
TMR: A Solution for Hardware Security Designs
Univ. of Virginia Dept. of Computer Science Tech Report CS-2015-02

Yubo Li
Department of Computer Science

University of Virginia
Chlarlottesville, Virginia

Email: liyubobuaa@gmail.com

Kevin Skadron
Department of Computer Science

University of Virginia
Chlarlottesville, Virginia

Email: skadron@virginia.edu

Abstract—Cyber-security has become an increasingly impor-
tant issue in today’s integrated circuit designs. The use of
commercial off-the-shelf products and design outsourcing have
introduced uncertainty in the supply chain and posed security
threats such as an inside attacks. This paper describes the
implementation of an FPGA design based on soft-core processor,
and how triple modular redundancy (TMR) is applied to mitigate
against the attacks in the supply chain. Four different applications
are implemented and used as test cases for the TMR design.
This paper also discusses the overhead of applying TMR, and
the importance of adding diversity in redundancy.

I. INTRODUCTION

Today, many mission-critical and safety-critical systems
depend on integrated circuits (ICs). The supply chain for in-
tegrated circuits (ICs) is difficult to secure, involving multiple
firms (processor design, fabrication, packaging, etc.), each with
large teams of designers and technicians. A hardware Trojan
can be very small and easy for a single individual to insert,
especially at the design stage, where it might be as simple as
one or two lines of innocuous-looking programming, or a few
transistors and wires in a physical chip layout. Consequently,
effective security techniques are required to prevent adversaries
from interfering with the correct operations of the circuit.

Spatial redundancy in hardware provides the ability of
behavioral checking and comparison. The three components
vote on all actions, ensuring that a single corrupt unit will be
outvoted. Redundancy also provides fault tolerance at no extra
cost, and fault tolerance is becoming increasingly important
as transistor miniaturization continues and transistors become
more vulnerable to electrical upsets.

In the field of cyber security, designers try to increase as
much as possible the difficulty of an adversary’s deploying
an attack while keeping the designing effort as little as pos-
sible. Heterogeneous TMR employs independently developed
hardware (or IP blocks) from different sources, and greatly
increases the difficulty of attacks. It forces an adversary to
compromise at least two different pieces of hardware in order
to deploy a meaningful attack, which is extremely challenging.

This paper discusses hardware design considerations and
implementation of a hardware security design. We show the
concepts of TMR using soft-core processors and then de-
velop sample hardware Trojans and triggering mechanisms to
demonstrate the effectiveness of TMR. Four different appli-
cations are developed and run on the TMR design: matrix

multiplication, sum, protocol conversion, and SD card access.
This paper also discusses the performance and area overhead
of TMR designs, and the importance of adding heterogeneity
to redundancy.

The rest of the paper is organized as follows: Section II
describes the implementation details of a hardware security
design and four benchmark programs. Section III discusses
how TMR is applied to the design and the importance of
heterogeneous redundancy. Then Section IV shows TMR’s
effectiveness in mitigating against hardware attacks. Section V
discusses the area and performance overhead of TMR. Lastly,
Section VI concludes the paper and proposes future work.

II. SOFT-CORE PROCESSOR IMPLEMENTATION AND
BENCHMARK APPLICATIONS

The re-configurability and flexibility of field programmable
gate arrays (FPGAs) make them favorable for prototyping.
In this paper, the soft-core processors and all hardware-based
protections are implemented on FPGAs. In addition, FPGAs
may also be suitable for the purpose of deployment, because
of their short design-to-product time.

A. Implementation

The hardware security design is implemented in a custom
board, SiCore SHIELD II board. Below is a summary of the
board [1]: Xilinx Kintex-7 XC7K325T-1FFG676 FPGA, low-
jitter 200 MHz oscillator, four 10M/100M/1G Ethernet PHYs
with RGMII, 1Gb BPI Flash, one SD card slot, eight UART
transceivers, four on-board LEDs and four on-board general-
purpose buttons, and 512MB DDR3 memory (800 MHz).

Figure 1 shows a picture of the SiCore SHIELD II board.

We choose to build the hardware security design based on
LEON3, an open-source soft-core processor [2]. LEON3 uses
SPARC V8 instruction set and AMBA-2.0 AHB bus interface.
It is released as synthesizable VHDL files, and is configurable
through the use of VHDL generics. Figure 2 shows a simplified
block diagram of the LEON3 architecture.

Due to the lightweight use of memory in this design, we
use on-chip block RAMs (BRAMs) to implement the RAM
and ROM. The BRAMs are memory resources available in the
FPGA chip, and enable faster access time. The ROM is a mod-
ule written in VHDL which contains hard-coded instructions,
which are automatically loaded to the CPU when the FPGA



Fig. 1. SiCore SHIELD II FPGA Board

Fig. 2. A Block Diagram of the LEON3 Design

configuration is complete. The ROM can be generated from C
program using a PROM generator. AHB bus is used for high
speed operations, such as writing and reading data between
CPU and memory. APB bus is used for low speed operations,
such as communications to the peripheral components. The
peripheral components include general purpose I/O (GPIO),
UART, Ethernet controller (GRETH), and etc.

B. Benchmark Applications

Four different benchmark applications are developed to be
the test cases of the TMR design.

The first benchmark is called MxM, which calculates
matrix multiplication. Both matrices are composed of 100×100
random integers.

The second benchmark is Sum, which calculates the sum
of intergers from 1 to 50,000.

The third and fourth benchmarks are from a mission-
critical application, which is applied on an unmanned aerial
vehicle (UAV). The target UAV has an autopilot system and a
monitoring system, called Piccolo and Sentinel, respectively.
The Piccolo controls the flight of the UAV; The Sentinel is an
independently sourced and verified hardware unit to monitor
behavior of various components in the UAV, including GPS
and flight control. Figure 3 shows a block diagram of the UAV
system.

The Piccolo communicates using RS-232 protocol, while
the Sentinel communicates using TCP/IP protocol. Therefore
a bi-directional protocol converter is required between the two
subsystems. In addition, the Sentinel needs to writes/reads data

Fig. 3. A Block Diagram of the UAV system

to/from an SD card. The third benchmark in this paper is the
protocol converter between RS-232 and TCP/IP, and the fourth
is SD card access.

The protocol conversion and SD card access are imple-
mented as a bare-metal applications, meaning that there is no
operating system running on the processor. Less complexity
in the implementation means less design effort and more
importantly, fewer loopholes that might be taken advantage
of by adversaries.

We use uIP [3], an open-source TCP stack, to establish
TCP/IP connections and process TCP/IP packets. Figure 4
shows the implementation of the TCP stack.

Fig. 4. Implementation of TCP Stack

On the physical layer, LEON3 Ethernet controller
(GRETH) drives the pins of the Ethernet PHY. On the data
link layer, a driver writes data to the transmitter of the Ethernet
controller and reads data from the receiver. On the network
layer and transport layer, uIP establishes and manages TCP/IP
connections, e.g., sending and receiving packets, updating
acknowledgement number and sequence number, etc.

The received TCP/IP packets are first analyzed, and then
the data bytes are sent to the buffer of the UART transmitter.
When the DATA READY flag of the transmitter’s buffer is
high, the controller reads from the buffer and sends the data
in RS-232 format. When there is incoming serial data, the
DATA READY flag of the receiver’s buffer is set high, and
the data will be processed when the CPU is idle.

FatFS, an open-source FAT file system [4], is used to
implement the SD card access functionality. FatFS uses GPIO
signals to drive the pins of the SD card slot in serial peripheral
interface (SPI) mode. Write and read commands can be sent
to the SiCore board through the user TCP/IP stream.

III. APPLYING TMR

Compared to software-based protections, which usually
have a “big picture” of what the system is doing on the



function level, hardware-based protections focus on behavior
on the instruction and word level, and require very high
level of hardware sophistication and coordination to defeat,
hence increase the difficulty to attack. Our TMR solution
operates at the hardware layer and directly protect the most
critical system functions. These solutions are embedded within
the protected hardware and don’t require modification to the
software applications.

A. Homogeneous TMR

We first triplicate the soft-core processor design described
in Section II with identical copies. The entire LEON3 im-
plementation, including CPU, buses, RAM, ROM, and all
peripheral components, is triplicated in the FPGA. The three
implementations share the same clock, reset, and input signals.
Additional comparators and MUXs are created to act as ma-
jority voters. The output signals of GPIO, UART, and GRETH
are sent to their individual voters.

Figure 5 shows the voting mechanism for serial output.
We call the three copies of LEON3 design copy 1, copy 2,
and copy 3, respectively. The UART component in each copy
is a slave of the APB bus. A comparing unit is implemented
to detect disagreements among the data written to the UART
components. If no disagreement detected, or if copy 2 or copy
3 disagrees with the other two, then the output of UART in
copy 1 is used as the UART output of the TMR design. If copy
1 disagrees with the other two, then UART output of copy 2
is selected. The voting mechanism of GRETH output signals
follows the same manner.

The most important function that TMR performs is to
compare the output signals of the three implementations. In
order to compare the UART output data, three FIFOs are used
to store the data sent to the UART transmitters, one for each
implementation. Every time data is sent from the bus to the
UART transmitter, a copy of the data is also written to the
corresponding FIFO. When all FIFOs are written, the three
copies of data are read and compared. Similar approaches
are applied to compare the output signals of GPIO and ETH
components.

In a TMR design, synchronization between the three im-
plementations is critical to ensure correct operation. A small
difference in the progress of program execution can result in
different outputs, which will lead to false positives reported
by the TMR design. Since the three LEON3 implementations
have identical configuration and share the input signals, ideally
they should have exactly the same behavior in a cycle-by-cycle
fashion.

In practice, however, we observed out-of-sync behavior
among the three implementations. We believe this is due to
asynchronous I/O behavior in terms of how cores check for
TCP input. In order to make the TMR design work correctly,
we added several synchronization points in the program to
enforce synchronization. When a synchronization point is
reached in program execution, a GPIO syn cout signal is set
to 1 and this signal is sent to the top level of the TMR
design. When all three syn out signals are 1, a controller
sets a GPIO synchronize signal to 1 and this signal is sent
back to each LEON3 implementation. After seeing the asserted
synchronization signal, each LEON3 implementation sets their

own sync out signal to 0 and proceeds in program execution.
This synchronization method has been proved to be reliable
by running tests for tens of hours without errors.

B. Heterogeneous TMR

Homogeneous redundancy is insufficient in mitigating
against hardware-based attacks, because identical hardware
copies will be vulnerable to the same hardware Trojans. In
contrast, heterogeneous redundancy can improve security by
providing diversity in hardware.

The LEON3 processor is configurable; therefore we have
implemented the benchmark designs with different cache con-
figurations as a first step to mimic the heterogeneity. This
will affect synchronous operation due to different hit/miss
behavior. In our test, the three LEON3 CPUs have different
cache configurations: copy 1 is fully associative, copy 2 is
set-associative, and copy 3 is directly mapped. The different
configurations are applied to both the instruction and the data
cache. The results showed that the TMR design can work
correctly with different cache configurations.

Ideally, heterogenous TMR should be composed of pro-
cessors from different vendors or design teams, which may
apply different instruction set architectures (ISAs). Processors
with different ISAs may execute the same instruction flow
in different orders, and therefore could be challenging to
synchronize.

IV. TMR’S RESISTANCE AGAINST CYBER-ATTACKS

In order to test benchmark 3 and 4, we inject a hardware
Trojan into the Ethernet controller (GRETH) to mimic an
attack in the supply chain. The hardware Trojan is idle when
the circuit is powered on, and becomes active when a triggering
pattern, “attack”, in the incoming TCP packets is recognized.
When triggered, the hardware Trojan will replace all received
TCP data with garbage, lauching a denial-of-service attack to
the protocol converter and SD card.

The implementation of the hardware Trojan takes about
50 extra lines in VHDL. Figure 6 illustrates the insertion of
hardware Trojan.

Fig. 6. Embedded Hardware Trojan

The non-TMR design has no defense mechanism against
hardware Trojan and therefore is vulnarable to the attack.
When the hardware Trojan is activated, the protocol converter
and SD card stops responding to further conversion/access
requests.

In the TMR design, the hardware Trojan is injected into
copy 2. When the hardware Trojan is idle, the TMR design
gives no false alarms. When the Trojan is triggered, the TMR



Fig. 5. A Block Diagram of the FPGA Design with TMR

design is able to continue the normal conversion/access and
correctly raise an alarm flag for copy 2.

Benchmark 1 and 2 do not use input data, therefore we
insert constant corrupted bits in copy 2 to mimic a compro-
mised processor. Test results showed that the TMR worked
correctly in masking the wrong output. In addition, the constant
corrupted bits can also be seen as a simulation for radiation-
induced faults caused by high-energy particles.

V. PERFORMANCE AND AREA OVERHEAD OF TMR

Applying TMR will result in performance and area over-
head to the design. In order to evaluate the overhead, we
compare the non-TMR and TMR version of the four bench-
mark programs. Table I presents the resource utilization of the
benchmark applications, in terms of the percentage of occupied
slices in XC7K325T-1FFG676 FPGA.

Note that the overhead of TMR designs are less than 3X.
This is because multiple look-up tables may be placed to the
same slice during place and route.

TABLE I. COMPARISON OF RESOURCE UTILIZATION

Non-TMR TMR Overhead
MxM 6.04% 16.64% 2.72X
Sum 6.04% 16.44% 2.72X

Protocol Conversion 8.17% 23.36% 2.86X
SD Card Access 8.17% 23.36% 2.86X

Table II presents the performance comparison of the bench-
mark applications, in terms of maximum clock frequency.

TABLE II. COMPARISON OF MAXIMUM CLOCK FREQUENCY

Non-TMR TMR Overhead
Matrix Multiplication 110 MHz 100 MHz 1.1X

Sum 110 Mhz 100 MHz 1.1X
Protocol Conversion 110 MHz 100 MHz 1.1X

SD Card Access 110 MHz 100 MHz 1.1X

VI. CONCLUSIONS AND FUTURE WORK

Security against cyber attacks has become an increasingly
important issue in circuit designs, especially in mission-critical
and safety-critical applications. Insider attacks in the supply
chain, such as hardware Trojans, pose great threats to these
applications.

This paper proposes to use TMR as a solution to improve
hardware security. A soft-core processor design and four
different benchmark applications are implemented in an FPGA,
and TMR is applied to the design. Configuration changes have
been made to the triplicated processors to mimic heterogeneity,
and test results showed that TMR works correctly in both
masking hardware Trojan and not issuing false alarms under
normal operations.

As the next step, we propose to implement the TMR
design with processors from different vendors or design teams.
Heterogeneous processors may employ different ISAs, which
makes it more difficult to tamper with the TMR design, but
also rises new challenges in performing voting.

REFERENCES

[1] Digilent, Inc. NetFPGA-1G-CML Board Reference Manual. 2013.
[2] http://www.gaisler.com/index.php/products/processors/leon3
[3] https://github.com/adamdunkels/uip
[4] FatFS - Generic FAT File System Module. http://elm-

chan.org/fsw/ff/00index e.html.


