
MICRO-ARCHITECTURAL TEMPERATURE MODELING
USING PERFORMANCE COUNTERS

A Thesis

in STS 402

Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science in Computer Engineering

by

Kyeong-Jae Lee

March 29, 2005

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for Papers in Science,

Technology, and Society Courses.

__
(Full Signature)

Approved (Technical Advisor)
 Kevin Skadron

Approved (Science, Technology,

and Society Advisor)
 Patricia Click

 i

Table of Contents

Abstract.. 1

1. Introduction... 2

1.1. Problem Statement ... 2
1.2. Project Scope ... 5
1.3. Related Concepts in Micro-Architecture ... 6
1.4. Thesis Overview .. 7

2. Methodology .. 8

2.1. Pentium 4 Architecture .. 8
2.2. HotSpot Extension ... 10

3. Analysis of the Model.. 13

3.1. Implementation of the Model... 13
3.2. Performance Overhead... 14
3.3. Thermal Overhead ... 16

4. Thermal Stress Patterns ... 19

4.1. Spatial Variations... 19
4.2. Temporal Variations .. 26

5. Thermal Security Risks .. 29

5.1. Thermal Monitors of the Pentium 4... 29
5.2. Overheating the Branch Prediction Units .. 30
5.3. Benchmark Analysis .. 32
5.4. Future Considerations .. 34

6. Conclusions.. 35

6.1. Summary of Results... 35
6.2. Runtime Temperature Sensing... 36
6.3. Future Architecture Studies ... 37

Works Cited... 39

Bibliography .. 42

Appendix A: Performance Counter Configuration... 45

Appendix B: Power Model and Performance Metrics .. 46

Appendix C: Source Code for BPU Experiment #1... 47

Appendix D: Source Code for BPU Experiment #2... 49

 ii

List of Figures

Figure 1. Floorplan layout of Pentium 4... 10

Figure 2. Performance overhead of SPEC benchmarks.. 15

Figure 3. Temperature trace of gzip benchmark... 20

Figure 4. Temperature trace of gcc benchmark .. 21

Figure 5. Temperature trace of wupwise benchmark.. 22

Figure 6. Temperature trace of mesa benchmark.. 22

Figure 7. Thermal plot for integer and floating-point benchmark 25

Figure 8. Temperature trace of gcc benchmark .. 26

Figure 9. Temperature trace of vortex benchmark.. 27

Figure 10. Thermal plot of BPU test programs... 31

Figure 11. Access rate of BPUs .. 32

Figure 12. Average power dissipation .. 33

 1

Abstract

Many thermal management techniques have been developed to effectively

regulate the heat dissipated in modern processors. These techniques, however, require

the ability to accurately measure the temperature of the processor. This project presents a

software solution for temperature sensing that uses hardware resources known as

performance counters. This methodology allows the thermal model to provide a detailed

temperature profile of the processor at runtime using real workload. In particular, this

project implements a software solution that models the Pentium 4 processor. The thermal

model can be used in computer architecture studies or as an online temperature sensing

mechanism. This report includes two case studies using the model: one that analyzes

application-specific thermal stress patterns, and one that examines potential thermal

security risks. Ultimately, understanding various thermal effects can help researchers

develop more reliable and thermal-efficient systems.

 2

1. INTRODUCTION

 Modern computer systems need a detailed and accurate temperature sensing

mechanism to effectively regulate the heat dissipated by the processor. The purpose of

this project is to present a software solution for modeling the temperature of a computer

processor using built-in hardware resources.

1.1. Problem Statement

Design enhancements that produce faster machines with increased resource

utilization have constantly driven the development of computer processors. As a result,

the power consumption of computer processors has rapidly increased in recent years as

modern processors have become more complex. Increasing power and heat dissipation

greatly affects the performance of the system and increases the implementation cost of

cooling solutions.

Efficient temperature sensing methods are important because failure to detect

overheating can produce computing errors and even cause the processor to melt down.

These methods facilitate the development of advanced thermal management techniques

and low-power designs, which lead to more reliable and thermal-efficient computer

systems. The reliability of a system is especially important for safety-critical applications

 3

that are used in biomedical devices or real-time control systems. Thermal-efficient

systems can also lower maintenance costs and reduce energy consumption in air-

conditioned rooms that store high-end server machines. In addition, if researchers can

create processors that dissipate less heat, then manufacturers can reduce the functionality

of some of the expensive cooling solutions such as large metal heat sinks or cooling fans.

Furthermore, cooler systems will not require the bulky cooling devices such that the heat

dissipated in mobile devices becomes bearable by humans. Ultimately, thermal-efficient

systems can reduce the risk of user getting burned, improve system performance, and

lower cooling costs.

During the early 1990s, the primary method of handling excess heat was to simply

remove all the heat as efficiently as possible from the processor. Mabulikar took the

approach of packaging the processor or similar circuit designs with a metal package

called the MQUAD system [1]. The MQUAD package was designed to be a cost-

effective system that provides excellent electrical and thermal performance. Others, such

as Kamath, studied different cooling schemes using heat sinks. Kamath analyzed the heat

transfer rates of two cooling methods: the first method forced air over the heat sink and

the second method injected air through a fan mounted on top of the heat sink [2].

However, the use of cooling fans posed other problems. Fans required additional power

consumption and provided poor reliability in smaller portable devices. Later on, heat

pipes emerged as an efficient and reliable solution for portable devices such as laptop

computer systems [3].

By the mid 1990s, designers began to realize that simply removing heat from the

system was insufficient to solve the thermal problems. Researchers began to consider

 4

methods that could accurately measure temperature and prevent catastrophic meltdown.

In 1996, Bakker and Huijsing developed a smart temperature sensor that would switch off

its power supply to achieve extremely low power consumption [4]. The PowerPC

microprocessor also employed a thermal assist unit (TAU) that monitored temperature

and regulated processor operations [5].

As researchers began to shift their attention from passive cooling solutions to

dynamic self-monitoring solutions, thermal issues were being considered at the design

stage of circuitry and architecture. Power density is proportional to the frequency and the

square of the voltage. Thermal management techniques such as dynamic clock gating

and dynamic voltage scaling (DVS) have aimed to reduce the operating frequency or

voltage to minimize heat dissipation only when the temperature reaches a certain

threshold. Lim and others at Portland State University proposed a thermal-efficient

design that uses a secondary low-power processing unit when the processor gets heated

up [6]. Although their design requires a 4.6 % increase in processor area, energy-

performance improved by 11.4 % and other thermal management techniques such as

DVS can be use in conjunction to further reduce energy consumption.

While many technical improvements are being made to control the dissipated heat,

most solutions require the ability to accurately measure the temperature of the processor.

Current computer systems measure temperature through thermal sensors, which are based

on analog circuits. These sensors are costly to implement and can even exacerbate the

thermal problem by dissipating too much power. IBM’s Power5 processor, designed for

high-performance servers, is known to have 24 thermal sensors. The Pentium 4

processor has only two thermal sensors. For low-cost systems, usually there are only few

 5

sensors available on the processor, if any at all. Each sensor must be carefully placed on

the processor to account for the spatial gradient of temperature. In addition to the

placement problem, the sensor’s response time to a temperature change can be quite slow.

Hence, an accurate representation of the temperature distribution of the entire processor

is difficult to obtain at runtime through thermal sensors.

1.2. Project Scope

Simulation is frequently used in architectural studies to test thermal management

techniques or new designs. Simulation is a simple way to obtain temperature readings,

but fails to account for system-wide hardware effects. Kevin Skadron’s research lab at

the University of Virginia has created a thermal simulator called HotSpot, and has shown

that the performance of dynamic thermal management (DTM) techniques can

substantially deteriorate if temperature sensors are inaccurate [7]. Although the HotSpot

software package provides a detailed floorplan-level description of temperature, the tool

requires localized power data and its use is limited to simulated architectural studies.

Obtaining temperature readings from real sensors would be ideal, but the sensor circuitry

is expensive and does not provide a full view of the processor as discussed in the

previous section.

This project presents a software solution for temperature sensing that uses

hardware information as a measure of real processor activity. Specifically, the current

HotSpot thermal model has been extended to infer processor activity from performance

counters. The use of real physical resources –performance counters– allows the

 6

temperature model to present a more realistic description of the processor without using

the expensive thermal sensor circuitry. And by using the HotSpot framework, the

temperature model still provides a full floorplan-level detail of the temperature

distribution. The model facilitates architecture studies where real workloads can be used

at runtime to observe the thermal behavior of processors. In particular, this project

focuses on the Intel Pentium 4 processor and its architecture.

1.3. Related Concepts in Micro-Architecture

 Computer architecture is the study of the internal organization and

interconnection of hardware elements in a computer system. The processor, also known

as the CPU, controls all major operations and hence is the central and most active

component. All programs that run on a computer consist of many instructions, which are

digital bits that inform the processor about what action to take. The processor can be

divided up into smaller functional units, where each block handles a single operation such

as arithmetic calculations, instruction fetching, or data storage. The temperature model

provides a way to analyze the thermal characteristics for each functional unit in the

processor. This model relies on the ability to infer information about processor activity

directly from the micro-architecture. Processors have built-in performance counters,

which are used to count specific architectural events that occur during the execution of a

program. For example, performance counters can be configured to gather statistics on

how many integer calculations were performed, or how many times the processor

accessed the data-cache unit.

 7

1.4. Thesis Overview

 Chapter 2 presents the general methodology and design of the temperature model.

Chapter 3 provides an analysis of the model in terms of performance penalty. The

subsequent chapters describe experiments that illustrate the potential benefits of using the

model. Chapter 4 presents results from running benchmark programs and an analysis on

the thermal stress patterns. Chapter 5 describes the experiments used to show the

potential danger of thermal viruses. Chapter 6 concludes the paper.

 8

2. METHODOLOGY

 This chapter explains the overall design of the thermal model. The main approach

is to extend the HotSpot software package to use hardware resources. Since this project

focuses on the Pentium 4 processor, some information is unique to the Pentium 4 and its

architecture. Subsequent chapters discuss how to use the model in various applications.

2.1. Pentium 4 Architecture

2.1.1. Overview of Architecture

The computer system used in this project is a 2.6 GHz Pentium 4 processor, 130

nm Northwood core. The typical power dissipation is 69.0 W, and the operating voltage

is 1.6 V [8]. The Pentium 4 features a 20-stage pipeline and a trace cache, which

eliminates the normal instruction decoding from the execution loop by storing traces of

assembly instructions [9]. The Pentium 4 also has two Arithmetic and Logic Units

(ALUs) that each execute in one-half the global clock cycle. The Pentium 4 supports

hyper-threading technology, which allows the processor to run two threads

simultaneously.

 9

2.1.2. Processor Specifications

HotSpot has several parameters that can be modified to effectively model a

specific processor. In particular, the geometric specification and the floorplan layout of

the processor are required to configure the thermal model. Table 1 shows the mechanical

dimensions and material characteristics for the Pentium 4 package. These settings are

based on design schematics found in [10] and are used to configure the HotSpot program.

HotSpot variable Value Description (Unit)
t_chip 0.74 chip thickness (mm)
c_convec 131.84 convection capacitance (J/K)
r_convec 0.084 convection resistance (K/W)
s_sink 76 heat sink side (mm)
t_sink 12 heat sink thickness (mm)
s_spreader 31 heat spreader side (mm)
t_spreader 1.5 heat spreader thickness (mm)
t_interface 0.05 interface material thickness (mm)
ambient 40+273.15 ambient temperature (K) (inside box)
roughness 0.8 roughness factor of package surface (0.0~1.0)
RHO_INT 0.315 thermal resistivity of interface material (mK/W)
SPEC_HEAT_INT 3.96E+06 specific heat of interface material (J/m3K)

Table 1. HotSpot configuration settings

Another important input to the program is the floorplan layout. Each processor

has a unique floorplan layout, which partially depends on the number and type of

available functional units. The floorplan of the Pentium 4 can be represented using the

following functional units: L1 branch prediction unit (BPU), L2 BPU, instruction decoder,

trace cache, memory order buffer (MOB), ITLB, bus control unit, DTLB, L1 cache, L2

cache, micro-coded ROM (UROM), allocation unit, rename unit, instruction queue #1,

instruction queue #2, scheduler, retirement unit, floating-point (FP) execution unit, FP

register file, integer execution unit, integer register file, and memory control unit. Figure

 10

1 is an approximated floorplan layout that has been adapted from the die photo of the

Northwood core [11]. The trace cache and L1 cache are divided into two units for

simplicity.

Figure 1. Floorplan layout of Pentium 4. Adapted from [11]

2.2. HotSpot Extension

2.2.1. Performance Counters

The Pentium 4 includes an extensive set of performance monitoring features, with

45 configurable events and 18 physical performance counters [12, 13]. The performance

counters are used to count specific micro-architectural events for debugging and

performance measurements. Each counter is associated with one counter configuration

control register (CCCR), which determines the specific counting scheme. The event

selection control registers (ESCRs) determine which event is to be counted. However,

 11

the thermal model is a user application and cannot directly modify these counters. A

special device driver must be written and installed on the computer in order to access

these counters. A simplified device driver, adapted from the Abyss device driver [14], is

used in this project. The thermal model will then indirectly use the device driver to read

the performance counter values.

2.2.2. Power Modeling

The existing HotSpot framework models the processor as a network of thermal

resistors and conductors per functional unit, with power dissipation in each unit treated as

a current source in the RC network. The thermal model needs to estimate power

dissipation from performance counters. Isci and Martonosi have already shown that

power can be accurately modeled from performance counters [15]. Their power model

uses the following equation:

() ockPowerNonGatedClAccessRateralScalingArchitectuMaxPowerPower +××=

Several micro-architectural events, which are measured through performance counters,

are combined to closely approximate the number of accesses to each functional unit.

This project uses similar metrics found in [15] and extends HotSpot to interface with the

Pentium 4 performance counters. Appendix A lists the configuration settings for the

performance counters. For the Pentium 4, not all performance metrics can be measured

simultaneously using the 18 performance counters. Four sets of counter rotations are

required to sample all necessary architectural events. Thus, the performance counters are

periodically sampled but a different set of architectural events is measured each time.

Appendix B lists the complete metrics and parameters for the power model.

 12

2.2.3. Runtime Requirements

One goal of this project is to be able to use the thermal model at runtime to

dynamically calculate temperature values. The main temperature computation algorithm

must be optimized to satisfy these runtime requirements. For example, if the temperature

values are updated every 10 milliseconds, the actual sampling and calculation performed

by the program must be less than 10 milliseconds. The model must be programmed such

that the computation and the counter sampling are performed concurrently. HotSpot

currently uses a fourth order Runge-Kutta numerical solution to calculate temperature,

and this solution proved to be inadequate for runtime measurements. The Runge-Kutta-

Fehlberg (RKF) method, which uses an adaptive step size to minimize the calculation

time, replaced the original method. Despite the complexity, the RKF method is more

efficient and can be easily integrated into the existing HotSpot framework.

 13

3. ANALYSIS OF THE MODEL

 Measuring the performance and efficiency is important for any software solution.

This information is useful to understand how the software solution affects the computer

system. This chapter explains some of the implementation details of the thermal model

and evaluates its performance and thermal overhead.

3.1. Implementation of the Model

The source code for the thermal model was compiled using the gcc-3.2.2 compiler

with optional flags of “-O3 -march=pentium4 -mfpmath=sse -mmmx -msse -msse2”.

The additional compiler flags are used to optimize the source code for faster performance.

When executed, the thermal model periodically prints out a list of temperature values for

each functional unit. In this project, the default sampling interval is used for all

experiments: 5 milliseconds for each counter-rotation, and 20 milliseconds to update

temperature values. Although the model updates temperature values infrequently, the

program continually monitors access to performance counters and updates power values.

Given the new power values, the program performs a large set of calculations based on

the RKF method to obtain the temperature values. Ideally, the thermal model should add

 14

very little overhead to the system, but monitoring the performance counters and

calculating the temperature can require a substantial amount of processor resources. The

subsequent sections describe two metrics that are used to find the inherent overhead of

the program.

3.2. Performance Overhead

This project uses the CPU2000 benchmarks to estimate the performance overhead.

CPU2000 is a benchmark suite designed by the Standard Performance Evaluation

Corporation (SPEC) to measure performance of computer processors [16]. CPU2000

contains two types of benchmark applications: one that mainly supports integer

operations, and one that supports floating-point operations. All SPEC benchmarks are

compiled using the base tuning option. For the purposes of this study, the execution time

of the benchmark programs is used as the measure of performance. On the first trial, the

time for each benchmark to complete its task is recorded. Then, the benchmark and the

thermal model are executed simultaneously. The benchmarks take longer to execute in

the second trial since the thermal model is being processed concurrently. This procedure

is repeated three times. The overhead is measured as the percentage difference in the

average execution time of each benchmark between the two experiments. Hence, a

longer time difference means a higher overhead.

Table 2 lists the average execution times of each benchmark. A total of 20

benchmark programs have been selected from the CPU2000 benchmark suite. Note how

running the model simultaneously increases the execution time of each benchmark.

 15

Figure 2 shows the performance overhead results that have been calculated from data in

Table 2.

Integer
Benchmarks

Without
model

(seconds)

With
model

(seconds)

Floating-
point
Benchmarks

Without
model

(seconds)

With
model

(seconds)
gzip 181.82 238.13 wupwise 167.64 257.49
vpr 261.87 314.93 swim 435.61 462.62
gcc 112.94 146.02 mgrid 280.34 426.34
mcf 284.28 304.23 applu 323.65 439.48
crafty 123.23 169.48 mesa 210.15 307.83
parse 250.35 317.36 art 880.05 910.47
gap 119.46 156.72 equake 141.62 160.95
vortex 300.52 297.85 ammp 502.59 606.88
bzip2 237.05 288.57 sixtrack 8.30 11.43
twolf 541.59 555.47 apsi 586.31 695.55

Table 2: Average execution time of SPEC benchmarks

Performance Overhead

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

gz
ip

vp
r

g
cc

m
cf

cr
af

ty

pa
rs

e

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

W
up

w
is

e

S
w

im

M
gr

id

A
pp

lu

M
es

a

A
rt

E
qu

ak
e

A
m

m
p

S
ix

tr
ac

k

A
ps

i

Integer Floating- Point

SPEC Benchmarks

E
xe

c
u

ti
o

n
 T

im
e

D
if

fe
re

n
c

e
 (

%
)

 .

Figure 2. Performance overhead of SPEC benchmarks

The results indicate that the performance overhead can vary across applications,

and the variation is larger across floating-point benchmarks than integer benchmarks.

 16

The average overhead is 20.6 % for integer applications, and most of them are in the

range of 20 ~ 30 %. In contrast, half of the floating-point benchmarks have an overhead

that is near or below 20 %, while three benchmarks –wupwise, mgrid, and mesa– have a

very high overhead above 45 %. The thermal model’s main computation algorithm

requires several iterations of the RKF algorithm. Benchmarks with iterative numerical

methods that use lots of floating-point operations are more likely to compete for

computing resources, and hence these benchmarks have greater overhead. Thus, the

thermal model would impede performance were it to be used in conjunction with high-

precision scientific applications.

3.3. Thermal Overhead

The thermal model inevitably uses computing resources, and hence the estimated

temperature values reflect the amount of heat added by the model itself. Obtaining the

thermal overhead, however, is not an easy task since the temperature of each functional

unit cannot be estimated without using the thermal model. Thus, the amount of heat

generated by the model is approximated using the following procedures.

First, steady-state temperature values for each functional unit are measured and

recorded. Steady-state conditions mean that the thermal model is the only software

running on the computer system. The second experiment concurrently executes two

versions of the thermal model. One version is the original program. The other program

is a modified version where the counter values are statically assigned instead of obtaining

real values via the device driver. Hence, only one version prints out the real temperature

 17

values. The other program uses the same algorithm to computer temperature but is using

false data. One reason for using this experimental setup is because only one program can

access the performance counters at any given time. Furthermore, the majority of the

processor activity is in the main temperature calculation algorithm and not in the

performance monitoring functionality. Hence, the thermal overhead can be approximated

as the temperature difference between the second experiment and the steady-state

condition. Table 3 lists the results of these experiments.

Temperature (oC) Units
Steady-State Two Versions

Thermal
Overhead (oC)

 BusCtl 42.79 43.60 0.81
 L2_Cache 43.20 44.02 0.82
 L2_BPU 46.19 49.28 3.09
 InstrDecoder 44.72 46.35 1.63
 L1_BPU 45.02 46.81 1.79
 ITLB 43.85 45.28 1.43
 MOB 44.05 45.60 1.55
 TrCache_Top 46.39 47.98 1.59
 TrCache_Bot 46.37 47.91 1.54
 DTLB 45.44 47.48 2.04
 L1_Cache_Top 45.14 47.07 1.93
 L1_Cache_Bot 46.38 48.60 2.22
 IntExe 50.65 53.82 3.17
 MemCtl 50.06 51.89 1.83
 IntReg 52.35 55.72 3.37
 FpExe 43.84 45.22 1.38
 FpReg 44.63 46.14 1.51
 UROM 43.33 44.25 0.92
 Alloc 50.54 51.75 1.21
 Rename 50.83 52.01 1.18
 Retire 49.24 50.68 1.44
 InstrQ1 51.61 53.11 1.50
 Sched 51.95 53.37 1.42
 InstrQ2 51.12 52.87 1.75

Table 3. Thermal overhead

 18

 For most units, the results show that the temperature increases by roughly 0.9 ~

2.1 oC. The integer register file, integer execution unit, and the L2 BPU have the largest

thermal overhead. This pattern indicates the compute-intensive nature of the thermal

model, and reaffirms the fact that the majority of the processor activity lies in the RKF

algorithm.

 19

4. THERMAL STRESS PATTERNS

 The thermal model can be used to characterize thermal behavior of applications or

study temperature-aware design techniques. This chapter includes a case study on

thermal stress patterns of benchmark programs. Understanding the temperature

variations of certain programs can help designers to efficiently allocate resources to

alleviate thermal design concerns.

4.1. Spatial Variations

 This section examines several SPEC benchmarks in detail to illustrate the thermal

characteristics of different types of applications. While the information is applicable to

most of the benchmarks, only a few are selected and presented in this report because their

high overhead makes the thermal stress patterns easily noticeable.

 For each benchmark, a temperature trace is created by recording the output values

of the thermal model. Initially, the thermal model runs on the system by itself. The

benchmark starts executing after roughly two minutes.

 20

4.1.1. Integer Applications

 Figure 3 and Figure 4 show the transient temperature trace of the processor for the

gzip and gcc benchmarks respectively. Note that the time axis of each figure is scaled to

fit the execution time of each benchmark. See Table 2 in section 3.2. for details on the

execution time of SPEC benchmarks. In each figure, the sharp rise in temperature

indicates the point when the benchmark starts running. The data before that point are the

steady-state conditions.

Temperature Trace (gzip)

40

45

50

55

60

65

time

te
m

p
er

at
u

re
 (

o
C

)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Figure 3. Temperature trace of gzip benchmark

 21

Temperature Trace (gcc)

40

45

50

55

60

65

time

te
m

p
er

at
u

re
 (

o
C

)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Figure 4. Temperature trace of gcc benchmark

For integer benchmarks, the integer units –IntReg and IntExe– are typically the

hottest units on the chip. Even considering that the thermal model itself adds heat mostly

to the integer units, the overall temperature gradient indicates that certain units are likely

to heat up more than other units. In comparison to the steady-state condition, the amount

of increase in temperature for each functional block varies from 2 to 10 oC.

4.1.2. Floating-Point Applications

Figure 5 and Figure 6 show the temperature trace of the wupwise and mesa

benchmarks respectively.

 22

Temperature Trace (wupwise)

40

45

50

55

60

65

time

te
m

p
er

at
u

re
 (o

C
)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Figure 5. Temperature trace of wupwise benchmark

Temperature Trace (mesa)

40

45

50

55

60

65

time

te
m

pe
ra

tu
re

 (o
C

)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Figure 6. Temperature trace of mesa benchmark

 23

In contrast to integer benchmarks, both figures show a relatively uniform

temperature increase over all functional blocks. In addition, the amount of increase in

temperature ranges from 1.5 to 5 oC, which is considerably smaller than that of integer

benchmarks. For the wupwise and mesa benchmarks, the floating-point units heat up by

the largest amount, but not enough to significantly change the thermal gradient of the

processor. The overall thermal distribution does not differ much from the steady-state

condition other than the fact that the average temperature is higher.

4.1.3. Application-Specific Thermal Behavior

 The temperature traces presented in the previous two sections clearly show a

general pattern of how integer benchmarks differ from floating-point benchmarks. While

integer benchmarks tend to heat up the processor more than floating-point benchmarks,

the relative temperature change across each functional unit is more uniform for floating-

point benchmarks. Table 4 shows the average increase in temperature when the SPEC

benchmarks are running. This table only includes the four benchmarks –gzip, gcc,

wupwise, and mesa– that were used in the previous sections. Note that the floating-point

benchmarks have a smaller range of values and a smaller standard deviation than the

integer benchmarks. These numerical results support the analysis.

 24

Integer Floating-Point Units
gzip gcc wupwise mesa

BusCtl 1.69 1.79 1.41 1.35
L2_Cache 2.51 1.87 1.48 1.89
L2_BPU 5.39 8.07 3.19 5.08
InstrDecoder 2.16 2.16 1.42 2.36
L1_BPU 3.43 2.77 2.21 1.77
ITLB 2.74 3.13 2.01 2.40
MOB 2.83 3.09 2.11 2.56
TrCache_Top 2.85 2.21 2.39 2.36
TrCache_Bot 2.90 2.20 2.76 2.43
DTLB 3.90 2.95 3.81 3.32
L1_Cache_Top 3.89 2.94 3.62 3.16
L1_Cache_Bot 4.54 3.12 3.84 3.53
IntExe 7.32 4.18 2.85 4.61
MemCtl 4.26 2.67 2.10 2.86
IntReg 7.95 4.43 2.66 4.86
FpExe 2.15 1.94 3.78 2.55
FpReg 2.33 2.05 4.16 2.79
UROM 1.72 2.26 1.79 2.19
Alloc 2.36 1.69 2.04 1.91
Rename 2.32 1.66 1.99 1.87
Retire 2.79 1.97 2.47 2.30
InstrQ1 2.92 2.04 2.59 2.37
Sched 3.13 2.02 1.71 2.17
InstrQ2 3.88 2.50 2.36 2.77
Average 3.41 2.74 2.53 2.73
Standard Deviation 1.58 1.35 0.82 0.96

Table 4. Average temperature increase of SPEC benchmarks

Another way to study thermal behavior is by visualizing the thermal map of the

processor. Consider the gzip benchmark and the wupwise benchmark. Figure 7 shows

the thermal gradient of the processor at a particular instance when these benchmarks are

executing. The uniform temperature increase for the wupwise benchmark creates a

thermal map similar to that in steady-state. The non-uniform temperature change for the

gzip benchmark creates an easily noticeable hot spot near the integer units.

 25

Figure 7. Thermal plot for integer and floating-point benchmark.

(a) gzip benchmark (b) wupwise benchmark

Understanding these spatial variations can assist manufacturers to customize

thermal design packages for processors. For example, if a Pentium 4 processor used in a

server machine mainly supports numerical computations, it may be feasible to use

inexpensive packaging materials. Since integer benchmarks tend to create larger

temperature gradients around the integer units, differentiating the heat spreader material

around the known hot spots would be a possible solution to effectively remove heat and

minimize packaging costs for processors running integer applications. Customized

packaging can help manufacturers to efficiently allocate resources where it is needed the

most and minimize cooling costs.

 26

4.2. Temporal Variations

The previous section analyzed thermal stress patterns across the functional units.

Understanding these spatial differences is very important but not sufficient to manage

temperature. Typically, DTM techniques operate in small time intervals. Thus, in

addition to the global picture of the temperature distribution, it is also important to

understand how temperature changes as time progresses.

Although most applications exhibit predictable thermal behavior over time, some

applications may abruptly shift the temperature gradient in unexpected ways. Consider

the gcc benchmark. Figure 8 is identical to Figure 4, except that it only shows three units:

the L2 BPU, integer register file, and scheduler unit. Figure 9 also lists the temperature

trace for the same three units while running the vortex integer benchmark.

Temperature Trace (gcc)

40

45

50

55

60

65

time

te
m

p
er

at
u

re
 (

o
C

)

L2_BPU

IntReg

Sched

Figure 8. Temperature trace of gcc benchmark. Only three units are shown.

 27

Temperature Trace (vortex)

40

45

50

55

60

65

time

te
m

p
er

at
u

re
 (

o
C

)

L2_BPU

IntReg

Sched

Figure 9. Temperature trace of vortex benchmark. Only three units are shown.

In Figure 8 and Figure 9, the integer register file is typically the hottest unit on the

processor. However, as the temperatures sporadically change, the L2 BPU or the

scheduler often becomes the hottest unit. That is, the hot spot is not fixed but moves

around the processor during the execution of the program. Also note that the L2 BPU is

located far away from the integer units, which are placed in the lower half of the

processor (see Figure 1).

The results indicate that thermal stress patterns are not fixed to certain regions on

the chip and can dramatically change as time passes. To effectively operate any thermal

management technique, researchers must be able to characterize the movement of hot

spots and quantify the thermal gradient bounds. Understanding these temporal variations

can ultimately help chip designers to intelligently place thermal sensors on the processor.

 28

Gunther et al. have explained the importance of examining thermal maps to find the

optimal location of sensors on the Pentium 4 [17]. The thermal model is a useful tool to

effectively locate hot spots on the processor.

 29

5. THERMAL SECURITY RISKS

The main purpose of this chapter is to show how the thermal model can be used in

computer architecture studies in addition to its use as a temperature sensing mechanism.

This chapter includes a case study of potential thermal security attacks on

microprocessors that only have a small number of thermal sensors.

5.1. Thermal Monitors of the Pentium 4

The thermal model produces a detailed temperature profile of the processor. For

most applications, the hottest spot on the Pentium 4 processor tends to be near the integer

execution unit or its neighboring units, such as the rename or instruction queue units.

The coolest unit is typically the bus control unit. The Pentium 4 has two thermal sensors,

which seem to be placed in optimal locations to account for temperature variations across

the chip. While the exact locations of the sensors are unknown, it can be inferred that

one is near the upper corner of the bus control unit, and the other is near the integer

execution unit and acts as a catastrophic shutdown detector [12, 17]. Each thermal sensor

triggers a thermal monitor when the temperature reaches a certain threshold. The thermal

monitor will then regulate the processor’s clock frequency, and hence reduce activity to

 30

cool down the chip. However, consider a program that is designed to overheat certain

regions that are far away from the thermal sensors. This poses a potential security risk if

localized heating can occur such that the thermal sensors fail to detect noticeable rise in

temperature. The experiments in the following section target the branch prediction units.

5.2. Overheating the Branch Prediction Units

The Pentium 4 has two branch prediction units –L1 BPU and L2 BPU– that are

located relatively far away from the thermal sensors. Two benchmark programs are

devised to increase activity in the BPUs. The first experiment uses a test program that

contains approximately 90 if-statements within a large for-loop. Appendix C lists the

source code for this program. The results show that the temperature of the L2 BPU

increases by roughly 12 oC at the most. Figure 10-(a) contains a thermal map of the

Pentium 4 at this particular instance. While the L2 BPU does heat up more than usual,

the integer execution unit is still the hottest unit on the chip. The general pattern

indicated in Figure10-(a) is consistent with most applications; the hot spots are located in

the lower region of the chip near the integer units and the instruction queue units.

 31

Figure 10. Thermal plot of BPU test programs. (a) experiment #1 (b) experiment #2

The second experiment slightly varies the program used in the first experiment.

Within the compiled assembly code, several assembly instructions are removed, thus

creating a series of conditional branch instructions inside the main loop. Appendix D

includes the source code for this test program. The temperature of the L2 BPU increases

by 21 oC during the program’s peak execution, resulting in a temperature slightly above

67 oC. Most other units only showed an average of 3 ~ 5 oC increase in temperature.

Figure 10-(b) shows the thermal map for this experiment. Note that the lower region of

the chip is noticeably cooler than that in Figure 10-(a). The L2 BPU is clearly the hottest

unit on the chip, where the next hottest unit –IntReg– is only 55 oC. Thus, experiment #2

demonstrates that it is possible to stress certain units while minimizing activity in other

units. Further optimizations of the program may allow one to achieve higher temperature

gradients. If most functional units are below normal operating temperatures, the thermal

monitor may not operate or may respond too late when the chip has already been

permanently damaged.

 32

5.3. Benchmark Analysis

The results in the previous section show early work indicating the possibility of

thermal security attacks on the Pentium 4 processor through thermal viruses. Thermal

viruses are programs that may cause significant overheating to occur such that the

processor is physically damaged. The test program used in experiment #2 is of special

interest because of the way it significantly increases activity in the L2 BPU. Figure 11

shows how the access rates of the BPUs change across time. The sharp rise in the access

rate indicates the point where the benchmark program started to run. The L2 BPU only

has an 8 % access rate at steady-state, which means that it is consuming 8 % of its

maximum power. When the benchmark is running, the L2 BPU is consuming more than

40 % of its maximum power.

0

10

20

30

40

50

60

70

80

90

100

time

A
cc

es
s

R
at

e
(%

)
 .

L2_BPU

L1_BPU

Figure 11. Access rate of BPUs (experiment #2)

 33

Recall from section 2.2. that the thermal model estimates the power dissipated by

each functional unit based on the following equation [15]:

() ockPowerNonGatedClAccessRateralScalingArchitectuMaxPowerPower +××=

Thus, the high increase in the access rates is manifested in higher power dissipation for

the BPUs. As the results indicate, the temperature of the L2 BPU rises rapidly because of

its large power density. Figure 12 shows the average power consumption of the

processor for experiment #2. The power consumption of the L2 BPU increases by a

factor of seven when the benchmark program is being executed. Under steady-state, the

L1 BPU and L2 BPU only consume a combined total of 8 % of the total power. The

percentage rises to 30 % when the benchmark is running.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Bu
sC

tl

L2
_C

ac
he

L2
_B

PU

Ins
trD

ec
od

er

L1
_B

PU ITL
B

MOB

TrC
ac

he
DTL

B

L1
_C

ac
he

Int
Ex

e

Mem
Ctl

Int
Reg

Fp
Ex

e
Fp

Reg
UROM

All
oc

Ren
am

e
Reti

re

Ins
trQ

1

Sch
ed

Ins
trQ

2

Total Power: Steady- State (23.48 W), Running Benchmark (36.93 W)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
)

.

Steady- State
Running Benchmark

Figure 12. Average power dissipation (experiment #2)

 34

5.4. Future Considerations

The localized heating effect discussed in section 5.2. suggests that thermal

security attacks might be possible. However, the temperature value of the L2 BPU is not

high enough to cause permanent damage to the chip for either experiment. The

benchmark programs need to be further developed to realistically pose a big threat. The

most convincing evidence could be gathered by refining the existing benchmarks to

produce more thermal stress in highly concentrated areas and then observe the chip fail.

Even if the chip does not fail, such experiments may help researchers understand the

safety margin that is designed into the chip, and how that affects the temperature gradient

as we vary the voltage or clock frequency of the system. Nonetheless, researchers can

study localized heating effects by using the thermal model. These studies will also

enable chip designers to build more safety mechanisms and place thermal sensors more

intelligently on the chip.

 35

6. CONCLUSIONS

6.1. Summary of Results

The goal of this project was to implement and use a runtime thermal model of a

Pentium 4 processor. The implementation of the model was successful, and the resulting

software solution provides detailed temperature information at the floorplan level and

uses the hardware performance counters as a measure of real processor activity. The

current implementation of the model adds about 1 to 4 oC of thermal overhead and can

slow down the execution time of SPEC benchmarks by up to 54 %.

The software can be used for both architecture studies and online temperature

sensing. The model was used in two case studies. The first study involved characterizing

thermal stress patterns of various SPEC benchmarks. The results indicated that integer

benchmarks tend to show more variation than floating-point benchmarks in terms of

temperature changes across functional units. The thermal traces of the gcc and vortex

benchmarks also showed how hot spots on the chip are not fixed but can move around

during the execution of a program. The second study used the thermal model to study

localized heating effects caused by thermal viruses. Two benchmark programs were

 36

created to artificially induce high thermal stress around the L2 BPU. One benchmark

program showed that the temperature of the L2 BPU increased by 20 oC while all other

units only showed an average of 3 ~ 5 oC increase in temperature.

6.2. Runtime Temperature Sensing

This project shows that runtime temperature sensing is possible via software in

the absence of fine-grained hardware sensors. Using hardware performance counters in

the model provides several advantages over other thermal sensing methods. First, unlike

purely software-based simulations that cannot account for system-wide hardware activity,

the thermal model represents a more realistic view of the processor and can thus be used

under real workload. Second, performance counters are present in most of today’s

processors, so the thermal model would be using existing hardware resources. Lastly, the

fact that performance counters serve as the basis for estimating temperature indicates that

computer systems do not have to rely solely on hardware sensors to employ DTM

techniques. Ultimately, the thermal model could replace some of the hardware

temperature sensors. Eliminating all or a few of the hardware sensors could add more

flexibility to some of the rigid design requirements of processors.

Nonetheless, a great deal of future work is necessary for the thermal model to

fully develop as a low-cost and reliable temperature sensing mechanism. The current

implementation is insufficient for applications that require low runtime costs and high

precision. The high overhead suggests that the software solution needs to be further

optimized. A faster and simpler algorithm would have to replace the existing RKF

 37

numerical solution, which is computationally too expensive. The model also needs to be

further validated for accuracy. Modeling the processor in software inevitably introduces

errors when certain parameters are modeled incorrectly. Few hardware parameters are

even unknown, and thus force the thermal model to use rough estimates. Future research

may include ways to improve the model, which can then be used as a cost-effective

alternative to thermal sensors for runtime DTM techniques.

6.3. Future Architecture Studies

In addition to its use as a temperature sensing mechanism, the thermal model is

also a valuable tool for computer architecture research. Chapter 4 and 5 provide a few

applications of the thermal model. Understanding application-specific thermal stress

patterns allows hardware designers to customize thermal-efficient processor packages,

floorplan layouts, and sensor placement methods to fit a specific purpose. Hardware

designers can also understand the safety margins that must be built into the processor by

examining thermal security attacks. Future research areas such as these facilitate the

development of more reliable and thermal-efficient computer systems. As the system’s

performance and stability improves, productivity will also increase and power

consumption can be greatly reduced.

While the potential benefits of the thermal model are clear, the information

provided by the thermal model must be handled with caution in regard to thermal security

attacks. The concept of a thermal security attack is at an early stage and future work is

necessary to realistically examine the risks involved. Nonetheless, information provided

 38

by the thermal model has the potential to assist malicious programmers in creating

thermal viruses. Thermal viruses would be very dangerous since they would go

undetected by normal anti-virus software and would cause permanent damage to the chip.

If thermal viruses prove to be possible, researchers can use the current information to

provide extra safety measures in the chip. Another solution is to limit access to

information regarding the thermal model or the processor. In some cases, the details of

the processor or its architecture are already proprietary information. Educating the public

about computing ethics is another way to alleviate concerns about thermal security

attacks.

The main methodology introduced in this report can be applied to any processor.

Each processor has a unique architecture, and thus would require a different thermal

model. Extending the thermal model to other processors is another promising area for

future research and can inspire new thermal-aware applications. One possibility is to

model the IBM’s Power5 processor, which has 24 thermal sensors. A new sensor-fusion

algorithm can be studied using the thermal model and the 24 hardware sensors. If

performance counters are used as a proxy for temperature, an optimal solution could use

the sensors to calibrate the new temperature values of the thermal model only when

necessary. This algorithm would effectively reduce the computation overhead of the

software while using existing hardware sensors. This hybrid hardware-software

temperature sensing solution may prove to be more efficient than a hardware solution of

many sensors. Ultimately, the overall methodology presented in this report should

stimulate many new applications that can alleviate thermal concerns in processors.

 39

Works Cited

[1] Mabulikar, D., Pasqualoni, A., Crane, J., Braden. J.S., “Development of a Cost

Effective High Performance Metal QFP Packaging System” IEEE Transactions on

Components, Hybrids, and Manufacturing Technology, vol. 16, issue 8, pp. 902-908,

Dec. 1993.

[2] Kamath, V., “Air Injection and Convection Cooling of Multi-chip Modules: A

Computational Study,” Intersociety Conference on Thermal Phenomena in

Electronic Systems, Washington D.C., May 1994.

[3] Xie, H., Aghazadeh, M., Toth, J., “The Use of Heat Pipes in the Cooling of Portables

with High Power Packages-A Case Study with the Pentium Processor-based

Notebooks and Sub-notebooks,” Proceedings of 45th Electronic Components and

Technology Conference, Las Vegas, NV, May 1995.

[4] Bakker, A., Huijsing, J., “Micropower CMOS Temperature Sensor with Digital

Output,” IEEE Journal of Solid-State Circuits, vol. 31, issue 7, pp. 933-937, Jul. 1996.

[5] Sanchez, H., “Thermal Management System for High Performance PowerPCTM

Microprocessors,” Proceedings of IEEE Compcon 97, San Jose, CA, Feb. 1997.

[6] Lim, C., Daasch, W., Cai, G., “Thermal-aware Superscalar Microprocessor,”

Proceedings of International Symposium on Quality Electronic Design, Mar. 2002.

[7] Skadron, K., Stan, M. R., Huang, W., Velusamy, S., Sankaranarayanan, K., and

Tarjan, D., “Temperature-Aware Microarchitecture,” Proceedings of 30th ACM/IEEE

International Symposium on Computer Architecture, San Diego, CA, Jun. 2003.

[8] Intel Corporation, “Intel Pentium 4 Processor in the 423-pin Package / Intel 850

Chipset Platform Design Guide,” order no. 29824505, Intel Corporation, Santa Clara,

 40

CA, 2004, Available at HTTP:

http://developer.intel.com/design/chipsets/designex/298245.htm.

[9] Hinton, G., Sager, D., Upton, D., Boggs, D., Carmean, D., Kyker, A., and Roussel, P.,

“The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, Q1

2001.

[10] Intel Corporation, Intel Pentium 4 technical documents, Available at HTTP:

http://www.intel.com/design/Pentium4/documentation.htm.

[11] Chip Architect, Intel Pentium 4 Northwood die photo, Available at HTTP:

http://www.chip-architect.com/news/2003_04_20_Looking_at_Intels_Prescott_

part2.html.

[12] Intel Corporation, “IA-32 Intel Architecture Software Developer’s Manual,

Volume 3: System Programming Guide,” order no. 253668, Intel Corporation, Santa

Clara, CA, 2004, Available at HTTP:

http://developer.intel.com/design/pentium4/manuals/index_new.htm#sdm_vol3.

[13] Sprunt, B., “Pentium 4 Performance Monitoring Features” IEEE Micros, vol. 22,

no. 4, pp. 72-82, Jul.-Aug. 2002.

[14] Sprunt, B., Brink and Abyss Pentium 4 Performance Counter Tools For Linux,

Feb. 2002, Available at HTTP:

http://www.eg.bucknell.edu/bsprunt/emon/brink_abyss.

[15] Isci, C., and Martonosi, M., “Runtime Power Monitoring in High-End Processors:

Methodology and Empirical Data,” Proceedings of 36th ACM/IEEE International

Symposium on Microarchitecture, San Diego, CA, Dec. 2003.

 41

[16] Standard Performance Evaluation Corporation, SPEC CPU2000 Benchmark,

Available at HTTP: http://www.spec.org/cpu2000/.

[17] Gunther, S., Binns, F., Carmean, D.M., and Hall, J.C., “Managing the Impact of

Increasing Microprocessor Power Consumption,” Intel Technology Journal, Q1 2001.

 42

Bibliography

Bakker, A., Huijsing, J., “Micropower CMOS Temperature Sensor with Digital Output,”
IEEE Journal of Solid-State Circuits, vol. 31, issue 7, pp. 933-937, Jul. 1996.

Bellosa, F., Weissel, A., Waitz, M., and Kellner, S., “Event-driven Energy Accounting
for Dynamic Thermal Management,” Proceedings of the Workshop on Compilers
and Operating Systems for Low Power, New Orleans, LA, Sep. 2003.

Brooks, D., and Martonosi, M., “Dynamic Thermal Management for High-Performance

Microprocessors,” Seventh International Symposium on High-Performance
Computer Architecture, Monterrey, Mexico, Jan. 2001.

Chip Architect, Intel Pentium 4 Northwood die photo, Available at HTTP:

http://www.chip-architect.com/news/2003_04_20_Looking_at_Intels_Prescott_
part2.html

Fleischmann, M., “Crusoe Power Management: Cutting x86 Operating Power through

LongRun,” Embedded Processor Forum, Jun. 2000.

Gunther, S., Binns, F., Carmean, D.M., and Hall, J.C., “Managing the Impact of

Increasing Microprocessor Power Consumption,” Intel Technology Journal, Q1
2001.

Hinton, G., Sager, D., Upton, D., Boggs, D., Carmean, D., Kyker, A., and Roussel, P.,

“The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal,
Q1 2001.

Intel Corporation, Intel Pentium 4 technical documents, Available at HTTP:
 http://www.intel.com/design/Pentium4/documentation.htm

Intel Corporation, “IA-32 Intel Architecture Software Developer’s Manual, Volume 3:

System Programming Guide,” order no. 253668, Intel Corporation, Santa Clara,
CA, 2004, Available at HTTP:
http://developer.intel.com/design/pentium4/manuals/index_new.htm#sdm_vol3.

Intel Corporation, “Intel Pentium 4 Processor in the 423-pin Package / Intel 850 Chipset

Platform Design Guide,” order no. 29824505, Intel Corporation, Santa Clara, CA,
2004, Available at HTTP:
http://developer.intel.com/design/chipsets/designex/298245.htm

Isci, C., and Martonosi, M., “Runtime Power Monitoring in High-End Processors:

Methodology and Empirical Data,” Proceedings of 36th ACM/IEEE International
Symposium on Microarchitecture, San Diego, CA, Dec. 2003.

Kamath, V., “Air Injection and Convection Cooling of Multi-chip Modules: A

 43

Computational Study,” Intersociety Conference on Thermal Phenomena in
Electronic Systems, Washington D.C., May 1994.

Korn, W., Teller, P., Castillo, G., “Just How Accurate are Performance Counters,” IEEE

International Conference on Performance, Computing, and Communications,
Phoenix, AZ, Apr. 2001.

Lim, C., Daasch, W., Cai, G., “Thermal-aware Superscalar Microprocessor,”

Proceedings of International Symposium on Quality Electronic Design, Mar.
2002.

Lee, K.-J., and Skadron, K., “Using Performance Counters for Runtime Temperature

Sensing in High-Performance Processors,” Proceedings of the Workshop on High-
Performance, Power-Aware Computing, Denver, CO, Apr. 2005.

Mabulikar, D., Pasqualoni, A., Crane, J., Braden. J.S., “Development of a Cost Effective

High Performance Metal QFP Packaging System” IEEE Transactions on
Components, Hybrids, and Manufacturing Technology, vol. 16, issue 8, pp. 902-
908, Dec. 1993.

Mahajan, R., "Thermal management of CPUs: A perspective on trends, needs and

opportunities,” Keynote presentation at the 8th International Workshop on
THERMal INvestigations of ICs and Systems, Madrid, Spain, Oct. 2002.

Russell, J.T., Jacome, M.F., “Software Power Estimation and Optimization for High

Performance, 32-bit Embedded Processors,” Proceedings of International
Conference on Computer Design, Austin, TX, Oct. 1998.

Sanchez, H., “Thermal Management System for High Performance PowerPCTM

Microprocessors,” Proceedings of IEEE Compcon 97, San Jose, CA, Feb. 1997.

Seng, J.S., Tullsen, D.M., “The Effect of Compiler Optimizations on Pentium 4 Power

Consumption,” Proceedings of 7th Workshop on Interaction Between Compilers
and Computer Architectures, Anaheim, CA, Feb. 2003.

Skadron, K., Stan, M. R., Huang, W., Velusamy, S., Sankaranarayanan, K., and Tarjan,

D., “Temperature-Aware Microarchitecture,” Proceedings of 30th ACM/IEEE
International Symposium on Computer Architecture, San Diego, CA, Jun. 2003.

Sprunt, B., Brink and Abyss Pentium 4 Performance Counter Tools For Linux, Feb. 2002,

Available at HTTP: http://www.eg.bucknell.edu/bsprunt/emon/brink_abyss

Sprunt, B., “Pentium 4 Performance Monitoring Features” IEEE Micros, vol. 22, no. 4,

pp. 72-82, Jul.-Aug. 2002.

Standard Performance Evaluation Corporation, SPEC CPU2000 Benchmark, Available at

 44

 HTTP: http://www.spec.org/cpu2000/.

Xie, H., Aghazadeh, M., Toth, J., “The Use of Heat Pipes in the Cooling of Portables

with High Power Packages-A Case Study with the Pentium Processor-based
Notebooks and Sub-notebooks,” Proceedings of 45th Electronic Components and
Technology Conference, Las Vegas, NV, May 1995

 45

Appendix A: Performance Counter Configuration

Performance
Counter

ECSR

CCCR
 Performance Metric Counter

Rotation
Number Address Value Address Value

BSQ_cache_ref 1234 0x0 Bsu0 0x180a0e0f Bpu0 0x0003f000
uop_q_writes (0x07) 1234 0x4 Ms0 0x12000e0f Ms0 0x00031000
TC_deliver_mode 1234 0x5 Tc0 0x0201740f Ms1 0x00033000
uop_q_writes (0x04) 1234 0x6 Ms1 0x1200080f Ms2 0x00031000
LD_port_replay 1234 0x9 Saat0 0x0800040f Flame1 0x00035000
ST_port_replay 1234 0xB Saat1 0x0a00040f Flame3 0x00035000
uops_retired 1234 0xD Cru0 0x0200060f Iq1 0x00039000
front_end_event 1234 0xE Cru3 0x1000060f Iq2 0x0003b000
uop_type 1234 0xF Rat1 0x04000c0f Iq3 0x00035000
IOQ_allocation 12 0x1 Fsb0 0x07dfc20f Bpu1 0x0107d000
FSB_data_activity 34 0x1 Fsb0 0x2e007e0f Bpu1 0x0107d000
BPU_fetch_req 12 0x2 Bpu1 0x0600020f Bpu2 0x00031000
MOB_ld_replay 34 0x2 Mob1 0x0600740f Bpu2 0x00035000
ITLB_reference (0x07) 12 0x3 Itlb1 0x30000e0f Bpu3 0x00037000
ITLB_reference (0x01) 34 0x3 Itlb1 0x3000020f Bpu3 0x00037000
branch_retired 12 0xC Cru2 0x0c001e0f Iq0 0x0003b000
machine_clear 34 0xC Cru2 0x0400020f Iq0 0x0003b000
packed_SP_uop 1 0x8 Firm0 0x1100000f Flame0 0x00033000
scalar_SP_uop 2 0x8 Firm0 0x1500000f Flame0 0x00033000
64bit_MMX_uop 3 0x8 Firm0 0x0500000f Flame0 0x00033000
x87_FP_uop 4 0x8 Firm0 0x0900000f Flame0 0x00033000
packed_DP_uop 1 0xA Firm1 0x1900000f Flame2 0x00033000
scalar_DP_uop 2 0xA Firm1 0x1d00000f Flame2 0x00033000
128bit_MMX_uop 3 0xA Firm1 0x3500000f Flame2 0x00033000
x87_SIMD_moves_uop 4 0xA Firm1 0x5c00300f Flame2 0x00033000

 46

Appendix B: Power Model and Performance Metrics

 47

Appendix C: Source Code for BPU Experiment #1

int main()
{
 int a=0;
 int i;
 unsigned long long int liter = 2000000000000000;

 for (i=0; i < liter; ++i) {
 a = 13*a;

 if (a < 893) a = 1223;
 if (a > 7891) a = 986;
 if (a > 3191) a = 5432;
 if (a > 1190) a = 7843;
 if (a < 439) a = 54;
 if (a < 59) a = 610;
 if (a < 49) a = 150;
 if (a < 429) a = 530;
 if (a < 859) a = 161;
 if (a > 1389) a = 1229;
 if (a < 419) a = 511;
 if (a < 333) a = 861;
 if (a > 5881) a = 1001;
 if (a < 459) a = 1060;
 if (a > 5105) a = 1111;
 if (a < 783) a = 537;
 if (a < 69) a = 70;
 if (a < 39) a = 40;
 if (a < 29) a = 30;
 if (a < 19) a = 320;
 if (a < 9) a = 10;
 if (a < 0) a = 0;
 if (a < 299) a = 300;
 if (a < 89) a = 390;
 if (a < 79) a = 480;
 if (a < 279) a = 580;
 if (a < 289) a = 1290;
 if (a < 673) a = 199;
 if (a < 99) a = 100;
 if (a < 269) a = 270;
 if (a < 259) a = 860;
 if (a < 229) a = 31;
 if (a > 5861) a = 84;
 if (a > 3821) a = 61;
 if (a < 323) a = 511;
 if (a < 203) a = 19;
 if (a < 200) a = 200;
 if (a < 489) a = 5490;
 if (a < 449) a = 5020;
 if (a < 219) a = 229;
 if (a < 209) a = 2000;
 if (a > 6439) a = 91;

 48

 if (a > 5929) a = 169;
 if (a < 499) a = 510;
 if (a > 5339) a = 5644;
 if (a < 479) a = 38;
 if (a < 469) a = 970;
 if (a > 5003) a = 348;
 if (a < 899) a = 3;
 if (a < 889) a = 593;
 if (a < 213) a = 4001;
 if (a > 2091) a = 214;
 if (a < 409) a = 1230;
 if (a < 400) a = 9;
 if (a < 879) a = 3800;
 if (a < 849) a = 2048;
 if (a > 4851) a = 289;
 if (a > 4841) a = 8543;
 if (a < 869) a = 94;
 if (a > 4831) a = 41;
 if (a < 839) a = 541;
 if (a < 819) a = 1103;
 if (a > 639) a = 24;
 if (a > 529) a = 23;
 if (a < 249) a = 52;
 if (a < 239) a = 240;
 if (a > 519) a = 3122;
 if (a < 809) a = 1;
 if (a > 9699) a = 323;
 if (a > 9389) a = 209;
 if (a > 9179) a = 8008;
 if (a < 800) a = 465;
 if (a > 1179) a = 88;
 if (a > 1069) a = 72;
 if (a > 859) a = 261;
 if (a > 749) a = 3125;
 if (a > 8059) a = 136;
 if (a > 7049) a = 97;
 if (a < 563) a = 12345;
 if (a > 1699) a = 33;
 if (a > 509) a = 27;
 if (a > 503) a = 1021;
 if (a < 453) a = 981;
 if (a < 829) a = 53;
 if (a < 343) a = 241;
 if (a > 5871) a = 436;
 if (a > 9069) a = 762;
 if (a < 103) a = 6781;

 }
 return 0;
}

 49

Appendix D: Source Code for BPU Experiment #2

 .file "bpu_simple.c"
 .text
.globl main
 .type main,@function
main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 andl $-16, %esp
 movl $0, %eax
 subl %eax, %esp
 movl $0, -4(%ebp)
 movl $1233977344, -16(%ebp)
 movl $465661, -12(%ebp)
 movl $0, -8(%ebp)
.L2:
 movl -8(%ebp), %eax
 movl %eax, -24(%ebp)
 cltd
 movl %edx, -20(%ebp)
 movl -20(%ebp), %eax
 cmpl -12(%ebp), %eax
 jb .L5
 movl -20(%ebp), %edx
 cmpl -12(%ebp), %edx
 ja .L3
 movl -24(%ebp), %eax
 cmpl -16(%ebp), %eax
 jb .L5
 jmp .L3
.L5:
 movl -4(%ebp), %eax
 movl %eax, %edx
 sall $1, %edx
 addl %eax, %edx
 sall $2, %edx
 leal (%eax,%edx), %eax
 movl %eax, -4(%ebp)
 cmpl $892, -4(%ebp)
 jg .L7
; movl $1223, -4(%ebp)
.L7: jle .L8
.L8: jle .L9
.L9: jle .L10
.L10: jg .L11
.L11: jg .L12
.L12: jg .L13
.L13: jg .L14
.L14: jg .L15
.L15: jle .L16
.L16: jg .L17

 50

.L17: jg .L18

.L18: jle .L19

.L19: jg .L20

.L20: jle .L21

.L21: jg .L22

.L22: jg .L23

.L23: jg .L24

.L24: jg .L25

.L25: jg .L26

.L26: jg .L27

.L27: jns .L28

.L28: jg .L29

.L29: jg .L30

.L30: jg .L31

.L31: jg .L32

.L32: jg .L33

.L33: jg .L34

.L34: jg .L35

.L35: jg .L36

.L36: jg .L37

.L37: jg .L38

.L38: jle .L39

.L39: jle .L40

.L40: jg .L41

.L41: jg .L42

.L42: jg .L43

.L43: jg .L44

.L44: jg .L45

.L45: jg .L46

.L46: jg .L47

.L47: jle .L48

.L48: jle .L49

.L49: jg .L50

.L50:
 cmpl $5339, -4(%ebp)
 jle .L51
 movl $5644, -4(%ebp)
.L51: jg .L52
.L52: jg .L53
.L53: jle .L54
.L54: jg .L55
.L55: jg .L56
.L56: jg .L57
.L57: jle .L58
.L58: jg .L59
.L59: jg .L60
.L60: jg .L61
.L61: jg .L62
.L62: jle .L63
.L63: jle .L64
.L64: jg .L65
.L65: jle .L66
.L66: jg .L67
.L67: jg .L68
.L68: jle .L69
.L69: jle .L70
.L70: jg .L71

 51

.L71: jg .L72

.L72: jle .L73

.L73: jg .L74

.L74: jle .L75

.L75: jle .L76

.L76: jle .L77

.L77: jg .L78

.L78: jle .L79

.L79: jle .L80

.L80: jle .L81

.L81: jle .L82

.L82: jle .L83

.L83: jle .L84

.L84: jg .L85

.L85: jle .L86

.L86: jle .L87

.L87: jle .L88

.L88: jg .L89

.L89: jg .L90

.L90: jg .L91

.L91: jle .L92

.L92: jle .L93

.L93: jg .L94

.L94: jg .L95

.L95: jle .L96

.L96: jle .L97

.L97: jle .L98

.L98: jg .L99

.L99: jg .L100

.L100: jg .L101

.L101: jle .L102

.L102: jle .L103

.L103: jg .L4

.L4:
 leal -8(%ebp), %eax
 incl (%eax)
 jmp .L2
.L3:
 movl $0, %eax
 leave
 ret
.Lfe1:
 .size main,.Lfe1-main
 .ident "GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)"

	Table of Contents
	List of Figures
	Abstract
	1. INTRODUCTION
	1.1. Problem Statement
	1.2. Project Scope
	1.3. Related Concepts in Micro-Architecture
	1.4. Thesis Overview

	2. METHODOLOGY
	2.1. Pentium 4 Architecture
	2.2. HotSpot Extension

	3. ANALYSIS OF THE MODEL
	3.1. Implementation of the Model
	3.2. Performance Overhead
	3.3. Thermal Overhead

	4. THERMAL STRESS PATTERNS
	4.1. Spatial Variations
	4.2. Temporal Variations

	5. THERMAL SECURITY RISKS
	5.1. Thermal Monitors of the Pentium 4
	5.2. Overheating the Branch Prediction Units
	5.3. Benchmark Analysis
	5.4. Future Considerations

	6. CONCLUSIONS
	6.1. Summary of Results
	6.2. Runtime Temperature Sensing
	6.3. Future Architecture Studies

	Works Cited
	Bibliography
	Appendix
	A: Performance Counter Configuration
	B: Power Model and Performance Metrics
	C: Source Code for BPU Experiment #1
	D: Source Code for BPU Experiment #2

