A Scheme for Selective Squash and Re-issue for Single-Sided Branch Hammocks

Karthik Sankaranarayanan, Kevin Skadron
Dept. of Computer Science
University of Virginia
Charlottesville, VA 22904

Introduction

This abstract describes work to minimize re-execution
of control independent instructions. This technique differs from
prior work in its emphasis on compiler scheduling in order to
minimize changes to the hardware of an out-of-order processor.
Work so far has focused on single-sided branch hammocks.

A branch hammock [1] is an instruction sequence
corresponding to an ‘if’ language construct. It is called double-
sided when it corresponds to an ‘if-then-else’ construct and
single-sided when it corresponds to an ‘if-then’ construct alone
(i.e., without the ‘else’ part). When the ‘then’ and the ‘else’
contexts contain only one basic block each, the branch
hammock 1is called simple. In typical speculative processors,
when a conditional branch corresponding to such a branch
hammock is mispredicted, all the instructions fetched after the
branch are squashed. However, the ‘join’ context is executed
regardless of the direction of the branch. When a misprediction
is detected, if the fetch engine of the processor went past the
‘join’ context, it fetched some potentially useful instructions
too. If those instructions can be identified by some co-operative
work between the compiler and the hardware, redundant re-
fetching and re-execution can be eliminated. This work attempts
to implement and evaluate such a co-operative mechanism in
the particular case of single-sided, simple branch hammocks.
An extended report of this work appears in [2].

Related Work

Rotenberg et al. [3] have analyzed control
independence in superscalar processors. Their paper analyzes
the bounds of potential performance improvement due to the
exploitation of control independence and assesses the
complexity of possible implementations. Sodani et al. [4] have
done a detailed study on dynamic instruction reuse. The
potential branch hammock reuse described above, called squash
reuse, is a subset of such dynamic instruction reuse. However,
the re-fetching of instructions is not eliminated in their
technique, and reuse techniques typically require substantial,
multi-ported lookup tables and other hardware support. Rychlik
et al. [5], proposed the reduction of value misprediction
penalties by re-issuing of value-mispredicted instructions to the
functional units, thus eliminating their re-fetching and re-
renaming. However, their work does not examine re-issue with
respect to branch mis-speculation. Klauser et al. [6] proposed
the dynamic predication technique for reducing misprediction
penalties in case of simple branch hammocks. The instructions
of a non-predicated instruction set are predicated dynamically
using hardware augmentation. Stark et al. [7] proposed out-of-
order fetch to reduce the impact of instruction cache misses. In
their technique, instructions are inserted into the reservation
stations out-of-order.

Overview of the Implementation

This work combines compiler scheduling with ideas
from the above-mentioned works (control independence, re-use,

re-issue) in the domain of optimizing single-sided, simple
branch hammocks. In such hammocks, the join context is
control independent of the branch and hence need not be re-
fetched on a misprediction. The execution of the instructions in
the ‘join’ context that are data independent of the ‘then’ context
is not erroneous and hence these instructions can be safely re-
used. However, the execution and the dependency information
of the ‘join’ context instructions that are data dependent on the
‘then’ context is erroneous. Hence, they have to be re-issued
after the misprediction recovery in order to receive the proper
operand values. For the above branch hammock scenario, when
there is co-operation from the compiler, minimal addition to the
hardware can implement such selective squashing (the ‘join’
context is not squashed) and selective re-issue (the dependent
instructions should be re-issued).

In our work so far, the scheduler identifies the single-
sided simple branch hammocks in a program. It finds the
instructions in the ‘join’ context that are data independent of the
‘then’ context and groups them together at the beginning of the
‘join’ context. The code motion takes place in such a way that
no anti or output dependences are violated. It then annotates the
branch instruction with the size of the hammock, the number of
independent instructions and the offset of the join context. With
such ‘grouping support’ from the scheduler, the hardware
implementation of selective squash and re-issue can be done
with minimal cost. Consider an out-of-order processor model
with an in-order commit stage. The following figure (Fig. 1)
shows a simple branch hammock in the instruction-reorder
buffer as a mispredicted branch is about to be discovered.

Code Reorder buffer
cond
brnch
l tat_>11 join
pir cntxt
then .
cntxt indep
st

then

cntxt

} indep
inst

join head cond

cntxt ptr brnch

Fig. 1: State of the instruction-reorder buffer
containing a hammock and a mispredicted branch.

Selective squashing of the ‘then’ context is easily
implemented in the hardware by just bringing the head pointer
to the beginning of the ‘join’ context. The effects of the ‘then’
context instructions on the register rename map is repaired by
logical masking operations of the current map with the register

maps at the position of the branch and at the beginning of the
join context. Also, the dependent instructions of the ‘join’
context should enter the rename stage once again. In order to
achieve this as simply as possible, the implementation expands
the instruction buffer between the fetch and decode stages and
holds instructions there. The dependent instructions of a
hammock are tagged in the instruction queue and are held there
until the branch resolves, making this re-issue easy. On a
misprediction, all instructions in the instruction queue except
the tagged ones are squashed. This ensures that the dependent
instructions get to re-issue to the functional units with the
proper values. Also, when the mis-speculated branch was
predicted taken, the processor remembers the start of the ‘join’
context in order to re-steer the fetch engine when necessary.
Finally, on a successful branch resolution, all associated
instructions are purged from the fetch queue. Together, these
implementation features require minimal addition to hardware
and should be feasible without affecting the clock rate. They
also avoid large, dedicated, multi-ported re-use tables.

comp ce o | ijpe li m88 erl | VO
ress | B & Ipes ksim | P tex
Scheduled 5 | 984 | 341 68 13 85 40 13
hammocks
Max. Size of 4 8 7 9 4 7 6 9
hammocks
Max. Size of 3 6 6 3 2 4 3 3
then cntxt
Max. No. of b 6 4 6 1 3 4 1
indep. Inst
Avg. Size of 4 4 33 4 34 3.9 4 52
hammocks
Avg. Size of 24 | 22| 22 23 2 24 21| 22
then context
Avg. No. of 1.4 14 1 1.5 1 1.2 1.7 1
indep. Inst

Table 1: Static scheduling data

This work implements the features detailed above
using the SimpleScalar v3.0 [8] simulator tool set and the PISA
instruction set. Performance evaluation has been done by
simulating SpecInt95 benchmarks on the modified simulator
and then comparing with the unmodified version. For
scheduling, the benchmarks were compiled to assembly using
gee 2.6.3 —03, scheduled by the scheduler software, and then
assembled into the binaries. These were the binaries run on the
modified simulator. Data from the static scheduler is
summarized in Table 1.

Initial Results and Future Work

Initial investigation of the results show that the
candidates chosen by the scheduler are very small basic blocks
of size 3-4 instructions, and the scheduler typically finds at most
1-2 independent instructions but often finds none. This result
happens to be similar to success rates in filling branch delay
slots [9], which makes sense because the scheduling task is
essentially identical. The important difference here is that we
are able to use scheduling to exploit control independence in
wide-issue, out-of-order organizations and are not limited to a
fixed delay-slot architecture.

Unfortunately, because single-sided hammocks
expose so few independent instructions, the gains in IPC
obtained with this technique are negligible, averaging less than
0.05%. Some benchmarks, like compress, have almost no

suitable basic blocks (see Table 1). Based on the control
independence studies in [3], we can see that our technique
exploits very little of the possible control independence. This is
mainly because of the restriction of our approach to single-
sided, simple branch hammocks. Moreover, our technique
involves only compile time decisions to expose independent
instructions. For going beyond one basic block, dynamic
techniques that make use of run-time information might be
more useful. Dynamic predication [6], which uses such dynamic
information, would provide better benefits in these scenarios.
These results necessitate the extension of the scheduling
technique to nested and double-sided hammocks also. An
analysis of the effectiveness of predication in lieu of or in
combination with such re-issue and re-use techniques should
also be explored. A study of the contrasts and overlaps between
the natures of control independence exploited by these
techniques (predication, re-use/re-issue) is another interesting
future direction. In addition to the immediate benefits from
exploring control independence, it is also expected that this
work will also guide efforts in using compiler analysis to
directly improve branch-predictor performance and/or reduce
predictor hardware requirements.

Acknowledgements

This material is based in part on work supported by the National
Science Foundation under grant no. CCR-0082671.

References

[1] J. Ferrante, K. Ottenstein, and J. Warren. “The Program
Dependence Graph and Its Use in Optimization”. ACM
Transactions on Programming Languages and Systems, 9(3):319-
349, July 1987.

[2] K. Sankaranarayanan and K. Skadron. "A Scheme for Selective
Squash and Re-issue for Single-Sided Branch Hammocks." Tech
Report CS-2001-14, Univ. of Virginia Dept. of Computer Science,
July 2001.

[3] E. Rotenberg, Q. Jacobson, J. Smith. “A Study of Control
Independence in Superscalar Processors”. In Proc. of the 5th
International Symposium on High Performance Computer
Architecture, January 1999.

[4] A. Sodani and G. S. Sohi. “Dynamic Instruction Reuse”. In Proc.
of 24th Annual International Symposium on Computer
Architecture, July 1997.

[5] B. Rychlik, J. Faistl, B. Krug, and J. P. Shen. “Efficacy and
Performance Impact of Value Prediction”. In Proc. of the 1998
International ~ Conference on Parallel Architectures and
Compilation Techniques, October 1998.

[6] A. Klauser, T. M. Austin, D. Grunwald, B. Calder. “ Dynamic
Hammock Predication for Non-predicated Instruction Set
Architectures”. In Proc. of the 1998 International Conference on

Parallel Architectures and Compilation Techniques, October
1998.

[7] J. Stark, P.B.Racunas, Y.N. Patt. "Reducing the Performance
Impact of ICache Misses by Writing Instructions into the
Reservation Stations Out-of-Order". In Proc. of the 30th
International Symposium on Microarchitecture, November 1997.

[8] D. Burger, T. M. Austin, "The SimpleScalar Tool Set, Version
2.0", University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June 1997.

[9] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach, 2™ ed. Morgan Kaufman, San Francisco,
1996.

