framework, forging a technique

for accurate, rapid warm up of L1 cache state.

2. MRRL—a more direct approach to warm up that builds upon MSE by ex-
ploiting temporal locality. Rather than warm up a specific proportion of cache
blocks, MRRL seeks to warm up specifically those blocks that will be accessed

during the sample clusters. MRRL is useful for warming up any cache hierarchy
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organization and well as branch predictors.

7.1 Minimal Subset Evaluation

Although MSEwarmup is superseded by MRRL, Minimal Subset Evaluation (MSE)
is no less a valuable contribution in its own right. MSE’s contribution stems from
its original use of combinatorics, probability, and statistical methods to quantita-
tively articulate the probability of touching a certain proportion of cache blocks based
solely upon the dimensions of the cache and the count of unique memory reference
addresses handled within the cache. As discussed in Chapter 1, before MSE, several
techniques were developed [7, 8, 28, 42] for defeating cold-start bias more efficiently
than fullwarmup. Except for Nguyen’s PARSIM [42], these were empirical techniques.
Unfortunately however, in addition to other cumbersome requirements, PARSIM re-
quires a priori knowledge of the overall cache miss rate and the load/store density
of the dynamic instruction stream, which implies at least a one-time cost fullwarmup
run to measure it.

The MSE research yielded the MSE formula for computing the probability that
mapping m unique references into the cache will touch awNSa cache blocks and a
tractable approximation to make this calculation quickly. These are the basis of the
quantitative framework and the first contribution of MSE. Furthermore, as discussed
in Chapter 3, the MSE formula depends upon the distribution of unique references
throughout the cache; this required that I determine and verify this distribution and

is MSE’s second contribution: the application of statistical methods to study the
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distribution of unique memory reference address mappings inside the cache.

MSEwarmup adapts MSE by using the MSE formula to compute the number of
unique references, m, necessary to touch a specific proportion of L1 cache blocks with
user-chosen probability, p. By profiling the pre-cluster instructions, MSEwarmup
determines the number of instructions prior to the sample that contains m unique
reference addresses. If m or more uniques can be found among the pre-cluster in-
structions, MSEwarmup begins warm up late in the pre-cluster phase. If fewer than
m uniques are among the pre-cluster instructions, MSFEwarmup degenerates to full-
warmup, trading away speed up for accuracy.

In practice (see Chapter 5), MSE yields highly accurate simulations while substan-
tially reducing simulation times. For p = 99.9%, where p is the user-chosen probability
of touching a certain proportion of cache blocks, the average error in IPC relative to
the fullwarmup IPC was 0.3% and the average reduction in simulation running time
was 47%; for p = 95.0%, the average error in IPC was 0.4% and the average reduction

in simulation running time was 61%.

7.2 Memory Reference Reuse Latency

While MRRL builds upon MSE, it does so by approaching the warm up problem
very differently, seeking to touch specifically those blocks that matter to the sample
clusters. MRRL’s key insight is that temporal locality is an effective guide for pre-
cluster warm up. MRRL quantifies temporal locality as a percentile of consecutive

access latencies among all references in a pre-cluster—cluster pair. For percentile N
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= 100%, MRRL immediately bounds the size of the warm phase. This is because

at N = 100%, all references require wy or fewer instructions between consecutive
accesses; Wi.goo, therefore is the mazrimum reuse latency. Hence, it is pointless to
model references that occur more than wy gg9 instructions prior to a sample cluster.
Results from Chapter 5 however, show that in practice, N = 99.0% works well,
achieving good accuracy and substantial speed up.

The enumerated list below discusses how MRRL meets the research objectives.

1. Any Cache Hierarchy. MRRL is able to determine the beginning of a warm
phase which will simultaneously ensure accurate warm up for all levels of the
cache hierarchy regardless of their organization. This is critically important as
deeper levels of cache may become commonplace in future systems. (The IBM
POWERA4 [65] for instance, supports a third level of cache.) Since MRRL is
unaffected by cache hierarchy depth, as well as the organization of a cache’s
constituent levels (e.g., block width, associativity, unified or separate hosting
of instructions and data), this allows—per benchmark-input pair and sampling
regime—only a one-time profiling cost that can be used to obtain warm up
points for any simulated cache design. This makes MRRL a more available and
flexible warm up strategy than MSFEwarmup for contemporary and forward-

looking designs.

2. Branch Predictors. MSEwarmup is not well-suited for branch predictor warm

up, because large branch predictor buffers [21] require a very large number of
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unique branch addresses to warm up with high (e.g., p = 99.9%) accuracy. In
the absence of a technique to accurately gauge the MSE tuning variable o,
MSE for such a large number of uniques quickly degenerates to fullwarmup,
maintaining accuracy but completely trading away speed. On the other hand,
MRRL’s alternative warm up approach exploits reuse latency characteristics and
the analogy between program counter variation and recurrent fractal random
walks [66], and presents a suitable vehicle for warming up the 2-bit saturating

counters of branch predictor buffers.

3. Sampling Regime. Experimental results shown in Chapter 5 that deploy
MRRL in uniform systematic sampling, random cluster sampling, and samples
drawn by more sophisticated methods ([50, 51]), demonstrate MRRL’s indepen-
dence from sampling strategy. (This is a trait shared with MSEwarmup.) Ran-
dom cluster sampling’s specific amenability to rigorous statistical analysis was
exploited to demonstrate that at the 99.0-th percentile, MRRL achieves instruc-
tion throughput measurements that are statistically identical to fullwarmup,

while simulating in much less time than fullwarmup.

Results in Chapter 5 show that for the 99.0-th percentile (MRRLg.g90), MRRL gen-
erated an average error in IPC relative to fullwarmup, of less than 0.5% for the
simple equidistantly-spaced simulation sample methodology, and less than 0.4% for
randomly-chosen cluster samples, while the 99.9-th percentile generated an average

IPC error of less than 0.3% for automatically-chosen (BBDA) samples [51], (with 2-
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and 3-level cache). In the equidistant-cluster experiments MRRLg g9 simulated in
roughly 70% the time of fullwarmup, translating into an average of roughly 97% of
the maximum potential speed up. Further experiments with Sherwood et al.’s [50, 51]
basic-block distribution analysis (BBDA) samples show a percent-error in IPC mea-
surements of less than 0.03% in all cases for MRRL; oo relative to fullwarmup. This
MRRL; g90 however, while very reliable, does not speed up simulation as effectively
as for N € (0,1). Five benchmarks saw no improvement, but on average MRRL; g9
achieved roughly 33% of the maximum possible speed up. Finally, to prove its flexi-
bility and one-time profiling cost, I applied MRRL to the same BBDA samples, but
simulated a radically different cache organization with three levels—two of which were
unified—and different block widths on each level. Since this last round of experiments
used the same samples, warm phases were chosen from the original BBDA profiles.
Experimental data prove that in spite of a very different cache organization, the same
MRRL profiles produce highly accurate throughput data, achieving a maximum per-
cent error of 1.05% for MRRL 999, and an average simulation time reduction of 45%

relative to fullwarmup.

7.3 Future Work

As discussed in Chapter 5, in the statistical analysis of MSEwarmup and MRRL, the
random cluster sampling experiments used a cluster size of 1 million instructions.
This was a conservative adjustment to the 100,000-instruction clusters used by Conte

et al. [8], that allowed more pipeline behavior per cycle-accurate sample cluster to
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be observed and measured. One avenue for future research would be to explore the
space of cluster sizes when applied to random cluster sampling, and to observe the
impact of cluster size on sample accuracy for a given sample size. One experiment for
instance, could use a sample size of 50 million instructions, measured as 500 x 100,000
instructions, versus 50 x 1 million instructions, versus 5 x 10 million instructions.
Additional experiments that vary the sample size could also be organized. A statistical
test such as ANOVA—analysis of variance—could then be used to characterize the
amount of difference between the various sampling approaches.

Another avenue for future research would be collaboration with Timothy Sher-
wood and colleagues at the University of California at San Diego, to combine the
Basic Block Distribution Analysis (BBDA) technique [50, 51] with MRRL; BBDA
would be used to find suitable sample clusters, and MRRL to find short warm up
intervals. Sherwood’s preliminary results show only small errors for a typical 2-level
cache organization when stale-state/nowarmup is used. As demonstrated in Chapter
5 however, this inadequate warm up strategy yielded greater error when a third level
of cache was added (which increased the main memory access latency). While this dis-
sertation contains MRRLg 999 warm up points for the 100-million-instruction BBDA
sample clusters (see Appendix A), it remains to explore the space of cluster sizes
with BBDA, and differing microarchitecture configurations. Also interesting, would
be BBDA-guided stratified sampling: random cluster sampling within the clusters
chosen by BBDA. Combining MRRL with BBDA would not only accelerate the joint

research, but if applied to the SPEC CPU2000 benchmarks, the research results would
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have a positive impact on the large body of ongoing research that uses this benchmark

suite.
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Appendix A

MRRL(j 999 Warm Up Points for

BBDA

This appendix give the data gathered as a collaborative research between Dr. Skadron
and me, and Timothy Sherwood and his colleagues at the University of California at
San Diego. Our research combines the strength of Basic Block Distribution Analy-
sis [51] to find relevant samples (called simulation points) and the strength of Memory
Reference Reuse Latency to accelerate the establishment of accurate pre-cluster state.
Together, this research seeks to offer guidance to the computer architecture research
community for performing cycle-accurate simulation with the SPEC CPU2000 bench-
mark suite quickly and accurately. The material is organized as a table and gives the
warm up points for MRRL at the 99.9-th percentile. The first column gives the warm
up point for instructions; the second column gives the warm up point for data; the

third column gives the warm up point for branches; and the final column gives the

144
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simulation points gathered from BBDA. In other words, for each BBDA simulation
point, the warm up points gives the number of cold phase instructions for instruction,
data, and branch prediction. Once the cold phase completes, warm up begins, and
when the total number of completed instructions (cold and warm) reaches the number
prescribed by the simulation point, cycle-accurate simulation begins.

Chapter 5 shows that MRRL with N = 0.999 is very successful at achieving accu-
rate, rapid warm up. Recall that reuse latency profiles are gathered by partitioning
the discrete interval [1,1] (which is bijectively mapped to the pre-cluster—cluster in-
structions; see Chapter 4) into n < [ bucket;s, where each bucket; represents some
subset [a, b] of [1,{]. As the profile proceeds, it counts the number of completed in-
structions between consecutive accesses to each unique reference addresses, say C,
and increments the count of the bucket; representing the subset that contains C'. If
N% of MRRL measurements require wy instructions between consecutive accesses,
then the MRRL-prescribed warm phase begins wy instructions before the sample;
this is MRRL warm up at the N-th percentile.

For many benchmarks, the 99.9-th percentile of all reuse latencies for instructions,
data, and branches occurred in bucket;. bucket; represents the interval subset [1,d]
and therefore, counts the occurrence of references that require from 1 to b instructions
between consecutive accesses, i.e., those references with the shortest reuse latencies.
When all three (instructions, data, and branches) are accommodated in bucket;, all
three warm up points are identical for each simulation sample. This occurs for many

of the warm up points for many of the benchmarks. Benchmarks that diverge from
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this uniformity for one or more samples include gcc_200, gcc_expr, and bzip2_graphic.

benchmark instruction warm up | data warm up | branch warm up || simulation point
ammp 59441894404 | 59441894404 59441894404 59500000000
106753808530 | 106753808530 106753808530 106800000000

160647363154 | 160647363154 160647363154 160700000000

177383691279 | 177383691279 177383691279 177400000000

212765429624 | 212765429624 212765429624 212800000000

243669824155 | 243669824155 243669824155 243700000000

247995800654 | 247995800654 247995800654 248000000000

302546679624 | 302546679624 302546679624 302600000000

311191601499 | 311191601499 311191601499 311200000000

applu 62339062500 | 62339062500 62339062500 62400000000
137926171875 | 137926171875 137926171875 138000000000

150687597529 | 150687597529 150687597529 150700000000

162488476499 | 162488476499 162488476499 162500000000

195567675654 | 195567675654 195567675654 195600000000

223372851499 | 223372851499 223372851499 223400000000

apsi 89512500000 | 89512500000 89512500000 89600000000
100689160029 | 100689160029 100689160029 100700000000

161740331904 | 161740331904 161740331904 161800000000

210652246030 | 210652246030 210652246030 210700000000

286226171875 | 286226171875 286226171875 286300000000

bzip2_graphic 10589648374 10589648374 10589648374 10600000000
14795898374 14795898374 14795898374 14800000000

16798046875 16794140625 16798046875 16800000000

19497363154 19494726436 19497363154 19500000000

42977050654 | 42977050654 42977050654 43000000000

51891308530 | 51891308530 51891308530 51900000000

76176269404 | 76176269404 76176269404 76200000000

87189257749 | 87189257749 87189257749 87200000000

104183398374 | 104183398374 104183398374 104200000000

143461621030 | 143461621030 143461621030 143500000000
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benchmark

instruction warm up

data warm up

branch warm up

simulation point

bzip2_program 7792382749 7792382749 7792382749 7800000000
9398437500 9393750000 9398437500 9400000000

13995507749 13995507749 13995507749 14000000000

34080371030 | 34080371030 34080371030 34100000000

44489843750 | 44489843750 44489843750 44500000000

46797753779 | 46795507686 46797753779 46800000000

60586523374 | 60586523374 60586523374 60600000000

85875292905 85875292905 85875292905 85900000000

98987206904 | 98987206904 98987206904 99000000000

100498535029 | 100492675657 100498535029 100500000000

bzip2_source 6393750000 6393750000 6393750000 6400000000
17688964780 17688964780 17688964780 17700000000

39478710874 | 39478710874 39478710874 39500000000

48790917905 | 48790917905 48790917905 48800000000

51097753779 51097753779 51097753779 51100000000

52998144404 | 52998144404 52998144404 53000000000

crafty 12287988154 12287988154 12287988154 12300000000
50962206904 | 50962206904 50962206904 51000000000

66384960874 | 66384960874 66384960874 66400000000

112255175654 | 112255175654 112255175654 112300000000

equake 299706904 299706904 299706904 300000000
6194238154 6194238154 6194238154 6200000000

33573242124 | 33573242124 33573242124 33600000000

46287597529 | 46287597529 46287597529 46300000000

87359863154 | 87359863154 87359863154 87400000000

129159179624 | 129159179624 129159179624 129200000000

facerec 34766015625 34766015625 34766015625 34800000000
139697460874 | 139697460874 139697460874 139800000000

152787304624 | 152774609312 152787304624 152800000000

193460253779 | 193460253779 193460253779 193500000000

197595996030 | 197547949158 197595996030 197600000000
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benchmark instruction warm up | data warm up | branch warm up || simulation point
fma3d 4695410029 4695410029 4695410029 4700000000
11193652280 11193652280 11193652280 11200000000

20890527280 | 20890527280 20890527280 20900000000

50870703125 | 50870703125 50870703125 50900000000

84167480405 | 84167480405 84167480405 84200000000

159925976499 | 159925976499 159925976499 160000000000

galgel 51549609375 | 51549609375 51549609375 51600000000
101651074155 | 101651074155 101651074155 101700000000

207996093750 | 207996093750 207996093750 208100000000

214094140625 | 214094140625 214094140625 214100000000

216098046875 | 216098046875 216098046875 216100000000

218098046875 | 218098046875 218098046875 218100000000

346474511655 | 346474511655 346474511655 346600000000

351095605405 | 351095605405 351095605405 351100000000

gee_200 799218750 798437500 799218750 800000000
57444628779 | 57444628779 57444628779 57500000000

58698828125 | 58696484375 58698828125 58700000000

92067382749 | 92067382749 92067382749 92100000000

101091210874 | 101091210874 101091210874 101100000000

gee_expr 899121030 898242124 899121030 900000000
2498437500 2496875000 2498437500 2500000000

4198339780 4198339780 4198339780 4200000000

6297949155 6295898374 6297949155 6300000000

8098242124 8098242124 8098242124 8100000000

8799316279 8795214721 8799316279 8800000000

gzip_graphic 99902280 99902280 99902280 100000000
8691601499 8691601499 8691601499 8700000000

37272070249 | 37272070249 37272070249 37300000000

46091406250 | 46091406250 46091406250 46100000000

56589746030 | 56589746030 56589746030 56600000000

96061425654 | 96061425654 96061425654 96100000000

gzip_program 22777734375 22777734375 22777734375 22800000000
47176171875 | 47176171875 47176171875 47200000000

59388085874 | 59388085874 59388085874 59400000000

77881933530 | 77881933530 77881933530 77900000000

140938378779 | 140938378779 140938378779 141000000000
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benchmark | instruction warm up | data warm up | branch warm up || simulation point
gzip_source 16683691279 16683691279 16683691279 16700000000
24792089780 | 24792089780 24792089780 24800000000

32692285029 | 32692285029 32692285029 32700000000

37295507749 | 37295507749 37295507749 37300000000

65572363154 | 65572363154 65572363154 65600000000

71993750000 | 71993750000 71993750000 72000000000

lucas 45755273374 | 45755273374 45755273374 45800000000
52393554624 | 52393554624 52393554624 52400000000

60192382749 | 60192382749 60192382749 60200000000

98162890625 | 98162890625 98162890625 98200000000

136962109375 | 136962109375 136962109375 137000000000

mesa, 39761132749 | 39761132749 39761132749 39800000000
97643456904 | 97643456904 97643456904 97700000000

184515136655 | 184515136655 184515136655 184600000000

280506250000 | 280506250000 280506250000 280600000000

mgrid 4295800654 4295800654 4295800654 4300000000
80625390625 | 80625390625 80625390625 80700000000

247437011655 | 247437011655 247437011655 247600000000

310938085874 | 310938085874 310938085874 311000000000

345865917905 | 345865917905 345865917905 345900000000

parser 176927050654 | 176927050654 176927050654 177100000000
200776855405 | 200776855405 200776855405 200800000000

334069726499 | 334069726499 334069726499 334200000000

477060351499 | 477060351499 477060351499 477200000000

510167773374 | 510167773374 510167773374 510200000000

swim 3796288999 3796288999 3796288999 3800000000
70934375000 | 70934375000 70934375000 71000000000

77693456904 | 77693456904 77693456904 77700000000

194985351499 | 194985351499 194985351499 195100000000

210085351499 | 210085351499 210085351499 210100000000

twolf 31169531250 | 31169531250 31169531250 31200000000
96036621030 | 96036621030 96036621030 96100000000

205293261655 | 205293261655 205293261655 205400000000

288718554624 | 288718554624 288718554624 288800000000

326762890625 | 326762890625 326762890625 326800000000
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benchmark instruction warm up | data warm up | branch warm up || simulation point
vortex_lendian2 35964843750 | 35964843750 35964843750 36000000000
39696386655 39696386655 39696386655 39700000000
55384667905 55384667905 55384667905 55400000000
63492089780 | 63492089780 63492089780 63500000000
75188574155 75188574155 75188574155 75200000000
92982617124 | 92982617124 92982617124 93000000000
wupwise 9091113154 9091113154 9091113154 9100000000
152260058530 | 152260058530 152260058530 152400000000
181071972529 | 181071972529 181071972529 181100000000
305378515625 | 305378515625 305378515625 305500000000




Appendix B

MSE Unique Reference Address

Profiles.

This appendix contains plots of the unique reference address distributions for each of
the SPECInt95 benchmark results given in Tables 5.2 through 5.5. Recall that MSE
is an analytical framework that allows one to quantitatively assess the likelihood that
m unique reference addresses will touch some proportion of blocks within a cache.
MSFEwarmup adapts MSE by using its quantitative assessment capability to choose
a point prior to each sample cluster to begin warm up. Starting from this point, the
warm phase will encounter at least m unique reference addresses and will therefore
have (user-chosen) probability p of touching aNfa cache blocks, where N is the
number of cache sets, a is the degrees of associativity, and «, § € (0, 1] are tuning
variables that indicate the proportion of sets and blocks per set, respectively.

Since MSEwarmup depends on witnessing a certain MSE-prescribed number (m) of
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unique references, its ability to speed up simulation depends heavily on the distribu-
tion of unique references among the pre-cluster instructions. Figures B.1 through B.6
each plot the distribution of unique references for a single benchmark. Each point
on the z-axis corresponds to some MSE-prescribed number of hundreds of unique
reference addresses (i.e., for some x, m = 100x). The logarithmic y-axis gives the
number of cold phase instructions. The length of the entire pre-cluster phase is given
by the value of y at x = 0; thus, the length of the warm phase is computed as the
difference of the entire pre-cluster length and the cold phase length: yy—o — yz=z.
For a pre-cluster—cluster pair of fixed length, the smaller the cold phase, the longer
the warm phase (which leads to a long simulation time). This elongation of the warm
phase due to a brief cold phase is illustrated vividly by the plot for the go benchmark

whose pre-cluster phase lasts for nearly y = 10° instructions (see Figure B.3 at x = 0).

As Figure B.3 shows, the length of the cold phase drops sharply, nearly three orders

1

of magnitude after z > 350, to y = 10°—a mere 55;

th of go’s pre-cluster length.
This is the phenomenon described in Chapter 4 as a front-loaded unique reference
distribution. Since a very large number of warm phase instructions are necessary
to witness the MSE-prescribed m uniques, MSEwarmup’s ability to speed up the
simulation is substantially reduced.

Front-loading of unique references does not occur for the other five benchmarks
(Figures B.1, B.2, and B.4 through B.6). Accordingly, their unique reference distri-

bution plots stay level, dropping only slightly for increasing x. This means that the

cold phase can be nearly as long as the entire pre-cluster phase, while the short warm
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phase still witnesses the MSE-prescribed m unique references. Because of the latter,

MSEwarmup is able to speed up these benchmarks’ simulations.
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Figure B.1: MSE unique reference plot for compress. The z-axis gives the MSE-

prescribed m (in hundreds of unique references); the y-axis gives the number of cold

phase instructions.
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Figure B.2: MSE unique reference plot for gcc. The z-axis gives the MSE-prescribed

m (in hundreds of unique references); the y-axis gives the number of cold phase

instructions.
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Figure B.3: MSE unique reference plot for go. The x-axis gives the MSE-prescribed

m (in hundreds of unique references); the y-axis gives the number of cold phase

instructions.
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Figure B.4: MSE unique reference plot for ¢jpeg. The x-axis gives the MSE-prescribed

m (in hundreds of unique references); the y-axis gives the number of cold phase

instructions.



APPENDIX B. MSE UNIQUE REFERENCE ADDRESS PROFILES. 156

"m88ksim_lss—d.gnuplot"

le+10 B

1e+08 B

1e+06 1

10000 [ B

100 B

0 100 200 300 400 500 600

Figure B.5: MSE unique reference plot for m88ksim. The z-axis gives the MSE-
prescribed m (in hundreds of unique references); the y-axis gives the number of cold

phase instructions.
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Figure B.6: MSE unique reference plot for perl. The z-axis gives the MSE-prescribed
m (in hundreds of unique references); the y-axis gives the number of cold phase

instructions.



Appendix C

MRRL Profiles

This appendix contains plots of the actual reuse latency profiles for several of the
SPEC CPU2000 benchmarks used in this dissertation. Recall from Chapter 4 the
bijective mapping of the discrete interval [1, L] to the instructions of an L-instruction-
long pre-cluster—cluster pair. Recall further, that reuse latency profiling works by first
partitioning [1, L] into n mutually-exclusive buckets whose union is the entire interval
(e.g., [1,L] = U}~ buckety). Each bucket; represents a subset [a,b] of the interval
where ¢ > 1 and b < L. As the profiler proceeds, it counts the number of completed
instructions, say C, between consecutive accesses to each unique reference address
and increments the count of the bucket; whose interval subset contains C'. When the
entire pre-cluster—cluster pair has been profiled, the profiler outputs the reuse latency
data as histograms giving the population of each bucket; for instructions, data, and
branches.

This Appendix is organized into groups of three plots per page, where each page

157
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contains one benchmark. The top plot shows the reuse latency histogram for instruc-
tions; the middle plot shows the reuse latency histogram for data; and the bottom plot
shows the reuse latency histogram for branches. The z-axis of each plot represents
the interval [1, L], and each bar corresponds to a bucket;. The leftmost bar, bucket,,,
corresponds to the interval subset [a, L] and therefore counts the number of references
that take the most instructions between consecutive accesses (i.e., references with the
longest reuse latencies). The rightmost bar on the other hand, bucket;, corresponds
to the interval subset [1, 5] and counts the number of references that take the least
instructions between consecutive accesses (i.e., references with the shortest reuse la-
tencies). Notice on the logarithmically scaled y-axis, that bucket; is overwhelmingly
the tallest, invariably. This indicates that a massive majority of memory reference
addresses require very few instructions between successive accesses, precisely as would
be expected in light of temporal locality [21].

The presence of most reuse latencies in bucket; justifies MRRL’s initial insight and
explains its ability to successfully speed up simulations relative to fullwarmup. As
stated before, the MRRL insight reasons that if N x 100% of reference addresses
require only wy instructions between consecutive accesses, then for large enough NV,
it is pointless to warm up references that occur more than wy instructions before a

sample cluster. The plots clearly show a very high reuse latency percentage in bucket; .

ZZ=1 |buckety|

= ZZ:l |buckety|’ then

Hence, if |bucket;| is the count of references in bucket; and N
very often, ¢ < n. In other words, as one cumulatively amasses the population of

bucket;s, achieving N x 100% of the population of all reuse latency measurements
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very often occurs in significantly fewer (¢) than n buckets. Since ¢ < n, if bucket,
represents the interval subset [a,, b,] and bucket,, represents the interval subset [a,, L],
then b; < a,. This means that the reuse latencies counted by bucket, have a short
duration, such that warm up beginning at b, instructions prior to the pre-cluster—
cluster boundary will warm up significantly fewer instructions than warming up the
entire pre-cluster phase. In short, it is preferable to have most of the histogram

“mass” in the far right of each plot.
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Figure C.1: MRRL plot for art. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.2: MRRL plot for crafty. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.3: MRRL plot for facerec. The x-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.4: MRRL plot for fma3d. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.5: MRRL plot for gcc. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.6: MRRL plot for gzip. The x-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.7: MRRL plot for lucas. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.8: MRRL plot for mesa. The x-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.9: MRRL plot for parser. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.10: MRRL plot for perlbmk. The z-axis corresponds to the bucket;s; the

y-axis gives the count of reuse latency measurements within each bucket.
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Figure C.11: MRRL plot for twolf. The z-axis corresponds to the bucket;s; the y-axis

gives the count of reuse latency measurements within each bucket.
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Figure C.12: MRRL plot for vortex. The z-axis corresponds to the bucket;s; the

y-axis gives the count of reuse latency measurements within each bucket.
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Figure C.13: MRRL plot for wupwise. The z-axis corresponds to the bucket;s; the

y-axis gives the count of reuse latency measurements within each bucket.



