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Glossary 
 
� Adaptive Policy Enforcement – a special type of policy enforcement developed in this 

research that allows a policy to increase or decrease its degree of security awareness 
in response to pre-defined events.   

� Binary Stream – the binary code of a running program. 
� Binary Translation – An extension application to an SDT framework that translates 

the ISA of programs while they are running so that they may run on hardware other 
than originally intended. 

� Buffer Overflow – placing more objects in a buffer than it can hold so that memory is 
overwritten.  This is a common hacking attack. 

� Cache – a fast memory used for storing frequently used data.  
� Cache Flush – deleting all data entries of a cache. 
� Code safety – ensuring that low-level and high-level safety are in place.  Low-level 

code safety  guarantees control flow safety memory safety, and stack safety.  High-
level code safety is specific to the application. 

� Context Switch – a switch between programs that requires the program data of the 
first to be saved. 

� Dynamic Policy Enforcement – enforcing policies while a program is running. 
� Dynamic Optimization – An extension application to an SDT framework that im-

proves program performance during execution. 
� Executable – a program that can be executed to perform some task. 
� Exploit - A technique of breaking into a system, or a tool that implements the tech-

nique. An exploit takes advantage of a weakness/vulnerability in a system in order to 
hack it. 

� Fragment – a sequence of related code assembled by the fragment builder of Strata.  
� Fragment Builder – the fetch/decode/translate engine that translates a binary stream 

into fragments. 
� Fragment Cache – the cache used to store fragments built by Strata. 
� Generic call – any function used in a program that is not explicitly used by the oper-

ating system, i.e. not a system call. 
� Hacking – the process by which a malicious user gains unauthorized access into a 

system, using by exploiting low-level intricacies of a system. 
� Hash Table – a specific type of data structure used commonly in programming due to 

its ability to quickly insert and retrieve data entries. 
� Intrusion Detection – a method of profiling normal system behavior in order to rec-

ognize deviations in it which suggests unauthorized access. 
� Patch – a response to an exploit by security professionals that fixes a specific vulner-

ability in a system. 
� Format String Attack - A common vulnerability created by programmers who use 

tainted input as the format string for printf() (a common C function). 
� Denial of Service Attack - An exploit whose purpose is to deny somebody the use of 

the service: namely to crash or hang a program or the entire system. 
� Distributed Denial of Service Attack - A DDoS attack is one that pits many machines 

against a single victim. An example is the attacks of February 2000 against some of 
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the biggest websites. Even though these websites have a theoretical bandwidth of a 
gigabit/second, distributing many agents throughout the Internet flooding them with 
traffic can bring them down. 

� Security Policy – a set of rules that manages computer resources such as the file sys-
tem and memory. 

� Software Dynamic Translation – Conceptual idea of modifying programs while they 
are running by inserting a virtual machine between program and processor. 

� SPARC – Scalable Processor Architecture – one of the architectures Strata is currently 
ported to, and the platform which all tests were run in our research.  

� Stack Smashing – a particular hacking attack that uses buffer overflows to circumvent 
normal program execution by overwriting return addresses on the stack. 

� State Machine – a method of representing a sequence of actions to be taken by a pol-
icy.  A state machine consists of a set of an input alphabet, a set of states, and a set of 
transition relations between the states.  Each character of the input is read in sequen-
tially and the machine is traversed.  

� Static Policy Enforcement – enforcing policies on non-executing code, at compile 
time. 

� Strata – an implementation of the concept of SDT currently under development by 
Kevin Scott and Professor Jack Davidson at the University of Virginia Laboratory for 
Computer Architecture. 

� System call – a function used by the operating system used to control resources.  They 
are often exploited in hacking attacks, so they are the focus of a number of policy en-
forcement schemes including ours. 

� Target Code – the source code on which a security policy is applied. 
� Trampoline – a special function used to retain control of a process in Strata. 
� Translation – the process by which Strata mediates program execution, specifically 

builds fragments for subsequent execution. 
� Transparent Execution – when a program runs without need of user assistance or 

making any changes to application semantics, so that the user does not necessarily 
know that it is even running.    

� Un-trusted Binary – code from an unknown source that 
� Virtual Machine- any multi-user shared-resource operating system that gives each 

user the appearance of having sole control of all the resources of the system. 
� Working Set – the 10% portion of a program that runs 90% of the execution time. 
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Abstract 
 

This report describes a software system that transparently supports the enforce-
ment of user-specified security policies.  The system was implemented as an extension to 
a Software Dynamic Translation (SDT) framework known as Strata developed at the 
Laboratory for Computer Architecture at the University of Virginia (LAVA) by PhD stu-
dent J. Kevin Scott and Professor Jack Davidson.  SDT technology is an exciting new 
innovation in computer science that has the ability to monitor and modify programs while 
they are running.  The policy enforcement scheme presented here provides a simple Secu-
rity API available for policy authors to implement a wide range of security policies in the 
C programming language.  I have contributed to this application by extending both the 
API and the enforcement mechanism to enforce a special type of policy defined in this 
report as adaptive security policies.  While these policies do not claim to act using their 
own intelligence, they do have the ability to alter policy rules based on user-specified re-
sponses to user-specified events.   
 It is our conclusion that the system we have presented is beneficial to the security 
community.  SDT technology allows enormous flexibility in policy specification, as does 
the nature of our API which is supported in the widely used C programming language.  
Policies can be applied to programs without the need of source code manipulation prior to 
execution, which aids in the degree of execution transparency.  This capability alone 
transcends the options presented by static policy enforcement.  Our system already per-
forms a derivative of execution monitoring without the need of operating system assis-
tance, and unlike many static solutions, we are not limited to the enforcement of a single 
policy.  The dynamic information provided at run-time allows dynamic and adaptive 
policies to be written that at least equal, if not supercede, the scope of any static policy 
and require significantly less programmer effort.  Our enforcement mechanism, Strata, 
makes all of this possible. 
 The enforcement of adaptive policies only increases policy flexibility by giving 
policy authors the ability to increase or decrease the degree of security a policy applies 
during execution.  By responding to pre-defined events, an adaptive policy can justify 
threats before enforcing computationally expensive policies.  While this savings in per-
formance has not been fully quantified due to the wide range of policies our system may 
potentially support, by simply providing new options to security engineers the probability 
of attaining security solutions increases. 
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Chapter One:  Introduction 
 

This report describes a software system that transparently supports the enforce-

ment of user-specified security policies.  The system was implemented as an extension to 

a Software Dynamic Translation framework known as Strata, which is an exciting new 

innovation in computer science that has the ability to monitor and modify programs while 

they are running.  The policy enforcement scheme presented here provides a simple Secu-

rity API available for policy authors to implement a wide range of security policies in the 

C programming language.  I have contributed to this application by extending both the 

API and the enforcement mechanism to enforce a special type of policy defined in this 

report as adaptive security policies.  While these policies do not claim to act using their 

own intelligence, they do have the ability to alter policy rules based on user-specified re-

sponses to user-specified events.  

 Computer security is becoming an increasingly important issue in this age of 

global communication, electronic commerce, and the Internet.  It is highly researched for 

several reasons, its relevance to consumer privacy and due to the persistence and re-

sourcefulness of attackers.  Hackers are constantly discovering vulnerabilities in systems 

leaving behind a legacy of malicious programs known as exploits.  As long as hackers 

have been hard at work causing problems, there have been efforts to prevent the damage 

they cause.  These efforts have been both preventative of attacks and responsive to them, 

statically and dynamically.  One such application, developed at the University of Virginia 

by Professor Dave Evans and Dave Larochelle, statically analyzes C programs for a cer-

tain type of exploit [19].  This would be an example of a preventative measure, but also a 

very static solution, since the source code is required before compilation and the ques-
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tionable code is never run.  A similar task is also accomplished dynamically (a dynami-

cally linked library) at run-time by a program developed at Avalya Labs named Libsafe 

[18, 16].   This application is also preventative, and accomplishing the same end goal, but 

doing so in a different manner.  Another portion of the these efforts have evolved into the 

field known as intrusion detection systems (IDS), which as the name suggests, strives to 

profile the behavior of normal systems so that attacks may be detected while taking place.  

This approach is drastically different from the earlier examples and is a good indication 

of the diversity of computer security applications.  Consider yet another method, the idea 

of enforcing user-defined security polices.  This approach offers a great deal of flexibility 

because policies can be tailored to provide different levels of security for different plat-

forms.  Policies are most commonly defined as a set of safety properties that place con-

straints resource operations [6].  By controlling computing resources and being suspi-

cious of how processes use them, a policy may prevent attacks by reducing the mobility 

of malicious code. 

 Different users have a need for differing security applications, with different lev-

els of security sensitivity.  Certainly, the computer network in the Department of Defense 

building would require a greater number of security measures than a personal webpage.  

On a general level though, users value their privacy and security but are extremely sensi-

tive to a decline in the performance of their machines.  All security applications produce 

some performance overhead, but in order to achieve widespread use they must operate 

with some degree of transparency, to provide the maximum protection possible with the 

least amount of user interaction required and performance penalties incurred.  The dy-
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namic capabilities of SDT certainly aid this degree of transparency and offer new ap-

proaches for current security practices. 

Software Dynamic Translation (SDT) technology is a relatively recent and excit-

ing innovation in computer science.  SDT systems have the ability to monitor and/or 

modify the native binary execution stream of a program while it is running, and they can 

do so transparently without the need of pre-compilation or programmer assistance.  Im-

plemented entirely in software, SDT systems run between a process and its host CPU, 

interrupting the execution stream immediately before it reaches the processor, and 

achieve a capability to control execution dynamically.  It is important to emphasize that a 

run-time perspective of an executing process has unique and exciting benefits.  Various 

implementations of SDT have surfaced over the past few years, realizing concepts such 

as binary translation and dynamic optimization.  Binary translation technology allows for 

the portability of programs between differing architectures.  By translating a binary 

stream from one instruction set architecture to another, a program can run on hardware 

other than what was originally intended.  Dynamic optimization technology actually im-

proves the performance of programs while they are running, in contrast to a compiler 

which performs its optimizations statically at compile time.   Perhaps what is so impres-

sive about these technologies is that they accomplish all of this without ever having to 

manipulate the program at any time prior to execution.  This advantage is not only valu-

able to the portability and flexibility of these applications but the catalyst of this thesis 

project.  Due to this unique capability, SDT technology has an enormous potential for 

success in the field of computer security.   

 I have contributed in the implementation of an SDT application for enforcing se-
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curity policies like those described previously, only the policies have the ability to adapt 

to changing security requirements during the execution of one or more processes.  Such 

an application has the ability to turn on or off its security monitoring or increase or de-

crease its level sensitivity based on the current state of the system.  It is this adaptive ca-

pability that I have contributed to the application.  The application:  

 
� supports the concept of execution transparency, 

 
� supports the flexibility and portability of the policies by enforcing them in a plat-

form independent manner, 
 

� maximizes the scope of security policies by making them adaptive to changing se-
curity requirements, and  
 

� minimizes performance overhead associated with enforcing the security policies. 
 

 A major motivation for having adaptable security policies is that enforcing secu-

rity policies is inherently computationally expensive.  An expensive policy should only 

be enforced when it is considered necessary, and SDT technology makes this transition 

possible.  Recent research in policy enforcement describes applications based in the oper-

ating system kernel, since system calls are readily accessible from this point [5].  SDT 

allows such system call access in addition to the rest of the execution stream, so policy 

enforcement with SDT does not need the aid of the operating system.  Separating this 

functionality from the OS is ideal, because policies involving more than system call 

monitoring would be difficult or impossible to enforce by the kernel.   Simply put, de-

signing a kernel policy enforcement infrastructure fixes the type of policies that are en-

forceable.  As a result, policy enforcement could complicate the kernel implementation 

which could introduce bugs, make maintenance more complicated, and even decrease 

performance. 
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 Any advance made in any area of computer security produces numerous impacts.  

These impacts affect not only the common user but also global networks of shared infor-

mation, corporations, and even the hackers who invoke the threat.  When security meth-

ods are improved, users gain an improved sense of security.  This new environment nur-

tures progress.  Whether the field is communication, commerce, or research, increased 

security allows professionals to concentrate on their work rather than worrying about its 

exploitation.  It is important, however, that users do not gain a false sense of security, by 

overestimating the capabilities of security products.  Such a scenario produces negative 

effects caused by users who place themselves in vulnerable situations they otherwise 

would not consider. Therefore, it is imperative that the scope of security software is well 

documented and tested, so that users are fully aware of its protective abilities and limita-

tions.  Successful security systems fulfill four general requirements.  They are 1) well 

documented, 2) lightweight (satisfactory performance on a given system), 3) easy to set 

up and maintain, and 4) and successful at defending a system from all of the attacks ad-

vertised.  Notice that these requirements are associated not only with the level of protec-

tion provided by the product but with how the product affects the performance of the sys-

tem.  Recall that SDT systems have the capability to fulfill these requirements, resulting 

in a high degree of success.  

 The average computer user has little idea of the risks involved in everyday use.  

And even the more informed user would not be able to detect that an attack is taking 

place that simply violates privacy and causes no noticeable harm.  An application such as 

the one proposed offers the common user a simple and transparent mechanism to deal 

with security issues so they do not have to.  Equally, the major attraction of this tool for 
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the security engineer is its flexibility for implementing an extensive set of security poli-

cies.  In addition, the policies themselves have an increased individual ability and scope 

of functionality due their adaptive ability.  This introduces a wide range of possibilities 

for security engineers to combat the never-ending challenge of computer security.  Secu-

rity engineers will, in contrast to the common user, have a detailed knowledge of the sys-

tem and the current state of security.  With the dynamic content made available by this 

tool, they will be able to construct a wide variety of security policies specifically tailored 

to the system, the attacks in question, and to reduce performance overhead.  While the 

common user also has this ability, this larger system offers more opportunity for diverse 

application due to a much greater number of users and a higher probability of security 

breaches.  It is in this forum of research that the tool will be thoroughly tested and infor-

mation and policies themselves may be passed down to the common user.  Since the pro-

posed policy enforcement scheme is implemented outside of the operating system it aids 

to the flexibility and portability of the tool so that this may be possible.  This type of test-

ing is invaluable because the resourcefulness of hackers cannot be underestimated.  It is 

important to understand that new security applications affect the hacker just as much as 

they provide a sense of security to those who use them.  Therefore, new security applica-

tions are usually the most susceptible to attack, and must be made as invisible to the 

hacker as possible to lessen any negative effects of its deployment. 

 The following chapters in the report attempt to give sufficient background in 

computer security and Software Dynamic Translation to understand the motivation for 

this project and the methods by which it was accomplished.  Chapter 2 is a review of 

relevant literature.  Here a general background is provided in all aspects of computer se-
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curity and SDT applications.  Chapter 3 discusses the definition and enforcement of vari-

ous types of security policies, including the adaptive type developed during the research 

for this thesis.  Here our approach is contrasted with applications developed in other se-

curity research, which mostly because we use SDT to enforce our policies.  Chapter 4 

discusses the operation of our SDT framework, Strata, in detail.  With the information 

provided in Chapters 3 and 4, Chapter 5 presents the modifications made to the Strata 

framework and security API to facilitate the enforcement of adaptive policies.  Chapter 6 

gives a tutorial for writing effective adaptive policies and several examples.  Finally the 

report is concluded in Chapter 7. 
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Chapter Two:  Literature Review 
 
 This chapter attempts to provide a background in computer security, policy en-
forcement, and Software Dynamic Translation through discussion of related literature.  
This background is sufficient enough to understand the motivations for this project.    
 
 This thesis project draws literature from several differing areas of study.  A com-

plete understanding of SDT is required to implement a new application for it.  This 

knowledge not only includes SDT system design, but a great deal of underlying computer 

architectural principles.  It is important to comprehend how a computer works from a low 

enough level of abstraction to be equal with the perspective of an SDT system (the as-

sembly language level), and depending on which architecture is present this operation 

will differ from machine to machine.  An understanding of machine level operation ties 

in intimately with computer security.  Since the majority of security threats evolve from 

exploiting the low-level intricacies of a system, architectural knowledge is essential in 

undertaking security research.  This practice of exploitation is known as hacking, and it is 

usually accomplished by any means necessary.  The field of Computer Security attempts 

to discover, prevent, and respond to hacking.  Like any other field, its goals are accom-

plished in various manners and through various abstractions, from low-level code certifi-

cation to user and program behavior profiling to policy enforcement.  All of these meth-

ods have proved to be effective to some degree in practice, but the resourcefulness of at-

tackers presents a seemingly endless challenge for security engineers.  The literature pre-

sented in the following sections will provide sufficient background, in SDT, computer 

architecture, and computer security, to enable the reader to fully comprehend the motiva-

tions behind this research and the call to arms for future research.  With this foundation in 

place, an account of the additional concepts related directly to this project can be clearly 
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presented. 

 An implementation of SDT, named Strata, is currently under construction at the 

University of Virginia by the Computer Science PhD student James Kevin Scott.  The 

Strata infrastructure provides a framework for implementing new SDT applications, so 

Strata has the ability to support functionality such as binary translation and dynamic op-

timization [4].  Hewlett Packard’s Dynamo [1] is a transparent dynamic optimization tool 

which provides a similar framework, only code is also integrated to optimize PA-RISC 

binaries.  Several other examples of dynamic optimization technology are Vulcan (IA-

32), Mojo (IA-32), and DBT (PA-RISC).  IBM’s Daisy is an example of binary transla-

tion technology, translating the VLIW instruction set to PowerPC (Daisy also performs 

some dynamic optimization) [2].  FX!32 (IA-32 to Alpha), UQDBT (IA-32 to SPARC), 

and Transmeta’s Code technology (IA-32 to VLIW), are other examples of binary trans-

lation technology.  These products display the commercial success of SDT technology as 

well its flexibility to implement a wide range of services across multiple platforms with a 

single tool. 

 Both of the technical reports on Strata, entitled Strata: A Software Dynamic 

Translation Infrastructure and Low-Overhead Software Dynamic Translation give an ex-

cellent depiction of how Strata arbitrates program execution.  Strata gains control of a 

process and maintains this control through special context switches, called trampolines, 

between its framework the running process.  Each executed instruction is dynamically 

translated to become part of a cached sequence of code known as a fragment [4].  When 

the code is finally executed on the host processor it is done so from the fragment cache, a 
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very fast memory resource containing the newly translated instruction.  Note that this 

functionality provides a facility to modify this code before it is placed into the fragment 

cache, and before actual execution on the processor.  The modification may be, and cer-

tainly not limited to, a code optimization or an insertion of security checking code.  Fig-

ure 1. illustrates a portion of the architecture of Strata, specifically the formation and 

caching of fragments, which is known as the fragment builder. 

 In order to define this thesis, I had to determine what modifications Strata should 

make to a program to make its operation more secure in some way.  This task required 

sufficient background in the concepts of hacking and computer security.  Generally 

speaking, hacking tends to exploit the low level intricacies of an operating system and/or 
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 17

architecture such as register organization, memory access and function calling and return-

ing.  A common, and maybe obsolete, example of hacking is a buffer overflow exploit or 

a stacking smashing attempt.  These exploits take control of a process and force it to exe-

cute malicious code [15].  Denial of service (DoS) attacks or distributed denial of service 

(DDoS) attacks contrastingly render a machine useless by bombarding its resources and 

overloading the CPU.  The list goes on to include brute force attacks, IP spoofing, format 

string attacks, session hijacking, Trojan horses and many more.  What is done to try and 

prevent these attacks, or to try and discover that they have happened and to take appro-

priate action, is the basis of computer security.  

 Various areas of computer security have evolved with these goals in mind.  Each 

area seems to approach the task at hand through its own level of abstraction.  Perhaps the 

lowest level of abstraction is pursued by a concept known as code safety.  Code safety 

strives to provide control flow safety, memory safety, and stack safety to ensure pro-

grams behave properly [21].  Low-level code safety supports higher level security 

mechanisms, especially those that allow code modified with security checks to run.  

Without this type of safety in place a hacker could get around the security checks inserted 

to ensure that the code is secure.  Software Fault Isolation [20] and Proof-Carrying Code 

[22] are two examples of mechanisms to provide low-level code safety.  For any security 

extension to Strata to be successful in reality, low-level code safety must be ensured so 

that Strata’s actual operation cannot be circumvented via hacking techniques.  This task, 

however, is beyond the scope of this project, and will be left for future research.  

 One approach to dealing with the problems caused by hackers is to face the prob-

lem head on, constructing software that prevents specific types of attacks.  LCLint stati-
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cally analyzes C programs for buffer overflow exploits [19].  Libsafe is a dynamically 

linked library that performs bounds checking on certain C functions to prevent stack-

smashing at run-time [18,16].  Strata, actually, has the ability to completely prevent 

stack-smashing attempts with the addition of only several lines of code.  This functional-

ity along with a very simple policy enforcement mechanism is described in the technical 

report entitled Low-Overhead Software Dynamic Translation.  Other efforts attempt to 

take a more general approach to the problem in the hopes of finding a more flexible solu-

tion to the continuously evolving hacking arsenal.  Intrusion Detection Systems (IDS) is 

one such effort which, as the name suggests attempts to determine accurately when a sys-

tem is under attack so that it may take proper action.  It does this by profiling normal sys-

tem behavior through system calls, user actions, and other past behavior.  Any departure 

then from this normal behavior could be considered an attack [12].  A drawback of this 

approach though is that behavior profiles can never be one hundred percent accurate, 

meaning that often, innocent processes get treated as malicious ones.  Yet another area 

tries to combat attacks by managing system resources through the use of security policies.  

Naccio is one such architecture which allows for the expression of security policies in a 

platform independent manner.  These policies are then enforced by an application trans-

former, which rewrites the entire executable including wrappers around code that needs 

to be monitored by the policy [6].  There is research also in how to efficiently construct 

and place these wrappers, which are simple state machines that sit idle and listen for an 

event to occur.  Upon this event the state machine takes action as defined by the policy 

[5].  The transformation invoked by Naccio is conceptually similar to how Strata trans-

lates executing code and caches it for subsequent execution.  Policy enforcement in Strata 
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is similar also, only this policy has the ability to change based on the current state of the 

system.  The adaptive policy developed in this report is based on a hybrid of current poli-

cies, such as the Chinese wall policy, audit policies, and information flow policies [8], 

and utilizes the ability to completely switch between the policies as the situation permits.  

Strata provides a basic security API that supports the incorporation of this type of policy 

enforcement into its infrastructure, supplying policy authors with functionality to easily 

watch system call and generic call instances [11].   
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Chapter Three:  Security Policies 
 
 This chapter introduces security policy enforcement and specification techniques 
used in some current security systems.  A distinction is made between static and dynamic 
policies and how they are enforced.  Finally, adaptive policies are introduced, which are 
specific to this report. 
 

Introduction 
  
 Security policies monitor how processes manipulate system resources and use the 

information gathered, known as state, to determine if a security violation is about to take 

place.  A policy is a set of rules that specifies how resources should be used.  In order to 

ensure that a process follows these rules there must be some mechanism in place to pro-

vide a means for both policy specification and policy enforcement.  Using policy rules as 

inputs, the mechanism must watch for events that would break the rules, and keep track 

of the state of the program by remembering what happened when the watched events ac-

tually occurred.  Generally, specification mechanisms are implemented using a specifica-

tion language defined by the security system creator.  The Naccio system [6] uses its own 

language consisting of a set of resource manipulations and additional user-specified secu-

rity checking code.  Some systems employ the use of finite state machines [7] to define 

their policies. Further compilation then converts these into recognizable syntax.  Our 

SDT application greatly simplifies the specification process by providing a security API 

that allows policy authors to write policies in the C programming language while provid-

ing them with additional security functionality.   

 Following specification, enforcement mechanisms apply the policies to target 

code from one of two possible vantage points.  The first is to do so from a separate ad-
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dress space (the enforcement code resides in its own memory space separate from the tar-

get code), which requires a transfer of control into the enforcement code each time a 

watched event occurs.  When a resource operation takes place that has been deemed 

questionable by the security policy, a context switch occurs to allow the policy code to 

execute.  Such an enforcement approach is computationally expensive due to the context 

switches.  It also limits the range of events that can be watched, which degrades the ex-

pressive potential of the policy itself.  This side effect occurs simply because some events 

are easier to watch than others.  Typically low-level (machine level) events that are appli-

cation independent such as the execution of a system call are much easier to watch than 

higher-level (application level) application dependent events.  System calls have traps 

that can be easily watched whereas the use of a macro in a word processing program 

would be considerably more difficult to recognize.  Complexity is added to the enforce-

ment mechanism when it must determine ways to watch for events that are not explicitly 

defined by particular low-level events.  The advantage of using a separate address space 

is that the enforcement mechanism itself is protected from subversion.   

 The other possibility for enforcing policies is modifying the source code of the 

program to include the policy code, inserting security checks around questionable code to 

achieve the event watching process.  The policy code is essentially merged with the pro-

gram code.  They run as a single program from the same address space, saving the cost of 

context switches.  SASI inserts its state machine information after each instruction in the 

target code (prior to execution), so that during execution the machine is traversed (note 

that the state machine is the specified policy and the enforcement mechanism combined).  

Naccio rewrites the entire executable to include wrappers functions, which when exe-
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cuted call the policy code.  This type of enforcement, which attempts to merge policy 

code with the target code, is conceptually similar to our scheme, only ours allows for the 

policy code to be continuously re-merged with the target code while it is running.  Using 

SDT technology to enforce our policies, which will be explained in the following chapter, 

made this capability possible.  The following sections of this chapter distinguish between 

several general types of policies used in the evaluation of our enforcement scheme, keep-

ing in perspective how each type is enforced.   

 

Static policies  
 
 A static policy system is generally one in which a limited set of policies can be 

enforced on a system because the policies are applied to programs at compile time, which 

is prior to execution.  Some systems perform source code analysis to determine if code is 

likely to produce security violations (or execution errors in the simplest case).  LCLint 

[19] analyzes non-executing source code of C programs in an attempt to determine if 

buffer overflows could occur during execution.  This is a perfect example of a static pol-

icy, both because the enforcement of the policy takes place at compile time and because 

there is only one policy being enforced.  By restricting analysis to only the C language 

also adds to the static nature of the system.  There is a whole class of policy schemes tar-

geted at spotting programmer errors that may not be visible to a compiler, but often lead 

to security breaches.  A common example of this is misusing the printf statement in C 

to cause what is known as a Format-string vulnerability.  A programmer could either do 

this by mistake or on purpose with malicious intentions.  Hackers use these and other 

vulnerabilities intentionally to break into systems.   
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 Static policy enforcement is limited in both the range of policies it supports and its 

dependence on specific languages.  Dynamic policy enforcement attempts to alleviate 

these limitations by monitoring programs while they are running.  

 

Dynamic policies  
 
 Dynamic policies can use run-time information to make decisions about the state 

of the system.  Some dynamic enforcement schemes, like the static ones, only enforce 

one policy in one language but they do so at run-time when a greater amount of informa-

tion is available to them.  Libverify, Libsafe, Libformat, and StackGuard [16,18] all at-

tempt to prevent buffer overflows and stack-smashing this way.  Others are much more 

flexible and allow a number of policies to be enforced dynamically through a technique 

known as execution monitoring [5,17].  The SASI system is one example.  Janus [5,17] 

uses execution monitoring functionality provided by the operating system to observe the 

use of system calls, which it evaluates through the use of a specified policy.  Note that 

these systems must also provide a means for policy specification.  In our case, SDT tech-

nology makes run-time information available to dynamic policies by merging policy code 

with the target application during the translation process.  All of our policies are inher-

ently dynamic, because they are actually applied at run-time.  Like Janus, we also moni-

tor system calls (among other things); only it is done without the need of operating sys-

tem assistance.  In contrast to SASI, our specification mechanism is greatly simplified. 

 While other dynamic systems vary in capability, our enforcement scheme ensures 

access to function parameter values, memory locations, and pointer values allowing our 

policies to make more informed decisions than static policies about the security state of a 
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running program.  Such access also greatly eases the burden on the policy author, making 

the policy code generally more refined, robust, and compact. 

 

Adaptive policies 
 
An adaptive policy is one specific to our enforcement implementation.  It is a special type 

of dynamic policy that allows policies to change their own rules during execution.  The 

primary motivation for providing this functionality is to give the policy author the option 

of varying the level of security sensitivity a policy exhibits.  Higher levels of sensitivity 

require watching a greater numbers of events, incurring higher translation and computing 

costs.  An adaptive policy attempts to only enforce expensive portions when a security 

threat is fully justified.  This bestows additional responsibility on the policy author to 

know enough about computer security to determine what occurrences justify changes to 

the policy.  For instance, consider a program manages to set the user-id to root, placing 

the process in super-user mode and giving it free reign over system operations.  In a case 

such as this, enforcing a more expensive policy that has more of a chance of preventing 

malicious acts is certainly in order.  An adaptive policy can respond by invoking this in-

crease in security awareness.  In order to do so, the policy author first must know that set-

ting the user-id to root is a pre-requisite for certain security breaches.  The adaptive pol-

icy then watches for this specific event, and when it occurs, the policy rules change to 

enforce a new policy specifically tailored to thwart super-user exploits.  The key here is 

that the new policy is enforced only when it is necessary to do so, when the threat of a 

security violation is great.      
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 It is important to understand that these policies do not exhibit any form of artifi-

cial intelligence.  All actions and responses must be defined in the policies.  In the previ-

ous case, the policy must be defined to watch the setuid(0) event, and the response to 

this event must also be defined to switch to the other user-specified policy.  Currently, 

using system calls, and generic calls, a policy writer must make decisions on what calls to 

watch based on expected security threats.  Decisions must be made on the priorities of 

events that cause changes in the policy (the adaptive behavior), so that security sensitivity 

may be increased or decreased. 
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Chapter Four:  Operation of  Strata 
 
 This chapter explains how the Software Dynamic Framework, Strata, mediates 
program execution through a process called fragment translation.  Other topics include 
fragment optimizations and how Strata takes control of a process and retains it. 
 

Introduction 
 

Software Dynamic Translation (SDT) technology has the ability to monitor and 

modify a program while it is running.  Because the program suffers from no visible 

changes semantically, SDT is said to operate transparently.  By introducing an additional 

layer of software between program and processor, SDT systems create a virtual machine 

that mediates the binary stream of a program and thus controls what is actually being 

executed on the processor.  This ability is a foundation for building applications that re-

quire this control.  The SDT system used in this project is called Strata, and it is an im-

plementation of the concept of Software Dynamic Translation.  It is currently under de-

velopment at the Laboratory for Computer Architecture at the University of Virginia 

(LAVA) by PhD student J. Kevin Scott and Professor Jack Davidson.  Strata provides a 

extensible framework, or interface, to implement SDT applications.  One such application 

extended Strata to enforce user-specified security policies.  This project added functional-

ity to that application.  It is the focus of this chapter to explain the operation of the actual 

framework of Strata and how it accomplishes dynamic translation.  The security exten-

sion application will be introduced in the following chapter. 

Strata is composed of approximately 8000 lines of C code, and requires no hard-

ware support other than access to the cache.  Strata currently runs on SPARC/Solaris and 
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MIPS/Irix platforms, the first of which was used in this project.  Portability to each archi-

tecture requires about 30% of the 8000 lines of source code.  

The following Figure 2 illustrates the architecture of Strata.  Using the basic ser-

vices shown in this figure Strata controls and mediates the execution of a program binary.  

These services include memory management, fragment cache management, application 

context management, a dynamic linker, and a fetch/decode/translate engine.  The 

fetch/decode/translate engine is also known as the fragment builder.  Figure 2(a) shows 

the fragment builder and Figure 2(b) shows the abstract architecture as it relates to the 

application it is translating and the processor.   

 

 
Figure 2. Architecture of Strata [11]. 

 
Utilizing a very fast memory (cache) as storage, a representation of the working 

set of a program is sampled from the binary stream for later execution.   This mediation 

of the binary stream is accomplished through a process called fragment translation, 

which builds the actual code fragments that make up the working set.  These fragments 

are then placed into the fragment cache for ensuing execution.  Applications that are built 

to run in a SDT system exploit the translation process to achieve their goals.  SDT gives 
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its applications a run-time perspective of a process, which means that the majority of 

program data is current and available for manipulation.  This data is used to make deci-

sions about what code to actually run on the processor.  Binary translation, an extension 

application of SDT, allows a program to execute on foreign hardware by transforming its 

Instruction Set Architecture (ISA) on the fly.   The current instruction that needs to be 

executed and the run-time data that is used by the instruction are all available to the trans-

lator.  With this information a decision can be made about the corresponding instruction 

on the foreign hardware that will accomplish the same task as the original instruction.  

The SDT framework simply makes this information available to make the process possi-

ble.  Dynamic optimization applications analyze code fragments for optimization possi-

bilities.  Code fragments considered to be improvable are modified and then cached so 

that each time they are executed the process experiences a performance gain.  Over time, 

the entire working set of the program materializes in the fragment cache, requiring less 

and less work to be done by the SDT application. Since the code is optimized, the pro-

gram is running faster (or more efficiently) than it would have originally. 

Building a representation of the working set of the program is the basic function of the 

translation engine.  Statistics show that the working set of a program usually consists of 

approximately ten percent of the source code of a program, and this code runs approxi-

mately ninety percent of the execution time.  This fact allows the SDT framework to 

make up for the overhead introduced by its translation process.  As the working set is 

built, it is up to the specific application to decide what to do with the code.  Optimization 

programs simply try to make this code run faster, while binary translation programs per-

form ISA translation.  The application developed in this project actually monitors the 
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code for security violations.  It also inserts instructions into the code fragments that cause 

questionable code to be rerouted into user-defined security policies when it is executed 

on the processor.  These policies then perform security checks on the state of the program 

according to the rules set by the policy author.  The SDT application gives the policies a 

run-time perspective of the state of the program.  The following Figure 3 shows this basic 

process of merging policy code with target code.   

 

Figure 3. Merging Policy and Target Code 

 What makes SDT so useful and impressive is that it can function without ever 

having to see the programs it translates prior to execution.  This ability is a major motiva-

tion for computer security applications, where the code that is being run is mobile and 

generally not trusted (e.g. attached e-mail executables).  An important part of the opera-

tion of Strata is how it takes control of these programs and how it keeps control through-

out translation and execution.  Ensuring this control, translation and fragment creation 

can take place.  Built in services of the Strata virtual machine also perform code optimi-

zations on the fragments in an attempt to more quickly overcome the overhead of the 
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translation process.  Translation allows the particular extension application to Strata that 

is enabled to analyze and/or modify the code.  Strata then finally inserts the fragments 

into the cache for subsequent execution and continuously manages the cache while fur-

ther translation takes place.  The following sections discuss how Strata retains control 

over a process and some of the basic optimizations it performs on fragments.   

 

Strata Control Mechanism 
 
 In order for Strata to monitor a process, it must take control of it.  It does so using 

functions strata_init, strata_start, and strata_stop.  These functions must be 

placed in the main function of a program in order for Strata to take control.  In the future 

these functions will not be necessary, rather Strata will only need to be given the com-

piled executable binary (thus giving it the ability to run transparently).  The following 

figure 4 shows how these functions are used to take control of a process (in the C lan-

guage).  Note that strata_init must be called after variable definitions in main. 

 
     1  int main (int argc, char* argv[]) { 
     2          . 
     3          . 
     4          . 
     5          // Local Variable Definitions 
     6          . 
     7          . 
     8          . 
     9          strata_init(); 
    10          strata_start(); 
    11          . 
    12          . 
    13          . 
    14          // Target Code or call to Target Code 
    15          . 
    16          . 
    17          . 
    18          strata_stop(); 
    19          return 0; 
    20  } 

 
Figure 4. Strata takes control of a process. 
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Strata uses functions called trampolines to retain control over a process.  It must 

use them at the end of fragments, which are usually branches, returns, or calls.  A trampo-

line returns control back to Strata’s fragment builder after the end of a cached fragment is 

reached, so that translation can continue.  

 

Fragment Optimizations 
 
Strata performs some optimizations on the fragments during translation to reduce over-

head introduced by the translation process.  Most of this overhead is due to a high num-

ber of context switches, which incurs the expense of saving program data to memory.    

These optimizations [4] include: 

 
� Partial inlining 

This technique is a code optimization which replaces function calls with the actual 
code of the function.  Instead of coping the entire function body, only code segments 
that execute frequently, called hot regions, are rewritten.  The remainder of the func-
tion, known as a cold region, is then called after the copied portion. 
 
 

� Fragment linking 
After every fragment executes a context switch occurs to go back into the fragment 
builder.  From there the builder determines if the next fragment is cached or if it 
needs to build another one.  Fragment linking attempts to reduce the number of con-
text switches by linking fragments together as their order is determined.  Linking is 
accomplished by rewriting the trampoline at the end of a fragment to point to the be-
ginning of another.   

 
 
� Efficient indirect branch handling 

This technique also aims to reduce the number of context switches that take in the 
execution of a program, by using a small cache to store how branch-target addresses 
map to their fragment cache locations.  The instructions necessary to look up this in-
formation are translated into the fragment itself in order to avoid the context switch.  
The cache is direct-mapped. 
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Chapter Five:  Attempting Security with Strata 
 
 This chapter presents our system for writing dynamic and adaptive security poli-
cies to be enforced by Strata.  This includes a general tutorial in policy writing as well as 
a discussion of the modifications made to the Strata security extension application to 
support the enforcement of our adaptive policies.  Using the functionality provided in the 
Security API we present a number of examples of flexible dynamic and adaptive security 
policies.  Finally, we present an evaluation of the flexibility and practicality of the Secu-
rity API.  
  
 

Introduction 
 
 Under the direction of Professor David Evans, we have attempted to write a set of 

policies that illustrate useful security functionality.  While we do not commit that these 

policies are accurately representative of those used in real world systems, we do believe 

that they provide reasonable evidence of our system’s potential for future success.  Most 

of our policies involve file manipulation and auditing (information logging).  

 

Security API 
 
 The Security API provides a means for security policy specification.  It is cur-

rently supported in the C programming language, and is intended to be language inde-

pendent in future releases.  Recall that a security policy specifies how the computing re-

sources in a system may be used.  Since most security vulnerabilities arise from resource 

misuse, policy enforcement provides an effective defense against the various attacks of 

hackers.  Computing resources are managed by the operating system through the use of 

operating system calls, so policies can gain an idea of how resources are being used by 

monitoring system calls.  The functionality provided by the API gives policy authors 
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simple and convenient access to operating system calls and generic function calls.  This 

allows them to specify which calls to monitor during the execution of an un-trusted bi-

nary.  The API consists of the following nine functions.  

void init_syscall(); 
watch_syscall(unsigned num, void *callback); 
unwatch_syscall(unsigned num) 
watch_call(void *func, void *callback); 
unwatch_call(void *func); 
void strata_callback_begin (void *); 
void strata_callback_end (void *); 
void strata_syscallback_begin (unsigned); 
void strata_syscallback_end (unsigned); 

 
 This simple API facilitates system and generic call monitoring, allowing user-

specified policy code to execute when the monitored calls are made.  The following sec-

tion will illustrate how these functions can be used security policies to aid in resource 

misuse prevention. 
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Writing Policies 
 
A policy is simply a C program with a specific structure.  Consider a policy to prevent 

opening the file /etc/passwd.  Figure 5 illustrates the intended program structure of this 

policy. 

     1  #include <stdio.h> 
     2  #include <string.h> 
     3  #include <strata.h> 
     4  #include <sys/syscall.h> 
     5 
     6  int myopen (const char *path, int oflag) { 
     7          int fd; 
     8 
     9          strata_syscallback_begin(SYS_open); 
    10 
    11          makepath_absolute(absfilename,path,1024); 
    12          printf("\n%s\n", absfilename); 
    13 
    14          if (strcmp(absfilename,"/etc/passwd") == 0) { 
    15                  strata_fatal("Request Not Allowed!"); 
    16          } 
    17          fd = syscall(SYS_open, path, oflag); 
    18 
    19          strata_syscallback_end(SYS_open); 
    20 
    21          return fd; 
    22  } 
    23 
    24  void init_syscall() { 
    25          (*TI.watch_syscall)(SYS_open, myopen); 
    26  } 

 
Figure 5.  Intended Basic Policy Structure.  

 
 
Current progress in the Strata framework requires that the policy to take a slightly differ-

ent structure.  The policy code must exist in the same executable as the target code it is 

applied to.  The target code is must be called, or written, in the main() function of the 

policy code.  Using strata_init(), strata_start() and strata_stop(), control of 

the target code must be transferred to Strata manually.  The dynamic linking of the 

init_syscall() function is currently not functional so it also must be manually called 
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in the main function before the target code executes.  Figure 6 shows the same file-open 

policy adhering to the current policy structure requirements. 

 
      1  #include <stdio.h> 
      2  #include <string.h> 
      3  #include <strata.h> 
      4  #include <sys/syscall.h> 
      5 
      6  int myopen (const char *path, int oflag) { 
      7          int fd; 
      8 
      9          strata_syscallback_begin(SYS_open); 
     10 
     11          makepath_absolute(absfilename,path,1024); 
     12          printf("\n%s\n", absfilename); 
     13 
     14          if (strcmp(absfilename,"/etc/passwd") == 0) { 
     15                  strata_fatal("Request Not Allowed!"); 
     16          } 
     17          fd = syscall(SYS_open, path, oflag); 
     18 
     19          strata_syscallback_end(SYS_open); 
     20 
     21          return fd; 
     22  } 
     23 
     24  void init_syscall() { 
     25          (*TI.watch_syscall)(SYS_open, myopen); 
     26  } 
     27 

28 int main(int argc, char *argv[]) { 
29    . 
30    // Local Variable Definitions 
31    . 
32    strata_init(); 
33       init_syscall(); 
34       strata_start(); 
35    . 
36    // Target Code or call to target code. 
37    . 
38       strata_stop(); 
39       return 0; 
40 } 

    
 

Figure 6. Current Basic Policy Structure. 
 
This structure was used in all of our test policies, and though some semantics may differ 

in the future, the basic policy structure will remain consistent.  In general, a policy con-

sists of a series of callback functions for system calls and generic calls.  A callback func-

tion is simply a substitute function that executes policy code in place of a watched call.  

The policy author uses the watch_syscall(unsigned num, void *callback) and 
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watch_call(void *func, void *callback) functions in the policy code to tell the 

fragment builder which calls to watch and reroute during translation.   The fragment 

builder replaces a watched call with another call to the specified callback function and 

then caches the modified fragment.  The callback function must have the same signature 

as the watched call, so all parameter and return types must match.  An initial list of calls 

to watch are invoked in the init_syscall function, but as will be explained shortly, the 

enforcement scheme was modified to allow watch calls from anywhere in the policy 

code, a necessity for the enforcement of adaptive policies.  The callback function for the 

file open system call in the policy in figure 6 is the myopen function, as specified by the 

watch function called in init_syscall.  The policy author is responsible for preserving 

the semantics of the target code, so re-routed system calls must be handled appropriately 

in the callback function.  This especially applies to instances when a call does not pro-

duce a security violation, and the program must continue to run.  The policy author must 

make the call to the original rerouted call from within the callback function if this is the 

case.   Line 17 in figure 6 is an example of such a call.  Note the use of the functions 

void strata_syscallback_begin(unsigned) and void strata_syscallback_end 

(unsigned) in same figure.  They bracket the policy code that makes a call to the origi-

nal watched system call SYS_open.  In order to prevent this call from being rerouted back 

to the callback myopen function, the policy author uses these functions to tell Strata to 

ignore this particular call.  Doing so prevents the policy code from entering an infinite 

loop and halting further execution.  This is another responsibility of the policy author to 

write correct policies and not alter the semantics of the original program.  The previous 

example used a system call watch to illustrate certain points.  A policy involving a ge-
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neric call would employ the same format; only the corresponding API functions 

watch_call(void *func, void *callback), unwatch_call(void *func), void 

strata_callback_begin (void *), and void strata_callback_end (void *) 

would be used instead.  

 

Watch table 
 
In order for the fragment builder to keep track of all the calls it must watch while mediat-

ing the execution of an un-trusted binary, it uses a data structure called the Watch Table.  

The Watch Table is simply a hash table, which is a specific kind of data structure used 

commonly in computer science mostly for is ability to quickly insert and retrieve data 

entries.  This situation is ideal for our purposes, because we do not need to manipulate the 

data in any other way than simply storing it (e.g. sort) to enforce our policies.  During 

translation, the fragment builder consults the table when ever a system or generic call is 

encountered, and the call is rewritten to a corresponding callback function if necessary.  

This modified fragment is then written to the fragment cache for subsequent execution on 

the processor. 
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Adaptive Policies  
 
The focus of this project was to further extend dynamic policy flexibility by giving policy 

authors even more options for policy specification.  Adaptive policy enforcement was the 

result of this extension.  The driving force for developing these policies was the idea to 

allow a watch to be declared at any point in the policy code as opposed to solely in the 

init_syscall function.  By allowing watches to be declared in preexisting callback 

functions, the policy has the ability to respond to certain calls by watching new ones.  

This in effect changes the policy rules.  The new watches incur callback invocations with 

new policy code that would otherwise have not been possible to execute.  Adaptive poli-

cies can also disable watches.  The unwatch functions provided in the API modify the 

Watch Table to remove specified watch entries.  Expenses incurred at both translation 

and execution times are motives for providing adaptive policy behavior.  Certain watches 

only have to be in place when a security threat is more likely to occur.  Providing adap-

tive behavior allows policy authors to first justify a security threat before enforcing an 

expensive policy.  The following example, shown in Figure 7, again manipulates file-

open system calls. 

 
     1  #include <stdio.h> 
     2  #include <string.h> 
     3  #include <strata.h> 
     4  #include <sys/syscall.h> 
     5 
     6  int myopen1 (const char *path, int oflag) { 
     7          char absfilename[1024]; 
     1  #include <stdio.h> 
     2  #include <string.h> 
     3  #include <strata.h> 
     4  #include <sys/syscall.h> 
     5 
     6  int new_myopen (const char *path, int oflag) { 
     7          char absfilename[1024]; 
     8          int fd; 
     9 
    10          strata_syscallback_begin(SYS_open); 
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    11 
    12          makepath_absolute(absfilename,path,1024); 
    13          if (strncmp(absfilename,"/etc/",5) == 0) { 
    14             strata_fatal("Request Not Allowed!");                       
    15          } 
    16          fd = syscall(SYS_open, path, oflag); 
    17 
    18          strata_syscallback_end(SYS_open); 
    19 
    20          return fd; 
    21  } 
    22 
    23  int myopen (const char *path, int oflag) { 
    24          char absfilename[1024]; 
    25          int fd; 
    26 
    27          strata_syscallback_begin(SYS_open); 
    28 
    29          makepath_absolute(absfilename,path,1024); 
    30          if (strcmp(absfilename,"/etc/passwd") == 0) { 
    31             (*TI.unwatch_syscall)(SYS_open); 
    32             strata_flush(); 
    33             (*TI.watch_syscall)(SYS_open, new_myopen); 
    34          } 
    35          fd = syscall(SYS_open, path, oflag); 
    36 
    37          strata_syscallback_end(SYS_open); 
    38 
    39          return fd; 
    40  } 
    41 
    42  void init_syscall() { 
    43          (*TI.watch_syscall)(SYS_open, myopen); 
    44  } 
    45 
    46  int main(int argc, char *argv[]) { 
    47          FILE *f; 
    48          int i = 1; 
    49          strata_init(); 
    50          init_syscall(); 
    51          strata_start(); 
    52 
    53          while (i < argc) { 
    54            if (argc<2 || (f=fopen(argv[i],"r")) == NULL) { 
    55               fprintf(stderr,"Can't open file.\n"); 
    56               exit(1); 
    57            } 
    58            ++i; 
    59          } 
    60          strata_stop(); 
    61          return 0; 
    62  }   

 
Figure 7. File Open Adaptive Policy. 

 
Initially the SYS_open system call is translated to transfer control to the myopen callback 

function.  Within myopen, the policy code tests to determine if the file in question is the 

/etc/passwd file.  If it is, the callback function for SYS_open is changed to new_myopen. 
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A new policy is enforced then for each subsequent call of SYS_open.  The new policy is 

defined in new_myopen to deny access to the entire etc/ directory.  In this particular 

case, the same system call was used in both the old and new policy.  The new policy can 

watch a completely different set of system calls if desired.  Changing policies is accom-

plished   simply by declaring watches as a response to some event defined in an old pol-

icy. 

 Changing the policy does incur some expense.  Since all watches and their call-

back functions are cached, any modification then requires the cached code to be updated.  

Currently the only way to do this is to flush the cache and re-translate the policy and tar-

get code.  The previous example uses this method.  Adaptive policies are then beneficial 

when the re-translation cost is at least equal to the savings gained by delaying enforce-

ment of a computationally expensive policy until a security threat is justified.  Figure 8 

shows an alternative method to write the same policy just presented.   

 
     1  #include <stdio.h> 
     2  #include <string.h> 
     3  #include <strata.h> 
     4  #include <sys/syscall.h> 
     5 
     6  static int policy_step = 0; 
     7 
     8  int myopen (const char *path, int oflag) { 
     9          char absfilename[1024]; 
    10          int fd; 
    11           
    12          strata_syscallback_begin(SYS_open); 
    13 
    14          makepath_absolute(absfilename,path,1024); 
    15 
    16          switch (policy_step) { 
    17                  case 0: 
    18                  if (strcmp(absfilename,"/etc/passwd") == 0) { 
    19                     policy_step = 1; 
    20                     fd = syscall(SYS_open, "fake.c", oflag); 
    21                     printf("Fileopen blocked.\n");                          
    22                  } else { 
    23                     fd = syscall(SYS_open, path, oflag); 
    24                  } 
    25                  break; 
    26 
    27                  case 1: 
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    28                  if (strncmp(absfilename,"/etc/",5) == 0) { 
    29                     strata_fatal("Request Not Allowed!");                    
    30                  } else { 
    31                     fd = syscall(SYS_open, path, oflag); 
    32                  } 
    33                  break; 
    34          } 
    35          strata_syscallback_end(SYS_open); 
    36 
    37          return fd; 
    38  } 
    39 
    40  void init_syscall() { 
    41          (*TI.watch_syscall)(SYS_open, myopen); 
    42  } 
    43   
    44  int main(int argc, char *argv[]) { 
    45          FILE *f; 
    46          int i = 1; 
    47          strata_init(); 
    48          init_syscall(); 
    49          strata_start(); 
    50 
    51          while (i < argc) { 
    52             if (argc < 2 || (f = fopen(argv[i],"r")) == NULL) { 
    53                fprintf(stderr,"Can't open file.\n"); 
    54                exit(1); 
    55             } 
    56             ++i; 
    57          } 
    58          strata_stop(); 
    59          return 0; 
    60  } 

 
Figure 8. Alternate File Open Adaptive Policy 

 
Policies written in this manner never have to re-translate because all watches are defined 

in init_syscall.  State variables are used to determine when a policy change is necessary.  

The variable policy_step in line 6 is an example of such a state variable.  While the 

SYS_open system call only has one callback function, it still is subject to two different 

policies depending on the state of the system.  We show you this policy, which again only 

uses one system call, for simplification purposes.  When more watches are needed the 

format is exactly the same.  Consider the policy in Figure 9 which prevents the target 

code from executing a shell after the user identification has been set to zero.  This policy 

requires two system calls to be monitored, SYS_execve and SYS_setuid.  Unlike previ-

ous examples, this policy also shows how our scheme is not forced to terminate execution 
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when a security violation occurs.  Note that lines 24 through 25 simply ignore the execve 

request if the user identification, curuid, is zero. 

 
     1  #include <stdio.h> 
     2  #include <string.h> 
     3  #include <unistd.h> 
     4  #include <strata.h> 
     5  #include <sys/syscall.h> 
     6 
     7  static int curuid = -1; 
     8 
     9  int mysetuid (int uid) { 
    10          int retval; 
    11 
    12          strata_syscallback_begin(SYS_setuid); 
    13          curuid = syscall(SYS_setuid, uid); 
    14          strata_syscallback_end(SYS_setuid); 
    15 
    16          return retval; 
    17  } 
    18 
    19  int myexecve (const char *path, char *const argv[], 
    20          char *const envp[]) { 
    21          int retval; 
    22          strata_syscallback_begin(SYS_execve); 
    23 
    24          if (curuid == 0) { 
    25             printf("Request Not Allowed!");          
    26          } else { 
    27             retval = syscall(SYS_execve, path, argv, envp); 
    28          } 
    29          strata_syscallback_end(SYS_execve); 
    30          return retval; 
    31  } 
    32 
    33  void init_syscall() { 
    34          (*TI.watch_syscall)(SYS_execve, myexecve); 
    35          (*TI.watch_syscall)(SYS_setuid, mysetuid); 
    36  } 
    37 
    38 
    39  int main (int argc, char *argv[]) { 
    40 
    41          char *args[2] = {"bin/sh",NULL}; 
    42          char *envs[1] = {NULL}; 
    43 
    44          strata_init(); 
    45          init_syscall(); 
    46          strata_start(); 
    47 
    48          setuid(0); 
    49          execve("./bin/sh", args, envs); 
    50 
    51          strata_stop(); 
    52 
    53          return 0; 
    54  } 

 
Figure 9. Adaptive Policy to Prevent Root-Shell Execution  
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As mentioned previously, adaptive behavior is intended to provide alternative methods 

for enforcing policies that are inherently computationally expensive.  This expense arises 

from either an extensive list of watches to translate, or expensive policy code executing 

in the callback functions.  An example of the second, which adaptive behavior seems to 

have potential to improve performance is audit, or logging policies.  The following ex-

ample shown in Figure 10 is a policy that logs statistical information about file open sys-

tem calls only after the /etc/ directory has been accessed.   

 
     1  #include <stdio.h> 
     2  #include <string.h> 
     3  #include <strata.h> 
     4  #include <sys/syscall.h> 
     5  #include <unistd.h> 
     6  #include <sys/types.h> 
     7  #include <sys/stat.h> 
     8 
     9  FILE *out; 
    10  static int policy_step = 0; 
    11 
    12  int myopen (const char *path, int oflag) { 
    13          char absfilename[1024]; 
    14          int fd; 
    15          int st; 
    16          struct stat buf; 
    17 
    18          strata_syscallback_begin(SYS_open); 
    19 
    20          makepath_absolute(absfilename,path,1024); 
    21 
    22  switch (policy_step) { 
    23          case 0: 
    24          if (strcmp(absfilename,"/etc/passwd") == 0) { 
    25             policy_step = 1; 
    26             printf("Fileopen blocked...Log beginning...\n"); 
    27                  fd = syscall(SYS_open, "fake.c", oflag); 
    28          } else { 
    29             fd = syscall(SYS_open, path, oflag); 
    30          } 
    31          break; 
    32          default: 
    33          st = stat(path, &buf); 
    34 

35 fprintf(out, "File:  
   %s.\nDevice ID:  
   %d.\nSerial Number:                        
   %d.\nAccess Mode:  
   %d.\nNumber of Links:  
   %d.\nUser ID of file owner: 

      %d.\nGroup ID of group owner:  
                %d.\nFile size(bytes):  



 44

                %d.\nLast access time:  
                %d.\nLast modification time:  
                %d.\nLast file stat us change time:  
                %d.\n\n\n", path, buf.st_dev, buf.st_ino, 
                  buf.st_mode, buf.st_nlink, buf.st_uid, buf.st_gid, 
                  buf.st_size, buf.st_atime, buf.st_mtime, 
                  uf.st_ctime); 
    36 
    37          fd = syscall(SYS_open, path, oflag); 
    38          break; 
    39  } 
    40          strata_syscallback_end(SYS_open); 
    41 
    42          return fd; 
    43  } 
    44 
    45  void init_syscall() { 
    46          (*TI.watch_syscall)(SYS_open, myopen); 
    47  } 
    48 
    49  int main(int argc, char *argv[]) { 
    50          FILE *f; 
    51          int i = 1; 
    52          strata_init(); 
    53          out = fopen("log.out", "w"); 
    54          init_syscall(); 
    55          strata_start(); 
    56   
    57          while (i < argc) { 
    58             if (argc < 2 || (f = fopen(argv[i],"r")) == NULL) { 
    59                fprintf(stderr,"Can't open file.\n"); 
    60                exit(1); 
    61             } 
    62             ++i; 
    63          } 
    64          close(out); 
    65          strata_stop(); 
    66          return 0; 
    67  } 

  
Figure 10. Adaptive Audit Policy 

 

Modifications to Strata 
 
 In order to facilitate the enforcement of our adaptive policies, the Watch Table 

had to be made accessible to the API at runtime.  Specifically, the API had to be able to 

modify the table so new policies could insert or remove watches as policy code executed.  

As an extension to current hash table we added the unwatch_syscall and un-

watch_call functions to the API.  This required mostly target dependent code modifica-
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tion (specifically the target interface TI and the target specific builder).  The target inde-

pendent code that was added involved only defining the functions. 

 A special cache flush function was needed to tell the fragment builder to flush the 

fragment cache via the security API.  This function is part of the API and is named 

strata_flush.  Again, most of the code involved was target dependent.  The fragment 

builder was set to recognize the call to strata_flush in the policy code.  Then a short 

SPARC assembly program had to be written that would carry out the flush, which is 

emitted into the fragment cache upon every occurrence.  These changes to the Strata se-

curity extension application and the security API made possible the implementation of 

our adaptive policies.  Refer to the Appendix for a listing of the targ-build.c file.  

   

Summary of General Rules for Writing Policies 
 
 The current state of the security API forces the policy author to perform several 

steps when using certain functionality that will be automated in the future.  The first is 

the initiation process for Strata.  As explained in Chapter 4, function calls to initiate, 

start, and stop will not be necessary in the future as research continues on Strata.  

Also note that currently the policy code and the target code must be in the same executa-

ble binary for testing purposes.  The target code may either be written in the main func-

tion or called from it.  The policy code will be kept independent in the future as an impor-

tant measure in ensuring execution transparency and the practicality of this application.   

 Recall that Strata enforces policies by merging the policy code with the target bi-

nary and caching it before it is actually executed.  All subsequent execution then takes 

place from cached code.  Adaptive policies generally respond to events by altering them-
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selves to enforce new policy rules.  In order for the new policy to be enforced, the policy 

code must again be merged with the target binary and cached.  This fact requires that the 

policy author to manually perform a call to strata_flush in the security API that emp-

ties the fragment cache causing Strata to automatically retranslate the target binary to in-

clude the new policy.   

 The policy author is also expected to use the bracket functions properly.  Since 

the fragment builder ignores this code, security could be compromised if this policy code 

itself were written with malicious intent.  We assume that policy authors do not have ma-

licious intent; however functionality is in place to only permit the use of the bracket func-

tions from within policy code.  This prevents a malicious user from using these functions 

in the target code in attempt to evade the policy being enforced. 

 Callback functions must have the same signature as their associated call.  This is 

so that all parameters passed to the watched call can be passed to the callback function 

for use in the policy code. 

 

Evaluation of the Security API 
 
 The API supported in the C programming language provides a great deal of flexi-

bility for the policy author.  Writing policies is exactly like writing a C program, with the 

advantage of having additional functionality to watch system and generic call instances.  

This of course does propose some challenge to the author to learn the C language.  The 

potential for implementing any needed policy seems to depend on the author’s knowledge 

of C rather than the SDT application’s ability to provide a policy’s feasibility which can 

be viewed as an advantage due to the great amount of documentation on the C language 
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and its intimate relationship with the UNIX operating system.  Such a learning curve is 

much more gradual than one presented by numerous other policy enforcement schemes, 

which introduce an entirely new language for policy specification.  One disadvantage to 

our scheme is that currently, policy authors are required to have a detailed knowledge of 

security concepts to implement a robust policy.  For instance, a policy to prevent file 

writes requires the author to know which system calls are used in this process, and a ro-

bust policy would have to account for all the ways a system could write a file, which 

could be dozens depending on the architecture of the target system.  This places a great 

deal of responsibility on the author to think like a hacker and consider even remote possi-

bilities for policy subversion.  Otherwise the system could be compromised and any ef-

forts for policy enforcement would be futile.  Other schemes try to avoid this challenge 

by creating their own specification languages that include predefined methods to robustly 

implement certain basic security functions.  In this case the language would include a 

method to prevent a file write that can be called by the author without him knowing the 

lower-level operations involved.  Our current system does currently have this setback but 

the flexibility of the C language has the potential to overcome.  Predefined security 

methods like the one described previously could be packaged in separate header files to 

be called by the policy, and because C is such a widely used language, these header files 

would be accessible to a wide audience of knowledgeable security professionals for crea-

tion, testing and maintenance.  These security professionals could make use of the low-

level functionality to produce methods for less security-aware policy authors.  Additional 

functionality added to the SDT application could also help facilitate this process.  In con-

clusion, the security API provided in our policy enforcement scheme gives a security 
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knowledgeable policy author the flexibility of low-level manipulation combined with po-

tential high-level definitions to implement a wide range of dynamic and adaptive security 

polices with minimal programming effort. 

 

A Note on the Security of Strata 
 
 It was the focus of this project to extend the flexibility of our user-specified policy 

enforcement scheme.  It was not the focus however to make Strata itself, or our security 

extension application totally secure.  Their currently exists a number of vulnerabilities 

that may allow policy code to be circumvented as well as actually disabling the operation 

of Strata.  Providing low-level code safety is a crucial task for providing security.  The 

process is reasonably straightforward however its implementation is beyond the scope of 

this project.   
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Chapter Six:  Conclusion 
Summary 
  
 The first goal of this thesis was to show that our current policy enforcement 

scheme could be extended to include the enforcement of adaptive policies giving policy 

authors even more policy definition flexibility.  This goal was accomplished.  Modifica-

tions were made to the security API and to the policy enforcement application built into 

the Strata SDT framework as described in Chapter Five.   

 The next goal was to evaluate this addition to the application through experimen-

tation with a number of dynamic and adaptive polices.  It is our conclusion that the sys-

tem we have presented is beneficial to the security community.  SDT technology allows 

enormous flexibility in policy specification, as does the nature of our API which is sup-

ported in the widely used C programming language.  Policies can be applied to programs 

without the need of source code manipulation prior to execution, which aids in the degree 

of execution transparency.  This capability alone transcends the options presented by 

static policy enforcement.  Our system already performs a derivative of execution moni-

toring without the need of operating system assistance, and unlike many static solutions, 

we are not limited to the enforcement of a single policy.  The dynamic information pro-

vided at run-time allows dynamic and adaptive policies to be written that at least equal, if 

not supercede, the scope of any static policy and require significantly less programmer 

effort.  Our enforcement mechanism, Strata, makes all of this possible. 

 The enforcement of adaptive policies only increases policy flexibility by giving 

policy authors the ability to increase or decrease the degree of security a policy applies 
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during execution.  By responding to pre-defined events, an adaptive policy can justify 

threats before enforcing computationally expensive policies.  While this savings in per-

formance has not been fully quantified due to the wide range of policies our system may 

potentially support, by simply providing new options to security engineers the probability 

of attaining security solutions increases.  

 

Interpretations 
  
 The problem of computer security is far from being solved.  This system does not 

claim that it totally solves it because no scheme can make a system perfectly secure due 

to the extensively large variety of security threats that exist in the real world.  This fact 

then makes it very difficult to evaluate our scheme without real world exposure.  Despite 

this fact, we are confident that our system provides a robust policy enforcement scheme 

that is easily extendable to meet future demands of the security community. 

 User-specified policy enforcement in general means that the user is given explicit 

control over the security measures taken on the system.  Our policy enforcement scheme 

allows this control to be taken to another level, through the mediation of the binary 

stream of a running program.  Adaptive policy functionality then attempts to further in-

crease the flexibility in policy specification.  There is certainly a question of how useful 

this application is currently to the security ignorant user.  An adaptive policy can become 

complicated fairly quickly especially when the author considers all possible paths of ac-

tions that could be taken and situations that could occur during execution.  Further com-

plications arise in policy specification because of low-level system call manipulation.  

Common users do not generally have detailed knowledge in this area, which would limit 
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their ability to implement effective policies.   In order for our system to be useful to this 

user, the execution transparency of the enforcement mechanism must be supported by 

pre-defined, certified, and easily attainable security policies. 

 

Recommendations 
  
 Our system is not currently ready for release because low-level code safety is not 

guaranteed. Code safety is essential for preventing a user from subverting the operation 

of Strata and compromising the system.   

 As mentioned earlier, the performance benefits of using adaptive policies have not 

been fully quantified.  This is of special interest for those which can be written in alterna-

tive ways (recall the policy which incurs less cache flushes).  Our performance evaluation 

was limited to the SPEC benchmark which is not sensible for testing the types of policies 

we developed.  Other benchmarks which incorporate more file access will be necessary to 

accurately assess the performance of our policies. 

 Finally, more policies need to be written to test our scheme.  Our original goal 

was to extend the security application to create even more specification flexibility in our 

scheme.  Now that this has been done, it is up to knowledgeable security professionals to 

implement realistic policies and produce viable security solutions. 
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Appendix 
 

Targ-build.c 
Modified target dependent strata code to incorporate adaptive policy enforcement. 
 
/*
* build.c - SPARC fragment builder (fast)
*
* Copyright (c) 2000, 2001 - J. Kevin Scott and Jack W. Davidson
*
* This file is part of the Strata dynamic code modification infrastructure.
* This file may be copied, modified, and redistributed for non-commercial
* use as long as all copyright, permission, and nonwarranty notices are
* preserved, and that the distributor grants the recipient permission for
* further redistribution as permitted by this notice.
*
* Please contact the authors for restrictions applying to commercial use.
*
* THIS SOURCE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Author: J. Kevin Scott
* e-mail: jks6b@cs.virginia.edu
* URL : http://www.cs.virginia.edu/~jks6b
*
* $Id: targ-build.c,v 1.5 2001/10/17 14:24:04 jks6b Exp $
*
* $Log: targ-build.c,v $
* Revision 1.5 2001/10/17 14:24:04 jks6b
* Changes for version 1.0 pre 2. Added target interface support, a SPARC
* disassembler, miscellaneous debug support, support for self-modifying code,
* etc.
*
* Revision 1.4 2001/10/02 19:36:18 jks6b
* Added target interface.
*
* Revision 1.3 2001/06/11 23:01:08 jks6b
* Made number of branch target address lsbs to discard in IBTC lookups a
* run-time settable parameter (STRATA_THROW_AWAY). It defaults to 2 lsbs
* which are always going to be 0 on the SPARC.
*
* Revision 1.2 2001/06/11 21:21:08 jks6b
* Added code to fast return mode that bypasses the call return block
* when the delay slot instruction overwrites the return address register.
* We now handle the case where %o7 is overwritten by a restore or a
* "mov %g1, %o7". This fixes all of SPECint2k. However, we should make
* the code more general.
*
* Revision 1.1.1.1 2001/06/11 01:54:33 jks6b
* Initial CVS import of the Strata tree for version 1.0 release testing.
*
*
*/

#include <stdio.h>
#include <assert.h>
#include <strata.h>
#include "insn.h"

/* Watch stuff. */
#define WATCH_SYSCALL 0
#define WATCH_CALL 1
#define WATCH_TAB_SIZE 31
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typedef struct watch_st {
int ty; /* Type of watch: WATCH_SYSCALL, WATCH_CALL */
union {

void *func; /* Function call to watch */
unsigned num; /* Syscall number to watch */

} u;
int ignore; /* If flag is set, ignore this watch */
void *callback; /* The callback to invoke */
struct watch_st *next;

} watch;
watch *watch_tab[WATCH_TAB_SIZE];

/* Temporary global location for holding branch target addresses. */
unsigned bta_loc;

/* IBTC and FAST RETURN option flags and parameters. */
#define IBTC_THRESHOLD_DEFAULT 4
static int targ_opt_ibtc;
static int targ_ibtc_mask;
static int targ_throw_away;
static int targ_opt_fast_return;
static int targ_fast_return_first;
static int targ_opt_trace_flow;
#define DEFAULT_BT_ALIGN 0
static int targ_bt_align;

/* External function declarations. */
extern void targ_reenter (unsigned PC);
extern void targ_reenter_flush (unsigned PC);
extern char *sparcdis (char *buf, iaddr_t PC, insn_t insn);

/* Private function declarations. */
static int writes_PC (insn_t insn);
static void print_PC (iaddr_t PC);
static int make_mask(int n);
static void init_ibtc (strata_fragment *frag);
static watch *call_watch_lookup (void *func);
static watch *syscall_watch_lookup (unsigned num);
static iaddr_t targ_trap (strata_fragment *frag, iaddr_t PC, insn_t insn);
static int find_trap_num (strata_fragment *frag);
static void print_insn (iaddr_t PC, insn_t insn);

/* Size of trampolines (in instructions) for conditional branches. */
#define TRAMPSIZE 8

/* Print out a PC for debugging. */
void print_PC (iaddr_t PC) {

fflush(stderr);
fprintf(stderr,"%08x =>\n",PC);

}

/* Fetch an instruction for this target. */
insn_t targ_fetch (iaddr_t PC) {

return *(insn_t *)PC;
}

/* Align PC as if it were a branch target. */
iaddr_t targ_branch_align (iaddr_t PC) {

return (PC + targ_bt_align) & ~targ_bt_align;
}

/* A shorthand for strata_emit_insn() for the SPARC. */
#define EMIT(insn) strata_emit_insn(frag,insn,4);

/* Print an instruction to stderr. */
static void print_insn (iaddr_t PC, insn_t insn) {

char buf[128];

sparcdis(buf,PC,insn);
fprintf(stderr,"%08x: %08x %s\n",PC,insn,buf);

}
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/* Return the log-base-2 of n. */
static int make_mask(int n) {

int mask;

mask = 0;
while(n != 1) {

n = n >> 1;
mask = (mask << 1) | 0x1;

}
return mask;

}

/* Allocate and initialize an IBTC for fragment frag. */
static void init_ibtc (strata_fragment *frag) {

int i, *p;

frag->targ_data = strata_allocate(stat_ibtc_size,FCACHE);

#ifdef STATS
stat_ibtc_mem += stat_ibtc_size;
#endif

p = (int *)frag->targ_data;
for(i=0;i<2*stat_ibtc_nentries;i++) {

*p++ = 0;
}

}

/* Initialize the target dependent builder. */
void targ_init (void) {

char *env;
unsigned n, i;

if (env = getenv("STRATA_IBTC_NENTRIES")) {
targ_opt_ibtc = 1;
stat_ibtc_nentries = atoi(env);
stat_ibtc_size = stat_ibtc_nentries * 8;
if (env = getenv("STRATA_IBTC_THRESHOLD")) {

stat_ibtc_threshold = atoi(env);
} else {

stat_ibtc_threshold = IBTC_THRESHOLD_DEFAULT;
}
targ_ibtc_mask = make_mask(stat_ibtc_nentries);
if (env = getenv("STRATA_THROW_AWAY")) {

targ_throw_away = atoi(env);
} else {

targ_throw_away = 2;
}

} else {
targ_opt_ibtc = 0;
targ_ibtc_mask = 0;
stat_ibtc_nentries = 0;
stat_ibtc_size = 0;
stat_ibtc_threshold = 0;

}

if (getenv("STRATA_FAST_RETURN")) {
targ_opt_fast_return = 1;
targ_fast_return_first = 0;

} else {
targ_opt_fast_return = 0;

}

if (getenv("STRATA_TRACE_FLOW")) {
targ_opt_trace_flow = 1;

} else {
targ_opt_trace_flow = 0;

}
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if (env = getenv("STRATA_BT_ALIGN")) {
n = atoi(env);

} else {
n = DEFAULT_BT_ALIGN;

}

/* Compute the mask for the branch target alignment. */
targ_bt_align = 0;
for(i=0;i<n;i++) {

targ_bt_align = (targ_bt_align << 1) | 0x1;
}

/* Initialize the watch table. */
for(i=0;i<WATCH_TAB_SIZE;i++) {

watch_tab[i] = NULL;
}

}

/* Classify an instruction. */
unsigned targ_classify (insn_t insn) {

unsigned op, op2, op3, dst, src1;

op = (insn >> 30) & 0x3;
switch(op) {

case 0:
op2 = (insn >> 22) & 0x7;
if (op2 == 0 || op2 == 4) {

return STRATA_NORMAL;
} else {

return STRATA_PC_RELATIVE_BRANCH;
}

case 1:
return STRATA_CALL;

case 2:
op3 = (insn >> 19) & 0x3f;
switch(op3) {
case 0x36: case 0x37:

/* Implementation dependant instructions. */
/* !!!!!! Treating as normal ops !!!!!! */
return STRATA_NORMAL;
break;

case 0x38:
dst = (insn >> 25) & 0x1f;
src1 = (insn >> 14) & 0x1f;
if (dst == G0 && (src1 == O7 || src1 == I7)) {

return STRATA_RETURN;
} else {

return STRATA_INDIRECT_BRANCH;
}
break;

case 0x39:
strata_fatal("Encountered SPARC V9 RETURN");
break;

case 0x3a: case 0x3b:
return STRATA_SPECIAL;
break;

default:
return STRATA_NORMAL;
break;

}
case 3:

return STRATA_NORMAL;
default:

assert(0);
}

}

/* Handle a normal instruction -- copy insn to the next slot in frag, and
* return the address of the next instruction to process.
*/
iaddr_t targ_normal (strata_fragment *frag, iaddr_t PC, insn_t insn) {
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if (strata_tracing) {
print_PC(PC);

}

EMIT(insn);
return PC + 4;

}

/* Handle a special instruction: right now, this lets us trap SPARC flushes */
iaddr_t targ_special (strata_fragment *frag, iaddr_t PC, insn_t insn) {

unsigned op3;

if (strata_tracing) {
print_PC(PC);

}

op3 = (insn >> 19) & 0x3f;
if (op3 == 0x3a) {

return targ_trap(frag,PC,insn);
} else if (op3 == 0x3b) {

/* End fragment by calling targ_reenter_flush with PC+4 */
EMIT(insn);
EMIT(SAVE(SP,-96,SP));
EMIT(SETHI(HI(PC+4),O0));
EMIT(ORI(O0,LO(PC+4),O0));
EMIT(CLR(O1));
EMIT(SETHI(HI((unsigned)targ_reenter_flush),L0));
EMIT(ORI(L0,LO((unsigned)targ_reenter_flush),L0));
EMIT(JMPLI(L0,0,G0));
EMIT(NOP);
return 0;

} else {
assert(0);

}
}

/* Handle trap instructions. */
static iaddr_t targ_trap (strata_fragment *frag, iaddr_t PC, insn_t insn) {

unsigned cond, imm, rs1, rs2;
int trapnum;
watch *w;

/* Decode the condition code. */
cond = (insn >> 25) & 0xf;

/* If not an unconditional trap, just emit it. */
if (cond != 0x8) {

EMIT(insn);
return PC + 4;

}

/* Figure out if rs1+rs2 or rs1+imm */
rs1 = (insn >> 14) & 0x3f;
if ((insn >> 13) & 0x1) {

imm = insn & 0x7f;

/* If can't determine this is a software trap, pass through. */
if (rs1 != G0 || imm != 0x8) {

EMIT(insn);
return PC + 4;

}

/* We have a software trap, figure out which. */
trapnum = find_trap_num(frag);

/* If we can't find the trap number, pass through. */
if (trapnum == -1) {

/* Debug: Print out this fragment. */
targ_disassemble_fragment(frag);
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print_insn(PC,insn);

EMIT(insn);
return PC + 4;

}

/* See if we're watching this trap. */
w = syscall_watch_lookup(trapnum);
if (w == NULL || w->ignore) {

EMIT(insn);
return PC + 4;

} else {
return w->callback;

}

} else {
rs2 = insn & 0x3f;

/* Pass through right now. */
EMIT(insn);
return PC + 4;

}
}

/* Search backwards in frag for the most recent def of %g1. */
static int find_trap_num (strata_fragment *frag) {

insn_t insn;
iaddr_t PC;
unsigned imm;

PC = frag->last_fPC - 4;
while(PC >= frag->fPC) {

insn = targ_fetch(PC);

/* See if we have a "mov imm, %g1" */
if ((insn & 0xffffe000) == 0x82102000) {

imm = insn & 0x1fff;
return imm;

}

PC -= 4;
}

return -1;
}

/* Handle a PC relative jump. These will typically require two trampolines:
* one for the taken target, and one for the not-taken target.
*/
iaddr_t targ_pcrel_branch (strata_fragment *frag, iaddr_t PC, insn_t insn) {

unsigned op2, cond, trampsize;
insn_t dsi;
iaddr_t takenaddr, t_targ, nt_targ;
strata_fragment *tf;

if (strata_tracing) {
print_PC(PC);

}

/* Do a bit of decoding. */
op2 = (insn >> 22) & 0x7;

/* Figure out the branch taken address. */
switch(op2) {
case 1: /* branch on integer cc with prediction */

takenaddr = PC + (SEXT19(insn & 0x7ffff) << 2);
break;

case 2: /* branch on integer cc */
takenaddr = PC + (SEXT22(insn & 0x3fffff) << 2);
break;
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case 3: /* branch on contents of integer register */
takenaddr = PC +

(SEXT16((insn&0x3fff)|((insn>>6)&0xc000)) << 2);
break;

case 5: /* branch on float cc with prediction */
takenaddr = PC + (SEXT19(insn & 0x7ffff) << 2);
break;

case 6: /* branch on float cc */
takenaddr = PC + (SEXT22(insn & 0x3fffff) << 2);
break;

default:
fprintf(stderr,"Unrecognized branch %08x @ %08x\n",

insn,PC);
strata_fatal("Unrecognized branch type");

}

/* Grab condition specifier. */
cond = (insn >> 25) & 0xf;

if (op2 != 3 && (cond == 8)) {

/* Branch always. We don't emit this instruction
* into the fragment cache. If its annul bit is
* 1, we don't emit the delay slot instruction
* either. The next PC is at takenaddr.
*/

/* Go on to next instruction if the annul bit set. */
if ((insn >> 29) & 0x1) {

return takenaddr;
}

/* Otherwise, emit the delay slot instruction. */
dsi = (*TI.fetch)(PC + 4);
if (writes_PC(dsi))

strata_fatal("Invalid delay slot instruction");
EMIT(dsi);

/* Go to next instruction */
return takenaddr;

} else if (op2 != 3 && (cond == 0)) {

/* Branch never. This instruction acts like a nop.
* We don't emit it. And if its annul bit is set,
* we don't even emit the delay slot instruction.
* The next PC is PC + 8.
*/

/* Go on to next instruction if the annul bit set. */
if ((insn >> 29) & 0x1) {

return PC + 8;
}

/* Otherwise, emit the delay slot instruction. */
dsi = (*TI.fetch)(PC + 4);
if (writes_PC(dsi))

strata_fatal("Invalid delay slot instruction");
EMIT(dsi);

/* Go to next instruction */
return PC + 8;

} else {

/* Conditional branch. */

/* Figure out if the branch targets are already in
* the fragment cache or not. If they are, we
* generate code that looks a bit different.
*/
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tf = strata_lookup_fragment(takenaddr);
t_targ = tf ? tf->fPC : 0;

tf = strata_lookup_fragment(PC+8);
nt_targ = tf ? tf->fPC : 0;

/* Figure out how big the trampoline is based on
* whether or not the not-taken target is present in
* the fragment cache.
*/

if (nt_targ) {
trampsize = 2;

} else {
trampsize = TRAMPSIZE;

}

/* Rewrite the branch. */

if (op2 == 1 || op2 == 5) {
EMIT(REWRITE_BRANCH19(insn,trampsize+2));

} else if (op2 == 2 || op2 == 6) {
EMIT(REWRITE_BRANCH22(insn,trampsize+2));

} else {
EMIT(REWRITE_BRANCH16(insn,trampsize+2));

}

/* Emit the delay slot instruction. */
dsi = (*TI.fetch)(PC+4);
if (writes_PC(dsi))

strata_fatal("Invalid delay slot instruction");
EMIT(dsi);

if (!nt_targ) {

/* If the not taken successor block is not
* in the fragment cache, emit a full blown
* trampoline that gives control back to
* Strata at its terminus.
*/

/* Record fixup for the not taken trampoline. */
strata_patch_later(frag->last_fPC,PC+8,PATCH_TRAMP);

/* Emit the not taken trampoline. */
EMIT(SAVE(SP,-96,SP));
EMIT(SETHI(HI(PC+8),O0));
EMIT(ORI(O0,LO(PC+8),O0));
EMIT(CLR(O1));
EMIT(SETHI(HI((unsigned)targ_reenter),L0));
EMIT(ORI(L0,LO((unsigned)targ_reenter),L0));
EMIT(JMPLI(L0,0,G0));
EMIT(NOP);

} else {

if (strata_tracing) {
fflush(stderr);
fprintf(stderr,"Branch directly to %08x.\n",nt_targ);
}

/* Not taken target is in F$. Jump to it. */
EMIT(BA((nt_targ - frag->last_fPC)>>2));
EMIT(NOP);

}

if (!t_targ) {

/* If the taken successor block is not
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* in the fragment cache, emit a full blown
* trampoline that gives control back to
* Strata at its terminus.
*/

/* Record a fixup for the taken trampoline. */
strata_patch_later(frag->last_fPC,takenaddr,PATCH_TRAMP);

/* Emit the taken trampoline. */
EMIT(SAVE(SP,-96,SP));
EMIT(SETHI(HI(takenaddr),O0));
EMIT(ORI(O0,LO(takenaddr),O0));
EMIT(CLR(O1));
EMIT(SETHI(HI((unsigned)targ_reenter),L0));
EMIT(ORI(L0,LO((unsigned)targ_reenter),L0));
EMIT(JMPLI(L0,0,G0));
EMIT(NOP);

} else {

if (strata_tracing) {
fflush(stderr);
fprintf(stderr,"Branch directly to %08x.\n", t_targ);
}

/* Not taken target is in F$. Jump to it. */
EMIT(BA((t_targ - frag->last_fPC)>>2));
EMIT(NOP);

}

/* Set type on this fragment. */
frag->ty = STRATA_FRAG_CBRANCH;

return 0;
}

}

/* Handle a call. */
iaddr_t targ_call (strata_fragment *frag, iaddr_t PC, insn_t insn) {

strata_fragment *ret_frag;
watch *w;
insn_t dsi;
iaddr_t addr, targ_PC;
int dsi_writes_o7;

if (strata_tracing) {
print_PC(PC);

}

/* We want to partially inline calls. This means eliminating
* the call instruction itself and emitting instructions that
* emulate the side effects of the call
*/

/* Figure out where this call goes in the original program. */
targ_PC = PC + (insn << 2);

/* Figure out if we need to inline a callback attached to this call. */
if ((w = call_watch_lookup(targ_PC)) != NULL) {

if (!w->ignore)
targ_PC = w->callback;

}

/* Fetch the delay slot instruction. */
dsi = (*TI.fetch)(PC+4);

/* Determine whether or not the delay slot is a restore. */
dsi_writes_o7 = 0;
if (dsi == 0x9e100001) {

dsi_writes_o7 = 1;
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} else if (((dsi>>30)&0x3) == 0x2) {
if (((dsi>>19)&0x3f) == 0x3d) {

/* Restore. */
dsi_writes_o7 = 1;

}
}

/* Side effect 1: Place PC of call into %o7. */
if (targ_opt_fast_return && targ_PC != (unsigned)strata_stop) {

/* Determine if return fragment is in the FCACHE. */

if (strata_tracing) {
fprintf(stderr,"Looking up return fragment %08x\n",PC+8);
}

ret_frag = strata_lookup_fragment(PC+8);
if (!ret_frag && !dsi_writes_o7) {

/* If the return fragment is not in the FCACHE, we
* need to force the builder to put it there and
* patch PC of that fragment into the assignment to
* %o7 we emit.
*/

if (strata_tracing) {
fprintf(stderr,"Return fragment not found\n");
}

strata_enqueue_address(PC+8);
strata_patch_later(frag->last_fPC,PC+8,PATCH_RETADDR);
EMIT(SETHI(HI(0),O7));
EMIT(ORI(O7,LO(0),O7));

} else if (ret_frag) {

/* The return fragment is in the FCACHE. Place its
* address into %o7.
*/

if (strata_tracing) {
fprintf(stderr,"Return fragment found\n");
}

EMIT(SETHI(HI(ret_frag->fPC-8),O7));
EMIT(ORI(O7,LO(ret_frag->fPC-8),O7));

}

} else {
/* For normal returns, put a text return addr into O7. */
EMIT(SETHI(HI(PC),O7));
EMIT(ORI(O7,LO(PC),O7));

}

/* Side effect 2: The delay slot instruction. */

/* Bail out if the delay slot instruction is a branch or call. */
if (writes_PC(dsi))

strata_fatal("Invalid delay slot instruction");

/* Don't write the delay slot instruction if it is a NOP. */
if (dsi != NOP) {

EMIT(dsi);
}

/* If this is a call to strata_flush, then we need to emit
* the sequence of code into the fragment cache to save
* the state and flush the cache.
*/
if (targ_PC == (unsigned)strata_flush) {
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EMIT(SAVE(SP,-96,SP));
EMIT(SETHI(HI(PC+8),O0));
EMIT(ORI(O0,LO(PC+8),O0));
EMIT(CLR(O1));
EMIT(SETHI(HI((unsigned)targ_reenter_flush),L0));
EMIT(ORI(L0,LO((unsigned)targ_reenter_flush),L0));
EMIT(JMPLI(L0,0,G0));
EMIT(NOP);

}

/* If this is a call to strata_stop, then we need to emit
* the sequence of code into the fragment cache to release
* Strata's hold on the program. Then, we jump to the
* top of the block just formed. When execution reaches
* the end, control will be returned to the application
* until strata_start is called again.
*/
if (targ_PC == (unsigned)strata_stop) {

/* Emit code to set strata_good_stop to 1. */
EMIT(SETHI(HI((unsigned)&strata_good_stop),O0));
EMIT(ORI(O0,LO((unsigned)&strata_good_stop),O0));
EMIT(LDUWI(O0,0,O1));
EMIT(ADDI(O1,1,O1));
EMIT(STWI(O1,O0,0));

/* Emit code to transfer to strata_stop. */
EMIT(SETHI(HI((unsigned)strata_stop),O0));
EMIT(ORI(O0,LO((unsigned)strata_stop),O0));
EMIT(JMPLI(O0,0,G0));
EMIT(NOP);
return 0;

}

if (strata_tracing) {
fprintf(stderr,"CALL target is %08x\n",targ_PC);

}

return targ_PC;
}

/* Handle a return: these can be handled as indirect branches on the SPARC. */
iaddr_t targ_return (strata_fragment *frag, iaddr_t PC, insn_t insn) {

iaddr_t ra;

if (strata_tracing) {
fprintf(stderr,"RETURN Instruction Found\n");
print_PC(PC);

}

/* Figure out the return mode we're using and do the right thing. */
if (targ_opt_fast_return) {

if (targ_fast_return_first) {
targ_fast_return_first = 0;
ra = targ_ind_branch(frag,PC,insn);

} else {
/* For fast returns, return to FCACHE caller. */
EMIT(insn);
EMIT((*TI.fetch)(PC + 4));
ra = 0;

}
} else {

/* For normal returns, handle as indirect branch. */
ra = targ_ind_branch(frag,PC,insn);

}

/* Set the type on this fragment, and return. */
frag->ty = STRATA_FRAG_RET;
return ra;

}

/* Handle an indirect branch. */
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iaddr_t targ_ind_branch (strata_fragment *frag, iaddr_t PC, insn_t insn) {
strata_fragment *ret_frag;
unsigned dst;
insn_t dsi;

if (strata_tracing) {
print_PC(PC);

}

/* Set the fragment type to indirect branch. */
frag->ty = STRATA_FRAG_IBRANCH;

/* Emit code to compute branch target address into bta_loc. */

/* Save application contents of %o0 & %o1. */
EMIT(STWI(O0,SP,-4)); /* st %o0, [%sp-4] */
EMIT(STWI(O1,SP,-8)); /* st %o1, [%sp-8] */

/* Compute the branch target into %o0. */
EMIT(CHANGE_TO_ADD(insn,O0));

/* Compute the address of the bta temp location. */
EMIT(SETHI(HI((unsigned)(&bta_loc)),O1));
EMIT(ORI(O1,LO((unsigned)(&bta_loc)),O1));

/* Store the computed branch target in temporary loc. */
EMIT(STWI(O0,O1,0)); /* st %o0, [%o1] */

/* Restore the application state. */
EMIT(LDUWI(SP,-4,O0)); /* ld [%sp-4], %o0 */
EMIT(LDUWI(SP,-8,O1)); /* ld [%sp-8], %o1 */

/* Emit code to emulate the side effects of jmpl or return. */

/* Write the jmpl PC to the destination register unless the
* destination is %g0. If the destination is %o7 and we're
* in fast return mode, then we need to write the fragment
* cache PC (-8) to which the return fragment has been
* mapped.
*/
dst = (insn >> 25) & 0x1f;
if (targ_opt_fast_return && dst == O7) {

ret_frag = strata_lookup_fragment(PC+8);
if (!ret_frag) {

strata_enqueue_address(PC+8);
strata_patch_later(frag->last_fPC,PC+8,PATCH_RETADDR);
EMIT(SETHI(HI(0),O7));
EMIT(ORI(O7,LO(0),O7));

} else {
EMIT(SETHI(HI(ret_frag->fPC-8),O7));
EMIT(ORI(O7,LO(ret_frag->fPC-8),O7));

}
} else if (dst != G0) {

/* For normal returns, put a text return addr into O7. */
EMIT(SETHI(HI(PC),dst));
EMIT(ORI(dst,LO(PC),dst));

}

/* Emit the delay slot instruction. */
dsi = (*TI.fetch)(PC + 4);
if (writes_PC(dsi))

strata_fatal("Invalid delay slot instruction");

/* Don't write the delay slot instruction if it is a NOP. */
if (dsi != NOP) {

EMIT(dsi);
}

/* Now, emit the indirect branch trampoline. */
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/* Allocate ourselves a buffer frame. */
EMIT(SAVE(SP,-96,SP));

/* Compute the address of the bta temp location. */
EMIT(SETHI(HI((unsigned)(&bta_loc)),O1));
EMIT(ORI(O1,LO((unsigned)(&bta_loc)),O1));

/* Get the branch target address into %o0. */
EMIT(LDUWI(O1,0,O0)); /* ld [%o1], %o0 */

if (targ_opt_ibtc) {

if (frag->targ_data == NULL)
init_ibtc(frag);

/* Emit code to lookup the branch target in the IBTC */

/* Load address of the IBTC into %o2. */
EMIT(SETHI(HI((unsigned)(frag->targ_data)),O2));
EMIT(ORI(O2,LO((unsigned)(frag->targ_data)),O2));

/* Use bta (in %o0) to hash into IBTC. */
EMIT(SRLI(O0,targ_throw_away,O1));
EMIT(ANDI(O1,targ_ibtc_mask,O1));
EMIT(SLLI(O1,3,O1)); /* Index into IBTC in %o1. */
EMIT(ADD(O1,O2,O2)); /* Address of IBTC element in %o2. */
EMIT(LDUWI(O2,0,O1)); /* Tag in %o1. */
EMIT(LDUWI(O2,4,O3)); /* Translation in %o3. */
EMIT(RDCCR(O2)); /* Store condition codes in %o2. */
EMIT(CMP(O0,O1)); /* Compare bta and tag. */
EMIT(BNE(4)); /* Branch if not equal to tramp. */
EMIT(WRCCR(O2)); /* Restore condition codes. */
EMIT(JMPLI(O3,0,G0)); /* Jump to translated address. */
EMIT(RESTORE); /* Restore on our way out. */

}

/* Emit code to bounce into builder. */

/* Load fragment address into %o1. */
EMIT(SETHI(HI((unsigned)frag),O1));

EMIT(ORI(O1,LO((unsigned)frag),O1));

/* Bounce off trampoline to finish context switch. */
EMIT(SETHI(HI((unsigned)targ_reenter),L0));
EMIT(ORI(L0,LO((unsigned)targ_reenter),L0));
EMIT(JMPLI(L0,0,G0));
EMIT(NOP);

return 0;
}

/* Patch location patch_loc so that it refers to targPC */
void targ_patch (unsigned patch_loc, unsigned targPC, int ty) {

if (strata_tracing) {
fflush(stderr);
fprintf(stderr,"Fixup location=%08x with value=%08x, ",

patch_loc, targPC);
}

switch(ty) {
case PATCH_TRAMP:

if (strata_tracing) {
fprintf(stderr,"type = PATCH_TRAMP\n");

}
(*TI.emit)(BA((targPC-patch_loc)>>2),patch_loc);
(*TI.emit)(NOP,patch_loc+4);
(*TI.flush)(patch_loc,patch_loc+8);
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break;

case PATCH_RETADDR:
if (strata_tracing) {

fprintf(stderr,"type = PATCH_RETADDR\n");
}
(*TI.emit)(SETHI(HI(targPC-8),O7),patch_loc);
(*TI.emit)(ORI(O7,LO(targPC-8),O7),patch_loc+4);
(*TI.flush)(patch_loc,patch_loc+8);
break;

default:
strata_fatal("Unrecognized patch type");

}

}

/* Write instruction directly to location addr. */
void targ_emit (insn_t insn, iaddr_t addr) {

char buf[128];

if (strata_tracing) {
print_insn(addr,insn);

}

*(iaddr_t *)addr = insn;
}

/* Handle a mispredicted indirect branch. */
void targ_indirect_branch_miss (strata_fragment *from, strata_fragment *to) {

unsigned i, *p;

if (targ_opt_ibtc) {

/* Hash to->PC into the IBTC. */
i = ((to->PC >> targ_throw_away) & targ_ibtc_mask) << 1;
p = (unsigned *)from->targ_data + i;

/* Update the entry. */
*p = to->PC;
*(p + 1) = to->fPC;

}
}

/* Return 1 if the instruction writes the PC, i.e., is a call, return, jmpl, */
/* or branch of some sort. Otherwise return a 0. */
static int writes_PC (insn_t insn) {

unsigned auxop;

switch( (insn >> 30) & 0x3) {
case 0:

auxop = (insn >> 22) & 0x7;
if (auxop == 0 || auxop == 4) {

/* illtrap, sethi, or nop */
return 0;

} else {
/* branch */
return 1;

}
case 1:

/* call */
return 1;

case 2:
auxop = (insn >> 19) & 0x3f;
if (auxop == 0x38 || auxop == 0x39) {

/* jmpl or return */
return 1;

} else {
return 0;

}
case 3:
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/* load or store */
return 0;

}
strata_fatal("Doh! This can't happen!");

}

/* Called after fragment is allocated, but before any code is inserted. */
void targ_begin_fragment(strata_fragment *frag) {
}

/* Called before fragment contents are flushed and finalized. */
void targ_end_fragment(strata_fragment *frag) {
}

/* Disassemble fragment frag and print to stdout. */
void targ_disassemble_fragment(strata_fragment *frag) {

iaddr_t PC;
insn_t insn;

fprintf(stderr,"Fragment %08x => %008x\n",frag->PC,frag->fPC);
PC = frag->fPC;
while(PC < frag->last_fPC) {

insn = targ_fetch(PC);
print_insn(PC,insn);
PC += 4;

}
}

/* Install a system call watch. When syscall num executes, invoke callback. */
void targ_watch_syscall(unsigned num, void *callback) {

watch *w;
unsigned h;

/* Allocate new watch. */
NEW(w,PERM);
w->ty = WATCH_SYSCALL;
w->u.num = num;
w->ignore = 0;
w->callback = callback;

/* Compute hash index. */
h = num % WATCH_TAB_SIZE;

/* Link into the appropriate hash chain. */
w->next = watch_tab[h];
watch_tab[h] = w;

}

/* Uninstall a system call watch. */
void targ_unwatch_syscall(unsigned num) {

watch *w, *prev;
unsigned h;

/* Compute hash index. */
h = num % WATCH_TAB_SIZE;

/* Link into the appropriate hash chain. */
for(prev=NULL,w=watch_tab[h];w!=NULL;prev=w,w=w->next) {

if (w->ty == WATCH_SYSCALL && w->u.num == num) {
if (prev == NULL) {

watch_tab[h] = watch_tab[h]->next;
} else {

prev->next = w->next;
}

}
}

/* Flush the fragment cache. */
}

/* Uninstall a call watch. */
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void targ_unwatch_call(void *func) {
unsigned h;
watch *w, *prev;

/* Compute hash index. */
h = (unsigned)func % WATCH_TAB_SIZE;

/* Link into the appropriate hash chain. */
for(prev=NULL,w=watch_tab[h];w!=NULL;prev=w,w=w->next) {

if (w->ty == WATCH_CALL && w->u.func == func) {
if (prev == NULL) {

watch_tab[h] = watch_tab[h]->next;
} else {

prev->next = w->next;
}

}
}

/* Flush the fragment cache. */
}

/* Install a call watch. When call func executes, invoke callback. */
void targ_watch_call(void *func, void *callback) {

watch *w;
unsigned h;

/* Allocate new watch. */
NEW(w,PERM);
w->ty = WATCH_CALL;
w->u.func = func;
w->ignore = 0;
w->callback = callback;

/* Compute hash index. */
h = (unsigned)func % WATCH_TAB_SIZE;

/* Link into the appropriate hash chain. */
w->next = watch_tab[h];
watch_tab[h] = w;

}

static watch *call_watch_lookup (void *func) {
watch *w;
unsigned h;

/* Compute hash index. */
h = (unsigned)func % WATCH_TAB_SIZE;

for(w=watch_tab[h];w!=NULL;w=w->next) {
if (w->ty == WATCH_CALL && w->u.func == func) {

return w;
}

}
return NULL;

}

static watch *syscall_watch_lookup (unsigned num) {
watch *w;
unsigned h;

/* Compute hash index. */
h = num % WATCH_TAB_SIZE;

for(w=watch_tab[h];w!=NULL;w=w->next) {
if (w->ty == WATCH_SYSCALL && w->u.num == num) {

return w;
}

}

return NULL;
}
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/* This is probably not the place for this stuff -- refactor later. */

/* Disable watches on func until strata_callback_end. */
void strata_callback_begin (void *func) {

watch *w;

w = call_watch_lookup(func);
if (w == NULL) {

fprintf(stderr,"Function %08x is not being watched.\n",func);
strata_fatal("Error in strata_callback_begin()");

}
w->ignore = 1;

}

/* Reenable watches on func. */
void strata_callback_end (void *func) {

watch *w;

w = call_watch_lookup(func);
if (w == NULL) {

fprintf(stderr,"Function %08x is not being watched.\n",func);
strata_fatal("Error in strata_callback_end()");

}
w->ignore = 0;

}

/* Disable watches on syscall num until strata_syscallback_end. */
void strata_syscallback_begin (unsigned num) {

watch *w;

w = syscall_watch_lookup(num);
if (w == NULL) {

fprintf(stderr,"Syscall %d is not being watched.\n",num);
strata_fatal("Error in strata_syscallback_begin()");

}
w->ignore = 1;

}

/* Reenable watches on syscall num. */
void strata_syscallback_end (unsigned num) {

watch *w;

w = syscall_watch_lookup(num);
if (w == NULL) {

fprintf(stderr,"Syscall %d is not being watched.\n",num);
strata_fatal("Error in strata_syscallback_end()");

}
w->ignore = 0;

}
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Dynamic and Adaptive Policy Examples 
 
Fileopen.c

#include <stdio.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>

void makepath_absolute(char *absfilename,char *path, int length) {

char *ptr;
int i = 0;
int l = 0;

ptr = &(*path);
while (*ptr != NULL && l < length) {

absfilename[i] = *ptr;
*ptr++;
i++;

}
}

int myopen (const char *path, int oflag) {
char absfilename[1024];
int fd;
char *ptr;
int i = 0;

strata_syscallback_begin(SYS_open);

makepath_absolute(absfilename,path,1024);
printf("\n%s\n", absfilename);

if (strcmp(absfilename,"/etc/passwd") == 0) {
strata_fatal("Strata Policy does not allow this request!");

}
fd = syscall(SYS_open, path, oflag);

strata_syscallback_end(SYS_open);

return fd;
}

void init_syscall() {
(*TI.watch_syscall)(SYS_open, myopen);

}

int main(int argc, char *argv[]) {
FILE *f;
strata_init();
init_syscall();
strata_start();
if (argc < 2 || (f = fopen(argv[1],"r")) == NULL) {

fprintf(stderr,"Can't open file.\n");
exit(1);

}
printf("File %s opened.\n",argv[1]);

strata_stop();
return 0;

}
 
Diropen.c

#include <stdio.h>
#include <string.h>
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#include <strata.h>
#include <sys/syscall.h>

void makepath_absolute(char *absfilename,char *path, int length) {

char *ptr;
int i = 0;
int l = 0;

ptr = &(*path);
while (*ptr != NULL && l < length) {

absfilename[i] = *ptr;
*ptr++;
i++;

}
}

int myopen (const char *path, int oflag) {
char absfilename[1024];
int fd;

strata_syscallback_begin(SYS_open);

makepath_absolute(absfilename,path,1024);
printf("\n%s\n", absfilename);

if (strncmp(absfilename,"/etc/",5) == 0) {
strata_fatal("Strata Policy does not allow this request!");

}
fd = syscall(SYS_open, path, oflag);

strata_syscallback_end(SYS_open);

return fd;
}

void init_syscall() {
(*TI.watch_syscall)(SYS_open, myopen);

}

int main(int argc, char *argv[]) {
FILE *f;
strata_init();
init_syscall();
strata_start();
if (argc < 2 || (f = fopen(argv[1],"r")) == NULL) {

fprintf(stderr,"Can't open file.\n");
exit(1);

}
printf("File %s opened.\n",argv[1]);

strata_stop();
return 0;

}
 
Fdopen.c

#include <stdio.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>

void makepath_absolute(char *absfilename,char *path, int length) {

char *ptr;
int i = 0;
int l = 0;

ptr = &(*path);
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while (*ptr != NULL && l < length) {
absfilename[i] = *ptr;
*ptr++;
i++;

}
absfilename[i] = '\0';

}

int myopen1 (const char *path, int oflag) {

char absfilename[1024];
int fd;

strata_syscallback_begin(SYS_open);

makepath_absolute(absfilename,path,1024);
printf("\n%s\n", absfilename);

if (strncmp(absfilename,"/etc/",5) == 0) {
strata_fatal("Strata Policy does not allow this request!");

}
fd = syscall(SYS_open, path, oflag);

strata_syscallback_end(SYS_open);

return fd;
}

int myopen (const char *path, int oflag) {
char absfilename[1024];
int fd;

strata_syscallback_begin(SYS_open);

makepath_absolute(absfilename,path,1024);
printf("\n%s\n", absfilename);

if (strcmp(absfilename,"/etc/passwd") == 0) {
(*TI.unwatch_syscall)(SYS_open);
strata_flush();
(*TI.watch_syscall)(SYS_open, myopen1);

}
fd = syscall(SYS_open, path, oflag);

strata_syscallback_end(SYS_open);

return fd;
}

void init_syscall() {
(*TI.watch_syscall)(SYS_open, myopen);

}

int main(int argc, char *argv[]) {
FILE *f;
int i = 1;
strata_init();
init_syscall();
strata_start();

while (i < argc) {
if (argc < 2 || (f = fopen(argv[i],"r")) == NULL) {

fprintf(stderr,"Can't open file.\n");
exit(1);

}
printf("File %s opened.\n",argv[i]);
++i;

}
strata_stop();
return 0;

}



 75

 
Fdopen2.c

#include <stdio.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>

static int policy_step = 0;

void makepath_absolute(char *absfilename,char *path, int length) {
char *ptr;
int i = 0;

ptr = &(*path);
while (*ptr != NULL && i < length) {

absfilename[i] = *ptr;
*ptr++;
i++;

}
absfilename[i] = '\0';

}

int myopen (const char *path, int oflag) {
char absfilename[1024];
int fd;
strata_syscallback_begin(SYS_open);

makepath_absolute(absfilename,path,1024);
printf("path = %s\n", absfilename);

switch (policy_step) {
case 0:
if (strcmp(absfilename,"/etc/passwd") == 0) {

policy_step = 1;
fd = syscall(SYS_open, "fake.c", oflag);
printf("Fileopen blocked by policy.\n");

} else {
fd = syscall(SYS_open, path, oflag);

}
break;

case 1:
if (strncmp(absfilename,"/etc/",5) == 0) {

strata_fatal("Strata Policy does not allow this request!");
} else {

fd = syscall(SYS_open, path, oflag);
}
break;

}

strata_syscallback_end(SYS_open);

return fd;
}

void init_syscall() {
(*TI.watch_syscall)(SYS_open, myopen);

}

int main(int argc, char *argv[]) {
FILE *f;
int i = 1;
strata_init();
init_syscall();
strata_start();

while (i < argc) {
if (argc < 2 || (f = fopen(argv[i],"r")) == NULL) {

fprintf(stderr,"Can't open file.\n");
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exit(1);
}
printf("File %s opened.\n",argv[i]);
++i;

}
strata_stop();
return 0;

}
 
Fdopen4.c

#include <stdio.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>

FILE *out;
static int policy_step = 0;

void makepath_absolute(char *absfilename,char *path, int length) {
char *ptr;
int i = 0;

ptr = &(*path);
while (*ptr != NULL && i < length) {

absfilename[i] = *ptr;
*ptr++;
i++;

}
absfilename[i] = '\0';

}

int myopen (const char *path, int oflag) {
char absfilename[1024];
int fd;
int st;
struct stat buf;

strata_syscallback_begin(SYS_open);

makepath_absolute(absfilename,path,1024);
printf("path = %s\n", absfilename);

switch (policy_step) {
case 0:
if (strcmp(absfilename,"/etc/passwd") == 0) {

policy_step = 1;
printf("Fileopen blocked by policy...Log beginning...\n");

/* fd = syscall(SYS_open, "fake.c", oflag);*/
} else {

fd = syscall(SYS_open, path, oflag);
}
break;

default:
st = stat(path, &buf);

fprintf(out, "File: %s.\nDevice ID: %d.\nSerial Number: %d.\nAccess Mode:
%d.\nNumber of Links: %d.\nUser ID of file owner: %d.\nGroup ID of group owner: %d.\nFile
size(bytes): %d.\nLast access time: %d.\nLast modification time: %d.\nLast file status
change time: %d.\n\n\n", path, buf.st_dev, buf.st_ino, buf.st_mode, buf.st_nlink,
buf.st_uid, buf.st_gid, buf.st_size, buf.st_atime, buf.st_mtime, buf.st_ctime);

fd = syscall(SYS_open, path, oflag);
break;

}

strata_syscallback_end(SYS_open);
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return fd;
}

void init_syscall() {

(*TI.watch_syscall)(SYS_open, myopen);
}

int main(int argc, char *argv[]) {
FILE *f;
int i = 1;
strata_init();
out = fopen("log.out", "w");
init_syscall();
strata_start();

while (i < argc) {
if (argc < 2 || (f = fopen(argv[i],"r")) == NULL) {

fprintf(stderr,"Can't open file.\n");
exit(1);

}
printf("File %s opened.\n",argv[i]);
++i;

}
close(out);
strata_stop();
return 0;

}
 
Preventexec.c

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <strata.h>
#include <sys/syscall.h>

static int curuid = -1;

int mysetuid (int uid) {
int retval;

strata_syscallback_begin(SYS_setuid);
curuid = syscall(SYS_setuid, uid);

strata_syscallback_end(SYS_setuid);

return retval;
}

int myexecve (const char *path, char *const argv[],
char *const envp[]) {
int retval;
strata_syscallback_begin(SYS_execve);

if (curuid == 0) {
strata_fatal("Naughty, naughty");

} else {
retval = syscall(SYS_execve, path, argv, envp);

}
strata_syscallback_end(SYS_execve);
return retval;

}

void init_syscall() {
(*TI.watch_syscall)(SYS_execve, myexecve);
(*TI.watch_syscall)(SYS_setuid, mysetuid);

}
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int main (int argc, char *argv[]) {
FILE *f;
char *args[2] = {"hole",NULL};
char *envs[1] = {NULL};

strata_init();
init_syscall();
strata_start();

setuid(0);
execve("./hole", args, envs);

strata_stop();

return 0;
}
 
Combo.c

#include <stdio.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>

static int fileopened = 0;
static int curuid = -1;

int mysetuid (int uid);

int myopen (const char *path, int oflag) {

char absfilename[1024];
int fd;
printf("open watched...\n");

(*TI.watch_syscall)(SYS_setuid, mysetuid);
strata_flush();
strata_syscallback_begin(SYS_open);
fd = syscall(SYS_open, path, oflag);
strata_syscallback_end(SYS_open);

return fd;
}

int myexecve (const char *path, char *const argv[],
char *const envp[]) {

int retval;
printf("execve watched...");

strata_syscallback_begin(SYS_execve);
retval = syscall(SYS_execve, path, argv, envp);
strata_syscallback_end(SYS_execve);
return retval;

}

void init_syscall() {

(*TI.watch_syscall)(SYS_open, myopen);
(*TI.watch_syscall)(SYS_execve, myexecve);

}

int main(int argc, char *argv[]) {

FILE *f;
char *args[2] = {"bin/sh", 0};

strata_init();
init_syscall();
strata_start();

setuid(0);
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if (argc < 2 || (f = fopen(argv[1],"r")) == NULL) {
fprintf(stderr,"Can't open file.\n");
exit(1);

}
printf("File %s opened.\n",argv[1]);

setuid(0);
execve("bin/sh", args);

strata_stop();
return 0;

}

int mysetuid (int uid) {
int retval;
printf("setuid watched...\n");

strata_syscallback_begin(SYS_setuid);
curuid = syscall(SYS_setuid, uid);
strata_syscallback_end(SYS_setuid);

return retval;
}
 
Cookies.c

#include <stdio.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>
#include "snarf.h"

static int socket_fd = -1;

/* Copy src buffer to dst removing cookies*/
int remove_cookies(char *dst, const void *src,
int size);

/* Callback for the so_socket system call. */
int my_so_socket (int a, int b, int c, char *d,
int e) {

int fd;

strata_syscall_begin(SYS_so_socket);
/* Make the system call and record the */
/* file descriptor */
socket_fd = syscall(SYS_so_socket,a,b,c,d,e);
strata_syscall_end(SYS_so_socket);

return socket_fd;
}

/* Callback for the write system call */
int my_write (int fd, void *buf, int size) {

char new_buf[1024];
int s, new_size;

strata_syscall_begin(SYS_write);
/* Only look at writes to socket_fd
/* and only rewrite HTTP headers. */
if (fd == socket_fd &&
(new_size = remove_cookies(new_buf,buf,size)))

s = syscall(SYS_write,fd,new_buf,new_size);
else

s = syscall(SYS_write,fd,buf,size);
strata_syscall_end(SYS_write);

return s;
}
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void init_syscall() {
(*TI.watch_syscall)(SYS_so_socket,my_so_socket);
(*TI.watch_syscall)(SYS_write,my_write);

}

int main(int argc, char *argv[]) {
snarf_main(argc, argv);

}
 
Limitpack.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <time.h>
#include <string.h>
#include <strata.h>
#include <sys/syscall.h>

#define RATE 10000
#define TOPRATE 10000000
#define DISCARD_PORT 9999
#define PAYLOAD_SIZE 1024

void xmit (const char *host, int nbytes);

static int socket_fd = -1;

/* Compute the delay necessary to maintain */
/* the desired rate */
int limiting_delay (double rate, time_t tbeg,time_t tend, int last_len, int len);

/* Callback for the so_socket call */
int my_so_socket (int a,int b,int c,char *d,int e) {

int fd;

strata_syscallback_begin(SYS_so_socket);
/* Make the system call and */
/* record the file descriptor */
socket_fd = syscall(SYS_so_socket,a,b,c,d,e);
strata_syscallback_end(SYS_so_socket);

return fd;
}

/* Callback for the write system call */
int my_send (int s, const void *msg, size_t len,
int flags) {

int result;
time_t now;
static int last_len = 0;
static time_t last_time = 0;

strata_syscallback_begin(SYS_send);
/* Only look at writes to socket_fd */
/* and only rewrite HTTP headers */
if (s == socket_fd) {

now = time(NULL);
sleep(limiting_delay(RATE,last_time, now,len,last_len));
last_len = len;
last_time = now;

}
result = syscall(SYS_send,s,msg,len,flags);
strata_syscallback_end(SYS_send);

return result;
}
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void init_syscall() {
(*TI.watch_syscall)(SYS_so_socket,my_so_socket);
(*TI.watch_syscall)(SYS_send,my_send);

}

main(int argc, char *argv[]) {
if (argc == 3)

xmit(argv[1],atoi(argv[2]));
else

fprintf(stderr,"Usage: %s host nbytes\n",argv[0]);
}

/* Transmit nbytes to discard port (9) on host */
void xmit (const char *host, int nbytes) {

int sd, bytes_sent;
struct sockaddr_in sin;
struct sockaddr_in pin;
struct hostent *hp;
char *payload[PAYLOAD_SIZE];
time_t begin, elapsed;
double rate;

/* go find out about the desired host machine */
if ((hp = gethostbyname(host)) == 0) {

perror("gethostbyname");
exit(1);

}

/* fill in the socket structure with host info */
memset(&pin, 0, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;
pin.sin_port = htons(DISCARD_PORT);

/* grab an Internet domain socket */
if ((sd = socket(AF_INET,SOCK_STREAM, 0)) == -1) {

perror("socket");
exit(1);

}

/* connect to PORT on HOST */
if (connect(sd, (struct sockaddr *) &pin,

sizeof(pin)) == -1) {
perror("connect");
exit(1);

}

begin = time(0);
bytes_sent = 0;
while(bytes_sent < nbytes) {

/* send a message to the server PORT */
/* on machine HOST */
if (send(sd,payload,sizeof(payload),0) == -1) {

perror("send");
exit(1);

}
bytes_sent += sizeof(payload);
printf(".");
fflush(stdout);

}

elapsed = time(0) - begin;
rate = bytes_sent / elapsed;
printf("\nRate = %8.3f bytes per second.\n",rate);
close(sd);

}
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1. Abstract 
 
 This document is a proposal to construct a Software Dynamic Translation (SDT) 
application with the ability to enforce an adaptable security policy.  Security policy 
enforcement is inherently computationally expensive, so ideally policies should only be 
enforced when a security threat is fully justified or they should be custom tailored to each 
system in order to minimize performance overhead.  SDT technology has the ability to 
monitor and/or modify the binary execution stream of a process while it is running, and 
thus supports an enormous potential for success with this application.  This research will 
attempt to show that an SDT system has the ability to enforce an adaptable security 
policy by alternating the enforcement of policies in an arbitrary set of policies.  Once this 
concept is proved, an iterative process will begin in an attempt to make these policies 
useful to the computer security community.  Using this technology to implement an 
adaptable policy enforcement scheme is an economically and practically feasible project, 
and it is hoped that the flexibility and portability of such a tool will aid in a successful 
widespread distribution in the future. 
 

2. Rationale and Objectives 
 
 Software Dynamic Translation (SDT) technology is a relatively recent innovation.  

In short, SDT has the ability to monitor and modify the native binary execution stream of 

a program while it is running, and it can do so transparently without the need of pre-

compilation or programmer assistance.  Implemented entirely in software, SDT systems 

run between a process and its host CPU, interrupting the execution stream immediately 

before it reaches the processor.  By doing so, they achieve a capability to control 

execution dynamically.  It is important to emphasize that a run-time perspective of an 

executing process has unique and exciting benefits.  Various implementations of SDT 

have surfaced over the past few years, realizing concepts such as binary translation and 

dynamic optimization.  Binary translation technology allows for the portability of 

programs between differing architectures.  By translating a binary stream from one 

instruction set architecture to another, a program can run on hardware other than what 

was originally intended.  Dynamic optimization technology actually improves the 
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performance of programs while they are running, in contrast to a compiler which 

performs its optimizations statically at compile time.   Perhaps what is so impressive 

about these technologies is that they accomplish all of this without ever having to 

manipulate the program at any time prior to execution.  This advantage is not only 

valuable to the portability and flexibility of these applications but the catalyst of this 

thesis project.  Due to this unique capability, SDT technology has an enormous potential 

for success in the field of computer security.   

 Computer security is becoming an increasingly important issue in this age of 

global communication and commerce and the Internet.  It is highly researched for several 

reasons, its relevance to consumer privacy and due to the persistence and resourcefulness 

of attackers.  Hackers are constantly discovering vulnerabilities in systems leaving behind 

a legacy of malicious programs known as exploits.  As long as hackers have been hard at 

work causing problems, there have been efforts to prevent the damage they cause.  These 

efforts have been both preventative of attacks and responsive to them, statically and 

dynamically.  One such application, developed at the University of Virginia by Professor 

Dave Evans and Dave Larochelle, statically analyzes C programs for a certain type of 

exploit [18].  This would be an example of a preventative measure, but also a very static 

solution, since the source code is required before compilation and the questionable code 

is never run.  A similar task is also accomplished dynamically (a dynamically linked 

library) at run-time by a program developed at Avalya Labs named Libsafe [17, 15].   

This application is also preventative, and accomplishing the same end goal, but doing so 

in a different manner.  Another portion of the these efforts have evolved into the field 

known as intrusion detection systems (IDS), which as the name suggests, strives to 
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profile the behavior of normal systems so that attacks may be detected while taking place.  

This approach is drastically different from the earlier examples and is a good indication 

of the diversity of computer security applications.  Consider yet another method, the idea 

of enforcing user defined security polices.  This approach offers a great deal of flexibility 

because policies can be tailored to provide different levels of security for different 

platforms.  Policies are most commonly defined as a set of safety properties that place 

constraints resource operations [6].  By controlling computing resources and being 

suspicious of how processes use them, a policy may prevent attacks by reducing the 

mobility of malicious code. 

 Different users have a need for differing security applications, with different 

levels of security sensitivity.  Certainly, the Department of Defense building computer 

network would require a greater number of security measures than a personal webpage.  

On a general level though, users value their privacy and security but are extremely 

sensitive to a decline in the performance of their machines.  All security applications 

produce some performance overhead, but in order to achieve widespread use they must 

operate with some degree of transparency, to provide the maximum protection possible 

with the least amount of user interaction required and performance penalties incurred.  

The dynamic capabilities of SDT could potentially aid this degree of transparency and 

offer new approaches for current security practices. 

 I plan to implement an SDT application for enforcing security policies like those 

described previously, only the policies will have the ability to adapt to changing security 

requirements during the execution of one or more processes.  Such an application will 
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have the ability to turn on or off its security monitoring or increase or decrease its level 

sensitivity based on the current state of the system.  The application will:  

 
� support the concept of execution transparency, 

 
� support the flexibility and portability of the policies by enforcing them in a 

platform independent manner, 
 

� minimize user input concerning the definition of policies by making the policy 
adaptive to changing security requirements, and  
 

� minimize performance overhead associated with enforcing the security policies. 
 

 A major motivation for having adaptable security policies is that enforcing 

security policies is inherently computationally expensive.  An expensive policy should 

only be enforced when it is considered necessary, and SDT technology will make this 

transition possible.  Recent research in policy enforcement describes applications based 

in the operating system kernel, since system calls are readily accessible from this point 

[5].  SDT allows such system call access in addition to the rest of the execution stream, 

so policy enforcement with SDT will not need the aid of the operating system.  

Separating this functionality from the OS is ideal, because policies involving more than 

system call monitoring would be difficult or impossible to enforce by the kernel.   Simply 

put, designing a kernel policy enforcement infrastructure fixes the type of policies that 

are enforceable.  As a result, policy enforcement could complicate the kernel 

implementation which could introduce bugs, make maintenance more complicated, and 

even decrease performance. 

 



 6

3. Preliminary Impact Statement  

Introduction 
 Any advance made in any area of computer security produces numerous impacts.  

These impacts affect not only the common user but also global networks of shared 

information, corporations, and even the hackers who invoke the threat.  When security 

methods are improved, users gain an improved sense of security.  This new environment 

nurtures progress.  Whether the field is communication, commerce, or research, increased 

security allows professionals to concentrate on their work rather than worrying about its 

exploitation.  It is important, however, that users do not gain a false sense of security, by 

overestimating the capabilities of security products.  Such a scenario produces negative 

effects caused by users who place themselves in vulnerable situations they otherwise 

would not consider. Therefore, it is imperative that the scope of security software is well 

documented and tested, so that users are fully aware of its protective abilities and 

limitations.   

 Successful security systems fulfill four general requirements.  They are 1) well 

documented, 2) lightweight (satisfactory performance on a given system), 3) easy to set 

up and maintain, and 4) and successful at defending a system from all of the attacks 

advertised.  Notice that these requirements are associated not only with the level of 

protection provided by the product but with how the product affects the performance of 

the system.  Recall that SDT systems have an enormous potential fulfill these 

requirements, resulting in a high probability of success.  
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Impacts to the Common User 
 The average computer user has little idea of the risks involved in everyday use.  

And even the more informed user would not be able to detect that an attack is taking 

place that simply violates privacy and causes no noticeable harm.  An application such as 

the one proposed offers the common user a simple and transparent mechanism to deal 

with security issues so they do not have to.  Since polices can be expressed more 

generally, less user input is required, making the product that much more attractive to the 

uninformed user, who is unfortunately the most commonly attacked.  Also since the 

proposed policy enforcement scheme is implemented outside of the operating system it 

aids to the flexibility and portability of the tool. 

 Most applications available, especially those that enforce security policies, require 

a great deal of information about the system and to function properly.  This information 

might not be readily available to the common user who, regardless of this fact, is still 

forced to make important decisions about the security of the system.  One specific 

example of this is PC firewall technology.  A firewall is simply a choke point in a 

network where traffic may be monitored and manipulated, and a PC firewall is designed 

to implement a firewall for individual hosts (the common user).  Even though they are 

designed with non-expert users in mind, the firewall must still be configured regularly, in 

response to new adaptations of security threats.  This requires knowledge of what the user 

wants to be protected against.  In contrast, the tool proposed would aim to further 

decouple this requirement from security applications by allowing a common user to 

specify policies dealing with specific resources on the system rather than specific attack 

signatures.  Functionality such as this suits a common user well because system specific 

requirements are more static, and more comprehendible than the alternative. 
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Impacts to the Security Engineer 
 The security engineer works to increase the level, and sense, of security on a 

larger scale than just a single machine.  Worldwide communication networks and large 

corporate networks have a greater need for security measures, and also have more 

funding to allocate to more heavyweight security products.  This fact lessens the impact 

of this application for security engineers, but the fact remains security advancements 

promote more security research.  This research must be tested through distribution and 

constant use, and it is security engineers who often perform this task.  

 The major attraction of this tool for the security engineer is its flexibility for 

implementing dynamic and hopefully adaptable security policies.  This introduces a wide 

range of possibilities for security engineers to combat the never-ending challenge of 

computer security.  A security engineer will, in contrast to the common user, have a 

detailed knowledge of the system and the current state of security.  With the dynamic 

content made available by this tool, he will be able to construct a wide variety of security 

policies specifically tailored to the system, the attacks in question, and to reduce 

performance overhead.  While the common user also has this ability, this larger system 

offers more opportunity for diverse application due to a much greater number of users 

and a higher probability of security breaches.  It is in this forum of research that 

hopefully the tool will be thoroughly tested and information and policies themselves may 

be passed down to the common user. 
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Impacts to the Hacker 
 The obvious impact is that this application might make it more difficult to break 

in to the system of a common user and the companies employing the security engineers.  

A deterrent such as this might cause the rate of successful attacks to decline, but could 

also provoke the hacker to write new exploits, searching for ways to get around the new 

barrier.  As history has shown, they will more than likely find holes to exploit, and begin 

the iterative exchange between the security engineer and the hacker of successful attacks 

for new software patches.  This will inevitably lead to an even more secure tool in time, 

but will incur the costs of compromised software.   

 Different hackers have different intentions for the damage they cause.  For some, 

the damage is intended to make a point for some cause, and others it is simply intended 

for amusement.  In either case, the resourcefulness of hackers must not be 

underestimated.  It is important to understand that new security applications affect the 

hacker just as much as they provide a sense of security to those who use them.  

Therefore, new security applications are usually the most susceptible to attack, and must 

be made as invisible to the hacker as possible to lessen the negative effects of its 

deployment. 
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4. Review of  Relevant Literature 
 
 This thesis project draws literature from several differing areas of study.  A 

complete understanding of SDT is required to implement a new application for it.  This 

knowledge not only includes SDT system design, but a great deal of underlying computer 

architectural principles.  It is important to comprehend how a computer works from a low 

enough level of abstraction to be equal with the perspective of an SDT system (the 

assembly language level), and depending on which architecture is present this operation 

will differ from machine to machine.  An understanding of machine level operation ties 

in intimately with computer security.  Since the majority of security threats evolve from 

exploiting the low-level intricacies of a system, architectural knowledge is essential in 

undertaking security research.  This practice of exploitation is known as hacking, and it is 

usually accomplished by any means necessary.  The field of Computer Security attempts 

to discover, prevent, and respond to hacking.  Like any other field, its goals are 

accomplished in various manners and through various abstractions, from low-level code 

certification to user and program behavior profiling to policy enforcement.  All of these 

methods have proved to be effective to some degree in practice, but the resourcefulness 

of attackers presents a seemingly endless challenge for security engineers.  The literature 

presented in the following sections will provide sufficient background, in SDT, computer 

architecture, and computer security, to enable the reader to fully comprehend the 

motivations behind this research and the call to arms for future research.  With this 

foundation in place, an account of the additional concepts related directly to this project 

can be clearly presented. 

 An implementation of SDT, named Strata, is currently under construction at the 
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University of Virginia by the Computer Science PhD student James Kevin Scott.  The 

Strata infrastructure provides a framework for implementing new SDT applications, so 

Strata has the ability to support functionality such as binary translation and dynamic 

optimization [4].  Hewlett Packard’s Dynamo [1] is a transparent dynamic optimization 

tool which provides a similar framework, only code is also integrated to optimize PA-

RISC binaries.  Several other examples of dynamic optimization technology are Vulcan 

(IA-32), Mojo (IA-32), and DBT (PA-RISC).  IBM’s Daisy is an example of binary 

translation technology, translating the VLIW instruction set to PowerPC (Daisy also 

performs some dynamic optimization) [2].  FX!32 (IA-32 to Alpha), UQDBT (IA-32 to 

SPARC), and Transmeta’s Code technology (IA-32 to VLIW), are other examples of 

binary translation technology.  These products display the commercial success of SDT 

technology as well its flexibility to implement a wide range of services across multiple 

platforms with a single tool. 

 Both of the technical reports on Strata, entitled Strata: A Software Dynamic 

Translation Infrastructure and Low-Overhead Software Dynamic Translation give an 

excellent depiction of how Strata arbitrates program execution.  Strata gains control of a 

process and maintains this control through special context switches, called trampolines, 

between its framework the running process.  Each executed instruction is dynamically 

translated to become part of a cached sequence of code known as a fragment [4].  When 

the code is finally executed on the host processor it is done so from the fragment cache, a 

very fast memory resource containing the newly translated instruction.  Note that this 

functionality provides a facility to modify this code before it is placed into the fragment 
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Figure1. Architecture of Strata. 
 

cache, and before actual execution on the processor.  The modification may be, and 

certainly not limited to, a code optimization or an insertion of security checking code.  

Figure 1. illustrates the architecture of Strata, specifically the formation and caching of 

fragments. 

 In order to define this thesis, I had to determine what modifications Strata should 

make to a program to make its operation more secure in some way.  This task required 

sufficient background in the concepts of hacking and computer security.  Generally 

speaking, hacking tends to exploit the low level intricacies of an operating system and/or 

architecture such as register organization, memory access and function calling and 

returning.  A common, and maybe obsolete, example of hacking is a buffer overflow 

exploit or a stacking smashing attempt.  These exploits take control of a process and force 
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it to execute malicious code [14].  Denial of service (DoS) attacks or distributed denial of 

service (DDoS) attacks contrastingly render a machine useless by bombarding its 

resources and overloading the CPU.  The list goes on to include brute force attacks, IP 

spoofing, format string attacks, session hijacking, Trojan horses and many more.  What is 

done to try and prevent these attacks, or to try and discover that they have happened and 

to take appropriate action, is the basis of computer security.  

 Various areas of computer security have evolved with these goals in mind.  Each 

area seems to approach the task at hand through its own level of abstraction.  Perhaps the 

lowest level of abstraction is pursued by a concept known as code safety.  Code safety 

strives to provide control flow safety, memory safety, and stack safety to ensure 

programs behave properly [20].  Low-level code safety supports higher level security 

mechanisms, especially those that allow code modified with security checks to run.  

Without this type of safety in place a hacker could get around the security checks inserted 

to ensure that the code is secure.  Software Fault Isolation [19] and Proof-Carrying Code 

[21] are two examples of mechanisms to provide low-level code safety.  For any security 

extension to Strata to be successful in reality, low-level code safety must be ensured so 

that Strata’s actual operation cannot be circumvented via hacking techniques.  This task, 

however, is beyond the scope of this project, and will be left for future research.  

 One approach to dealing with the problems caused by hackers is to face the 

problem head on, constructing software that prevents specific types of attacks.  LCLint 

statically analyzes C programs for buffer overflow exploits [18].  Libsafe is a 

dynamically linked library that performs bounds checking on certain C functions to 

prevent stack-smashing at run-time [17,15].  Strata, actually, has the ability to completely 
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prevent stack-smashing attempts with only several lines of code.  This functionality along 

with a very simple policy enforcement mechanism is described in the technical report 

entitled Low-Overhead Software Dynamic Translation.  Other efforts attempt to take a 

more general approach to the problem in the hopes of finding a more flexible solution to 

the continuously evolving hacking arsenal.  Intrusion Detection Systems (IDS) is one 

such effort which, as the name suggests attempts to determine accurately when a system 

is under attack so that it may take proper action.  It does this by profiling normal system 

behavior through system calls, user actions, and other past behavior.  Any departure then 

from this normal behavior could be considered an attack [11].  A drawback of this 

approach though is that behavior profiles can never be one hundred percent accurate, 

meaning that often, innocent processes get treated as malicious ones.  Yet another area 

tries to combat attacks by managing system resources through the use of security policies.  

Naccio is one such architecture which allows for the expression of security policies in a 

platform independent manner.  These policies are then enforced by an application 

transformer, which rewrites the entire executable including wrappers around code that 

needs to be monitored by the policy [6].  There is research also in how to efficiently 

construct and place these wrappers, which are simple state machines that sit idle and 

listen for an event to occur.  Upon this event the state machine takes action as defined by 

the policy [5].  The transformation invoked by Naccio is conceptually similar to how 

Strata translates executing code and caches it for subsequent execution.  Policy 

enforcement in Strata will likely be similar also, only this policy will have the ability to 

change based on the current state of the system.  The adaptive policy will be based on a 

hybrid of current policies, such as the Chinese wall policy, audit policies, and information 
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flow policies [8], or may utilize the ability to completely switch between the policies as 

the situation permits. 

 

5. Statement of  Project Activities 
 
 From initial background research to completion of the technical report, this 

project can be divided into several discreet steps.  Most background research has been 

completed in order present this proposal.  The structure of the project and the resources 

required to complete it are described in the following sections.  A tentative schedule is 

also presented.  The project activities section exhibits plans for carrying out the 

implementation and data collection portions of the project.  Conceptually, it begins 

immediately following thesis definition.  

Activities 
1. Determine a set of arbitrary but representative security policies to mitigate the 

adaptation of a global security policy.  Note that there may be some question as to 

the appropriate scope of this project.  The first goal is to prove that enforcing an 

adaptable security policy using SDT is possible and practical for implementation 

and distribution.  This only requires the policy to be arbitrary, with the resulting 

emphasis placed only on the adaptive behavior of the finished product.  Initially, 

the model will not be required to additionally support advanced computer security 

practices.  This initial step, however, is trivial considering that the flexibility of 

SDT systems greatly increases the probability of successful results.  To ease the 

burden of future research, the initial set of policies will be, on some level of 

abstraction, representative of useful computer security practices.  This initial 
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distinction will especially take into account a policy’s potential to foster dynamic 

behavior.  A policy predicated on the static analysis of a process or the use of a 

pre-existing database would not be a likely candidate to fully exploit the 

capabilities of SDT systems. 

2. Determine the stimuli that will invoke changes, or adaptations, in the policy to 

complete an initial working model of an adaptive security policy.  Recall that a 

primary motivation behind this research is that enforcing policies is 

computationally expensive, so ideally action should only be taken when a security 

threat is fully justified.  These justifications must be expressed rigorously and 

with a degree of certainty necessary to ensure the consistent recognition of these 

threats.  Note that these justifications are dependent on the type of policy being 

enforced. 

3. Implement this first working model into Strata.  This step will consist of working 

with Kevin Scott (see Personnel) a great deal.  The simplicity of the first policy 

model will be crucial in dealing with any implementation issues in Strata that 

arise due increasing complexity of the model.  If the complexity of 

implementation turns out to have been underestimated, tradeoffs may be made 

with the simplicity of the initial model.  The research will by no means be lost, as 

it will be incorporated into the following steps.  An initial implementation will 

facilitate the following steps. 

4. Assess the results of this model with proper security and performance testing.  

The first goal of performance testing will be to observe the desired adaptive 

behavior where in response to certain pre-defined stimuli, the security policy 
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being enforced on a process will be altered dynamically.  In particular, a process 

will run some sequence of events, denoted by k, followed by a single event or 

another sequence of events that justifies action by a policy.  A response to this 

action will either be derived from the current policy (which could be that no 

policy is enforced) or to spawn a new policy with a different level of intrusion 

sensitivity.  In the latter case, the same sequence k will be run, so that the same 

code can be observed in different situations.  This will give a clear indication of 

the computational savings incurred by selectively enforcing the more sensitive 

policy during execution as opposed to doing so the entire duration.  As for the 

first case, testing in this area will be indicative of the correctness of the policies 

themselves.  This step could potentially be ignored if the policies are actually 

arbitrary, and testing for security improvements would be somewhat futile.  

Actions taken by the polices will be observed in later testing, when they become 

more representative of current security practices.  In order to improve in this area, 

it will require testing not unlike any other computer security system; real-world 

testing. 

5. If these results are acceptable, begin to construct an adaptable security policy 

that may be useful to the computer security community by improving the current 

policies.  This final step will be iterative and will continue as time permits.  Any 

improvements in the policies will be verified and documented. 

Schedule 
 The final version of the technical report must be completed by the third 

week of March 2002.  This implies a tentative schedule, that the research must be 
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completed leaving ample time to prepare the report.  Refer to the Gantt chart 

below, Figure 2., for an initial schedule of this thesis project.  Note that the 

schedule is constructed to allow for more research to be done during the semester 

break.  A major portion of this project will be implementing the first iteration of 

the adaptable security policy.  Testing and verification will follow, along with the 

iterative process of improving the policies.  Based on the advice of my technical 

and security advisors, a desirable stopping point for this process will be 

determined and the preparation of the technical report will begin. 
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1. Background Research 
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4. Test First Model 
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7. Prepare Technical Report 

8. Progress Report Due 

9. Technical Report Due 

 

Figure 2. Gantt Chart: Tentative Schedule for Project 
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Personnel 
 

1. Author of Technical Report: Undergraduate Student Paul H. Lamanna 

 As a forth-year undergraduate student at the University of Virginia, 

enrolled in the computer science curriculum in the School of Engineering and 

Applied Science, I will be the primary author of the technical report of the thesis 

project proposed.  I attribute my qualifications for performing the proposed thesis 

to past experience (see A2.) as well as an avid interest in computer security and a 

reverence for consumer privacy. 

2. Technical Advisor:  Assistant Professor Kevin Skadron  

 Kevin Skadron is currently the director of the Laboratory for Computer 

Architecture at the University of Virginia (LAVA).  He specializes in computer 

architecture and simulation methodology and will serve as my primary source of 

aid in structuring the project process.  We will meet once per week, in person or 

via e-mail to discuss progress. 

3. TCC Advisor:  Professor I.H. Townsend  

 I.H. Townsend has been directing senior theses at the University of 

Virginia for 28 years, and will help me with all the thesis related documents and 

oral presentations, making sure that I understand the impact of my project, as well 

as communicate clearly what it is and why I am doing it to both an 

interdisciplinary as well as a technical audience. 

4. Computer Security Advisor:  Assistant Professor David Evans  

 David Evans is currently teaching an undergraduate computer security 
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class and is also advising several security related projects including my own.  He 

will provide valuable advice concerning the security policies to be enforced, 

specifically how they should be defined and then enforced.  

5. SDT/Strata Advisor:  PhD Student Kevin Scott  

 Kevin Scott is the author of the SDT framework, Strata.  He will provide 

invaluable assistance through out the implementation of the proposed application.   

6. Additional Advisor:  Teaching Assistant Professor Christopher Milner  

 Christopher Milner instructed me in an undergraduate computer 

architecture course.  His knowledge of various architectures and also hacking 

techniques will provide valuable background information for this project. 

Resources 
 

1. Computational Facilities  

 Access to the servers in the computer science building (Olsson Hall) will 

be required to perform the necessary research.  Due to the hazard of encountering 

malicious code, an isolated machine will be required to ensure the safety of the 

Olsson Hall network.  The Computer Science Systems Staff will provide these 

services. 

2. Strata/Related Software  

 Strata is an SDT implementation, developed at the Laboratory for 

Computer Architecture at the University of Virginia (LAVA) by Kevin James 

Scott and Professor Jack Davidson.  Strata, as well as updates and future releases, 
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will be provided by the authors.  Related software is available under the GNU 

license or can be obtained via my technical advisor. 

3. Research Materials 

 All research materials will be provided through the University of Virginia 

Libraries, ACM, IEEE, NECI Research Index, and the suggestion of 

knowledgeable professors. 

6. Expected Outcomes 
 
 Previous research in SDT has been very successful in integrating various 

applications into its infrastructure, but the forum usually then turns to performance issues.  

My research is certainly not exempt from these kinds of concerns since the propagation 

of security applications greatly depends on their degree of transparency and utility.  

Affecting computational performance would hinder the practicability of this tool, as well 

as its future development.  But, I am fully confident that performance issues will be kept 

to a reasonable level in this research, and possibly be improved in later research.   

 As for verifying that adaptable security polices are a viable application for SDT, I 

have no doubt that this research will prove that concept.  A representative set of security 

policies will also aid in the feasibility of the research.  Later research may then accept the 

challenge of exploring even more representative sets of adaptive policies to support. 
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8. Appendices 

A1.  Budget and Equipment Checklist 
 

 All equipment will be provided by the University of Virginia Department of 

Computer Science.  Therefore, the current the budget for this thesis project is minor, 

requiring only computational resources and SDT and computer security related software.  

All of these resources are readily available and will require no outside funding.   

 

A2.  Biographical Sketch of Student 
 

 I am forth-year undergraduate student at the University of Virginia, enrolled in 

the computer science curriculum in the School of Engineering and Applied Science.  I 

have spent the summer months of 2001 researching possible applications for Software 

Dynamic Translation, and becoming familiar with the Strata source code.  I also became 

familiar with hacking techniques and a multitude of security related products.  I attribute 

my qualifications for performing the proposed thesis to this experience as well as an avid 

interest in computer security and a reverence for consumer privacy. 
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A3.  Preliminary Outline of Technical Report 
 
Frontispiece 
Title Page 
Forward 
 
Table of Contents 
 

1. Glossary of Terms 
All terms included will be written in italics throughout the technical report.  The 
glossary will include sections relating to security terms, SDT terms, etc… 

2. Abstract 
The Abstract will more than likely be identical to the one proposed. 

3. Introduction 
a. Thesis of Thesis, what, how, and why. 

Adaptive policies using Strata.  Dynamic Behavior 
b. Problem Definition 

i. Context 
Current state of security, briefly explain current static practices. 

ii. Concepts 
SDT and Strata, Security policies vs. hacking 

4. Literature Review 
Similar to proposal, more detail on current state of security, explain many existing 
applications and their shortcomings.  Intro SDT and Security policy enforcement. 

5. Rationale 
Similar to proposal, advantages with adaptive SDT, goals of tool, flexibility, 
transparency… 

6. Overview of Contents 
 

 
Text Body of Thesis 
 
� Architecture of Strata 
� Modifications for fast-strata and secure-strata 
� Security Policy Enforcement API Description 
� Four added Functions 
  void init syscall(); 
  watch_syscall(unsigned num, void *callback); 
  strata_policy_begin(unsigned num); 
  strata_policy_end(unsigned num); 
� Examples of Basic Policies. 
� Description of Adaptive Policy Behavior 
� Display of Implemented Adaptive Policies and Functionality 
� Discussion of Thesis goals 
� Performance issues with Adaptive Policies 
� Related Work  
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Conclusions 

1. Summary  
2. Interpretation 
3. Recommendations 
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