
State-Preserving vs. Non-State-Preserving Leakage Control in Caches

Yingmin Li
�
, Dharmesh Parikh

�
, Yan Zhang

�
,

Karthik Sankaranarayanan
�
, Mircea Stan

�
, Kevin Skadron

�
�
Dept. of Computer Science, � Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904�

yingmin,dharmesh,karthick,skadron � @cs.virginia.edu,
�
yz3w,mircea � @virginia.edu

Abstract

This paper compares the effectiveness of state-
preserving and non-state-preserving techniques for leak-
age control in caches by comparing drowsy cache and
gated-V � � for data caches using 70nm technology parame-
ters. To perform the comparison, we introduce “HotLeak-
age”, a new architectural model for subthreshold and
gate leakage that explicitly models the effects of tempera-
ture, voltage, and parameter variations, and has the ability
to recalculate leakage currents dynamically as temper-
ature and voltage change at runtime due to operating
conditions, DVS techniques, etc.

By comparing drowsy-cache and gated-V � � at dif-
ferent L2 latencies and different gate oxide thickness
values, we are able to identify a range of operating pa-
rameters at which gated-V � � is more energy efficient
than drowsy-cache, even though gated-V � � does not pre-
serve data in cache lines that have been deactivated.
We are also able to show potential further benefits of
gated-V � � if an effective dynamic adaptation technique can
be found. These results debunk a fairly widespread be-
lief that state-preserving techniques are inherently supe-
rior to non-state-preserving techniques.

1. Introduction

Power is rapidly become a design constraint not only
in the domain of mobile devices but also in high perfor-
mance processors. Although dynamic power —caused by
switching activity—is the major source of total power dissi-
pation in today’s process generation, static power—caused
by leakage current even when circuits are not switching—is
gaining in importance for CMOS designs due to technol-
ogy scaling. The 2001 International Technology Roadmap
for Semiconductors (ITRS) [19] predicts that by the 70nm
generation, leakage may constitute as much as 50% of to-
tal power dissipation. This makes efforts at leakage control

essential to maintain control of power dissipation in both
high-performance and mobile/embedded processors.

Recently, a great deal of research work in the architecture
community has focused on reducing leakage power in the
caches, e.g. [7, 10, 11, 13, 18, 20, 22], branch predictor [12],
register file [1], issue queues [5, 8], and the ALUs [6].
Leakage control at the architecture level is attractive, be-
cause architectural techniques can control large groups of
circuits (e.g. cache lines, banks, or the entire cache) at once.
Leakage control for caches has been an especially active
area of study because caches comprise such a large portion
of chip area. Recent work [7, 10] has suggested that state-
preserving techniques are the best choice for leakage con-
trol in the first-level (L1) caches, because they do not incur
costly accesses to the second-level (L2) cache when read-
ing data that has been placed in low-leakage or “standby”
mode.

This paper shows that when the L2 cache offers a suf-
ficiently fast access time (e.g., when the L2 is on chip),
non-state-preserving techniques can be superior. And even
when the L2 is not especially fast, non-state-preserving
techniques can still be superior if runtime adaptivity can
identify the proper decay interval.

To perform this study, we introduce HotLeakage, a new
architectural model for subthreshold and gate leakage that
has been publicly released on the web. HotLeakage explic-
itly models the effects of temperature, voltage, and parame-
ter variations, and has the ability to recalculate leakage cur-
rents dynamically as temperature and voltage change at run-
time due to operating conditions, DVS techniques, etc.

The next section of this paper describes the two leakage-
control techniques that we study and the timing and perfor-
mance assumptions that we make in our simulations, and
then Section 3 describes our simulation setup and the bench-
marks we use, Section 4 presents the results of our compar-
ison study, and Section 5 concludes the paper.

2. Leakage Control for Caches

The design space for low-leakage caches is daunting,
encompassing the choice of size and threshold voltage for
each transistor, the row and bitline length, and many more
parameters too numerous to mention. Here we focus on just
one dimension that can be treated within the scope of a sin-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

gle paper, namely the choice of state-preserving versus non-
state-preserving architectural leakage-control techniques in
the L1 data cache.

Recent literature has suggested that state-preserving
techniques are preferable for leakage control in L1 D-
caches, because they do not lose data values and hence do
not unnecessarily incur the extra delay and energy associ-
ated with reloading that data from the L2 cache. In con-
trast, our results suggest that this is often not so, that the
extra cost of accessing L2 with non-state-preserving tech-
niques is offset by other important factors.

Hanson et al. [10] found that for L1 caches, reverse
body bias (RBB) or auto-backgate-controlled MTCMOS
(ABB-MTCMOS) [16]—a state-preserving technique that
manipulates threshold voltages—outperformed gated-V � � ,
primarily because they used long decay intervals that mini-
mized opportunities for saving energy, and because they did
not decay the cache tags [9] (thus avoiding time wasted to
waken and read the tags on misses). We have chosen not to
study RBB here, both because RBB presents some man-
ufacturing challenges and, more importantly, because re-
cent work by Intel suggests that its effectiveness is limited
at future technology nodes by gate-induced drain leakage
(GIDL) [14].

Flautner et al. [7] did not directly compare their proposed
drowsy-cache scheme against gated-V � � , but suggested that
its state-preserving nature is a major advantage.

2.1. Lowering the Quiescent V � � (Gated-V � �)

Leakage currents decrease as the supply voltage (V � �)
is lowered. The gated-V � � structure was introduced as a
micro-architecture technique by Powell et al. in [18] as a
way to reduce leakage power by using a high threshold
“header” transistor to disconnect a cell, row, or way in the
cache from V � � . This high-threshold transistor drastically
reduces the leakage of the circuit because it breaks the con-
nection to the power supply. While this technique is effi-
cient in saving leakage, there is the disadvantage that the
cell loses its state (information). This means that there will
be some performance penalty when the data in the cell is
accessed and needs to be fetched from a farther level of
the cache. This is harmless if the next access to that line
would have been an eviction anyway (true miss); but if use-
ful data was discarded, the next access will be an induced
miss. This has important consequences. First and foremost
it causes dynamic power dissipation due to an extra L2 ac-
cess. Second, an induced miss might cause the program to
run longer and hence increase total energy consumption.
Gated-V � � was proposed in [13] for shutting down individ-
ual lines in a cache to save leakage when a line is idle.

There are two possible locations we can place this sleep
transistor. The technique with this transistor connected to
ground is called gated-V � � while the technique with this
transistor connected to V � � is called gated-V � � . Because
connecting this transistor to ground will effectively prevent
bitline leakage, gated-V � � is more widely used. Connect-
ing this transistor to V � � can save some gate leakage but
will induce lots of bitline leakage. According to our ex-
periments, even at small gate oxide thickness values, when
the gate leakage is quite large, the savings in gate leakage
still can not offset the loss in bitline leakage compared with

drowsy cache technique, making gated-V � � less preferable
as a non-state-preserving technique . In the following sec-
tions, we only investigate gated-V � � .

2.2. Drowsy Caches

An alternative method, proposed by Flautner et al. in [7],
achieves significant leakage reduction by putting a cache
line into a low-power ”drowsy” mode. In drowsy mode,
the information in the cache line is preserved by switch-
ing its � � � to a separate power supply that is only about
1.5 times the threshold voltage. This reduces leakage cur-
rent dramatically due to short-channel effects and preserves
the value that is stored, making this another state-preserving
technique. Like ABB-MTCMOS, there is still some over-
head because V � � must be returned to the proper level be-
fore the value can be safely read. Drowsy caches do not re-
duce leakage as much as gated-V � � , because the cells are not
fully disconnected from the power supply. The advantage of
drowsy cache is the low penalty of accessing a drowsy line
in standby: induced misses do not require an L2 access but
only 1-2 cycles to restore the full voltage for that line. In-
duced misses for drowsy caches might therefore better be
called slow hits.

2.3. Leakage Energy Modeling

We have developed and released a software model of
leakage—based on BSIM3 [2] technology data and the
Butts and Sohi abstractions [4]—that is computationally
very simple, integrated into popular power-performance
simulators like Wattch, extended to accommodate other
technology models, and used to model leakage in a vari-
ety of structures (not just caches, which are the focus of
this paper). We call our model HotLeakage, because it in-
cludes the exponential effects of temperature on leakage.
Temperature effects are important, because leakage current
depends exponentially on temperature, and future operating
temperatures may exceed � � � � C [19]. In fact, HotLeakage
has the ability to recalculate leakage currents dynamically
as temperature and voltage change at runtime due to oper-
ating conditions, DVS techniques, etc.

HotLeakage has high accuracy because parameters are
derived from transistor-level simulation (Cadence tools).
Yet like the Butts and Sohi model, simplicity is maintained
by deriving the necessary circuit-level model for individ-
ual cells, like memory cells or decoder circuits, and then
taking advantage of the regularity of major structures to ex-
presse leakage in simple formulas similar to the Butts-Sohi
model. All necessary components of this formula are encap-
sulated in lookup tables.

Based on the BSIM3 v3.2 [2] equation for leakage in a
MOSFET transistor, our subthreshold leakage model of a
single transistor is given by the following equation:

� 	
 � � �
 � !
� " � # � $ % � �& ' (� � $) & ' *) $ % + , ,- . & ' (1)

Butts and Sohi point out that their single / �
 � 0 1
model

is suitable only for cases where the parameters of N and P

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

transistors are very close, and otherwise two � � � � � � �
’s are

needed. We indeed found that the parameters of N and P
transistors differ too much, so HotLeakage applies differ-
ent � � � � � � �

factors to the N and P transistors, � �
and � � .

This means that for a specific cell, the leakage current is
given by the following equation:

� 	 �

 � � � � � � � � � � � � � � � � � � � � � � � (2)
� �

and
� �

are the number of NMOS and PMOS transis-
tors in the cell, and

� �
and

� �
are the calculated unit leak-

age current of NMOS and PMOS transistors according to
Equation 1.

Our model also includes gate leakage for 70nm technol-
ogy, where gate leakage becomes dominant. We use AIM-
spice [17] as the circuit simulator, which includes BSIM4
among the supported models for gate leakage. Gate leakage
is strongly dependent on the gate oxide thicknessx (Tox)
and supply voltage. It is weakly dependent on the tempera-
ture. From the transistor-level simulations, we derived these
factors with curve-fitting and incorporated it into our mod-
els. The final equation for the gate leakage of one transistor
is as following:

� � � � �
 � � � � � � � � � � � �
 �
 ! � " # � $ % � & � � # ' (() ' * + , - . . � " 	 $ % � � % / # 0 % / * + , -) 0 % / .

(3)

Detailed information about HotLeakage and how to use it
appear in a technical report [21].

2.4. Modeling of Cache Leakage Control

We have implemented a generic abstraction for mod-
eling architectural leakage control techniques based
on putting individual lines into standby mode, allow-
ing us to study techniques like gated-V � � [13], drowsy
cache [7], and reverse-body-bias [16].

Most dynamic leakage-control techniques parti-
tion a structure into active and passive portions. This can
be done at various granularities; most recent work has
done this at the granularity of rows in the SRAM ar-
ray, which correspond to cache lines.

These leakage control techniques also require some ex-
tra hardware that adds to the area of the structure. Hence,
these methods have the following costs: dynamic power due
to the extra hardware, leakage power due to the extra hard-
ware, dynamic power due to mode transitions and dynamic
power due to extra execution time.

The energy benefit of the techniques we have described
is the leakage power saved in the lines that are in standby
mode. This saving is proportional to the average percent
area that is kept in standby mode (the turnoff ratio). Our ex-
periments compute a net energy savings that subtracts from
this gross benefit the costs itemized above: Wattch automat-
ically capatures the extra energy due to longer runtime (item
#4 above); this is compared to the energy from a baseline
simulation with no leakage control, and the resulting cost is
added to the other costs itemized above (#1–3). These are
then subtracted from the gross leakage savings. For both
techniques, we use a global counter that counts from zero
up to one-fourth the decay interval (defined as update win-
dow size in [7]) and then starts over. This global counter is

incremented every cycle. Following [13], each line uses a
local two-bit counter; when the global counter rolls over, all
two bit counters are incremented. When a line is accessed,
its local counter is reset. When a two-bit counter reaches
its maximum, the line has been idle for the full decay in-
terval, it is assumed that the line’s usefulness has decayed,
and the line is deactivated. In the original drowsy-cache pa-
per, this corresponds to the noaccess policy. To be fair, we
used this policy for both gated- 1 � � and drowsy.

For both techniques, we decay the tags too (defined as
drowsy tags in [7]). Access to a drowsy line in such a case
takes at least three cycles due to the need to wake up tags be-
fore they can be checked. For gated-V � � , on the other hand,
a line in standby mode has no useful information, and tags
need not (cannot) be checked. This means that on a true
miss to L2 when tags are in standby, gated-V � � is actu-
ally faster. Hanson et al. also kept the tags awake in their
study [9, 10].

3. Simulation Set-Up

3.1. Processor Model

All simulations were performed with Wattch [3] aug-
mented by HotLeakage. Unless stated otherwise, this paper
uses the baseline configuration resembling as much as pos-
sible the configuration of an Alpha 21264 [15].

In the original drowsy paper, the L1 data cache used is
32 KB in size and 4-way set associative and the L1 instruc-
tion cache is 32 KB in size and direct mapped. Both caches
use line size of 32 bytes and a hit latency is one. In con-
trast, we use 64 KB, 2-way caches with 64 B lines for both,
consistent with a 21264.

For Wattch and HotLeakage technology parameters we
use values for a 70 nm process at 1 � � 0.9V and 5600 MHz.
It is important to note that, because our Wattch model does
not include state-of-the-art power-management techniques
that would be expected in the 70nm generation, our esti-
mates for dynamic energy may be pessimistically high, this
will exacerbate the energy cost of any performance loss and
will tend to favor the drowsy technique, and we feel this fac-
tor, if anything, strengthens our results.

3.2. Benchmarks

In our comparative evaluation of various leakage con-
trol techniques, we use 11 integer benchmarks from the
SPEcpu2000 suite. The benchmarks were compiled for the
Alpha ISA and statically linked using the Compaq Alpha
compiler (with peak settings) For each program, we skip the
first two billion committed instructions to avoid unrepresen-
tative startup behavior at the beginning of the program’s ex-
ecution, and then simulate 500 million committed instruc-
tions using the reference input set.

4. Results

4.1. L2 Latency

Our results roughly duplicate those in [7]. They report
slightly higher leakage savings and slightly lower perfor-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Performance and Leakage Energy Trend with Different L2 Latencies

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

5(2k,2k) 8(1k,4k) 11(1k,4k) 17(2k,8k)

L2 Latency (Decay Intervals)

P
er

fo
rm

an
ce

Lo
ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

N
et

Le
ak

ag
e

E
ne

rg
y

S
av

in
gs

Drowsy (Performance Loss)

gated Vss (Performance Loss)

Drowsy (Energy Savings)

gated Vss (Energy Savings)

Figure 1. Net leakage savings and perfor-
mance loss with different L2 latencies

mance loss. The former we attribute to differences in our
models, including the different choice of threshold voltage
and our use of BSIM3 models. The latter we attribute to
our choice of shorter decay intervals that—for our leakage
model—we found to give better energy savings.

Figures 1 presents the net cache-leakage savings and the
performance loss for different L2 cache latencies, from 5
cycles, as might be seen for a fast on-chip L2, to 17 cycles.
These values are the average values across the 11 bench-
marks we adopted for our experiment. Note that, in order to
report a measure that represents the actual “profit” in terms
of energy saved, the net savings subtracts the extra dynamic
energy expended due to the leakage control scheme from
the total reduction in leakage that is realized by deactivat-
ing cache lines. The dynamic energy overhead is computed
by comparing the total dynamic energy with and without
the leakage-control scheme activated. This accounts for the
contributions from (and overlap among) (a) activity in the
decay counters (gated-V � �), (b) extra L2 accesses (gated-
V � �), (c) extra tag accesses (drowsy), and (d) extra runtime.

These results show that for 5 cycle L2 caches, gated-V � �
is superior to drowsy cache in terms of both energy sav-
ings and performance loss. At 8 cycles, gated-V � � is supe-
rior in terms of performance, but drowsy is slightly superior
in terms of energy savings. At 11 and 17 cycles, drowsy
cache becomes superior for both performance and energy.

Most importantly, these results show that contrary to
widespread belief, non-state-preserving techniques are
not inherently inferior. There are five reasons for this.
First, gated-V � � is able to almost entirely eliminate leak-
age, whereas state-preserving techniques like drowsy and
RBB still exhibit a non-trivial amount of leakage. Sec-
ond, a well-tuned decay interval will minimize so-called
induced misses, misses that result purely from prema-
ture deactivation of a line that contains useful data. Third,
induced misses are not inherently bad. Even if data re-
mains “live”, if its next use is sufficiently far in the fu-
ture, it may be worthwhile to incur a modest performance
loss to save energy that is otherwise expended keeping
the data active. Fourth, in an aggressive out-of-order ma-
chine, modest L2 access latencies for induced misses can be
tolerated. Finally, when tags are decayed, gated-V � � is actu-
ally faster on true misses when a line is in standby—which

is the more common type of miss. The drowsy tech-
nique must first wake up the tags, then check them,
only to find that the data is not resident and an L2 ac-
cess is required. In contrast, gated-V � � can immediately be-
gin checking the tags of active ways, and ways that are
in standby are guaranteed to be misses and need not be
checked.

For the range of L2 access latencies that are typically
observed for on-chip caches, it is therefore false to auto-
matically assume that an L2 access is too costly. Of course,
as L2 latency increases, the above factors that mitigate for
gated-V � � become less and less helpful. For the longest L2
latency we tested, gated-V � � is no longer able to hide a sig-
nificant portion of L1 miss times, and the state-preserving
nature of drowsy cache becomes a major advantage.

4.2. Temperature

We compare energy savings at 85 � C and 110 � C with a
L2 cache latency of 11 cycles. Because leakage is expo-
nentially dependent on temperature, the energy savings is
much higher for both schemes. With drowsy cache tech-
nique, the normalized energy saving rises from 72.1% at
85 � C to 78.2% at 110 � C; with gated-V � � technique, the en-
ergy savings changes from 54.9% to 67.0%.

We mentioned previously that gated-V � � is able to al-
most entirely eliminate leakage, whereas state-preserving
techniques like drowsy and RBB still exhibit a non-trivial
amount of leakage. As leakage increases with tempera-
ture, this advantage for gated-V � � increases too. But this
advantage is offset by the fact that the higher leakage at
higher temperature makes shorter decay intervals attractive
for both gated-V � � and drowsy, and gated-V � � is more sen-
sitive to the smaller decay interval. The former factor ben-
efits gated-V � � for programs like gcc and gzip, but the lat-
ter factor penalizes gated-V � � for gap and twolf. On aver-
age, therefore, temperature has surprisingly little impact on
the relative performance of gated-V � � and drowsy.

4.3. Tag Decay

We have only had the opportunity to compare gated-V � �
when tags are also placed in standby along with the line
of data that is being deactivated. If tags are not placed in
standby, drowsy no longer suffers extra penalties for true
misses. If one simply uses the same decay intervals but
keeps the tags live for the drowsy cache, this will reduce
the performance loss exhibited by drowsy but also substan-
tially reduce the energy savings, because tags account for
5–10% of the leakage energy in caches, and this leakage en-
ergy can no longer be reclaimed. For gated-V � � , on the other
hand, there is no advantage to keeping the tags live unless
they are used to facilitate adaptive decay intervals.

4.4. Adaptivity

We show in this subsection how much better both
schemes could do if an adaptive scheme were employed to
allow the cache-decay mechanism to find the best decay in-
terval for each benchmark. For both drowsy and gated-V � � ,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Gcc Gzip Parser Vpr Mcf Crafty
Drowsy 1k 2k 4k 2k 1k 4k
Gated-V � � 2k 64k 16k 8k 2k 32k

Table 1. Best decay intervals.

we identify the best decay interval for each bench-
mark,some of them are listed in Table 1.

Adaptivity primarily benefits gated-V � � , because the best
decay intervals vary so widely. This in turn is a function
of data-usage patterns and available instruction level paral-
lelism that can be used to hide induced misses. For L2 la-
tency of 11 cycles and temperature 85 � C, our experiments
show that using the best per-benchmark intervals improves
energy savings for gated-V � � by 22% compared with the
fixed 2k decay interval, from 55% to 67%, and dramati-
cally reduces performance loss, from about 0.88% to about
0.14%. Energy savings for drowsy cache only improve by
about 0.5% and performance loss only improves from 1%
to 0.9%.

It is to be expected from the analysis in [7] that adap-
tivity is not necessary for drowsy cache, because for rea-
sonable intervals, it is fairly insensitive to decay interval.
Gated-V � � does not require adaptivity to give attractive ben-
efits for on-chip L2 caches, but performs even better with
adaptive decay intervals.

We are aware of three methods so far for providing adap-
tive decay intervals: using an array of bits to select from
multiple possible decay intervals, proposed by Kaxiras et
al. [13]; the adaptive mode control technique proposed by
Zhou et al. [22]; and the formal feedback-control technique
proposed in [20].

4.5. Thickness of Gate Oxide

Subthreshold leakage energy and gate leakage energy
are both highly dependent on the thickness of gate oxide
(Tox). For an L2 latency of 5 cycles and 110 � C tempera-
ture, Figure 3 shows the normalized leakage energy savings
for different leakage saving techniques when Tox varies
from 7Å to 13Å (Tox less than 10Å seems unlikely accord-
ing to ITRS and is only shown to illustrate how gate leak-
age affects the tradeoff between drowsy cache and gated-
V � �). Figure 2 shows three kinds of absolute leakage en-
ergy values: total leakage energy, subthreshold leakage en-
ergy and gate leakage energy. The values in Figure 2 are
for cache data cells and tags, not including control periph-
ery circuits like decoders, comparators and amplifier sen-
sors: cache leakage saving techniques we investigate do not
save leakage energy for these circuits. From Figure 2 we
can conclude that when Tox increases, subthreshold leak-
age increases while gate leakage decreases.

As we can see from Figure 3, for small Tox value like
7Å, the drowsy cache technique saves more leakage energy.
That is because gated-V � � consumes more gate leakage in
the cache cells and when Tox is small, gate leakage is much
bigger than subthreshold leakage. However, if we exclude
the gate leakage from the total leakage, the gated-V � � tech-
nique outperforms drowsy. This indicates that if we can save

Absolute Leakage Energy

��������

��������

��������

��������

	�������

	�������

�������

�������

��������

� � � �� �� �	 �

Tox (Å)

A
bs

ol
ut

e
E

ne
rg

y

Drowsy (Subthreshold Leakage) Drowsy(Gate Leakage)
Drowsy(Total Leakage) gated Vss (Subthreshold Leakage)
gated Vss(Gate Leakage) gated Vss(Total Leakage)

Figure 2. Absolute leakage energy for differ-
ent Tox

Leakage Energy Savings for Different Tox

���

���

���

���

���

���

	

� � � 	� 		 	
 	�

Tox (Å)

N
om

al
iz

ed
N

et
Le

ak
ge

E
ne

rg
y

S
av

in
gs

Drowsy

gated Vss

Drowsy (Without Gate Leakage)

gated Vss (Without Gate Leakage)

Figure 3. Leakage energy savings for differ-
ent Tox

gate leakage energy for the gated-V � � technique when the
cache line is in low-leakge mode, gated-V � � can still be bet-
ter than drowsy cache for small Tox values. This might be
accomplished by adding a gated-V � � header in combina-
tion with the gated-V � � footer or with a new gate-oxide ma-
terial. For large Tox values, gated-V � � saves more energy.
In this case subthreshold leakage dominates the whole leak-
age energy, and gated-V � � saves much more subthreshold
leakage energy than drowsy cache.

5. Conclusions and Future Work

HotLeakage provides the first publicly available microar-
chitecture level leakage modelling software of which we
are aware. Its most important features are the explicit in-
clusion of temperature, voltage, gate leakage, and param-
eter variations. HotLeakage provides default settings for
180nm through 70nm technologies (based upon BSIM3 and
BSIM4 models) for modelling cache and register files, and
provides a simple interface for selecting alternate parame-
ter values and for modelling alternative microarchitecture

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

structures. HotLeakage also provides models for several
extant cache leakage-control techniques, with an interface
for adding further techniques. The HotLeakage tool, with
all the supporting documents, is available on the web at
www.cs.virginia.edu/hotleakage

Using HotLeakage and Wattch, we have compared a
state-preserving technique (drowsy cache) against a non-
state-preserving technique (gated-V � �). Conventional wis-
dom holds that the state-preserving technique must be su-
perior, because it incurs less performance loss on access to
a line that is in standby mode. In contrast, we have found
that at 70nm and for the particular range of parameters we
studied, the non-state-preserving technique is actually su-
perior for a set of faster L2 cache latencies that might be
seen with on-chip L2s. This remains true when gate leak-
age is taken into account. The main reasons for this are that
gated-V � � reduces leakage by a greater amount than drowsy
cache, that the latency to fetch data from L2 when access-
ing a line in standby mode can be hidden to a significant ex-
tent by ILP, and that drowsy cache actually incurs a larger
performance penalty than gated-V � � for the more common
case of a true (rather than an induced) miss. In addition, the
effectiveness of gated-V � � can be expanded by using adap-
tive decay intervals. As Tox is reduced, gate leakage does
reduce the benefit of gated-V � � , and at extremely small Tox
values, drowsy cache has an advantage. This scenario is un-
likely, however, and can be rectified by using both header
and footer on the SRAM cell to gate both V � � and V � � or
possibly with a new gate oxide material.

The design space for power-efficient caches is notori-
ously complex, and even the design space for just these
two techniques is too rich to fully explore in this paper. The
proper choice of leakage-control technique will depend on
a variety of factors, and we hope that the comparison here
illustrates some important tradeoffs to consider. The main
point that we wish to convey with this work is to debunk
the perception that non-state-preserving techniques are in-
herently inferior. Design of low-leakage caches requires
non-state-preserving techniques like gated-V � � to be con-
sidered as potentially the most energy-efficient and highest-
performance solution.

Acknowledgments

This work was funded in part by the National Science
Foundation under grant nos. CCR-0133634, CCR-0105626,
and MIP-9703440, a grant from Intel MRL, and an Excel-
lence Award from the University of Virginia Fund for Ex-
cellence in Science and Technology.

References

[1] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and
S. Borkar. A low-leakage dynamic multi-ported register file
in 0.13um CMOS. In Proc. ISLPED 2001, pages 68–71,
Aug. 2001.

[2] U. C. Berkeley. BSIM3v3.1 SPICE MOS
device models, 1997. http://www-
device.EECS.Berkeley.EDU/bsim3/.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proc. ISCA-27, pages 83–94, June 2000.

[4] J. A. Butts and G. S. Sohi. A static power model for archi-
tects. In Proc. Micro-33, pages 191–201, Dec. 2000.

[5] A. Buyuktosunoglu, D. H. Albonesi, P. Bose, P. W. Cook, ,
and S. E. Schuster. Tradeoffs in power-efficient issue queue
design. In Proc. ISLPED 2002, pages 184–189, Aug. 2002.

[6] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and
E. G. Friedman. Managing static leakage energy in micro-
processor functional units. In Proc. Micro-35, pages 321–32,
Nov. 2002.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. In Proc. ISCA-29, pages 147–57, May 2002.

[8] D. Folegnani and A. Gonzalez. Energy-effective issue logic.
In Proc. ISCA-28, pages 248–59, June. 2001.

[9] H. Hanson. Personal communication. May. 2003.
[10] H. Hanson et al. Static energy reduction techniques for mi-

croprocessor caches. In Proc. ICCD 2001, pages 276–83,
Sept. 2001.

[11] S. Heo, K. Barr, M. Hampton, and K. Asanović. Dynamic
fine-grain leakage reduction using leakage-biased bitlines. In
Proc. ISCA-29, pages 137–47, May 2002.

[12] Z. Hu, P. Juang, K. Skadron, D. Clark, and M. Martonosi.
Applying decay strategies to branch predictors for leakage
energy savings. In Proc. ICCD 2002, pages 442–45, Sept.
2002.

[13] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploit-
ing generational behavior to reduce cache leakage power. In
Proc. ISCA-28, pages 240–251, July 2001.

[14] A. Keshavarzi et al. Effectiveness of reverse body bias for
leakage control in scaled dual Vt CMOS ICs. In Proc.
ISLPED 2001, pages 207–12, Aug. 2001.

[15] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Al-
pha 21264 microprocessor architecture. In Proc. ICCD 1998,
pages 90–95, Oct. 1998.

[16] K. Nii et al. A low power SRAM using auto-backgate-
controlled MT-CMOS. In Proc. ISLPED 1998, pages 293–
98, Aug. 1998.

[17] Aim-Spice Home Page. http://www.aimspice.com.
[18] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijayku-

mar. Gated-Vdd: A circuit technique to reduce leakage in
deep-submicron cache memories. In Proc. ISLPED 2000,
pages 90–95, July 2000.

[19] SIA. International Technology Roadmap for Semiconduc-
tors, 2001.

[20] S. Velusamy, K. Sankaranarayanan, D. Parikh, T. Abdelza-
her, and K. Skadron. Adaptive cache decay using formal
feedback control. In Proc. WMPI-2, May 2002.

[21] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: A temperature-aware model of sub-
threshold and gate leakage for architects. Technical Report
CS-2003-05, U.Va. Dept. of Computer Science, Mar. 2003.

[22] H. Zhou, M. Toburen, E. Rotenberg, and T. Conte. Adap-
tive mode control: A static-power-efficient cache design. In
Proc. PACT 2001, Sept. 2001.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

