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Abstract 

Many thermal management techniques have been developed to effectively 

regulate the heat dissipated in modern processors.  These techniques, however, require 

the ability to accurately measure the temperature of the processor.  This project presents a 

software solution for temperature sensing that uses hardware resources known as 

performance counters.  This methodology allows the thermal model to provide a detailed 

temperature profile of the processor at runtime using real workload.  In particular, this 

project implements a software solution that models the Pentium 4 processor.  The thermal 

model can be used in computer architecture studies or as an online temperature sensing 

mechanism.  This report includes two case studies using the model: one that analyzes 

application-specific thermal stress patterns, and one that examines potential thermal 

security risks.  Ultimately, understanding various thermal effects can help researchers 

develop more reliable and thermal-efficient systems. 
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1. INTRODUCTION 

 

 Modern computer systems need a detailed and accurate temperature sensing 

mechanism to effectively regulate the heat dissipated by the processor.  The purpose of 

this project is to present a software solution for modeling the temperature of a computer 

processor using built-in hardware resources.   

 

 

1.1. Problem Statement 

Design enhancements that produce faster machines with increased resource 

utilization have constantly driven the development of computer processors.  As a result, 

the power consumption of computer processors has rapidly increased in recent years as 

modern processors have become more complex.  Increasing power and heat dissipation 

greatly affects the performance of the system and increases the implementation cost of 

cooling solutions. 

Efficient temperature sensing methods are important because failure to detect 

overheating can produce computing errors and even cause the processor to melt down.  

These methods facilitate the development of advanced thermal management techniques 

and low-power designs, which lead to more reliable and thermal-efficient computer 

systems.  The reliability of a system is especially important for safety-critical applications 



 3 

that are used in biomedical devices or real-time control systems.  Thermal-efficient 

systems can also lower maintenance costs and reduce energy consumption in air-

conditioned rooms that store high-end server machines.  In addition, if researchers can 

create processors that dissipate less heat, then manufacturers can reduce the functionality 

of some of the expensive cooling solutions such as large metal heat sinks or cooling fans.  

Furthermore, cooler systems will not require the bulky cooling devices such that the heat 

dissipated in mobile devices becomes bearable by humans.  Ultimately, thermal-efficient 

systems can reduce the risk of user getting burned, improve system performance, and 

lower cooling costs. 

During the early 1990s, the primary method of handling excess heat was to simply 

remove all the heat as efficiently as possible from the processor.  Mabulikar took the 

approach of packaging the processor or similar circuit designs with a metal package 

called the MQUAD system [1].  The MQUAD package was designed to be a cost-

effective system that provides excellent electrical and thermal performance.  Others, such 

as Kamath, studied different cooling schemes using heat sinks.  Kamath analyzed the heat 

transfer rates of two cooling methods: the first method forced air over the heat sink and 

the second method injected air through a fan mounted on top of the heat sink [2].  

However, the use of cooling fans posed other problems.  Fans required additional power 

consumption and provided poor reliability in smaller portable devices.  Later on, heat 

pipes emerged as an efficient and reliable solution for portable devices such as laptop 

computer systems [3]. 

By the mid 1990s, designers began to realize that simply removing heat from the 

system was insufficient to solve the thermal problems.  Researchers began to consider 
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methods that could accurately measure temperature and prevent catastrophic meltdown. 

In 1996, Bakker and Huijsing developed a smart temperature sensor that would switch off 

its power supply to achieve extremely low power consumption [4].  The PowerPC 

microprocessor also employed a thermal assist unit (TAU) that monitored temperature 

and regulated processor operations [5]. 

As researchers began to shift their attention from passive cooling solutions to 

dynamic self-monitoring solutions, thermal issues were being considered at the design 

stage of circuitry and architecture.  Power density is proportional to the frequency and the 

square of the voltage.  Thermal management techniques such as dynamic clock gating 

and dynamic voltage scaling (DVS) have aimed to reduce the operating frequency or 

voltage to minimize heat dissipation only when the temperature reaches a certain 

threshold.  Lim and others at Portland State University proposed a thermal-efficient 

design that uses a secondary low-power processing unit when the processor gets heated 

up [6].  Although their design requires a 4.6 % increase in processor area, energy-

performance improved by 11.4 % and other thermal management techniques such as 

DVS can be use in conjunction to further reduce energy consumption. 

While many technical improvements are being made to control the dissipated heat, 

most solutions require the ability to accurately measure the temperature of the processor.  

Current computer systems measure temperature through thermal sensors, which are based 

on analog circuits.  These sensors are costly to implement and can even exacerbate the 

thermal problem by dissipating too much power.  IBM’s Power5 processor, designed for 

high-performance servers, is known to have 24 thermal sensors.  The Pentium 4 

processor has only two thermal sensors.  For low-cost systems, usually there are only few 
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sensors available on the processor, if any at all.  Each sensor must be carefully placed on 

the processor to account for the spatial gradient of temperature.  In addition to the 

placement problem, the sensor’s response time to a temperature change can be quite slow.  

Hence, an accurate representation of the temperature distribution of the entire processor 

is difficult to obtain at runtime through thermal sensors. 

 

 

1.2. Project Scope 

Simulation is frequently used in architectural studies to test thermal management 

techniques or new designs.  Simulation is a simple way to obtain temperature readings, 

but fails to account for system-wide hardware effects.  Kevin Skadron’s research lab at 

the University of Virginia has created a thermal simulator called HotSpot, and has shown 

that the performance of dynamic thermal management (DTM) techniques can 

substantially deteriorate if temperature sensors are inaccurate [7].  Although the HotSpot 

software package provides a detailed floorplan-level description of temperature, the tool 

requires localized power data and its use is limited to simulated architectural studies.  

Obtaining temperature readings from real sensors would be ideal, but the sensor circuitry 

is expensive and does not provide a full view of the processor as discussed in the 

previous section. 

This project presents a software solution for temperature sensing that uses 

hardware information as a measure of real processor activity.  Specifically, the current 

HotSpot thermal model has been extended to infer processor activity from performance 

counters.  The use of real physical resources –performance counters– allows the 
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temperature model to present a more realistic description of the processor without using 

the expensive thermal sensor circuitry.  And by using the HotSpot framework, the 

temperature model still provides a full floorplan-level detail of the temperature 

distribution.  The model facilitates architecture studies where real workloads can be used 

at runtime to observe the thermal behavior of processors.  In particular, this project 

focuses on the Intel Pentium 4 processor and its architecture. 

 

 

1.3. Related Concepts in Micro-Architecture 

 Computer architecture is the study of the internal organization and 

interconnection of hardware elements in a computer system.  The processor, also known 

as the CPU, controls all major operations and hence is the central and most active 

component.  All programs that run on a computer consist of many instructions, which are 

digital bits that inform the processor about what action to take.  The processor can be 

divided up into smaller functional units, where each block handles a single operation such 

as arithmetic calculations, instruction fetching, or data storage.  The temperature model 

provides a way to analyze the thermal characteristics for each functional unit in the 

processor.  This model relies on the ability to infer information about processor activity 

directly from the micro-architecture.  Processors have built-in performance counters, 

which are used to count specific architectural events that occur during the execution of a 

program.  For example, performance counters can be configured to gather statistics on 

how many integer calculations were performed, or how many times the processor 

accessed the data-cache unit. 
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1.4. Thesis Overview 

 Chapter 2 presents the general methodology and design of the temperature model.  

Chapter 3 provides an analysis of the model in terms of performance penalty. The 

subsequent chapters describe experiments that illustrate the potential benefits of using the 

model.  Chapter 4 presents results from running benchmark programs and an analysis on 

the thermal stress patterns.  Chapter 5 describes the experiments used to show the 

potential danger of thermal viruses.  Chapter 6 concludes the paper. 
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2. METHODOLOGY 

 

 This chapter explains the overall design of the thermal model.  The main approach 

is to extend the HotSpot software package to use hardware resources.  Since this project 

focuses on the Pentium 4 processor, some information is unique to the Pentium 4 and its 

architecture.  Subsequent chapters discuss how to use the model in various applications. 

 

 

2.1. Pentium 4 Architecture 

2.1.1. Overview of Architecture 

The computer system used in this project is a 2.6 GHz Pentium 4 processor, 130 

nm Northwood core.  The typical power dissipation is 69.0 W, and the operating voltage 

is 1.6 V [8].  The Pentium 4 features a 20-stage pipeline and a trace cache, which 

eliminates the normal instruction decoding from the execution loop by storing traces of 

assembly instructions [9].  The Pentium 4 also has two Arithmetic and Logic Units 

(ALUs) that each execute in one-half the global clock cycle.  The Pentium 4 supports 

hyper-threading technology, which allows the processor to run two threads 

simultaneously. 
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2.1.2. Processor Specifications 

HotSpot has several parameters that can be modified to effectively model a 

specific processor.  In particular, the geometric specification and the floorplan layout of 

the processor are required to configure the thermal model.  Table 1 shows the mechanical 

dimensions and material characteristics for the Pentium 4 package.  These settings are 

based on design schematics found in [10] and are used to configure the HotSpot program. 

 

HotSpot variable Value Description (Unit) 
t_chip 0.74 chip thickness (mm) 
c_convec 131.84 convection capacitance (J/K) 
r_convec 0.084 convection resistance (K/W) 
s_sink 76 heat sink side (mm) 
t_sink 12 heat sink thickness (mm) 
s_spreader 31 heat spreader side (mm) 
t_spreader 1.5 heat spreader thickness (mm) 
t_interface 0.05 interface material thickness (mm) 
ambient 40+273.15 ambient temperature (K) (inside box) 
roughness 0.8 roughness factor of package surface (0.0~1.0) 
RHO_INT 0.315 thermal resistivity of interface material (mK/W) 
SPEC_HEAT_INT 3.96E+06 specific heat of interface material (J/m3K) 

Table 1. HotSpot configuration settings 

 

Another important input to the program is the floorplan layout.  Each processor 

has a unique floorplan layout, which partially depends on the number and type of 

available functional units.  The floorplan of the Pentium 4 can be represented using the 

following functional units: L1 branch prediction unit (BPU), L2 BPU, instruction decoder, 

trace cache, memory order buffer (MOB), ITLB, bus control unit, DTLB, L1 cache, L2 

cache, micro-coded ROM (UROM), allocation unit, rename unit, instruction queue #1, 

instruction queue #2, scheduler, retirement unit, floating-point (FP) execution unit, FP 

register file, integer execution unit, integer register file, and memory control unit.  Figure 
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1 is an approximated floorplan layout that has been adapted from the die photo of the 

Northwood core [11].  The trace cache and L1 cache are divided into two units for 

simplicity. 

 

Figure 1. Floorplan layout of Pentium 4.  Adapted from [11] 

 

 

2.2. HotSpot Extension 

2.2.1. Performance Counters 

The Pentium 4 includes an extensive set of performance monitoring features, with 

45 configurable events and 18 physical performance counters [12, 13].  The performance 

counters are used to count specific micro-architectural events for debugging and 

performance measurements.  Each counter is associated with one counter configuration 

control register (CCCR), which determines the specific counting scheme.  The event 

selection control registers (ESCRs) determine which event is to be counted.  However, 
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the thermal model is a user application and cannot directly modify these counters.  A 

special device driver must be written and installed on the computer in order to access 

these counters.  A simplified device driver, adapted from the Abyss device driver [14], is 

used in this project.  The thermal model will then indirectly use the device driver to read 

the performance counter values. 

 

2.2.2. Power Modeling 

The existing HotSpot framework models the processor as a network of thermal 

resistors and conductors per functional unit, with power dissipation in each unit treated as 

a current source in the RC network.  The thermal model needs to estimate power 

dissipation from performance counters.  Isci and Martonosi have already shown that 

power can be accurately modeled from performance counters [15].  Their power model 

uses the following equation: 

( ) ockPowerNonGatedClAccessRateralScalingArchitectuMaxPowerPower +××=  

Several micro-architectural events, which are measured through performance counters, 

are combined to closely approximate the number of accesses to each functional unit. 

This project uses similar metrics found in [15] and extends HotSpot to interface with the 

Pentium 4 performance counters.  Appendix A lists the configuration settings for the 

performance counters.  For the Pentium 4, not all performance metrics can be measured 

simultaneously using the 18 performance counters.  Four sets of counter rotations are 

required to sample all necessary architectural events.  Thus, the performance counters are 

periodically sampled but a different set of architectural events is measured each time.  

Appendix B lists the complete metrics and parameters for the power model. 
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2.2.3. Runtime Requirements 

One goal of this project is to be able to use the thermal model at runtime to 

dynamically calculate temperature values.  The main temperature computation algorithm 

must be optimized to satisfy these runtime requirements.  For example, if the temperature 

values are updated every 10 milliseconds, the actual sampling and calculation performed 

by the program must be less than 10 milliseconds.  The model must be programmed such 

that the computation and the counter sampling are performed concurrently.  HotSpot 

currently uses a fourth order Runge-Kutta numerical solution to calculate temperature, 

and this solution proved to be inadequate for runtime measurements.  The Runge-Kutta-

Fehlberg (RKF) method, which uses an adaptive step size to minimize the calculation 

time, replaced the original method.  Despite the complexity, the RKF method is more 

efficient and can be easily integrated into the existing HotSpot framework. 
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3. ANALYSIS OF THE MODEL 

 

 Measuring the performance and efficiency is important for any software solution.  

This information is useful to understand how the software solution affects the computer 

system.  This chapter explains some of the implementation details of the thermal model 

and evaluates its performance and thermal overhead. 

 

 

3.1. Implementation of the Model 

The source code for the thermal model was compiled using the gcc-3.2.2 compiler 

with optional flags of “-O3 -march=pentium4 -mfpmath=sse -mmmx -msse -msse2”.  

The additional compiler flags are used to optimize the source code for faster performance.  

When executed, the thermal model periodically prints out a list of temperature values for 

each functional unit.  In this project, the default sampling interval is used for all 

experiments: 5 milliseconds for each counter-rotation, and 20 milliseconds to update 

temperature values.  Although the model updates temperature values infrequently, the 

program continually monitors access to performance counters and updates power values.  

Given the new power values, the program performs a large set of calculations based on 

the RKF method to obtain the temperature values.  Ideally, the thermal model should add 
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very little overhead to the system, but monitoring the performance counters and 

calculating the temperature can require a substantial amount of processor resources.  The 

subsequent sections describe two metrics that are used to find the inherent overhead of 

the program. 

 

 

3.2. Performance Overhead 

This project uses the CPU2000 benchmarks to estimate the performance overhead.  

CPU2000 is a benchmark suite designed by the Standard Performance Evaluation 

Corporation (SPEC) to measure performance of computer processors [16].  CPU2000 

contains two types of benchmark applications: one that mainly supports integer 

operations, and one that supports floating-point operations.  All SPEC benchmarks are 

compiled using the base tuning option.  For the purposes of this study, the execution time 

of the benchmark programs is used as the measure of performance.  On the first trial, the 

time for each benchmark to complete its task is recorded.  Then, the benchmark and the 

thermal model are executed simultaneously.  The benchmarks take longer to execute in 

the second trial since the thermal model is being processed concurrently.  This procedure 

is repeated three times.  The overhead is measured as the percentage difference in the 

average execution time of each benchmark between the two experiments.  Hence, a 

longer time difference means a higher overhead. 

Table 2 lists the average execution times of each benchmark.  A total of 20 

benchmark programs have been selected from the CPU2000 benchmark suite.  Note how 

running the model simultaneously increases the execution time of each benchmark.  
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Figure 2 shows the performance overhead results that have been calculated from data in 

Table 2. 

Integer 
Benchmarks 

Without 
model 

(seconds) 

With 
model 

(seconds) 

Floating-
point 
Benchmarks 

Without 
model 

(seconds) 

With 
model 

(seconds) 
gzip 181.82 238.13 wupwise 167.64 257.49 
vpr 261.87 314.93 swim 435.61 462.62 
gcc 112.94 146.02 mgrid 280.34 426.34 
mcf 284.28 304.23 applu 323.65 439.48 
crafty 123.23 169.48 mesa 210.15 307.83 
parse 250.35 317.36 art 880.05 910.47 
gap 119.46 156.72 equake 141.62 160.95 
vortex 300.52 297.85 ammp 502.59 606.88 
bzip2 237.05 288.57 sixtrack 8.30 11.43 
twolf 541.59 555.47 apsi 586.31 695.55 

Table 2: Average execution time of SPEC benchmarks 
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Figure 2. Performance overhead of SPEC benchmarks 

 

The results indicate that the performance overhead can vary across applications, 

and the variation is larger across floating-point benchmarks than integer benchmarks.  
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The average overhead is 20.6 % for integer applications, and most of them are in the 

range of 20 ~ 30 %.  In contrast, half of the floating-point benchmarks have an overhead 

that is near or below 20 %, while three benchmarks –wupwise, mgrid, and mesa– have a 

very high overhead above 45 %.  The thermal model’s main computation algorithm 

requires several iterations of the RKF algorithm.  Benchmarks with iterative numerical 

methods that use lots of floating-point operations are more likely to compete for 

computing resources, and hence these benchmarks have greater overhead.  Thus, the 

thermal model would impede performance were it to be used in conjunction with high-

precision scientific applications. 

 

 

3.3. Thermal Overhead 

The thermal model inevitably uses computing resources, and hence the estimated 

temperature values reflect the amount of heat added by the model itself.  Obtaining the 

thermal overhead, however, is not an easy task since the temperature of each functional 

unit cannot be estimated without using the thermal model.  Thus, the amount of heat 

generated by the model is approximated using the following procedures. 

First, steady-state temperature values for each functional unit are measured and 

recorded.  Steady-state conditions mean that the thermal model is the only software 

running on the computer system.  The second experiment concurrently executes two 

versions of the thermal model.  One version is the original program.  The other program 

is a modified version where the counter values are statically assigned instead of obtaining 

real values via the device driver.  Hence, only one version prints out the real temperature 
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values.  The other program uses the same algorithm to computer temperature but is using 

false data.  One reason for using this experimental setup is because only one program can 

access the performance counters at any given time.  Furthermore, the majority of the 

processor activity is in the main temperature calculation algorithm and not in the 

performance monitoring functionality.  Hence, the thermal overhead can be approximated 

as the temperature difference between the second experiment and the steady-state 

condition.  Table 3 lists the results of these experiments. 

Temperature (oC)  Units 
Steady-State Two Versions 

Thermal 
Overhead (oC) 

 BusCtl 42.79 43.60 0.81 
 L2_Cache 43.20 44.02 0.82 
 L2_BPU 46.19 49.28 3.09 
 InstrDecoder 44.72 46.35 1.63 
 L1_BPU 45.02 46.81 1.79 
 ITLB 43.85 45.28 1.43 
 MOB 44.05 45.60 1.55 
 TrCache_Top 46.39 47.98 1.59 
 TrCache_Bot 46.37 47.91 1.54 
 DTLB 45.44 47.48 2.04 
 L1_Cache_Top 45.14 47.07 1.93 
 L1_Cache_Bot 46.38 48.60 2.22 
 IntExe 50.65 53.82 3.17 
 MemCtl 50.06 51.89 1.83 
 IntReg 52.35 55.72 3.37 
 FpExe 43.84 45.22 1.38 
 FpReg 44.63 46.14 1.51 
 UROM 43.33 44.25 0.92 
 Alloc 50.54 51.75 1.21 
 Rename 50.83 52.01 1.18 
 Retire 49.24 50.68 1.44 
 InstrQ1 51.61 53.11 1.50 
 Sched 51.95 53.37 1.42 
 InstrQ2 51.12 52.87 1.75 

Table 3. Thermal overhead 
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 For most units, the results show that the temperature increases by roughly 0.9 ~ 

2.1 oC.  The integer register file, integer execution unit, and the L2 BPU have the largest 

thermal overhead.  This pattern indicates the compute-intensive nature of the thermal 

model, and reaffirms the fact that the majority of the processor activity lies in the RKF 

algorithm. 
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4. THERMAL STRESS PATTERNS 

 

 The thermal model can be used to characterize thermal behavior of applications or 

study temperature-aware design techniques.  This chapter includes a case study on 

thermal stress patterns of benchmark programs.  Understanding the temperature 

variations of certain programs can help designers to efficiently allocate resources to 

alleviate thermal design concerns. 

 

 

4.1. Spatial Variations 

 This section examines several SPEC benchmarks in detail to illustrate the thermal 

characteristics of different types of applications.  While the information is applicable to 

most of the benchmarks, only a few are selected and presented in this report because their 

high overhead makes the thermal stress patterns easily noticeable. 

 For each benchmark, a temperature trace is created by recording the output values 

of the thermal model.  Initially, the thermal model runs on the system by itself.  The 

benchmark starts executing after roughly two minutes. 
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4.1.1. Integer Applications 

 Figure 3 and Figure 4 show the transient temperature trace of the processor for the 

gzip and gcc benchmarks respectively.  Note that the time axis of each figure is scaled to 

fit the execution time of each benchmark.  See Table 2 in section 3.2. for details on the 

execution time of SPEC benchmarks.  In each figure, the sharp rise in temperature 

indicates the point when the benchmark starts running.  The data before that point are the 

steady-state conditions. 
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Figure 3. Temperature trace of gzip benchmark 
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Temperature Trace (gcc)
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Figure 4. Temperature trace of gcc benchmark 

 

For integer benchmarks, the integer units –IntReg and IntExe– are typically the 

hottest units on the chip.  Even considering that the thermal model itself adds heat mostly 

to the integer units, the overall temperature gradient indicates that certain units are likely 

to heat up more than other units.  In comparison to the steady-state condition, the amount 

of increase in temperature for each functional block varies from 2 to 10 oC. 

 

4.1.2. Floating-Point Applications 

Figure 5 and Figure 6 show the temperature trace of the wupwise and mesa 

benchmarks respectively. 
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Temperature Trace (wupwise)
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Figure 5. Temperature trace of wupwise benchmark 

 

Temperature Trace (mesa)
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Figure 6. Temperature trace of mesa benchmark 



 23 

 

In contrast to integer benchmarks, both figures show a relatively uniform 

temperature increase over all functional blocks.  In addition, the amount of increase in 

temperature ranges from 1.5 to 5 oC, which is considerably smaller than that of integer 

benchmarks.  For the wupwise and mesa benchmarks, the floating-point units heat up by 

the largest amount, but not enough to significantly change the thermal gradient of the 

processor.  The overall thermal distribution does not differ much from the steady-state 

condition other than the fact that the average temperature is higher. 

 

4.1.3. Application-Specific Thermal Behavior 

 The temperature traces presented in the previous two sections clearly show a 

general pattern of how integer benchmarks differ from floating-point benchmarks.  While 

integer benchmarks tend to heat up the processor more than floating-point benchmarks, 

the relative temperature change across each functional unit is more uniform for floating-

point benchmarks.  Table 4 shows the average increase in temperature when the SPEC 

benchmarks are running.  This table only includes the four benchmarks –gzip, gcc, 

wupwise, and mesa– that were used in the previous sections.  Note that the floating-point 

benchmarks have a smaller range of values and a smaller standard deviation than the 

integer benchmarks.  These numerical results support the analysis. 
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Integer Floating-Point Units 
gzip gcc wupwise mesa 

BusCtl 1.69 1.79 1.41 1.35 
L2_Cache 2.51 1.87 1.48 1.89 
L2_BPU 5.39 8.07 3.19 5.08 
InstrDecoder 2.16 2.16 1.42 2.36 
L1_BPU 3.43 2.77 2.21 1.77 
ITLB 2.74 3.13 2.01 2.40 
MOB 2.83 3.09 2.11 2.56 
TrCache_Top 2.85 2.21 2.39 2.36 
TrCache_Bot 2.90 2.20 2.76 2.43 
DTLB 3.90 2.95 3.81 3.32 
L1_Cache_Top 3.89 2.94 3.62 3.16 
L1_Cache_Bot 4.54 3.12 3.84 3.53 
IntExe 7.32 4.18 2.85 4.61 
MemCtl 4.26 2.67 2.10 2.86 
IntReg 7.95 4.43 2.66 4.86 
FpExe 2.15 1.94 3.78 2.55 
FpReg 2.33 2.05 4.16 2.79 
UROM 1.72 2.26 1.79 2.19 
Alloc 2.36 1.69 2.04 1.91 
Rename 2.32 1.66 1.99 1.87 
Retire 2.79 1.97 2.47 2.30 
InstrQ1 2.92 2.04 2.59 2.37 
Sched 3.13 2.02 1.71 2.17 
InstrQ2 3.88 2.50 2.36 2.77 
Average 3.41 2.74 2.53 2.73 
Standard Deviation 1.58 1.35 0.82 0.96 

Table 4. Average temperature increase of SPEC benchmarks 

 

Another way to study thermal behavior is by visualizing the thermal map of the 

processor.  Consider the gzip benchmark and the wupwise benchmark.  Figure 7 shows 

the thermal gradient of the processor at a particular instance when these benchmarks are 

executing.  The uniform temperature increase for the wupwise benchmark creates a 

thermal map similar to that in steady-state.  The non-uniform temperature change for the 

gzip benchmark creates an easily noticeable hot spot near the integer units. 
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Figure 7. Thermal plot for integer and floating-point benchmark. 

(a) gzip benchmark (b) wupwise benchmark 

 

Understanding these spatial variations can assist manufacturers to customize 

thermal design packages for processors.  For example, if a Pentium 4 processor used in a 

server machine mainly supports numerical computations, it may be feasible to use 

inexpensive packaging materials.  Since integer benchmarks tend to create larger 

temperature gradients around the integer units, differentiating the heat spreader material 

around the known hot spots would be a possible solution to effectively remove heat and 

minimize packaging costs for processors running integer applications.  Customized 

packaging can help manufacturers to efficiently allocate resources where it is needed the 

most and minimize cooling costs. 
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4.2. Temporal Variations 

The previous section analyzed thermal stress patterns across the functional units.  

Understanding these spatial differences is very important but not sufficient to manage 

temperature.  Typically, DTM techniques operate in small time intervals.  Thus, in 

addition to the global picture of the temperature distribution, it is also important to 

understand how temperature changes as time progresses. 

Although most applications exhibit predictable thermal behavior over time, some 

applications may abruptly shift the temperature gradient in unexpected ways.  Consider 

the gcc benchmark.  Figure 8 is identical to Figure 4, except that it only shows three units: 

the L2 BPU, integer register file, and scheduler unit.  Figure 9 also lists the temperature 

trace for the same three units while running the vortex integer benchmark. 
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Figure 8. Temperature trace of gcc benchmark. Only three units are shown. 
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Temperature Trace (vortex)
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Figure 9. Temperature trace of vortex benchmark.  Only three units are shown. 

 

In Figure 8 and Figure 9, the integer register file is typically the hottest unit on the 

processor.  However, as the temperatures sporadically change, the L2 BPU or the 

scheduler often becomes the hottest unit.  That is, the hot spot is not fixed but moves 

around the processor during the execution of the program.  Also note that the L2 BPU is 

located far away from the integer units, which are placed in the lower half of the 

processor (see Figure 1). 

The results indicate that thermal stress patterns are not fixed to certain regions on 

the chip and can dramatically change as time passes.  To effectively operate any thermal 

management technique, researchers must be able to characterize the movement of hot 

spots and quantify the thermal gradient bounds.  Understanding these temporal variations 

can ultimately help chip designers to intelligently place thermal sensors on the processor.  
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Gunther et al. have explained the importance of examining thermal maps to find the 

optimal location of sensors on the Pentium 4 [17].  The thermal model is a useful tool to 

effectively locate hot spots on the processor. 
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5. THERMAL SECURITY RISKS 

 

The main purpose of this chapter is to show how the thermal model can be used in 

computer architecture studies in addition to its use as a temperature sensing mechanism.  

This chapter includes a case study of potential thermal security attacks on 

microprocessors that only have a small number of thermal sensors. 

 

 

5.1. Thermal Monitors of the Pentium 4 

The thermal model produces a detailed temperature profile of the processor.  For 

most applications, the hottest spot on the Pentium 4 processor tends to be near the integer 

execution unit or its neighboring units, such as the rename or instruction queue units.  

The coolest unit is typically the bus control unit.  The Pentium 4 has two thermal sensors, 

which seem to be placed in optimal locations to account for temperature variations across 

the chip.  While the exact locations of the sensors are unknown, it can be inferred that 

one is near the upper corner of the bus control unit, and the other is near the integer 

execution unit and acts as a catastrophic shutdown detector [12, 17].  Each thermal sensor 

triggers a thermal monitor when the temperature reaches a certain threshold.  The thermal 

monitor will then regulate the processor’s clock frequency, and hence reduce activity to 
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cool down the chip.  However, consider a program that is designed to overheat certain 

regions that are far away from the thermal sensors. This poses a potential security risk if 

localized heating can occur such that the thermal sensors fail to detect noticeable rise in 

temperature.  The experiments in the following section target the branch prediction units. 

 

 

5.2. Overheating the Branch Prediction Units 

The Pentium 4 has two branch prediction units –L1 BPU and L2 BPU– that are 

located relatively far away from the thermal sensors.  Two benchmark programs are 

devised to increase activity in the BPUs.  The first experiment uses a test program that 

contains approximately 90 if-statements within a large for-loop.  Appendix C lists the 

source code for this program.  The results show that the temperature of the L2 BPU 

increases by roughly 12 oC at the most.  Figure 10-(a) contains a thermal map of the 

Pentium 4 at this particular instance.  While the L2 BPU does heat up more than usual, 

the integer execution unit is still the hottest unit on the chip.  The general pattern 

indicated in Figure10-(a) is consistent with most applications; the hot spots are located in 

the lower region of the chip near the integer units and the instruction queue units. 
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Figure 10. Thermal plot of BPU test programs. (a) experiment #1 (b) experiment #2 

 

The second experiment slightly varies the program used in the first experiment. 

Within the compiled assembly code, several assembly instructions are removed, thus 

creating a series of conditional branch instructions inside the main loop.  Appendix D 

includes the source code for this test program.  The temperature of the L2 BPU increases 

by 21 oC during the program’s peak execution, resulting in a temperature slightly above 

67 oC.  Most other units only showed an average of 3 ~ 5 oC increase in temperature.  

Figure 10-(b) shows the thermal map for this experiment.  Note that the lower region of 

the chip is noticeably cooler than that in Figure 10-(a).  The L2 BPU is clearly the hottest 

unit on the chip, where the next hottest unit –IntReg– is only 55 oC.  Thus, experiment #2 

demonstrates that it is possible to stress certain units while minimizing activity in other 

units.  Further optimizations of the program may allow one to achieve higher temperature 

gradients.  If most functional units are below normal operating temperatures, the thermal 

monitor may not operate or may respond too late when the chip has already been 

permanently damaged. 
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5.3. Benchmark Analysis 

The results in the previous section show early work indicating the possibility of 

thermal security attacks on the Pentium 4 processor through thermal viruses.  Thermal 

viruses are programs that may cause significant overheating to occur such that the 

processor is physically damaged.  The test program used in experiment #2 is of special 

interest because of the way it significantly increases activity in the L2 BPU.  Figure 11 

shows how the access rates of the BPUs change across time.  The sharp rise in the access 

rate indicates the point where the benchmark program started to run.  The L2 BPU only 

has an 8 % access rate at steady-state, which means that it is consuming 8 % of its 

maximum power.  When the benchmark is running, the L2 BPU is consuming more than 

40 % of its maximum power. 
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Figure 11. Access rate of BPUs (experiment #2) 
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Recall from section 2.2. that the thermal model estimates the power dissipated by 

each functional unit based on the following equation [15]: 

( ) ockPowerNonGatedClAccessRateralScalingArchitectuMaxPowerPower +××=  

Thus, the high increase in the access rates is manifested in higher power dissipation for 

the BPUs.  As the results indicate, the temperature of the L2 BPU rises rapidly because of 

its large power density.  Figure 12 shows the average power consumption of the 

processor for experiment #2.  The power consumption of the L2 BPU increases by a 

factor of seven when the benchmark program is being executed.  Under steady-state, the 

L1 BPU and L2 BPU only consume a combined total of 8 % of the total power.  The 

percentage rises to 30 % when the benchmark is running. 
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Figure 12. Average power dissipation (experiment #2) 
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5.4. Future Considerations 

The localized heating effect discussed in section 5.2. suggests that thermal 

security attacks might be possible.  However, the temperature value of the L2 BPU is not 

high enough to cause permanent damage to the chip for either experiment.  The 

benchmark programs need to be further developed to realistically pose a big threat.  The 

most convincing evidence could be gathered by refining the existing benchmarks to 

produce more thermal stress in highly concentrated areas and then observe the chip fail.  

Even if the chip does not fail, such experiments may help researchers understand the 

safety margin that is designed into the chip, and how that affects the temperature gradient 

as we vary the voltage or clock frequency of the system.  Nonetheless, researchers can 

study localized heating effects by using the thermal model.  These studies will also 

enable chip designers to build more safety mechanisms and place thermal sensors more 

intelligently on the chip. 
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6. CONCLUSIONS 

 

 

 

6.1. Summary of Results 

The goal of this project was to implement and use a runtime thermal model of a 

Pentium 4 processor.  The implementation of the model was successful, and the resulting 

software solution provides detailed temperature information at the floorplan level and 

uses the hardware performance counters as a measure of real processor activity.  The 

current implementation of the model adds about 1 to 4 oC of thermal overhead and can 

slow down the execution time of SPEC benchmarks by up to 54 %. 

The software can be used for both architecture studies and online temperature 

sensing.  The model was used in two case studies.  The first study involved characterizing 

thermal stress patterns of various SPEC benchmarks.  The results indicated that integer 

benchmarks tend to show more variation than floating-point benchmarks in terms of 

temperature changes across functional units.  The thermal traces of the gcc and vortex 

benchmarks also showed how hot spots on the chip are not fixed but can move around 

during the execution of a program.  The second study used the thermal model to study 

localized heating effects caused by thermal viruses.  Two benchmark programs were 
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created to artificially induce high thermal stress around the L2 BPU.  One benchmark 

program showed that the temperature of the L2 BPU increased by 20 oC while all other 

units only showed an average of 3 ~ 5 oC increase in temperature. 

 

 

6.2. Runtime Temperature Sensing 

This project shows that runtime temperature sensing is possible via software in 

the absence of fine-grained hardware sensors.  Using hardware performance counters in 

the model provides several advantages over other thermal sensing methods.  First, unlike 

purely software-based simulations that cannot account for system-wide hardware activity, 

the thermal model represents a more realistic view of the processor and can thus be used 

under real workload.  Second, performance counters are present in most of today’s 

processors, so the thermal model would be using existing hardware resources.  Lastly, the 

fact that performance counters serve as the basis for estimating temperature indicates that 

computer systems do not have to rely solely on hardware sensors to employ DTM 

techniques.  Ultimately, the thermal model could replace some of the hardware 

temperature sensors.  Eliminating all or a few of the hardware sensors could add more 

flexibility to some of the rigid design requirements of processors. 

Nonetheless, a great deal of future work is necessary for the thermal model to 

fully develop as a low-cost and reliable temperature sensing mechanism.  The current 

implementation is insufficient for applications that require low runtime costs and high 

precision.  The high overhead suggests that the software solution needs to be further 

optimized.  A faster and simpler algorithm would have to replace the existing RKF 
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numerical solution, which is computationally too expensive.  The model also needs to be 

further validated for accuracy.  Modeling the processor in software inevitably introduces 

errors when certain parameters are modeled incorrectly.  Few hardware parameters are 

even unknown, and thus force the thermal model to use rough estimates.  Future research 

may include ways to improve the model, which can then be used as a cost-effective 

alternative to thermal sensors for runtime DTM techniques. 

 

 

6.3. Future Architecture Studies 

In addition to its use as a temperature sensing mechanism, the thermal model is 

also a valuable tool for computer architecture research.  Chapter 4 and 5 provide a few 

applications of the thermal model.  Understanding application-specific thermal stress 

patterns allows hardware designers to customize thermal-efficient processor packages, 

floorplan layouts, and sensor placement methods to fit a specific purpose.  Hardware 

designers can also understand the safety margins that must be built into the processor by 

examining thermal security attacks.  Future research areas such as these facilitate the 

development of more reliable and thermal-efficient computer systems.  As the system’s 

performance and stability improves, productivity will also increase and power 

consumption can be greatly reduced. 

While the potential benefits of the thermal model are clear, the information 

provided by the thermal model must be handled with caution in regard to thermal security 

attacks.  The concept of a thermal security attack is at an early stage and future work is 

necessary to realistically examine the risks involved.  Nonetheless, information provided 
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by the thermal model has the potential to assist malicious programmers in creating 

thermal viruses.  Thermal viruses would be very dangerous since they would go 

undetected by normal anti-virus software and would cause permanent damage to the chip.  

If thermal viruses prove to be possible, researchers can use the current information to 

provide extra safety measures in the chip.  Another solution is to limit access to 

information regarding the thermal model or the processor.  In some cases, the details of 

the processor or its architecture are already proprietary information.  Educating the public 

about computing ethics is another way to alleviate concerns about thermal security 

attacks. 

The main methodology introduced in this report can be applied to any processor.  

Each processor has a unique architecture, and thus would require a different thermal 

model.  Extending the thermal model to other processors is another promising area for 

future research and can inspire new thermal-aware applications.  One possibility is to 

model the IBM’s Power5 processor, which has 24 thermal sensors.  A new sensor-fusion 

algorithm can be studied using the thermal model and the 24 hardware sensors.  If 

performance counters are used as a proxy for temperature, an optimal solution could use 

the sensors to calibrate the new temperature values of the thermal model only when 

necessary.  This algorithm would effectively reduce the computation overhead of the 

software while using existing hardware sensors.  This hybrid hardware-software 

temperature sensing solution may prove to be more efficient than a hardware solution of 

many sensors.  Ultimately, the overall methodology presented in this report should 

stimulate many new applications that can alleviate thermal concerns in processors. 
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Appendix A: Performance Counter Configuration 

 

Performance 
Counter 

ECSR 
 

CCCR 
 Performance Metric Counter 

Rotation 
Number Address Value Address Value 

BSQ_cache_ref 1234 0x0 Bsu0 0x180a0e0f Bpu0 0x0003f000 
uop_q_writes (0x07) 1234 0x4 Ms0 0x12000e0f Ms0 0x00031000 
TC_deliver_mode 1234 0x5 Tc0 0x0201740f Ms1 0x00033000 
uop_q_writes (0x04) 1234 0x6 Ms1 0x1200080f Ms2 0x00031000 
LD_port_replay 1234 0x9 Saat0 0x0800040f Flame1 0x00035000 
ST_port_replay 1234 0xB Saat1 0x0a00040f Flame3 0x00035000 
uops_retired 1234 0xD Cru0 0x0200060f Iq1 0x00039000 
front_end_event 1234 0xE Cru3 0x1000060f Iq2 0x0003b000 
uop_type 1234 0xF Rat1 0x04000c0f Iq3 0x00035000 
IOQ_allocation 12 0x1 Fsb0 0x07dfc20f Bpu1 0x0107d000 
FSB_data_activity 34 0x1 Fsb0 0x2e007e0f Bpu1 0x0107d000 
BPU_fetch_req 12 0x2 Bpu1 0x0600020f Bpu2 0x00031000 
MOB_ld_replay 34 0x2 Mob1 0x0600740f Bpu2 0x00035000 
ITLB_reference (0x07) 12 0x3 Itlb1 0x30000e0f Bpu3 0x00037000 
ITLB_reference (0x01) 34 0x3 Itlb1 0x3000020f Bpu3 0x00037000 
branch_retired 12 0xC Cru2 0x0c001e0f Iq0 0x0003b000 
machine_clear 34 0xC Cru2 0x0400020f Iq0 0x0003b000 
packed_SP_uop 1 0x8 Firm0 0x1100000f Flame0 0x00033000 
scalar_SP_uop 2 0x8 Firm0 0x1500000f Flame0 0x00033000 
64bit_MMX_uop 3 0x8 Firm0 0x0500000f Flame0 0x00033000 
x87_FP_uop 4 0x8 Firm0 0x0900000f Flame0 0x00033000 
packed_DP_uop 1 0xA Firm1 0x1900000f Flame2 0x00033000 
scalar_DP_uop 2 0xA Firm1 0x1d00000f Flame2 0x00033000 
128bit_MMX_uop 3 0xA Firm1 0x3500000f Flame2 0x00033000 
x87_SIMD_moves_uop 4 0xA Firm1 0x5c00300f Flame2 0x00033000 
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Appendix B: Power Model and Performance Metrics 
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Appendix C: Source Code for BPU Experiment #1 

 

int main() 
{ 
   int a=0; 
   int i; 
   unsigned long long int liter = 2000000000000000; 
 
   for (i=0; i < liter; ++i) { 
 a = 13*a; 
 
 if (a < 893) a = 1223; 
 if (a > 7891) a = 986; 
 if (a > 3191) a = 5432; 
 if (a > 1190) a = 7843; 
 if (a < 439) a = 54; 
 if (a < 59) a = 610; 
 if (a < 49) a = 150; 
 if (a < 429) a = 530; 
 if (a < 859) a = 161; 
 if (a > 1389) a = 1229; 
 if (a < 419) a = 511; 
 if (a < 333) a = 861; 
 if (a > 5881) a = 1001; 
 if (a < 459) a = 1060; 
 if (a > 5105) a = 1111; 
 if (a < 783) a = 537; 
 if (a < 69) a = 70; 
 if (a < 39) a = 40; 
 if (a < 29) a = 30; 
 if (a < 19) a = 320; 
 if (a < 9) a = 10; 
 if (a < 0) a = 0; 
 if (a < 299) a = 300; 
 if (a < 89) a = 390; 
 if (a < 79) a = 480; 
 if (a < 279) a = 580; 
 if (a < 289) a = 1290; 
 if (a < 673) a = 199; 
 if (a < 99) a = 100; 
 if (a < 269) a = 270; 
 if (a < 259) a = 860; 
 if (a < 229) a = 31; 
 if (a > 5861) a = 84; 
 if (a > 3821) a = 61; 
 if (a < 323) a = 511; 
 if (a < 203) a = 19; 
 if (a < 200) a = 200; 
 if (a < 489) a = 5490; 
 if (a < 449) a = 5020; 
 if (a < 219) a = 229; 
 if (a < 209) a = 2000; 
 if (a > 6439) a = 91; 
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 if (a > 5929) a = 169; 
 if (a < 499) a = 510; 
 if (a > 5339) a = 5644; 
 if (a < 479) a = 38; 
 if (a < 469) a = 970; 
 if (a > 5003) a = 348; 
 if (a < 899) a = 3; 
 if (a < 889) a = 593; 
 if (a < 213) a = 4001; 
 if (a > 2091) a = 214; 
 if (a < 409) a = 1230; 
 if (a < 400) a = 9; 
 if (a < 879) a = 3800; 
 if (a < 849) a = 2048; 
 if (a > 4851) a = 289; 
 if (a > 4841) a = 8543; 
 if (a < 869) a = 94; 
 if (a > 4831) a = 41; 
 if (a < 839) a = 541; 
 if (a < 819) a = 1103; 
 if (a > 639) a = 24; 
 if (a > 529) a = 23; 
 if (a < 249) a = 52; 
 if (a < 239) a = 240; 
 if (a > 519) a = 3122; 
 if (a < 809) a = 1; 
 if (a > 9699) a = 323; 
 if (a > 9389) a = 209; 
 if (a > 9179) a = 8008; 
 if (a < 800) a = 465; 
 if (a > 1179) a = 88; 
 if (a > 1069) a = 72; 
 if (a > 859) a = 261; 
 if (a > 749) a = 3125; 
 if (a > 8059) a = 136; 
 if (a > 7049) a = 97; 
 if (a < 563) a = 12345; 
 if (a > 1699) a = 33; 
 if (a > 509) a = 27; 
 if (a > 503) a = 1021; 
 if (a < 453) a = 981; 
 if (a < 829) a = 53; 
 if (a < 343) a = 241; 
 if (a > 5871) a = 436; 
 if (a > 9069) a = 762; 
 if (a < 103) a = 6781; 
 
   } 
   return 0; 
} 
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Appendix D: Source Code for BPU Experiment #2 

 

 .file "bpu_simple.c" 
 .text 
.globl main 
 .type main,@function 
main: 
 pushl %ebp 
 movl %esp, %ebp 
 subl $24, %esp 
 andl $-16, %esp 
 movl $0, %eax 
 subl %eax, %esp 
 movl $0, -4(%ebp) 
 movl $1233977344, -16(%ebp) 
 movl $465661, -12(%ebp) 
 movl $0, -8(%ebp) 
.L2: 
 movl -8(%ebp), %eax 
 movl %eax, -24(%ebp) 
 cltd 
 movl %edx, -20(%ebp) 
 movl -20(%ebp), %eax 
 cmpl -12(%ebp), %eax 
 jb .L5 
 movl -20(%ebp), %edx 
 cmpl -12(%ebp), %edx 
 ja .L3 
 movl -24(%ebp), %eax 
 cmpl -16(%ebp), %eax 
 jb .L5 
 jmp .L3 
.L5: 
 movl -4(%ebp), %eax 
 movl %eax, %edx 
 sall $1, %edx 
 addl %eax, %edx 
 sall $2, %edx 
 leal (%eax,%edx), %eax 
 movl %eax, -4(%ebp) 
 cmpl $892, -4(%ebp) 
 jg .L7 
; movl $1223, -4(%ebp) 
.L7: jle .L8 
.L8: jle .L9 
.L9: jle .L10 
.L10: jg .L11 
.L11: jg .L12 
.L12: jg .L13 
.L13: jg .L14 
.L14: jg .L15 
.L15: jle .L16 
.L16: jg .L17 
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.L17: jg .L18 

.L18: jle .L19 

.L19: jg .L20 

.L20: jle .L21 

.L21: jg .L22 

.L22: jg .L23 

.L23: jg .L24 

.L24: jg .L25 

.L25: jg .L26 

.L26: jg .L27 

.L27: jns .L28 

.L28: jg .L29 

.L29: jg .L30 

.L30: jg .L31 

.L31: jg .L32 

.L32: jg .L33 

.L33: jg .L34 

.L34: jg .L35 

.L35: jg .L36 

.L36: jg .L37 

.L37: jg .L38 

.L38: jle .L39 

.L39: jle .L40 

.L40: jg .L41 

.L41: jg .L42 

.L42: jg .L43 

.L43: jg .L44 

.L44: jg .L45 

.L45: jg .L46 

.L46: jg .L47 

.L47: jle .L48 

.L48: jle .L49 

.L49: jg .L50 

.L50: 
 cmpl $5339, -4(%ebp) 
 jle .L51 
 movl $5644, -4(%ebp) 
.L51: jg .L52 
.L52: jg .L53 
.L53: jle .L54 
.L54: jg .L55 
.L55: jg .L56 
.L56: jg .L57 
.L57: jle .L58 
.L58: jg .L59 
.L59: jg .L60 
.L60: jg .L61 
.L61: jg .L62 
.L62: jle .L63 
.L63: jle .L64 
.L64: jg .L65 
.L65: jle .L66 
.L66: jg .L67 
.L67: jg .L68 
.L68: jle .L69 
.L69: jle .L70 
.L70: jg .L71 
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.L71: jg .L72 

.L72: jle .L73 

.L73: jg .L74 

.L74: jle .L75 

.L75: jle .L76 

.L76: jle .L77 

.L77: jg .L78 

.L78: jle .L79 

.L79: jle .L80 

.L80: jle .L81 

.L81: jle .L82 

.L82: jle .L83 

.L83: jle .L84 

.L84: jg .L85 

.L85: jle .L86 

.L86: jle .L87 

.L87: jle .L88 

.L88: jg .L89 

.L89: jg .L90 

.L90: jg .L91 

.L91: jle .L92 

.L92: jle .L93 

.L93: jg .L94 

.L94: jg .L95 

.L95: jle .L96 

.L96: jle .L97 

.L97: jle .L98 

.L98: jg .L99 

.L99: jg .L100 

.L100: jg .L101 

.L101: jle .L102 

.L102: jle .L103 

.L103: jg .L4 
 
.L4: 
 leal -8(%ebp), %eax 
 incl (%eax) 
 jmp .L2 
.L3: 
 movl $0, %eax 
 leave 
 ret 
.Lfe1: 
 .size main,.Lfe1-main 
 .ident "GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)" 
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