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Abstract

Process technology scaling, poor supply voltage scaling and the resultant exponential increase in power
density have made temperature a first-class design constraint in today’s microprocessors. An interesting
question in the context of thermal management and multi-core architectures is about the correct size
granularity of thermal management. It is known that the silicon substrate acts as a spatial low-pass filter
for temperature. This means that if blocks with very high power density are small enough (for e.g., if
they are below a “cut-off” size), they do not cause hot spots. This paper investigates this phenomenon
analytically and presents a discussion through three microarchitectural examples. First is a thermal study
of a many-core architecture which illustrates the thermal benefit of many small cores as opposed to a
few large cores. This study also explores the effect of local vs. global thermal management. Second is
an investigation of whether high aspect ratio sub-blocks such as cache lines can become hot spots due
to pathological code behaviour. Third is an exploration of thermal sensor accuracy as a function of the
number of sensors and a characterization of two sensor interpolation schemes as a means to reduce sensor
errors.

1 Introduction

Two important recent trends have had a tremendous impact on the microprocessor industry: First,
non-ideal semiconductor technology scaling has made physical effects that were previously abstracted
away by computer architects to become first-order design constraints. A crucial example of this is the
exponential increase of power density as feature size shrinks. This has caused temperature to be a serious
concern since power density is directly related to on-chip temperature. Second, multi-core processors have
become the norm because of the disproportionate scaling of wire and logic delays, diminishing Instruction-
Level Parallelism (ILP) and the challenges of power and heat dissipation. In such a multi-core era, an
interesting question is the size granularity at which microarchitectural thermal management should be
performed. That is, if thermal management is most relevant when performed at the level of a sub-block
(e.g. cache line, register file entry etc.), functional block (e.g., register file, cache, branch predictor etc.),
architectural sub-domain within a core (e.g., the integer pipeline, the floating point pipeline, the memory
pipeline etc.), at the level of a core, or globally for the entire chip.
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1.1 Granularity of Thermal Management

Temperature-aware design can be approached in two steps. The first is to stop the wasteful power
consumption (which then gets converted into heat dissipation) at the source through best-effort power-
aware design. However, caution has to be exercised in employing power-saving schemes that can make
power density worse, thereby increasing the temperature. Once the heat dissipation has been minimized
as much as possible through effective power management, the next step is to distribute the given amount
of heat well to prevent it from being converted into peak temperature. In the strictest sense, only
this latter step can be called microarchitectural temperature management since the former is actually
temperature-aware power management. In such terms, global Dynamic Voltage and Frequency Scaling
(DVFS), which scales the supply voltage and the clock frequency of the entire chip together, is mainly a
power management scheme as it performs only the first step above. Nevertheless, it is hard to beat as
a Dynamic Thermal Management (DTM) scheme because of many reasons: a) The voltage + frequency
knob provides cubic savings in power for a linear reduction in delay; b) A factor of k reduction in
frequency results in < k reduction in performance (e.g. memory bound applications spend fewer CPU
cycles waiting); c) Thermal time constants are larger than the typical microarchitectural timescale of kilo-
instructions and block-level architectural DTM quickly degenerates into a global scheme and d) As the size
of a core reduces due to scaling, a sub-domain within a core is affected more by its neighbour’s temperature
than its own computational activity. So, neighbouring sub-domains effectively get aggregated for effective
thermal management, again resulting in a global scheme.

Investigation of this last phenomenon shows that the determining factor in it is the relationship
between heat conduction in the vertical (through the die, heat spreader and heat sink) and lateral (along
the die) directions. When the former is much greater than the latter, a block’s temperature is mainly
dependent on its own computational activity. Otherwise, it is mainly neighbour influence. Technology
scaling results in lateral dimensions of silicon diminishing faster than the vertical thickness for reasons of
mechanical strength. Moreover, vertical dimensions of the package layers (heat spreader, heat sink) do
not scale much. This means lateral spreading grows quicker than vertical conduction. The implication
is that the spatial granularity of thermal management has to become coarser with technology scaling.
One would have to move from thermal management at the level of a functional block to the core-level
to groups-of-cores. With the advent of multi-cores and many-cores, how this happens is an interesting
question for exploration.

1.2 Spatial Filtering

It turns out that silicon behaves like a spatial low-pass filter for temperature. That is, power dissipating
blocks that are small enough do not cause hot spots. Silicon “filters out” these “spatial high frequencies”
(blocks of small size). Figure 1 illustrates this aspect. The image on the left (1(a)) shows a silicon die
with two square power dissipating blocks. Both the blocks have the same power density (1 W

mm2 ) but the
area of the block on the left is four times that of the one on the right. Although the power densities are
the same, it can be seen that the larger block on the left is significantly hotter than the smaller block on
the right. This relationship between block-size and peak temperature is illustrated in figure 1(b). It is
the classic “Bode plot” frequency response of a low-pass filter with the spatial frequency (1/block-size)
plotted on the x-axis and the peak temperature on the y-axis. Both the axes are on a logarithmic scale.
It shows a clear “cut-off frequency” beyond which the temperature falls rapidly.

A study of this spatial filtering effect from a microarchitectural perspective is useful since it throws
light on several aspects of the size granularity of thermal management. Hence, this paper explores this
thermal spatial filtering effect in detail. Since the effect is nothing but a manifestation of the relationship
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Figure 1. Illustration of the spatial thermal filtering. (a) Two blocks of different sizes having the same
power density. (b) low-pass filter “Bode plot” frequency res ponse.

between lateral and vertical heat conduction in silicon, it first takes an analytical approach and solves
the two-dimensional steady state heat equation from first principles for a sample geometry similar to that
of microprocessor chips but in two dimensions. Then, in the light of the analytical equation, it explores
how the spatial filtering appears in practice when the assumptions of the analytical model are removed.
Finally, it illustrates the spatial filtering behaviour using three microarchitectural examples:

1. A many-core checkerboarding experiment where the die is tiled in a checkerboard-like fashion
with alternating cores and L2 blocks. The objective is to study the temperature by varying the
number of cores keeping the total area occupied by the cores, the power dissipated in them and
their power density constant. It illustrates the potential increase in Thermal Design Power (TDP)
achievable solely due to spatial filtering when all the other variables remain the same. Furthermore,
it studies the relationship between the number of cores and the granularity of thermal management
by exploring the effectiveness of local (within-core) thermal management as opposed to global
(core-level) thermal management as a function of the number of cores.

2. The question of whether a high aspect ratio sub-block like a single cache line or a register file
entry can become the hot spot because of malicious code behaviour is examined from a spatial
filtering perspective. This illuminates the relationship between aspect ratio of a block and its peak
temperature.

3. For a regular grid of thermal sensors, this paper studies the relationship between the inter-sensor
distance and the error in temperature measurement and explains it using spatial filtering. It also
explores the effectiveness of interpolation schemes in mitigating sensor errors.

The remainder of this paper is organized as follows. Section 2 discusses the previous work related
to this paper. Section 3 describes the analytical formulation and solution of the two-dimensional heat
equation for boundary conditions similar to those in microprocessors. It also reconciles the analytical
model with what is observed in practice. Section 4 details the microarchitectural examples of the spatial
filtering effect and presents the results. Section 5 concludes the paper providing pointers to interesting
future directions.
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2 Related Work

Three papers we know have examined the spatial filtering aspect from the viewpoint of thermal mod-
eling accuracy. Etessam-Yazdani et. al. [7] study the temperature response of the chip to a white noise
power distribution experimentally. They also perform a two-dimensional Fast Fourier Transform (FFT)
analysis to determine the spatial cut-off frequency beyond which high power density has lesser impact
on temperature. They conclude that for accurate thermal modeling, it is sufficient to model at a size
granularity close to this cut-off frequency. Two previous papers from our group [10, 8] also deal with
the correct spatial granularity for modeling temperature accurately. In studying the size granularity,
[10] employs an equivalent electrical approximation through a resistor network analogy. [8] examines the
impact of high aspect ratio functional blocks on thermal modeling accuracy and sub-divides high aspect
ratio blocks into multiple sub-blocks with aspect ratios closer to unity. These papers mainly approach the
size granularity from the standpoint of thermal modeling accuracy and not from a thermal management
perspective. They do not study the microarchitectural implications of thermal filtering. Furthermore,
they do not include the effect of the package in detail, which, this paper shows to be an important factor.

Another recent paper from our group that deals with the spatial filtering aspect is [9]. It discusses
the thermal efficiency of many-core processors in the context of spatial thermal filtering. While it
has a microarchitectural angle with the consideration of many-core design, its focus is narrow as it
only approaches a single design aspect related to thermal filtering — core size and TDP benefit. In
comparison, our current paper expands on it and considers broader implications of spatial filtering on
microarchitectural thermal management including aspects such as granularity of thermal control and
sensor accuracy. Moreover, even for many-core processors, the results presented in the current paper are
more detailed, taking into account the effect of the package, chip thickness, area of the L2 cache etc.
Also, like [10], [9] reasons about spatial filtering using an equivalent RC approach. This paper, on the
other hand, studies the thermal conduction equation directly. Furthermore, none of the above previous
papers except [8] consider the effect of aspect ratio, which is nothing but an alternative manifestation of
the spatial filtering.

Since this paper treats the accuracy of thermal sensors in the light of spatial filtering, research on sensor
accuracy and fusion is relevant here. Lee et. al. [13] present an analytical model for determining the
sensor accuracy as a function of the distance from the hot spot. However, they do not offer any techniques
for improving sensor accuracy. Memik et. al.’s work on sensor allocation [14] discusses uniform and non-
uniform placement of sensors. For uniform sensor allocation, it describes a simple interpolation scheme
to reduce sensor errors. The interpolation schemes proposed in this paper are more accurate than the
simple scheme from [14] but without significantly higher overhead. Sharifi et. al. [17] employ Kalman
filter for eliminating sensor errors. While their scheme is very accurate, it requires the knowledge of
per-unit power consumption numbers, which might not be available easily. The usefulness of our work is
in offering an option between a simple scheme such as [14] and a computationally intensive scheme such
as Kalman filtering [17].

Dadvar and Skadron [5] raise concerns about the possible security risks involved in software-controlled
thermal management. Since our work examines the question of pathological code heating up individual
cache lines, [5] is relevant here. Our finding is partly in agreement with [5] in that there is a possibility
of cache lines heating up to high temperatures due to code activity. However, their aspect ratios prevent
the temperatures from reaching catastrophic limits. Ku et. al.’s research [12] on reducing the power
density of caches by keeping the live lines as far apart from each other as possible is relevant to this work
as well. In effect, they exploit the spatial filtering by increasing the spatial frequency. Our work offers a
framework to reason about such thermal management schemes.
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3 An Analytical Approach

As explained in section 1, at the core of the thermal filtering is the relationship between heat conduction
in the lateral direction along the die and the vertical direction through the die, heat spreader and heat
sink. In order to understand this relationship better, an analytical look into a simplified version of the
problem is beneficial. While the heat conduction, geometry and boundary conditions of an actual chip
and package are quite complex, we make several simplifying assumptions in this section for the sake
of mathematical ease. However, we do examine the effect of these assumptions later by comparing the
trend predicted by the analytical model to experimental data obtained by simulating a realistic chip and
package configuration in a Finite Element Model (FEM).

3.1 A Simplified Heat Conduction Problem

The assumptions made in this section are the following:

• Simplification of the geometry: In an actual chip, heat is conducted in all three dimensions.
However, since the two lateral dimensions are not conceptually different from each other, collapsing
them into one will not affect the nature of the solution qualitatively. Hence, we consider a two-
dimensional version of the heat conduction problem with one vertical dimension and one lateral
dimension as opposed to the full three-dimensional case. In fact, we actually examined a preliminary
solution of the full three dimensional case and observed that its analytical form is not qualitatively
different from that of the 2-D case. Hence, in the interest of time and clarity, we present the 2-D
solution here. Moreover, for mathematical tractability, we only consider a single vertical layer of
conduction (silicon) and ignore the other package and interface layers. Although this is the most
serious assumption, making it affords a much simpler treatment of the problem. Also, it is not far
from reality for mobile processors where the form factor and cost preclude any cooling solution.

• Simplification of the boundary conditions: We specifically make three assumptions. First,
we assume an isothermal boundary at the top (the end exposed to the ambient temperature). In
real processors, this is the top of the heat sink fins where the fan resides. Hence, this boundary
is convective in reality. Second, we assume that the bottom of the chip (the power dissipating
end) is insulated and hence no heat flows through the I/O pads and the Printed Circuit Board
(PCB). Third, we assume the boundaries of the lateral dimension to extend indefinitely. This is
also done for mathematical convenience as infinite boundaries provide simple closed-form solutions
comprising of exponentials.

Furthermore, we perform only a steady state analysis here. Transient analysis would include an extra
temporal dimension which would make it more complex than necessary. For peak power density, steady
state temperature provides an upper bound on the attainable temperature and hence is sufficient for our
purpose.

Figure 2 represents the above-mentioned simplifications pictorially. Figure 2(a) can be thought of as
representing a sheet of silicon with a thickness l (along the y-axis) that extends indefinitely along the
positive and negative x-axes. Its depth (along the z-axis) is considered negligible, effectively reducing
the problem to two dimensions. A power-dissipating block of size 2a with a power density of q resides at
the bottom surface of silicon. The top surface of silicon is isothermal with a temperature of 0 (when the
ambient temperature is non-zero, it only shifts the solution by that constant value). Our task is to find
the temperature distribution on this infinite sheet of silicon as a function of a and l. This is a classic
heat transfer problem that can be solved by using standard Partial Differential Equation (PDE) solving
techniques [4, 15, 11].
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Assuming that the origin is at the center of the power dissipator, it can be seen that the setup shown
in figure 2(a) is symmetric about the y-axis. Therefore, the left and right halves are indistinguishable
with respect to temperature. Hence, the net heat flux (power density) from one side of the y-axis to the
other must be zero. If not, that very difference constitutes an asymmetry through which the two halves
can be distinguished. Thus, the y-axis behaves like it is insulated. This is shown in figure 2(b), which is
essentially the right half of 2(a) with slanted lines clearly marking the insulated behaviour of the y-axis.

q

T = 0

l

2a

q

T1 T2

T = 0

y

x

a

l

Figure 2. Simplified heat conduction problem to mimic a silic on die of thickness l. A power density
of q is applied at the bottom in a region of size 2a. Insulated boundaries are marked by slanted lines.
Serrated lines indicate that the boundaries extend to infini ty in that direction. (a) shows the original
infinite version of the problem and (b) shows the equivalent s emi-infinite version that (a) reduces to
because of symmetry. (b) is essentially the right half of (a)

.

3.2 Analytical Solution

For a moment, let us consider this heat conduction problem qualitatively. In steady state, the temper-
ature distribution of this infinite block does not change over time. This means that for any infinitesimal
volume in it, there is no change in its internal energy. In other words, the rate at which heat energy
enters it (input power) from its neighbours through conduction is the same as that of the heat energy
leaving it (output power). Another way of saying this is that the gradient (derivative in space) of the
power (and hence the power density, since area is constant) is zero. The relationship between this power
entering and leaving the volume and its temperature is governed by Fourier’s law of heat conduction [4]
which is nothing but the “Ohm’s law” for thermal conduction. It says that the power density is directly
proportional to the gradient of the temperature and that the constant of proportionality is the thermal
conductivity of the material (in our case, silicon). This is intuitive because higher the gradient, higher
is the difference between the temperatures of this volume and its neighbours and hence, higher is the
rate of heat transfer. So, the fact that in steady state, the gradient of the power density is zero can be
re-stated using Fourier’s law that the gradient of the gradient of temperature is zero. This statement
with a second order derivative in it is called the steady state heat equation, which we will be solving for
the two-dimensional case.

If we denote the steady state temperature functions of the two portions of figure 2(b) by T1(x, y) and
T2(x, y) and the gradient operator by ∇ (for two dimensions, this is nothing but ∂

∂x
+ ∂

∂y
), the steady

state heat equations we would like to solve are:

∇2T1 = 0 , ∇2T2 = 0 (1)

(0 ≤ x ≤ a, 0 ≤ y ≤ l) (a ≤ x ≤ ∞, 0 ≤ y ≤ l)
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Now let us list the boundary conditions for our problem. From the discussion above, if k is the thermal
conductivity of silicon, Fourier’s law is nothing but the fact that power density = −k∇T . Hence, for an
insulated boundary, since the power density across the boundary is zero, the condition can be written as
∇T = 0. Thus, the boundary conditions for our problem are:

T1(x, l) = 0 T2(x, l) = 0 (2a)

T2(∞, y) = 0 (isothermal boundaries) (2b)

∂T1

∂x
|x=0 = 0

∂T2

∂y
|y=0 = 0 (symmetry, insulation) (2c)

∂T1

∂y
|y=0 = −

q

k
(Fourier’s law, power dissipator) (2d)

T1(a, y) = T2(a, y) (2e)

∂T1

∂x
|x=a =

∂T2

∂x
|x=a (continuity at x = a) (2f)

The analytical solution of this boundary value problem can be obtained using classic PDE-solving
techniques [4, 15, 11]. We provide only the closed-form solutions of the functions T1 and T2 here and
refer interested readers to appendix 5 for a detailed derivation.

T1(x, y) =
ql

k

[

1 −
y

l
− 2

∞
∑

n=0

e−(γn
a

l
)

γ2
n

cosh(γn
x

l
) cos(γn

y

l
)

]

(3)

T2(x, y) =
ql

k

[

2
∞

∑

n=0

sinh(γn
a
l
)

γ2
n

e−(γn
x

l
) cos(γn

y

l
)

]

(4)

where, γn = (2n + 1)
π

2
(n = 0, 1, 2, . . .)

It is useful to make a couple of observations about these solutions. It can be seen that all the variables
of interest (x, y and the half-size a) appear in the equation as ratios with respect to l. This indicates
that the lateral dimensions matter only relative to the vertical thickness and not in the absolute. For our
purposes, it is sufficient to restrict ourselves to the peak temperature on the infinite sheet. Actually, for
a given a, the peak temperature Tpeak occurs at (0, 0) i.e., at the center of the power dissipator. Hence,
Tpeak = T1(0, 0). Also, the absolute maximum peak temperature (for all a) occurs when a = ∞ i.e., when

the power dissipating block is very large. Let us call this temperature T∞
peak. Then, T∞

peak = ql
k
, where q is

the power density and l
k

divided by the area of the power dissipator gives the vertical thermal resistance.
Now, defining the normalized peak temperature T norm

peak as Tpeak/T∞
peak and the normalized half-size anorm

as a
l
, we get

T norm
peak =

Tpeak

T∞
peak

=
T1(0, 0)

ql
k

= 1 −
8

π2

∑

n=1,3,5,...

e−n π

2
anorm

n2
(5)

It is this T norm
peak , whose value ranges between 0 and 1, that has been plotted against 1

anorm

in figure 1(b).
One can clearly see the low-pass filter behaviour with a cut-off frequency around anorm = 1. This means
that when the half-size of the power dissipator is smaller than the vertical thickness, the peak temperature
falls rapidly in relation to the half-size.
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3.3 Spatial Filtering in Practice

Equation (5) and figure 1(b) show the exponential relationship between the size of a power dissipator
and its peak temperature. Similarly, (3) shows the linear relationship between the power density q and
peak temperature. This suggests an interesting trade-off for microarchitectural thermal management. A
thermal management scheme can reduce the temperature of a hot block by reducing its computational
activity, thereby reducing its power density. Alternatively, it can manipulate the size of the power dissi-
pating block (e.g., by partitioning the block and separating the partitions by a safe distance) and hence
exploit this spatial filtering effect to reduce peak temperature. When the size of the power dissipating
block is close to the cut-off frequency, this latter choice can have a significant benefit over the former
because of its exponential relationship as opposed to the linear relationship in the former. At the same
time, when the block is so large that even the partitions are much larger than the cut-off frequency,
reducing the power density might be a better choice since the benefit from size reduction becomes negli-
gible. In order to examine such microarchitectural implications, it is necessary to reconcile the theoretical
model discussed in the previous section with what happens in practice. So, in this section, we relax the
assumptions of the analytical model and examine the effects through experiments under a commercially
available FEM solver, ANSYS 11.0 [1].

3.3.1 Impact of Size

We remove the assumptions of the last section in three steps. First, we consider the full three-dimensional
problem with a convective boundary near the ambient temperature. Next, we include the effect of
multiple package layers and finally, we investigate the impact of geometric boundaries. For the first step,
we consider a 10 mm x 10 mm silicon die that is 1 mm thick. The top of the die is cooled by convection
to an ambient at 0◦C with a heat transfer co-efficient equivalent to a 0.1 K

W
thermal resistance (i.e., for

a 100mm2 area, it is 0.1 W
mm2K

) . At the center of the base of the die is a square power dissipator with a

power density of 1 W
mm2 . The size of this power dissipator is varied from 0.2 mm to the full 10 mm. The

maximum peak temperature for this experiment occurs when the power dissipator occupies the entire
silicon die and its value is 20 degrees more than the ambient. We call this experiment center-Si to denote
the single layer of silicon with a power dissipator at its center.

Next, we repeat the same experiment with the die attached to three other layers — a layer of Thermal
Interface Material (TIM) followed by a layer of copper (representing the heat spreader), followed by
a second layer of copper (denoting the heat sink). To isolate the effect of multiple layers from that
of finite boundaries, we restrict the lateral dimensions of all the four layers to 10 mm x 10 mm. The
vertical thickness of each layer is set in such a manner that the proportion of the thicknesses is similar
to what is seen in a typical package and that the total equivalent thickness in silicon terms (i.e., sum
of the thicknesses of the individual layers weighted by the ratios of their thermal conductivities to that
of silicon) is still 1 mm. So, the maximum peak temperature is still 20◦C. The actual thicknesses of
the silicon, TIM, spreader and heat sink layers are 0.0571 mm, 0.0076 mm, 0.3810 mm and 2.6286 mm
respectively. The respective thermal conductivities are 100, 4, 400 and 400 W

mK
. The heat transfer co-

efficient at the top surface remains the same as before and the size of the power dissipator is varied as
before. We call this experiment center-4layers-equal to denote the equal lateral size of the four layers
and the location of the power dissipator at the center of the base.

Finally, to examine the effect of the boundaries, we add a few more configurations. To model a normal
package in which the heat spreader and heat sink are larger than the die, we extend the center-4layers-
equal configuration to make the lateral sizes of the heat spreader and the heat sink layers to be 20 mm x
20 mm and 40 mm x 40 mm respectively. We call this center-4layers-spread since it models the effect of
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lateral spreading beyond the die area into the spreader and the sink. The heat transfer co-efficient remains
the same as before. It is to be noted that the maximum peak temperature in this case will be lower
than the 20◦C seen in the previous cases because of the lateral spreading beyond the die area. Finally,
to study the effect of the location of the power dissipator (and hence the effect of finite boundaries), we
extend all of the above configurations by changing the location of the power dissipator from the center
of the base to a corner. This restricts the directions in which heat spreads laterally in silicon to two
from the four possibilities (north, south, east and west) at the center. We name these configurations in
the form corner-xxxx where xxxx derives from the names of the previous configurations. For instance,
corner-Si is basically the same as center-Si except for the location of the power dissipator and so on. A
center-xxxx experiment and the corresponding corner-xxxx experiment can be thought of as forming the
lower and upper bounds on the attainable peak temperature in that particular configuration for a given
power density.
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Figure 3. Comparison of the analytical model and FEM simulat ion. (a) shows the impact of power
dissipator size and (b) shows the effect of aspect ratio.

All the above experiments are run under ANSYS 11.0 with a lateral grid size of 100 x 100 on silicon
(except corner-4layers-spread, which uses a 50 x 50 grid due to a software license restriction on the
number of nodes). The lateral dimensions of the grid cells are the same in the other layers as well.
Vertically, the silicon die is divided into three layers, spreader and sink are divided into four layers each
and the TIM is modeled as a single layer. Figure 3(a) shows the results of these experiments. It plots
the peak temperature of a configuration as a function of the size of its power dissipator. Both the axes
are normalized. The temperature axis reports the ratio of the peak temperature of a configuration to
the maximum peak temperature of center-Si. The size axis reports the ratio of the half-size of the power
dissipator to the vertical thickness of the configuration (1 mm in silicon equivalent). For comparison, it
also plots the peak temperature computed by the analytical equation (5) (2d-analytical in the graph).

The main conclusion one can draw from the graph is that the behaviour suggested by the analytical
equation is not universal. There is a significant difference between the exponential relationship suggested
by the analytical equation and the “straight line” plots of the 4layers-spread configurations that model
a desktop-type package. The configurations with only a single layer of silicon (corner-Si and center-Si)
on the other hand, are closer to the analytical equation showing that going from two to three dimensions
or from an isothermal boundary to a convective boundary are not factors causing significant difference.
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Furthermore, it can be seen that the plot shows clear “bands” bounded from below by a center-xxx
configuration and from above by the corresponding corner-xxx configuration. This means that the
location of the power dissipator matters to the degree indicated by the width of the “band”. Hence, the
finite boundaries of the geometry affect different configurations differently. The location matters a lot
for a mobile-type configuration without any spreader or sink (*-Si) while it does not matter at all for a
typical desktop-type package (*-4layers-spread). This is because of the extra heat spreading offered by
copper (as opposed to silicon) and the extra area available for spreading beyond the die. Since the entire
die is roughly at the center of the heat spreader and the heat sink, the position of the power dissipator
within the die becomes immaterial.

Thus, the lateral heat spreading in the heat spreader and the heat sink are the most significant factors
determining the extent of spatial thermal filtering. The steep exponential nature of the spatial filtering
indicated by the analytical equation is only valid for chips without a cooling solution (e.g. processors
in hand-held devices). For a typical package found in desktop processors, the exponential is so shallow
that it behaves like a straight line. Since previous work [7, 10] examined the spatial filtering from the
standpoint of thermal modeling accuracy, it was sufficient for them to consider the “worst-case” thermal
gradients that occur in the absence of a heat spreader or a heat sink. However, for a thermal management
angle, the distinction is indispensable.

3.3.2 Impact of Aspect Ratio

In the analytical simplification of the spatial filtering, a factor that was not considered due to the
lack of three dimensions was the effect of the lateral aspect ratio of the power dissipator on its peak
temperature. This relationship is important to understand the thermal behaviour of high aspect ratio
microarchitectural sub-blocks like cache lines. Hence, figure 3(b) plots this relationship for the three
center-* configurations. The area of the power dissipator is fixed at 4mm2 and its aspect ratio is varied
from 1:25 to 1:1. At an aspect ratio of 1:1 (2 mm x 2 mm block ⇒ half-size = 1 mm), this is nothing
but the set of points corresponding to the normalized half-size of 1 in figure 3(a). It can be seen from
the plot that aspect ratio also has an exponential relationship with peak temperature. Also, similar to
the dissipator size, the extent of spatial filtering is dependent on the additional layers of copper in the
package. The extra heat spreading in copper essentially smoothes out the response of the thermal filter.
Hence, the curves are shallow for the 4layers configurations and steep for Center-Si.

4 Microarchitectural Examples

So far, we have examined the thermal spatial filtering phenomenon in isolation. In this section, we will
study its microarchitectural implications through three microarchitectural examples. The first is a study
of the thermal efficiency of many-core processors in the light of the granularity of thermal management.
The second is an investigation of whether high aspect ratio sub-blocks like cache lines can become hot
spots due to pathological code behaviour. The third is an exploration of thermal sensor accuracy as a
function of the distance between sensors and an examination of the effectiveness of sensor interpolation
schemes.

4.1 Many-Core Processors

4.1.1 Thermal Benefit of Spatial Filtering

As it was mentioned in section 1, thermal management, when considered distinctly from power manage-
ment, is mainly the efficient distribution of heat within the available die area. One way to accomplish
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this is through a cooling system that spreads heat well. For instance, heat spreaders made out of ar-
tificial diamonds are available commercially [20], since diamond has the highest thermal conductivity
among known materials. Heat pipes are also an example of such efficient spreading. On the other hand,
considering the thermal spatial filtering discussed before, many-cores provide an interesting alternative.
In comparison with large monolithic cores, they provide an opportunity to distribute the heat generation
better. Since the power density on the lower level caches is much lower compared to that on the cores,
a possibility is to floorplan the die in the form of a checkerboard with cores forming the dark squares
and lower level cache banks forming the light squares (see figure 4(a) for an example). This exploits the
spatial filtering by maximizing the spatial frequency of the power density distribution. Hence, in this
section, we study the effect of such checkerboarding of many-cores in the light of spatial filtering.

Assuming that the silicon die is arranged in the form of a checkerboard as shown in figure 4(a), we
vary the number of cores by varying the size of the checkerboard (from 2 x 2 to 20 x 20) and study
its effect on peak temperature. The power densities in the cores and the cache blocks are assumed to
be constant nowadays through the scaling of the number of cores. This is done to isolate the thermal
effect of spatial filtering from other circuit and microarchitectural factors affecting temperature. The
constant power density assumption is also reasonable under constant electric field scaling principles [6],
since the microarchitecture of a core is assumed to remain constant while its size is scaled as permitted
by technology. Hence, with the number of cores increasing, the total power dissipated remains constant
across the configurations. Since the thickness of the die does not scale with the feature size for reasons of
mechanical strength, it is assumed to be constant as well. Later, we examine the effect of this assumption
by performing a sensitivity study on varying the die thickness.

(a) regular-50 (b) regular-25 (c) alt-25 (d) rotated-25

Figure 4. Illustration of the several checkerboard configur ations studied. Darkly shaded areas denote
the cores and the unshaded areas denote the lower level cache banks. The numeric suffix attached
to the name of each configuration indicates the percentage of the die area occupied by the cores.
Each figure above shows a many-core die with 32 cores.

We know from the discussion in the last section that the package is a significant determinant in the
spatial filtering. Hence, we consider two different package configurations: one without any cooling system
to mimic hand-held mobile processors and another with a typical package found in desktop processors
with a heat spreader and a heat sink. We call the former mobile-regular-50 with regular-50 denoting a
regular checkerboard as shown in figure 4(a), with the cores occupying 50% of the total die area. In a
similar vein, the latter is called desktop-regular-50.

The experimental setup is as follows: the silicon die is 16 mm x 16 mm x 0.15 mm in size for both
cases. For desktop-regular-50, the additional layers include a TIM of thickness 20µm and the same lateral
dimensions as the die, a copper heat spreader of size 3 cm x 3 cm x 1 mm and a copper heat sink of size 6
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cm x 6 cm x 6.9 mm. The heat sink is cooled by convection with a co-efficient of heat transfer equivalent
to a 0.1 K

W
thermal resistance. For an apples-to-apples comparison, we set the heat transfer co-efficient

at the convective boundary of mobile-regular-50 (top of the die) to be such that the peak temperature
on the die matches that of desktop-regular-50 when the power density on the entire die is uniform. The
thermal conductivities of the materials are as in section 3.3. The uniform power density on the cores is
set to be 1 W

mm2 , while that on the L2 cache banks is set to be 0.1 W
mm2 . In both the desktop and mobile

configurations, we also explore the case of infinite cores as a limit study. When the number of cores is
infinity, the power density on the entire die becomes uniform with a value equal to the average of the
power density on the cores and that on the cache banks, weighted by their respective area occupancies
(50% in this case).
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(d) Effect of core orientation and occupancy (mobile)

Figure 5. Results of the checkerboard experiments. Note the overlap of the curves rotated-25 and
regular-25 (rotated-75/regular-75 ) in (c) and (d). alt-25 and regular-25 are also coincident in (c).

A steady state thermal analysis of this setup is performed using ANSYS 11.0 FEM solver. For mobile-
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regular-50, we use a lateral grid size of 96 x 96 on the die and for desktop-regular-50, a grid size of 48 x 48
is employed (due to software license restriction on the number of nodes). The lateral dimensions of the
grid cells in the other layers are the same as in silicon. The vertical modeling resolution is identical to
that in section 3.3. The difference between the peak temperature on the die and the ambient temperature
for this study is plotted in figure 5(a). Both the axes are logarithmic (except for the infinity point on
the x-axis). Since the number of cores is inversely related to the size of a core, it is similar in sense to
spatial frequency. Hence, with the number of cores on the x-axis, the graph is analogous to a Bode plot.
The low-pass filter behaviour is clearly evident from the graph of mobile-regular-50 with a cut-off of
around tens of cores. On the other hand, the response is quite shallow for desktop-regular-50. Actually,
in comparison to mobile-regular-50, the response has actually “shifted left” in desktop-regular-50. The
total vertical thickness of desktop-regular-50 (in silicon equivalents) is much greater than that of mobile-
regular-50 because of the additional layers. Hence, for a given core size in silicon, the normalized size
(the ratio of the size to the vertical thickness) is much smaller for the desktop configuration than for
the mobile configuration. In comparison to two cores, at infinite cores, there is a 14% reduction in peak
temperature for desktop-regular-50, which translates into an allowable Thermal Design Power (TDP)
increase of an equal amount. At 200 cores, this benefit drops to 10%. These results are similar to the
numbers reported in [9] Although significant, this is not as good as the benefit for mobile-regular-50,
which is 45% going from 2 cores to infinite cores and 33.5% at 200 cores. This is because of the heat
spreading in copper which smoothes out the response of the low-pass filter.

From the discussion in the previous section, we know that vertical thickness is an important factor
to be considered in a study of spatial filtering. Hence, we explore the effect of the die thickness in both
desktop and mobile configurations. Figure 5(b) displays the results of such an investigation. It shows
the peak temperature for a checkerboard similar to figure 4(a) for die thicknesses of 50µm, 150µm and
300µm. The experimental setup is similar to the one in figure 5(a) except that the power density on
the L2 caches is assumed to be zero. It is evident that die thickness has a great impact on the mobile
configuration and a very small effect on the desktop case. This is expected because the die forms the
entire heat conduction stack for the mobile case while it is only a small fraction of the total vertical
thickness in the desktop case. Also, the trends in spatial filtering (steep response for mobile and shallow
response for desktop) remain the same across different die thicknesses. An interesting behaviour in the
mobile configuration is that a thinner die does not necessarily mean lower peak temperature. In fact,
it turns out to be the opposite for most core sizes. This is because, the thicker the die, the greater
is the lateral heat spreading. In the absence of a heat spreader, for a checkerboard arrangement, the
reduction in temperature due to additional spreading in silicon (because of a thicker die) is greater than
the increase in temperature due to higher vertical thermal resistance. The exceptions to this rule are
the endpoints (2 cores and infinite cores), although for different reasons. In the two-core case, the effect
of lateral spreading is significantly diminished because all the cores occupy the corners of the die where
spreading is possible in only two directions as opposed to four. In case of infinite cores, lateral spreading
is made irrelevant because of the uniform power density on the entire die. When neighbours have the
same temperature, there is no heat flow between them even if the opportunity is offered by the greater
die thickness.

An assumption in the previous checkerboard experiments was that the cores occupy 50% of the total
die area. In reality, core-to-cache ratio varies across different microarchitectures. Hence, we study
the effect of die occupancy by cores here. When the die occupancy is different from 50%, alternative
checkerboard configurations are possible. Figure 4 illustrates a few such configurations for an occupancy
of 25%. regular-25 is a derivative of regular-50. alt-25 is very similar to regular-25 except that the
cores do not occupy the corners of the chip and the cache banks of a particular processor are placed
on both sides of the core. This alternative floorplan is examined in relation to regular-25 for studying
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the effect of chip boundaries. For a die occupancy of 25%, since the cores shown in figure 4 have an
aspect ratio other than one (1:2 in this case), we also study the effect of rotating the cores by 90◦ so as
to nullify the effect of orientation. This arrangement shown in figure 4(d) is called rotated-25. We also
explore a die occupancy of 75% through arrangements similar to the 25% case. By the same convention,
regular-75 is nothing but the complement of regular-25 where cores become cache banks and vice versa.
rotated-75 is the complement of rotated-25. We do not examine an alt-75 configuration since that would
mean sub-dividing a core into two portions and placing them on either side of a cache bank, which would
be difficult in practice. The peak temperature for these arrangements in the desktop and the mobile
configurations are presented in figures 5(c) and 5(d) respectively.

It can be observed that the die occupancy plays the most important role in determining the peak
temperature. When the die occupancy is lower, the spatial “duty cycle” is small i.e., two small high
power density areas (cores) are separated by a large low power density area (cache banks). On the other
hand, the duty cycle is higher for higher die occupancy. Moreover, in comparison with a low occupancy
case, the total power dissipated in the corresponding high occupancy die is greater. This is the reason for
at least three distinct lines (one for each occupancy level) in each of the graphs 5(c) and 5(d). Another
interesting phenomenon is the impact of the different floorplan configurations. Clearly, core orientations
do not matter at all for the desktop or the mobile configurations as can be seen from the overlapping lines
and points of regular/rotated-25 and regular/rotated-75. Similarly, the fact that alt-25 is practically on
top of regular-25 for desktop indicates that placing cores in the corner of the chip does not matter in the
presence of the heat spreader and the heat sink. This is consistent with our findings in section 3.3 about
the location of a power dissipator on the die (center-4layers-spread vs. corner-4layers-spread). This is
again because of the lateral spreading in the copper layers. While core orientation did not matter for
the mobile configuration, there is a clear difference in moving the cores away from the corners of the die.
This is the reason the curve for alt-25 is significantly lower than regular-25 in figure 5(d). The extra
space available for lateral spreading cools down the cores in the corners significantly.

In addition to the above-mentioned parameters, we also vary the magnitude of the cache bank power
density and the convection heat transfer coefficient. The effect of these parameters on peak temperature
tracks the trends observed above with a steep response in the mobile configuration and a shallow pattern
in the desktop configuration. In summary, there is a significant thermal benefit in the choice of many
small cores as opposed to a few large cores due to spatial filtering.

4.1.2 Local vs. Global Thermal Management

In the context of many-core processors, it is important to study the relationship between core size and
the granularity of thermal management. For a given number of cores, it is useful to know the appropriate
granularity at which DTM is most effective. Coarser granularity would incur excessive performance cost
to contain the temperature below the thermal emergency threshold, while finer granularity would incur
superfluous hardware cost. Hence, in this section, we investigate the effectiveness of DTM at various
levels of granularity: locally at the level of a functional block (e.g., register file, cache, branch predictor
etc.), an architectural sub-domain within a core (e.g., the integer pipeline, the floating point pipeline,
the memory pipeline etc.) or globally at the level of an entire core. This is accomplished through a
microarchitectural simulation study of a many-core architecture with each core resembling that of an
Alpha 21364 as in [19].

We simulate two different scenarios marking the two extremes of core arrangement with respect to
spatial filtering. In the first, all the cores are arranged close to each other at the center of the die with the
second level cache surrounding them. The floorplan of such a setup with 16 cores is shown in figure 6(a).
The shaded areas denote the cores while the unshaded areas denote the L2 cache (the cores are shaded in
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(a) Center (b) Checker

Figure 6. Illustration of the two different many-core scena rios simulated. The unshaded areas indicate
second level cache. The shaded areas denote cores resemblin g Alpha 21364.

alternating light and dark shades for better visibility). In the second, the cores and the L2 cache blocks
are arranged in a checkerboard-like fashion similar to the previous section. The floorplan of such a setup
is shown in figure 6(b). The former scenario is called center and the latter as checker. In both cases, the
L2 cache is assumed to occupy 75% of the total die area.

As in the previous section, we vary the number of cores, keeping the power density in each core (and
hence the total power on the entire die) constant. In order to examine the effectiveness of DTM, out of
all the n cores, we select a single core that is closest to the center of the die and manage its temperature
by turning off computational activity in regions of varying sizes. Since we are interested in the best-case
DTM potential of a region, we only study the steady state temperature due to its shutdown. If turning
a region off does not help in the steady state, it is certainly not going to help in the transient.

The regions are turned off at three levels of granularity. First is at the functional unit level where
each of the 15 architectural units are turned off separately, independent of each other. The unit that
provides the greatest temperature reduction is chosen as the candidate for comparison against other
levels of granularity. The second level of granularity is that of a sub-domain within a core. The core is
subdivided into the following four non-overlapping sub-domains:

• Fetch engine: I-cache, I-TLB, branch predictor and decode logic.

• Integer engine: Issue queue, register file and execution units.

• FP engine: Issue queue, register file and execution units.

• Load-store engine: Load-store ordering queue, D-cache and D-TLB.

Similar to the functional unit level, each sub-domain is also turned off independent of each other and
the best-case peak temperature reduction is chosen. The third and the coarsest level of granularity we
consider is that of an entire core. We do not consider coarser levels of granularity (such as groups of
cores) here. At the coarsest level, we only turn off a single core closest to the center of the die.

The experimental setup for this study involves the use of SPEC2000 benchmark suite [21] simulated
on a tool set involving modified versions of the SimpleScalar performance model [2], Wattch power
model [3] and HotSpot 4.1 thermal model [8]. The simulation run of each benchmark involves a subset
of 500 Million instructions identified using the SimPoint [18] tool. The average power density values

15



generated from these runs are for a single core at 130 nm. For these steady state thermal simulations,
we vary the number of cores by scaling the lateral dimensions of each core linearly. All the cores are
assumed to run the same benchmark and hence the power numbers are replicated across them. The
thermal model parameters are set to the defaults of HotSpot 4.1 except the die size which is set to 12.4
mm x 12.4 mm (to reflect the 75% L2 cache area) and the convection resistance of the package which
is set to 0.75 K

W
. We use the grid-based model of HotSpot with a resolution of 256 x 256 grid cells on

the die. Of the 26 SPEC2000 benchmarks, only 11 (7 int (bzip2, crafty, eon, gcc, gzip, perlbmk, vortex)
and 4 fp (art, galgel, mesa, sixtrack)) have peak steady state temperatures above the thermal emergency
threshold of 85◦C. Since only these benchmarks need DTM, the results presented here are averages over
these 11 benchmarks.
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Figure 7. Results of the local vs. global thermal management study.

Figure 7 presents the results of this study. It plots the difference between the peak and the ambient
temperatures for the various levels of DTM granularity as a function of the number of cores averaged
over the 11 benchmarks listed above. Figure 7(a) plots the results for the center scenario with the cores
at the center while figure 7(b) plots the same for the checker scenario. The All-on curves denote the
case with no DTM. It can be seen that it is a decreasing curve with about 16% temperature reduction
going from a single core to 100 cores for the center case and 16% going from 4 cores to 100 cores for
the checker case. This temperature reduction is solely due to spatial filtering since the power density
and total power remain constant across the number of cores. This is consistent with the findings in the
previous section. Also, the curve for checker is lower than that for center because there is a much wider
spatial distribution of heat in the latter because the cores are dispersed.

The Unit-off, Domain-off and Core-off curves denote the best-case (lowest) peak temperatures for
the three levels of DTM granularity. Since the power density is kept constant across the number of cores,
the total power dissipated in a single core decreases with increasing cores. Hence, the thermal benefit
in shutting down a single core also decreases. This is the reason why the Core-off curves are mostly
increasing. The Unit-off and Domain-off curves on the other hand, show both increasing and decreasing
behaviours. This is a function of two competing factors: on the one hand, the peak temperature (even
with all the units turned on) diminishes due to spatial filtering and on the other, the power dissipated
(and saved) per unit (or per sub-domain) decreases due to technology scaling. In the curves for the
center scenario, the latter predominates the former up to 9 cores after which the former takes over.
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The main conclusion one can draw from the graphs is that local thermal management (at the functional
unit level or at the sub-domain level) ceases to be effective after 9-16 cores. This can be seen from the
minimal difference between the Unit-off and Domain-off curves relative to the All-on curve after 16
cores. In fact, this happens even earlier for the center scenario at 9 cores. Also, functional unit level
management degenerates into sub-domain level management even at 4 cores. It can also be seen that
for 50+ cores, even turning off an entire core is not very different from All-on. This suggests that one
might have to toggle groups of cores at that core size. Another interesting finding is that even though
the integer register file is the hottest unit in most of our experiments, it is not the one that gives the
most thermal benefit when shut down. This is a function of two factors: first, a higher amount of power
is saved in turning off the data cache; and second, other units like the data cache and the integer ALU
are hot as well - only marginally cooler than the register file. For these reasons, the load-store engine
is the sub-domain that offers the best thermal benefit when shut down. Finally when the entire core is
shut down, the hottest units are actually the ones in the periphery of the core and especially the ones
adjoining the integer register file of the neighbouring core in the case of center scenario.

We also performed sensitivity studies varying the ratio of the L2 cache area and the package character-
istics by removing the heat sink and spreader. The results of these studies were not much different from
what has been presented above. Thus, to summarize, we can learn from this section that within-core
thermal management ceases to be effective beyond tens of cores.

4.2 Sub-blocks with High Aspect Ratio

We saw in section 3.3.2 that the aspect ratio of a block bears an exponential relationship with its
peak temperature. Several microarchitectural sub-blocks like register file entries and cache lines are of
very high aspect ratios. Their access can be controlled by software either directly (as is the case with
registers) or indirectly (as is the case with cache lines). Hence, in this context, it is interesting to examine
the question of whether malicious code behaviour can heat up such sub-blocks to undesirable levels by
concentrating activity in them. In this section, we approach this question for the data cache from a
spatial granularity angle.

Under typical program behaviour, the data array is usually not the hot spot in a cache. This is
because, over the time scales at which silicon heats up, the accesses to the data array are usually well-
distributed in space. Also, on every cache access, only the line that is addressed dissipates dynamic
energy. On the other hand, the periphery is usually the hot spot since the address/data drivers, sense
amps, pre-decoders etc. dissipate dynamic energy every time the cache is accessed. However, under
malicious program behaviour, a single cache line can potentially become the hot spot if the program
directs all cache accesses to it. In this section, we perform a microarchitectural study to examine this
possibility.

We model a processor similar to the Alpha 21364 as in [19] but scaled to 90 nm. We first collect
a representative set of per-unit power consumption values. We do so by simulating the SPEC2000
benchmark suite over a modeling setup similar to that in section 4.1.2. From these simulations, we select
the benchmark bzip2 as the candidate for further exploration and illustration, since it has the highest
average data cache temperature.

Next, we subdivide the data cache power consumption into those of the individual sub-blocks within
the data cache. This is accomplished using the Cacti 5.3 [22] tool that models the performance, dynamic
power, leakage power and area of caches. We use Cacti to model an Alpha-like data cache (64 KB, 2-way,
64-byte lines) and separate the data array into the active lines that dissipate dynamic power and the
remainder of passive lines that dissipate leakage. We then aggregate the periphery of each sub-array into
a single sub-block (including the row and column decoders, sense amps, muxes, comparators etc.). The
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address-input/data-output drivers and the request/reply networks are aggregated into the “outside mat”
sub-block. For ease of modeling, the tag and the data portions of the sub-blocks are aggregated into
one. Table 1 shows the area, power consumption and power density of each of these sub-blocks for the
bzip2 benchmark. The area and power numbers are expressed as a percentage of the total cache area and
power respectively while the power density is represented as a ratio to the average cache power density.
It is to be noted that among these sub-blocks, the location and the power consumption of only the active

Region Area % Power % Power Density Ratio

Outside Mat 56.2 61.4 1.09
Passive Lines 25.7 7.0 0.27
Sub-array Periphery 18.1 22.6 1.24
Active Line 0.03 9.0 358.4

Table 1. Area, power and power density distribution within t he data cache for the bzip2 benchmark.

lines (and hence the passive lines as well) can be easily controlled by program behaviour. The other
sub-blocks are typically a lot less amenable to program control. Moreover, their thermal behaviour is
fairly similar across all accesses, independent of the address/location of the line accessed. Now, it can be
seen from table 1 that much of the cache area is occupied by the address/data drivers and request/reply
networks. The SRAM array occupies only about a quarter of the cache area with most of it being passive
lines at any given time. The power density in these passive lines (due to leakage) is only about a quarter
of the average cache power density. On the other hand, the power density at the sub-array periphery
is about 24% more than the average. At any given cache access, the power dissipated in the active line
is about 9% of the total cache power. For the 64K cache with 64-byte lines, since there are 1024 lines,
the area of an active line is about 1/1024 of the SRAM array area. This is a mere 0.03% of the total
cache area. Hence, the power density of an active cache line is two orders of magnitude greater than
the average. Such high power density however, is not sustained for the time scale at which silicon heats
up (tens of thousands of cycles), since the accesses to the cache lines are usually distributed in space.
However, malicious code behaviour can concentrate activity in a single line and sustain such a high power
density, potentially rising its temperature to undesirable levels. However, the small area of the line is a
mitigating factor in the thermal behaviour due to spatial filtering. Furthermore, the high aspect ratio
of a cache line (between two and three orders of magnitude greater compared to the cache itself) is also
another mitigating factor. The extent to which the spatial filtering balances the high power density is
the question we are trying to explore.

In order to study the effect of cache layout on its thermal profile, we investigate two different cache
arrangements. Figure 8 illustrates them. The first is a naive arrangement with a single sub-array. The
shaded portion includes both the “outside mat” sub-block and the sub-array periphery. The second is a
placement optimized for performance with the sub-arrays sized in such a manner (using Cacti) that the
delays along the two dimensions are balanced. It subdivides the SRAM array into 16 sub-arrays, each
with 64 lines. The unshaded areas denote the SRAM cells. The lightly shaded areas denote the periphery
of each sub-array and the darkly shaded area denotes the “outside mat” sub-block. It should be noted
that the aspect ratio of a single cache line in Placement 1 is higher than that of a line in Placement
2. Since the power densities of the sub-blocks are the same in both the layouts, in considering the two
placements, we are actually investigating the impact of sub-block size and aspect ratio on temperature.

In modeling the thermal distribution of these cache arrangements, a challenge arises because of the
vastly differing sizes of the sub-blocks. While the other sub-blocks of the cache are comparable in size,
the active cache line is different in size and aspect ratio by about three orders of magnitude. Modeling
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(a) Placement 1 (b) Placement 2

Figure 8. Two different placements studied for the data cach e. The unshaded areas denote the SRAM
sub-arrays while the shaded portions indicate the peripher y and routing.

the entire die at the resolution of the single cache line is prohibitive. In an FEM parlance, doing so
would entail millions of FEM nodes. Hence, we perform thermal modeling at two distinct resolutions.
First, we model the case with all the sub-blocks except the active line, i.e., all the cache lines are passive,
dissipating only leakage power. This is done using the grid-based model of the HotSpot tool at a grid size
of 256 x 256 for the entire die (The data cache alone occupies a sub-grid of about 30 x 35). The package
parameters are set to their default values except the convection resistance of the package, which is set
to 0.75 K

W
. Next, we model the active cache line alone (with the rest of the die dissipating zero power).

This is done using the ANSYS tool for a die and package configuration identical to the first step above.
Due to the small size of the cache line, the thermal distribution of the die in this case is independent
of the location of the line within the cache. Hence, we assume that the cache line is at the center of
the die and exploit the symmetry of such a setup about the two axes, thereby reducing the number of
required nodes by a factor of four. Furthermore, ANSYS employs a non-uniform mesh to model this
setup and hence is able to model it with tens of thousands of FEM nodes. Finally, for combining these
two steps, since thermal conduction is a linear phenomenon, we use the principle of superposition and
sum up the temperatures. It should be noted that since we are interested in the worst-case, we only
consider steady-state thermal behaviour here.

Figure 9 shows the results of these experiments. Figures 9(a) and 9(b) plot the spatial temperature
distribution of the data cache for the case where all the lines are passive (the first step described above).
It can be seen that the hottest region of the cache lies outside the SRAM array in both cases. This is
consistent with the power density data since the passive cells have the lowest power density within the
cache. It is also clear from the performance-optimized placement that the address/data drivers and the
request/reply networks are the most significant contributors to the cache temperature (however, such a
conclusion cannot be drawn from the naive placement as it clubs the sub-array periphery and “outside
mat” sub-blocks into one).

Figure 9(c) plots the results of including the active cache lines. It plots the peak temperature within
the active lines for both the naive and performance-optimized cache placements. Malicious code intent
upon heating up the cache can do so either by concentrating activity on a single cache line or on a few
contiguous cache lines in a round-robin fashion (to prevent spatial filtering due to the small size and large
aspect ratio of a single cache line). In doing so however, it accesses every cache line only once in several
(say n) cycles. This reduces the power dissipated and hence the power density by a factor of n. Thus the
round-robin technique is actually a trade-off between power density and spatial filtering. Figure 9(c) plots
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Figure 9. Results of the data cache thermal experiments. (a) and (b) show the case when all lines are
passive. (c) plots the peak temperature of the active lines a s a function of the number of lines that
are accessed contiguously.

this trade-off for both the cache placements. For the naive placement, with 1024 lines in the sub-array, a
round-robin technique can access up to 1024 contiguous lines. Similarly, for the performance-optimized
placement, it is restricted to 64 lines since each sub-array only has that many lines. Accessing the lines of
another sub-array reduces the advantage of contiguity. The trade-off between power density and spatial
filtering is evident in both the Placement 1 and Placement 2 curves. They both increase up to a point
and then start falling off. The maximum point is when the reduction in power density starts to outweigh
the benefit from size and aspect ratio.

As mentioned above, the thermal behaviour of an active cache line has two mitigating factors that
counterbalance its high power density: its size and its aspect ratio. The Square-Aspect curve isolates the
effect of the former. It shows the peak temperature of a single cache line assuming that it is a square.
The area and the total power dissipated are assumed to be the same as a normal cache line. It can be
seen from the graph that the Placement * curves are far below the Square-Aspect curve. This means
that aspect ratio is a significant determinant in the peak temperature of a cache line. In fact, this is
the reason why the Placement 2 curve is higher than Placement 1 (since the aspect ratio of a cache
line in Placement 1 is higher than that of Placement 2 ). Furthermore, the graph also plots the peak
temperatures within the cache (Max-on-Cache) and across the entire die (Max-on-Die) as references. It
is to be noted that these reference temperatures are assuming zero active lines.

It can be seen that for Placement 1, the steady-state temperature rise due to worst-case code behaviour
is only 6.8 degrees above the peak temperature within the cache. This is not sufficient to make the cache
lines the hottest spots within the die (as can be seen from Max-on-Die). On the other hand, for Placement
2, the maximum rise is 19 degrees, which is significant enough to make it 9.9 degrees hotter than the
hottest region of the die. As we saw above, this difference is due to the aspect ratio of cache lines in
Placement 1 vs. Placement 2.

In conclusion, we have provided an example of a cache layout where the application behaviour can
cause the lines to become a hot spot and another where this is not possible. However, in both cases, we
have shown that aspect ratio plays a crucial role in reducing the peak temperature from an extraordinary
value at a square aspect ratio (141◦C in our examples) to a much more manageable level (99.4◦C and
87.2◦C) in spite of a power density that is orders of magnitude higher than average.
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4.3 Thermal Sensors

Thermal sensing is a necessary component of Dynamic Thermal Management (DTM), and sensor
accuracy determines the performance of DTM [19]. There can be three major sources of errors in a
sensor’s thermal measurement. The first is calibration error where the sensor is off by a constant or a
linear factor. This can usually be rectified by calibrating the sensor during “burn-in” or if that is not
possible, by compensating for it by modifying the temperature at which DTM engages. The second
is noise (e.g. modeled as following a particular probability distribution like Gaussian, uniform etc.).
This is usually a temporal effect and the measurements vary around the mean of the distribution. Like
calibration error, this noise can also be addressed easily (by averaging across many sample measurements
because such error diminishes as the square-root of the number of samples [19]). Since the thermal time
constant of silicon is many times greater than the typical thermal sensor bandwidth, multiple readings
can be taken before the temperature rises significantly. The third source of sensor error is the spatial
thermal gradient. The thermal sensor might not be co-located with a hot spot and hence, the temperature
seen by it could be lower than the actual hot spot temperature. This error is the most difficult to address
as it depends not only upon the temperature in the immediate vicinity of the sensor but also on its
neighbours. It is also directly related to the spatial thermal filtering effect. The steeper the thermal
gradient, the greater is this error. Similarly, the farther from the hot spot the sensor is, the greater the
error. As Lee et. al. [13] point out, there is an exponential relationship between the distance from the
hot spot and the sensor error. In other words, similar to the spatial thermal filtering we studied, silicon
acts like a low-pass filter for the sensor error due to spatial thermal gradient (with the spatial frequency
= 1/inter-sensor distance).

(a) Actual (b) Sensed

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 4 9 16 25 36 49 64 81 100

A
ve

ra
ge

 M
ax

 E
rr

or
 (

C
)

No. of Sensors

Desktop
Mobile

(c) Sensor Error

Figure 10. Relationship between sensor error and inter-sen sor distance. For an Alpha 21264-like
core, (a) shows a sample temperature profile and (b) shows wha t is seen by the sensors. The
black dots denote the positions of the sensors. (c) plots the average maximum sensor error of the
SPEC2000 benchmark suite for two different types of package .

Figure 10 explains this aspect. Figure 10(a) shows the steady state thermal profile of the sixtrack
benchmark from the SPEC2000 benchmark suite for a 6.2 mm x 6.2 mm die with an Alpha 21264-like
core in a “no L2” configuration with a regular grid of 16 thermal sensors marked by the black dots.
Figure 10(b) is a picture of what is seen by the thermal sensors. Every point on the die is assigned
the temperature of the sensor that is closest to it. This is the so-called “nearest neighbour” algorithm.
Figure 10(c) plots the result of an experiment varying the number of sensors and studying the worst-case
transient error i.e., the maximum difference between the actual temperature distribution of the die and
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the thermal profile as seen by the sensors using the nearest neighbour algorithm. The experimental setup
is similar to that in section 4.1.2 except that HotSpot 4.1 has been modified to include modeling of a
configuration without the package as is the case in hand-held mobile processors. This configuration is
denoted by the mobile curve. The desktop curve includes a typical desktop package with TIM, heat
sink and spreader. Furthermore, these experiments are transient thermal simulations with a sampling
interval of 0.33 ms. Also, for higher simulation speed, the thermal model resolution is set to a grid size
of 64 x 64 as opposed to 256 x 256. At the end of each interval, the maximum error between the actual
thermal profile and the interpolated profile across the entire die is computed. We call this error as the
spatial error. The maximum of these spatial error values is then computed over the whole simulation of
500 million instructions. The maximum error thus computed also includes the temporal component of
the error. The values plotted in the graph are averages of this maximum error for the entire SPEC2000
benchmark suite.

Clearly, the desktop and mobile packages behave differently. The former has a shallow curve while
the latter has a steep one, similar to what we saw in section 4.1.1. As before, this is due to the better
lateral spreading in copper for the desktop configuration. Moreover, the sensor error is much higher
for the mobile curve indicating the need for a higher number of sensors to compensate for the lack of
lateral spreading. It can also be seen that the curves show diminishing returns around the mid-range
of the curves (mid-tens of sensors) beyond which, increasing the number of sensors does not provide
commensurate increase in accuracy. In fact, 36 sensors appears to be an optimal spot in the cost vs.
accuracy trade-off. Furthermore, the graph shows a non-monotonic pattern. The error is higher for a
grid of sixteen sensors than for a grid of nine sensors. This behaviour is because of the location of the
sensors relative to the functional blocks. In the increasing portions of the curves shown in figure 10(c),
although the grid resolution increases, the sensors move farther from the nearest hot spot, resulting in
an increase in the sensor error.

4.3.1 Sensor Interpolation

A natural means to improve the accuracy of temperature estimation using sensors is to employ spatial
interpolation in the regions between them. The problem then becomes the estimation of the temperature
field on the die at certain desired points (e.g. centers of each functional block, borders between two hot
units etc.), given the n sensor positions and their readings, where n is the number of sensors. Previous
research has addressed this problem and solutions involve a heavyweight control theoretic filter (Kalman
filter) [17] on the one end of the spectrum and a simple sub-linear interpolator [14] on the other. However,
with the insight that spatial filtering behaves differently for different types of package, a spectrum of
choices between them becomes interesting in the cost vs. accuracy trade-off. The objective of this section
is to evaluate such a trade-off and characterize a couple of interpolation schemes. Specifically, bilinear
and bicubic spline interpolators [16] are two low-cost interpolation schemes that are very popular in the
image processing community. In fact, the former is supported in hardware by many Graphic Processing
Units (GPU) due to its low computational cost.

For each desired point at which temperature needs to be estimated, the nearest neighbour interpolation
algorithm mentioned above is a constant time algorithm. Similarly, the sub-linear interpolator in [14] and
the bilinear algorithm are all constant time schemes. At the other end, the steady state Kalman filter
is cubic in the number of sensors. An online version of it employed by [17] is quadratic in the number
of sensors. The bicubic spline interpolation scheme occupies a position in the middle since it is linear in
the number of sensors. It is worth mentioning that while we assume a regular grid of sensors for ease
of modeling, the interpolation algorithms themselves are not constrained to a regular grid of thermal
sensors. The above-mentioned time complexities of the interpolation schemes assume a regular grid of
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sensors. In case of non-uniform sensor arrangement, the input to the algorithms would also include the
locations of the sensors and an additional step would be required in locating the desired point (where
temperature needs to be estimated) relative to the sensors surrounding it. This step would increase the
above-mentioned interpolation complexities by an additional log n term. Furthermore, it should be noted
that while Kalman filter is almost a zero-error scheme, its input includes per-unit power consumption
estimates which might not be normally available or easily computable. Hence, we do not consider it
in our evaluation. Also, the sub-linear interpolation scheme in [14] uses weights (= 0.5) such that it is
between a zeroth order nearest-neighbour interpolation scheme and a (bi)linear interpolator. Moreover,
it employs interpolation only in the vicinity of the hottest sensor, which might be inaccurate if none of
the sensors are at the hottest spot. One might have to consider the top k hottest sensors instead of
just the hottest sensor. Hence, we use the bilinear interpolation scheme as a proxy for the interpolation
algorithm in [14].
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Figure 11. Results of the interpolation study. (a) and (b) il lustrate the behaviour of the bilinear and
bicubic spline algorithms for the thermal profile and sensor readings as in figures 10(a) and (b)
respectively. (c) presents the experimental results of com paring the algorithms against the nearest-
neighbour interpolation scheme.

Figures 11(a) and 11(b) illustrate the operation of the bilinear and the bicubic interpolation schemes for
the steady state thermal profile of the sixtrack benchmark shown in figure 10(a) and the sensor readings
shown in 10(b). It turns out that bilinear interpolation results in discontinuous first derivatives at the
sensor locations. Bicubic spline interpolation solves this problem by using a third degree polynomial for
curve fit (in each of x and y dimensions) and mandates that the derivatives match at the sensor positions.
Hence, it is usually smoother than bilinear interpolation. This can be observed from the pictures,
especially near the sensor inside the FPAdd unit. It should also be noted that in order to be able to
interpolate in the region outside the peripheral sensors but within the chip boundaries, the temperatures
of the peripheral sensors are linearly extrapolated onto the chip boundaries. The interpolation algorithms
are run after this first extrapolation step. Figure 11(c) plots the result of the comparison between the
interpolation algorithms for a regular 6 x 6 grid of sensors. The experimental setup is similar to that
used for figure 10(c). The graph plots the average maximum error for the entire SPEC2000 benchmark
suite with the error bars marking one standard deviation above and below the mean.

The main conclusion is that interpolation reduces the sensor errors significantly (39% for the mobile
case and 53% for the desktop case). However, while interpolation leads to acceptable sensor error in
the desktop case (three degrees on average), the error is still quite high for the mobile case. Hence,
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the absence of lateral smoothing by copper leads to the necessity for a higher number of sensors even
with interpolation. Another observation is that the difference between the performance of bicubic spline
interpolation and bilinear interpolation is marginal. In fact, bicubic spline interpolation is even slightly
worse than bilinear for the desktop case showing that, in this case, a straight line is a better approximation
for its thermal distribution than a cubic polynomial. The minimal computational overhead of the bilinear
scheme is an added advantage to its accuracy. We also studied the effect of the interpolation schemes
for denser sensor grids (up to 10 x 10). The benefit due to interpolation improves with the number of
sensors since there are many more points to interpolate from. However, the overall trend remains the
same with much of the benefit due to interpolation coming from bilinear interpolation itself.

5 Conclusions and Future Work

This paper presented an analysis of the role of heating granularity on microarchitectural thermal
management. It identified spatial thermal filtering as a crucial factor in the study of thermal granularity
and derived an analytical equation to model the same. It then explored the agreement of the analytical
model with practice and found the behaviour to be dependent on the type of package (i.e., whether a
heat spreader and heat sink were present). Using this insight, it then provided three microarchitectural
examples where spatial thermal granularity is important:

• It presented a thermal evaluation of a many-core architecture and demonstrated the thermal benefit
in choosing many small cores as opposed to a few large cores when all other variables remain con-
stant. It also studied the effect of core size on local vs. global thermal management and concluded
that local thermal management ceases to be effective beyond low tens of cores.

• It examined the question of whether pathological code behaviour can cause the catastrophic heating
of high aspect ratio sub-blocks such as cache lines. While the answer depended on the cache layout
and dimensions, aspect ratio always plays a crucial role in mitigating the ills of high power density.

• It explained the relationship between inter-sensor distance and sensor accuracy from a spatial
filtering standpoint and studied the impact of bilinear and bicubic spline interpolation techniques
on sensor accuracy. Interpolation contributes to the reduction of sensor errors, but the magnitude
of the benefit was dependent upon the package. Moreover, the bilinear algorithm was almost as
accurate as bicubic spline and more efficient to compute.

In the many-core thermal study, this work identified the ratio of core area to that of the L2 cache to be
a crucial determinant of peak temperature. This suggests that a thermally-aware multi-core floorplanning
scheme that has flexibility in the use of L2 cache blocks as thermal buffers can potentially reduce the
peak temperature significantly. In fact, floorplanning the cores and L2 blocks in such a manner as to
minimize the size of the cores and maximize the spacing between them (thereby increasing the spatial
frequency to exploit the spatial filtering behaviour) is an interesting possible future direction. This work
mainly focused on superscalar cores. With the advent of SIMD architectures like GPUs, the question of
whether the different SIMD “lanes” offer a thermal granularity advantage due to their small size is also
an interesting area of future work.
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[Solution of the Heat Equation]
We re-state the boundary value problem from section 3 (equations (1)-(2)) here.
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∂2T1

∂x2
+

∂2T1

∂y2
= 0 (0 ≤ x ≤ a, 0 ≤ y ≤ l) (6a)

∂2T2

∂x2
+

∂2T2

∂y2
= 0 (a ≤ x ≤ ∞, 0 ≤ y ≤ l) (6b)

This is to be solved subject to the boundary conditions:

T1(x, l) = 0 T2(x, l) = 0 (7a)

T2(∞, y) = 0 (7b)

∂T1

∂x
|x=0 = 0

∂T2

∂y
|y=0 = 0 (7c)

∂T1

∂y
|y=0 = −

q

k
(7d)

T1(a, y) = T2(a, y) (7e)

∂T1

∂x
|x=a =

∂T2

∂x
|x=a (7f)

Of the two parts of the problem, T2 is the easier one to solve since it is a homogeneous problem (i.e.,
its boundary conditions are all zero). The standard way to solve for such homogeneous problems is to
seek solutions of a separable form i.e., assuming T (x, y) = X(x)Y (y). In that case, the steady state heat
equation ∇2T = 0 reduces to the form X′′

X
+ Y ′′

Y
= 0. In this equation, the term on the left side of the +

symbol is a function of x alone and the term on the right is a function of y alone. If their sum has to be
zero for all x and y, then each term has to separately be equal to a constant (i.e., it cannot be a function
of either x or y). Since temperature is a real-valued function, these constants have to be real as well.
So, one of them has to be positive and the other negative, so that their sum would be zero. Let us call
the positive constant λ2 (the other would be −λ2). Then, depending on our boundary conditions, we
typically have two types of equations to solve. The first case is of the form X ′′ = λ2X and the second is
of the form X ′′ = −λ2X. The solution to the former is of the form C1e

λx + C2e
−λx where C1 and C2 are

arbitrary constants. This can be seen from the fact that differentiating this expression twice with respect
to x results in it being multiplied by λ2, satisfying X ′′ = λ2X. Similarly, the solution to the latter case
(X ′′ = −λ2X) is of the form C1 cos(λx) + C2 sin(λx). This can also be verified to satisfy X ′′ = −λ2X as
before. Furthermore, since the above-mentioned constants (λ2 and −λ2) occur in positive-negative pairs,
it should be noted that when X takes the former form (comprised of exponentials), Y takes the latter
form (comprised of sines/cosines) and vice versa.

With this introduction to the method of separation of variables, let us now apply it to solve for T2.
Let T2(x, y) = X2(x)Y2(y). From the discussion above, X2(x) can be of the form C1e

λx + C2e
−λx or

C1 cos(λx) + C2 sin(λx). Correspondingly, Y2(y) can be of the form D1 cos(λy) + D2 sin(λy) or D1e
λy +

D2e
−λy respectively. However, we know from boundary conditions (7a) and (7b) that T2 has to be zero

at x = ∞ and at y = l. This restricts X2 to the exponential form and Y2 to the sine/cosine form. Thus

X2 = C1e
λx + C2e

−λx and

Y2 = D1 cos(λy) + D2 sin(λy)

Now, applying (7b) to X2, we get C1 = 0. Also, applying (7c) to Y2 we get D2 = 0. Therefore, T2 is
of the form C2e

−λxD1 cos(λy). However, when we apply (7a) to T2, we get Y2(l) = 0 ⇒ cos(λl) = 0.
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Since there are an infinite number of λ’s that satisfy this equation, we can denote them by λn where
n = 0, 1, 2, . . .Ṡo, λnl = (2n + 1)π

2 . For each λn, we get a different solution. Since the problem we are
solving is a homogeneous one, the principle of superposition holds. That is, if there are two solutions
satisfying the boundary conditions, their sum is also a valid solution. Hence, all solutions corresponding
to the different λn’s can be added up to obtain T2. Therefore,

T2 =
∞

∑

n=0

Bne−λnx cos(λny) (8)

where Bn’s are arbitrary constants. Now, before unraveling T2 further, let us take a look at T1. It
can be seen that boundary condition (7d) is not homogeneous. In order to be able to apply the method
of separation of variables as we did for T2, we split T1 into two parts: T ′

1 and Tp where T ′
1 is the

homogeneous part. Tp is still not homogeneous but is much simpler to construct a particular solution
for. So, T1 = T ′

1 + Tp. The original problem ∇2T1 = 0 gets split into two sub-problems:

∇2T ′
1 = 0, ∇2Tp = 0 (9)

subject to the following boundary conditions:

T ′
1(x, l) = 0 Tp(x, l) = 0 (10a)

∂T ′
1

∂x
|x=0 = 0

∂Tp

∂x
|x=0 = 0 (10b)

∂T ′
1

∂y
|y=0 = 0

∂Tp

∂y
|y=0 = −

q

k
(10c)

Of the two problems T ′
1 and Tp, the latter is the simpler one in spite of the non-homogeneity. This is

because, unlike T ′
1 (and the previous case T2), we are not looking for all general solutions. Instead, we

are looking for a particular solution that suits our problem and boundary conditions. Roughly speaking,
we are looking for a function that vanishes when differentiated twice (9) and becomes a constant when
differentiated once (10c). Thus, it can be seen that a linear function of y solves the sub-problem (9)
by construction, since its second derivative is zero. Hence, Tp = Py + Q where P and Q are arbitrary
constants. Applying the boundary conditions (10b) and (10c), we get

Tp =
q

k
(l − y) (11)

Now, since T ′
1 is a homogeneous problem, it can be solved just as we did T2 by separating the vari-

ables, i.e., with T ′
1 = X1(x)Y1(y). Then, by the same arguments as before, one of X1 and Y1 must

comprise of exponentials and the other of sines/cosines. Applying the boundary conditions (10b) and
(10c) to the possible cases narrows down the solution choices to two forms viz. A cosh(λx) cos(λy) or

A cos(λx) cosh(λy) where, cosh(θ) = eθ+e−θ

2 and A is an arbitrary constant. Now, for the boundary
condition (10a) to hold, the latter choice is not possible because cosh(λl) can never be zero. Hence, T ′

1

can only be of the form A cosh(λx) cos(λy). Applying (10a) to this ⇒ cos(λl) = 0, giving rise to infinite
λn’s as before. So, superposing all such solutions, we get
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T ′
1 =

∞
∑

n=0

An cosh(λnx) cos(λny) (12)

(or)

T1 = T ′
1 + Tp

=
q

k
(l − y) +

∞
∑

n=0

An cosh(λnx) cos(λny) (13)

where, λnl = (2n + 1)
π

2
(n = 0, 1, 2, . . .)

From equations (13) and (8), we almost have the complete solutions for T1 and T2 except that we need
to determine An and Bn for n = 0, 1, 2, . . .Ṫhis can be done by including the continuity conditions from
(7e) and (7f). Substituting for T1 and T2 from equations (13) and (8) in the boundary condition (7f) and
grouping like terms together, we get

Bn = −Aneλna sinh(λna) (14)

where, sinh(θ) = eθ−e−θ

2 . Now, substituting for Bn from (14) into (8), applying the boundary condition
(7e) and grouping like terms together, we get

q

k
(l − y) =

∞
∑

n=0

−Aneλna cos(λny) (15)

The right side of this equation is an infinite series made of cosines. Hence, it bears a strong resemblance
to a Fourier cosine series expansion. Hence, let us expand the function q

k
(l−y) using Fourier cosine series

and compare with the equation above. In order to be able to expand a function using Fourier series, it
has to be periodic. So, let us define a periodic function f(y) which is a periodic extension of q

k
(l − y)

with a period of 4l i.e.,

f(y) =

{

− q
k
(l − y) −2l ≤ y < 0

q
k
(l − y) 0 ≤ y < 2l

and f(y + 4l) = f(y). It is to be noted that for our problem, we are only interested in the interval
0 ≤ y ≤ l. Now, we are seeking a Fourier cosine series expansion for f(y) i.e., we are looking for
constants am (m = 0, 1, 2, . . .) such that f(y) = a0 +

∑∞
m=1 am cos(mπy

2l
). From standard texts on

Engineering Mathematics (for e.g., [11]), these can be computed as below:

a0 =
1

2l

∫ 2l

0

q

k
(l − y)dy = 0

am =
1

l

∫ 2l

0

q

k
(l − y) cos

(mπy

2l

)

dy
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=
1

l

[

q

k
(l − y) sin

(mπy

2l

)

(

2l

mπ

)]2l

0

−
1

l

∫ 2l

0
sin

(mπy

2l

)

(

2l

mπ

)

(

−
q

k

)

dy (intgeration by parts)

=
ql

k

[

1 − cos(mπ)
(

mπ
2

)2

]

for m = (1, 2, 3, . . .)

In other words, f(y) = q
k
(l − y) can be written as

q

k
(l − y) =

∞
∑

n=0

2
ql

k

1

λ2
n

cos(λny) (16)

where, λnl = (2n + 1)
π

2
(n = 0, 1, 2, . . .)

Comparing this equation with (15), we can determine An as

An = −2
ql

k

e−λna

λ2
n

(17)

Now, if we substitute An and Bn from (17) and (14) into (13) and (8) respectively, we have the full
solution to our problem. Before we present the full solution, for notational convenience, let us define
γn = λnl i.e., γn = (2n + 1)π

2 . Then, the solution for the heat equation is given by:

T1(x, y) =
ql

k

[

1 −
y

l
− 2

∞
∑

n=0

e−(γn
a

l
)

γ2
n

cosh(γn
x

l
) cos(γn

y

l
)

]

(18)

T2(x, y) =
ql

k

[

2
∞

∑

n=0

sinh(γn
a
l
)

γ2
n

e−(γn
x

l
) cos(γn

y

l
)

]

(19)

where, γn = (2n + 1)
π

2
(n = 0, 1, 2, . . .)
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