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ABSTRACT 

CT scanning is a medical imaging technique commonly used in hospitals, 

including the University of Virginia Hospital, to see inside the human body.  Modern CT 

scanners can generate images of the body in three dimensions, a process called 3D 

reconstruction.  This project illustrates the feasibility of using graphics hardware (GPUs) 

to process CT scans in a more efficient and inexpensive manner than current commercial 

reconstruction systems.  Additionally, this research considers the ethical and social 

implications of an improved CT reconstruction system in terms of risks for hospitals and 

patients. 

Other researchers have used GPUs to improve CT reconstruction processing, but 

none have done so with NVIDIA’s new GPU programming Compute Unified Driver 

Architecture (CUDA) paradigm.  This paradigm greatly simplifies GPU programming by 

providing transparency to programmers. 

This project originally hoped to create two fully working reconstruction systems: 

a uniprocessor version and a GPU version.  Problems with implementing the Feldkamp-

Davis-Kress reconstruction algorithm led to the decision of implementing only part of 

this algorithm, called backprojection, which produced unintelligible, but most likely 

correct, output.  To parallelize backprojection, this project used Foster’s Design 

Methodology, a parallel design methodology. 

The GPU backprojection program ran up to 56 times faster than a uniprocessor 

version, which shows promise for GPU-accelerated CT reconstruction processing.  

However, without valid output, these results are tentative.  Future researchers can use this 

project as a basis for a complete GPU CT reconstruction system. 
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GLOSSARY OF TERMS 

Backprojection The process of extrapolating an object’s geometry based on many 
scans of that object [3] 

 

CPU Central processing unit; the component of a computer that 
interprets instructions and processes data, typically used as 
synonym for microprocessor [wikipedia.org] 

 
CT Computed Tomography; a type of medical imaging that uses x-

rays to acquire images [1] 
 

CUDA Compute Unified Device Architecture; the underlying hardware in 
the newest NVIDIA chipset, designed for general applications [7] 

 
Data Parallelism A property in which elements in a set of data receive the same 

instructions [5] 
 
GPU   Graphics Processing Unit; a dedicated graphics chip 
 
GPGPU General-Purpose computation on GPUs; using graphics chips for 

non-graphical applications and computations [6] 
 
Voxel A volume element, representing a value on a regular grid in three 

dimensional space [wikipedia.org] 
 
SDK Software Development Kit; a set of tools a programmer uses to 

create software for a specific platform [wikipedia.org] 

 



CHAPTER 1: INTRODUCTION 

Computed tomography (CT) is a type of medical imaging that generates images of 

the internals of an object based on scans of the object from several angles [1: 66].  

Modern CT scanners can generate images in two or three dimensions.  Doctors can rotate 

and zoom in 3D images, revealing higher levels of detail than static 2D images.  This 

project aims to lessen the time to reconstruct a CT scan into 3D image by means of a new 

computational tool, the NVIDIA 8800 graphics chipset.  This will increase efficiency in 

hospital radiology departments and will cost less than current reconstruction systems. 

The University of Virginia Division of Angiography, Interventional Radiology, 

and Special Procedures uses CT scans to view blood flow through the human body.  

Currently, their CT scan 3D reconstruction system generates images with expensive 

specialized hardware.  Depending on resolution, the time from scan start to onscreen 

interactive 3D model may be upward of ten minutes [2].  According to specialists from 

the University of Virginia Department of Interventional Radiology, many doctors 

reluctantly opt for 3D reconstruction of a CT scan because it is a lengthy process [2].  By 

not using reconstruction, however, doctors may not see important blood flow information 

– information that could reveal the presence of arterial disease, cardiovascular disease, or 

cancer, to name a few.  Even when doctors order reconstruction, reconstruction 

processing takes enough time that they leave the room to attend to other patients. 

Reconstruction is just one of several stages involved in a CT scan.  First, a 

radiologist injects “contrast dye” into the patient.  This dye is highly reactive with x-rays 

and shows up brightly in x-ray images.  After injection of the dye, a large x-ray sweeps 

around the patient, capturing x-ray images.  This process takes about twenty seconds, 
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depending on how many images the scanner captures.  At this point, the CT scanner 

sends scan data to a dedicated processing machine via computer network.  This machine 

runs an algorithm on the scan data that extrapolates three-dimensional geometry based on 

two-dimensional images.  This process, known as backprojection, takes approximately 

97% of the total time to reconstruct an image [3].  The most widely-used backprojection 

algorithm is the Feldkamp-Davis-Kress algorithm (FDK).  A typical scan captures over 

100 images, each of which could cover over a million pixels in area.  This means that the 

FDK algorithm must run on over 100 million values per CT scan.  Thus, reconstruction 

systems must execute the FDK algorithm quickly and efficiently to perform ideally.  This 

project accomplishes reconstruction with a graphics processing unit (GPU). 

Since their breakthrough in the late 1990s, computer users have traditionally 

installed GPUs for accelerating graphically intensive applications such as games.  To 

accelerate graphics, the GPU executes computationally intensive operations instead of the 

central processing unit (CPU) because the GPU is a superior math processor [4: 463].  

One can think of this like an engineering firm.  The boss (the CPU) is a capable engineer, 

but better at management, and therefore leaves intense number-crunching to workers who 

are more mathematically inclined (the GPU).  In addition to performance gained by 

reducing CPU load, engineers designed GPUs specifically to execute tasks that express 

data parallelism.  Data parallelism is a property in which many elements in a set of data 

receive the same operation [5: 10].  Graphics processing involves many data parallel 

instructions to display an image. 

Graphics calculations are not, however, the only calculations that express data 

parallelism.  Recognizing this, many researchers have begun to realize new ways with 
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which to use GPUs.  This movement is known as general-purpose computing on graphics 

processing units, or GPGPU.  Some examples of GPGPU include signal processing, 

physical simulation, data mining, and image processing [6].  GPUs are an excellent 

medium with which to process CT scan data.  CT scan processing is a data parallel 

operation since it runs the FDK algorithm on each pixel in a scan.  As such, a GPU will 

most likely reconstruct scans faster than a CPU. 

Until late 2006, programmers had two options for creating GPGPU applications.  

In the first scheme, programmers write GPGPU applications as if they are standard 

graphics applications.  These applications display input data as a 2D image (known as a 

texture) and run necessary computations on the texture.  In other words, the programmer 

tricks the computer into thinking that the texture is a picture to display, not data on which 

to run computations.  Several projects use this method, but programmers have generally 

found this paradigm unintuitive.  Other GPGPU projects use custom GPGPU languages 

designed by researchers, which allows for a more straightforward programming approach.  

With custom languages, however, GPGPU programmers must learn an entirely new 

language, which requires extra time.  Also, these custom languages have limited 

functionality and are difficult for programmers to get working, so they have not gained 

much popularity. 

NVIDIA Corporation’s latest GPU, the 8800, is the first GPU created with 

explicit GPGPU functionality.  This design, known as the Compute Unified Device 

Architecture (CUDA), allows programmers to make programs for the 8800 using 

extensions to the standard C language [7].  As such, CUDA avoids many of the pitfalls of 

the previous ways of creating GPGPU applications.  By writing in C, programmers do not 
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have to learn an entirely new language.  Additionally, NVIDIA has designed this 

architecture such that programmers can install the software development kit (SDK) and 

begin coding immediately with a full set of features.  The University of Virginia 

Department of Computer Science received an 8800 card in December that students can 

use for research purposes. 

Researchers have used GPUs for 3D reconstruction in the past, though under the 

previous GPGPU paradigms.  In particular, Fang Xu and Klaus Mueller from Stony 

Brook University first proposed CT reconstruction with a GPU nearly three years ago.  

They have published several papers since, each of which illustrates the benefits of using 

GPUs for reconstruction processing.  Chapter 3: Review of Technical Literature further 

discusses these findings. 

Though this project is not the first to use GPUs for 3D reconstruction, it is the 

first to use NVIDIA’s new CUDA to do so.  This research shows the strengths and 

weaknesses of CUDA by comparing its results to those of Xu and Mueller.  This project 

also analyzes the backprojection parallelization process at a more critical level than many 

academic papers.  Though still ongoing, this project hopes to culminate as a working CT 

reconstruction system. 

Reducing 3D reconstruction processing time has several benefits for hospitals.  

First, doctors feel encouraged to prescribe 3D reconstruction more often, since it is less 

time consuming.  Increased use of CT reconstruction helps lead to early diagnoses, and 

could mean the difference between life and death for a patient.  Another benefit of this is 

that doctors are more likely to stay with their patients during reconstruction.  Though CT 

scans are minimally invasive, they can frighten patients, especially if patients are alone.  
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A further advantage of decreasing this time is that doctors maintain their concentration on 

a given patient.  Anyone, not just a doctor, will have a harder time focusing on problem 

solving if they must shift their focus for ten minutes.  From an economic perspective, 

reducing scan time equates to better hospital efficiency because minimizing scan 

processing time will increase patient examination throughput.  Each scan does have an 

associated cost, however, meaning that the hospitals spend more money.  Fortunately, 

this extra cost is negligible since the largest associated cost of CT scans is dye, for which 

the patient typically pays. 

Aside from reducing reconstruction time, processing data on commercial graphics 

hardware is significantly cheaper than using specialized hardware to process data.  The 

existing processing system uses a graphics processing unit that costs somewhere in the 

five-figure range [8].  The NVIDIA 8800 GPU used in this project retails for $599.  This 

project considers itself successful even if commodity hardware achieves the same 

performance as specialized hardware because the cost of commodity hardware is less by 

orders of magnitude. 

The remainder of this report discusses the findings of this research project.  First, 

in Chapter 2: Analysis of Social Context and Ethical Implications, this report discusses 

the historical, social, and ethical contexts in which this project lies.  As this is a medical 

project, this report discusses ethical and social impacts of this research in depth.  Chapter 

3: Review of Technical Literature follows this with a critical review of literature related 

to 3D reconstruction, GPGPU, and the evolution of combining GPGPU with CT 

reconstruction.  Moving into this particular project’s research, Chapter 4: Materials & 

Methodology, summarizes the materials required for this project, as well its methodology 
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for conducting research.  Using this methodology to complete the research, Chapter 5: 

Results & Result Analysis provides results and analysis of this project, presenting the 

benefits and disadvantages of using GPUs for reconstruction processing.  Based on these 

results, the final section, Chapter 6, presents suggestions for future work on this project 

and evaluates how well this project accomplished its goals.  This chapter is the most 

important for the reader, as it highlights the main conclusions of this project. 
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CHAPTER 2: ANALYSIS OF SOCIAL CONTEXT AND ETHICAL IMPLICATIONS 

This project benefits the University of Virginia hospital as an inexpensive 

mechanism for improved efficiency.  However, it cannot only consider efficiency and 

cost; it must also operate ethically.  As such, this chapter presents economic and social 

contexts in order to predict broader impacts of this research on both doctors and patients. 

Efficiency is the core of this project; hardware and algorithmic efficiency in the 

CT system implies organizational efficiency for hospitals.  There is often a paradox with 

efficiency in a workplace: greater efficiency allows an office to save time, yet all 

employees still work a full day, calling into question the purpose of efficiency.  In the 

case of this project, however, this paradox applies in a positive manner because 

efficiency in a hospital results in doctors helping more patients.  Moreover, doctor 

productivity increases since doctors have less idle time during their workday. 

This organizational context, emphasizing reduced costs and efficiency, 

intertwines with a greater political context.  The Department of Interventional Radiology 

would likely have faster CT processing equipment if the state provided them with more 

funds.  At some point in time, a state appropriations committee agreed to give a certain 

amount of money to the hospital for equipment.  In turn, the hospital allocated some of 

their total budget to the Department of Interventional Radiology.  Thus, political 

decisions have set a limit on the level of quality possible with CT scans.  A corporate 

partner produces the current reconstruction system, providing another example of the 

political context.  Hospitals and corporations frequently partner so that hospitals can buy 

equipment for less in exchange for using one brand of products.  Other corporations may 

make faster 3D reconstruction systems, but hospitals cannot purchase them due to 
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constraints of partnership. 

Without standardized health care in the United States, any advances in medicine 

and medical technology have social implications stemming from economics.  Regardless 

of whether patients have health insurance, they must at least pay a deductible for any care 

they receive during a hospital visit.  CT scans have further costs to hospitals, since 

hospitals must pay for equipment maintenance and employ a full-time operator.  Thus, 

insured patients can more viably receive CT scans.  Furthermore, patients with insurance 

are more likely to go to the hospital at all since they are not afraid of leaving with a large 

bill.  In an even broader scope, this project may seem unfair as it helps to improve the 

nationally recognized UVa. Hospital [9], not one of the many hospitals in other states or 

countries that are more desperate.  While other hospitals certainly have more basic needs 

than the UVa. Hospital, this project creates a generalized low-cost system that can work 

anywhere.  Thus, more hospitals can adapt CT reconstruction, giving patients better care. 

The contexts described above reveal ethical matters associated with promoting 

fast CT scans.  In general, issues arise with improved hospital efficiency and increased 

use of scanning – issues that have both positive and negative effects for doctors and 

patients.  Other ethical issues arise with this project’s technical approach. 

As stated previously, a speedup in the scanning process results in increased 

hospital efficiency.  On the positive side, doctors help more people daily, which is 

hopefully their goal as a professional.  A side effect of this, however, is that doctors may 

have fewer breaks during their workday.  This could lead to higher levels of stress in an 

already stressful occupation, which could in turn affect the care that a patient receives.  

Therefore doctors must maintain a reasonable workload, even if technological advances 
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allow them to work more than they currently can. 

Since this project promotes frequent use of CT, it must ensure the safety of CT for 

patients.  As with any form of radiology, interventional radiology poses some health risks.  

First, recall that before a CT scan, a radiologist injects the patient with dye.  In rare cases, 

this dye can cause kidney damage or even a potentially fatal allergic reaction [10].  Also, 

during the scan, the x-ray capture device emits a “moderate to high” amount of radiation 

[11].  Research has linked radiation exposure to cancer, meaning that CT scans can 

contribute to the problem were designed to help mitigate [12, 13].  With faster CT scans, 

doctors can prescribe CT more frequently, thus increasing the number of patients exposed 

to these health risks.  Presently, a doctor consults a patient before that patient undergoes a 

CT scan, which helps prevent scan complications. 

The implementation of this reconstruction system presents additional ethical 

issues.  A positive implication of this project is that it contributes to the promising field 

of GPGPU.  GPGPU excites software developers because it allows programs to run faster 

without radical hardware changes.  However, GPGPU developers do not necessarily 

create morally sound programs.  Just as GPGPU can speed up calculations for medical 

imaging, so too can it speed up calculations for immoral purposes.  GPGPU projects are 

not the only ones faced with such a dilemma; any software or hardware project can have 

similar ethical implications.  Typically, software developers follow a code of ethics to 

ensure moral behavior.  The next chapter, Chapter 3, moves from the broad social and 

ethical contexts just described to discussing the narrower technical context in which this 

project resides. 
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CHAPTER 3: REVIEW OF TECHNICAL LITERATURE 

 CT scanning is part of the broad field of medical imaging.  It remains one of the 

most popular methods of medical imaging due to its ability to produce high contrast 

images at lower cost than other methods such as MRI.  This section outlines the history 

of CT, with a focus on the evolution of image reconstruction, to illustrate the basis for 

undertaking this research. 

Computed tomography research began in the 1950s with Allan Cormack, who 

devised the mathematical and experimental foundation for a CT scanner.  Godfrey 

Hounsfield realized the first CT scanner in 1972, and received the 1979 Nobel Prize in 

Physiology or Medicine for his accomplishment.  Since then, the most significant change 

in CT imaging has been the breakthrough of 3D reconstruction, which researchers 

discovered in the mid-eighties [1:89][14]. 

Around the same time period, a more socially significant technological 

breakthrough, the personal computer, changed how businesses, researchers, and 

individuals operated.  Low-cost machines like the Apple II offered everyone – not just 

institutions – to the power of software.  On another front, the PC birthed a new generation 

of amateur programmers due to easy and free high-level languages such as BASIC.  The 

PC undoubtedly changed hospital operations, particularly through medical records and 

medical imaging.  Indeed, economically feasible reconstruction systems would not exist 

without the PC. 

Three-dimensional reconstruction techniques consist of three phases: weighting, 

filtering, and backprojection.  Of these phases, backprojection is the most 

computationally expensive.  As such, researchers have posed a variety of algorithms to 
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efficiently project scan data from 2D to 3D space.  These algorithms depend on the 

manner in which the CT scanner captures images.  The University of Virginia’s CT 

scanner captures data by rapidly rotating a 2D x-ray sensor around a patient, a process 

called cone-beam scanning. 

Feldkamp et al. published the first cone-beam algorithm in 1984 [15].  Their 

algorithm extended existing algorithms for 2D reconstruction into 3D with excellent 

results.  This algorithm approximates reconstruction, which means that it is fast, albeit 

with some error.  Images produced by Feldkamp et. al. illustrate that this error is 

insignificant, and as a result, the FDK algorithm is still the basis of modern 3D 

reconstruction algorithms.  While many researchers have optimized the FDK algorithm to 

achieve faster running times, hardware advances have provided the most significant 

performance boosts to 3D reconstruction. 

Parallel computer architectures are particularly well-suited for backprojection 

since backprojection involves many independent operations.  Reimann et al. achieved a 

speedup of 1.61 on a parallel system, as described in their paper “Parallel Computing 

Methods for X-Ray Cone Beam Tomography with Large Array Sizes” [16].  While 

Reimann et. al. decreased the overall running time of reconstruction, their solution is 

impractical since it requires an expensive cluster of computers.  Sakamoto et al. 

researched the possibilities of medical imaging on a new parallel architecture, the Cell 

Broadband Engine Architecture (CBEA), developed by IBM, Sony, and Toshiba.  With 

the CBEA, Sakamoto achieved a speedup of 20 running Feldkamp’s algorithm [3].  

Though this is promising, programmers have already expressed that programming CBEA 

systems is unintuitive.  Additionally, the only commercially available CBEA systems are 
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the Playstation 3 gaming console and high-performance server racks.  Graphics 

processors have much in common architecturally with the aforementioned systems, 

though they have the added benefit of lower cost. 

Graphics processors contain many parallel processors optimized for 

computationally intensive math operations.  Realizing the potential of graphics hardware 

for CT reconstruction, Xu and Mueller of Stony Brook University published “Towards a 

Unified Framework for Rapid 3D Computed Tomography on Commodity GPUs” in 

2003.  This paper presents preliminary findings of using GPUs for 3D reconstruction 

using several algorithms, including the FDK algorithm.  Xu and Mueller found the FDK 

algorithm to give the fastest reconstruction times, at the expense of some image quality 

[17]. 

A follow-up paper, “Ultra-Fast 3D Filtered Backprojection on Commodity 

Graphics Hardware,” published in 2004, concentrates explicitly on running the FDK 

algorithm on GPUs.  This more technical paper explains details of how to implement the 

FDK algorithm on graphics hardware, as well as optimizations to allow the algorithm to 

run as fast as possible.  Using these techniques, Xu and Mueller ran the FDK algorithm 

roughly 7.5 times faster on a GPU than on a CPU with comparable image quality [18].  

Moreover, they achieved an enormous speedup of 37 on the GPU with slightly noisier 

images. 

In their most recent paper, Xu and Mueller present additional optimizations 

present additional optimizations to their previous papers, as well as more comprehensive 

results [8].  Their goal in this research was to achieve speedups in a number of 3D 

reconstruction algorithms, including the FDK algorithm.  While they achieved reasonable 
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speedups using other algorithms, the highest-quality form of the FDK algorithm executed 

as quickly as the low-quality form in their 2004 paper.  Thus, with negligible loss of 

image quality, they achieved a speedup of 37 by running the FDK algorithm on a GPU 

instead of a CPU. 

This thesis project is a continuation of Xu and Mueller’s research.  While they 

have produced impressive results in their research papers, they reveal little about their 

methodology and possible flaws in their implementation.  They give results only for two 

scan resolutions and do not explain expected performance for smaller or larger datasets.  

This project provides results for several output resolutions.  The most important 

distinction between this project and those of Xu and Mueller is that this project operates 

under the new GPGPU paradigm.  This paradigm is spiritually similar to the PC 

revolution in that it gives ordinary users control over their hardware.  As the next two 

chapters show, this paradigm is not only more intuitive for the programmer, but is also 

faster than previous GPGPU methods. 
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CHAPTER 4: MATERIALS & METHODOLOGY 

 The main tenet of the GPGPU paradigm is for programs to achieve better 

performance by fully utilizing standard graphics hardware.  As such, this project required 

only hardware, software, and literature.  This project’s methodology encompassed both 

its software development cycle and its approach to parallelizing CT reconstruction.  The 

following section describes in greater detail the materials required for this project’s 

operation, as well as its approach to parallel software design. 

 Hardware accounted for a significant portion of this project’s cost.  This project 

pushed the boundaries of consumer-level computers, so it required a fast system with a 

large amount of memory, as well as GPU compatibility.  In addition to the main system, 

this project used the newest GPU chipset, the NVIDIA 8800.  As noted earlier, a 

programmer need not use this chipset for GPGPU programming, though it allows for the 

most intuitive GPGPU programming interface currently available.  This project ran on a 

Dell XPS gaming computer, upgraded with the NVIDIA 8800 graphics card.  The 

Department of Computer Science purchased the XPS system for Prof. Skadron’s research 

team, but NVIDIA donated an 8800 GPU to the Department for academic research 

purposes. Refer to Listing 1 in Appendix D for more detailed specifications of the XPS 

system. 

 This project required several types of software: a programming environment, an 

output visualization tool, and an interface for running programs on the GPU.  It used 

standard text editors and compilers, such as Emacs and gcc, in Fedora Core 4 (a freely 

available Linux distribution) to develop most of the software.  Portions of this project ran 

in Windows in Microsoft’s Visual Studio programming environment because of stability 
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issues in Linux.  Given its graphical nature, this project required a means of viewing 

output in a three dimensional space.  While several commercially available programs do 

this, this project developed a custom voxel visualization tool to allow for more control of 

the output parameters.  The most crucial piece of software in this project was the 

Software Development Kit (SDK) for the GPU.  This software allows programs to 

communicate directly with the GPU, thus enabling GPGPU.  NVIDIA provides the 

CUDA SDK for free on its website.  A nice feature of this SDK is that it includes a GPU 

emulator so that programmers can write programs for CUDA even if they do not have 

CUDA graphics cards. 

 Literature for this project pertained to CT reconstruction and GPU programming.  

Given the novelty of the GPGPU paradigm (and even newer CUDA), few authors have 

published hard books on GPU programming for non-graphical applications.  The best 

resource for working with CUDA is [19], which is included with the CUDA SDK.  This 

document, created by NVIDIA, describes how to create GPU programs from scratch and 

also provides documented examples.  However, much of the research for this project 

involves medical imaging techniques.  Online databases such as the IEEE host many of 

the significant CT reconstruction papers for academic use.  Finally, this project required 

scan data for input.  The Department of Interventional Radiology provided this in the 

form of 133 scans of a torso phantom (an artificial torso).  Figure 1 shows one such scan. 
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FIGURE 1 – CT scan of the phantom torso (data provided by UVA Department of Interventional Radiology, 
image generated by author) 

 

 This section now discusses this project’s approach to a GPU-accelerated CT 

reconstruction system. Unforeseen problems with the first phase of this project resulted in 

changes to its methodology.  Initially this project planned to create two reconstruction 

systems: a CPU (uniprocessor) version, and a GPU (parallel) version.  First, this project 

would write the conceptually simple CPU code.  Using this CPU code as a template, the 

project would then write a more complex GPU version.  Both the CPU and GPU phases 
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contained four typical software development phases: planning, prototyping, development, 

and testing.  While this development model ensured accuracy of the GPU code, it created 

a dependency between the GPU code and the CPU code, since the GPU code could not 

begin until the project had completed the CPU code phase (Figure 3 in Appendix A).  

The dependency of the GPU code on the CPU code proved problematic when the CPU 

code halted in its verification stage; the longer the CPU phase took to implement, the less 

time this project could devote to implementing GPU code. 

The verification stage of the CPU programming phase halted this project’s 

development.  To verify this program, this project viewed its output through the voxel 

visualization application.  Figure 2 shows this application when given the output of the 

CPU backprojection program.  This output is obviously incorrect, as it does not resemble 

a 3D model of the torso phantom as seen in Figure 1.   

 
    FIGURE 2 – Visualization of torso phantom from CPU program (created by author) 

 
Three possibilities could explain the incorrect output: 

1. The CT scans provided by the hospital were incompatible with the FDK 

algorithm 
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2. The C code translation of the FDK algorithm was not equivalent to the 

actual FDK algorithm 

3. The C code correctly translated the FDK algorithm, but lacked some 

intermediate step 

Experts from the Department of Interventional Radiology assured that professional 

reconstruction systems use similar data as input for their software, thus eliminating the 

first possibility. As for the second option, Figure 5 in Appendix A shows the correct FDK 

backprojection algorithm, obtained from [20].  Figure 6 in Appendix A shows this 

project’s C code translation of the FDK algorithm, which appears equivalent to the 

original algorithm. 

 Research papers on CT reconstruction provide several approaches to the FDK 

algorithm.  Implementing various versions of the FDK algorithm in the CPU program 

produced identical output, even if the intermediate math differed.  This indicated that the 

code implementation was in fact correct, but that it lacked some sort of input data 

formatting.  Xu and Mueller mention in [8][17] and [18] that the FDK algorithm requires 

filtered scan data as input, though they neglect to explain the filtering algorithm in depth.  

Due to such lack of emphasis on filtering in CT reconstruction literature, this project had 

erroneously interpreted that reconstruction programs could overlooked the filtering stage.  

Given that the CPU program’s output was consistent with different algorithmic 

implementations, and that [3] states that backprojection is the most computationally 

significant stage, this project froze the CPU code without including a filtering component.  

The project then converted its software development cycle from a two-phase spiral 

approach to a single spiral containing both projects (Figure 4 in Appendix A).  With this 
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approach, the project had not completed the CPU program, but it could commence the 

GPU program to observe the parallelized performance of the backprojection program. 

 With a new software development cycle in place, this project transitioned to GPU 

programming.  This phase used the CPU code as a basis for writing the new GPU code.  

To translate CPU code to GPU code, this project could not simply copy and paste; it had 

to analyze the algorithm to find parallelization opportunities.  To successfully parallelize 

the FDK algorithm for the GPU, this project used Foster’s Design Methodology, a four-

step process for designing parallel algorithms.  Foster’s Design Methodology consists of 

four phases: partitioning, communication, agglomeration, and mapping [5]. 

 In Foster’s Design Methodology, a project’s partitioning phase divides its major 

computations into smaller parallel pieces called primitive tasks.  The FDK algorithm is 

“embarrassingly parallel,” meaning that it is completely data parallel; no voxel intensities 

are dependent on one another.  As such, the project partitioned the overall task of creating 

a three-dimensional voxel model into D3 tasks, where D is the length of one side of the 

cubic space.  Thus, the FDK algorithm’s primitive task is computing the intensity of a 

single voxel. 

This project did not consider the communication phase of Foster’s Design 

Methodology, since the FDK algorithm requires no communication between voxels.  The 

agglomeration phase involves combining small tasks into somewhat larger tasks so as to 

improve performance or make the program easier to code.  Given low degree of 

communication overhead in the FDK algorithm and the intuitive CUDA programming 

model, this project also eliminated the agglomeration phase. 
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The final stage in Foster’s Design Methodology, the mapping stage, assigns tasks 

to processors.  To adequately explain this stage, this report must first describe the CUDA 

programming model.  CUDA contains several layers of task organization, and represents 

primitive tasks as “threads.”  In this project, each thread computed a single voxel 

intensity.  CUDA groups threads together into “blocks,” and further groups blocks of 

threads together into a “grid.”   

      Figure 7 in Appendix A illustrates this thread-grouping model. 

For its mapping stage, this project combined fast performance with scalability.  

NVIDIA states that a GPU program performs ideally with 256 threads per block (a 16x16 

block).  With this in mind, this project created D groups of 
D

2

162
 thread blocks.  Figure 8 

in Appendix A illustrates this thread model.  To use a numerical example, suppose the 

output is a 64x64x64 voxel region (643 total voxels).  Thus, D = 64, so the GPU will 

contain 64 groups of 
642

162
=16 thread blocks.  Therefore the grid dimension is 16x64.  

Double-checking to ensure each thread maps to a voxel, observe that: 

16 blocks × 64 blocks ×162 threads

block

 

 
 

 

 
 

2

= 262144 threads = 643
threads  

The number of threads therefore equals is the total number of voxels.  Figure 9 in 

Appendix A diagrams this example. 

For a fixed dimension, the reader may find this mapping unintuitive.  For example, 

a programmer could more easily code a grid of D x D blocks of D threads.  However, a 

large output space makes this scheme problematic because the number of threads in a 

block may exceed the limit of threads per block.  This project uses a superior approach 

because it allows the program to scale correctly without exceeding the maximum number 
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of threads per block. 

In addition to requiring a mapping of primitive tasks to processors, this project 

also demanded a one-to-one mapping of a thread’s position within a block and grid to a 

three-dimensional coordinate in a cubic space.  NVIDIA provides formulas to convert 

between a thread’s position in a block to its global identity (called its thread ID).  This 

project then created simple functions to map the thread ID to {x, y, z} coordinates.    

Figure 10 in Appendix A shows these mapping functions.  Having completed the four 

steps of Foster’s Design Methodology, this project had successfully parallelized the CPU 

code for the GPU. 

With a complete parallel design, this project began programming and testing the 

GPU implementation with the CUDA emulator.  Verifying the GPU program was 

straightforward: its output was correct only if it matched the CPU program’s output.  This 

project verified the GPU program by writing the output values of both the CPU and GPU 

programs to file and then using the UNIX program cmp to display lines that differed in 

these files.  When no values differed (or differed by a small threshold, due to error), this 

project considered the GPU program equivalent to the CPU program.  Eventually, the 

GPU program completed its development cycle and passed all verification tests.  The 

next chapter, Chapter 5, demonstrates the GPU program’s timing results, as well as their 

significance. 
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CHAPTER 5: RESULTS & RESULT ANALYSIS 

After developing and verifying the GPU implementation in the emulator, this 

project executed the GPU program on physical hardware.  This chapter shows running 

times for both the GPU and CPU programs with various output sizes, and also explains 

results both in terms of their significance and the conditions under which this project 

obtained them.  Overall, the results illustrate the viability of GPU-accelerated 

reconstruction.  However, these results are preliminary and require refinement to 

accurately reflect the degree of speedup for GPU reconstruction. 

Before gathering timing data, this project ran the GPU program on the NVIDIA 

8800 to detect any possible hardware compatibility issues (NVIDIA’s emulator is still in 

its beta stage and does not always accurately simulate the card’s behavior).  This worked 

without any problems.  Next, the project gathered timing results with several output 

resolutions.         Table 1 shows the averaged timing data for four output resolutions, as 

well as the calculated speedup with the GPU.  Graph 5 shows running times on the CPU 

and GPU speedup as a function of output resolution, while Graph 6 shows speedup on the 

GPU as a function of output resolution.  Appendix B has a more detailed chart, while 

Appendix C contains more detailed versions of the graphs. 

Running Time (s) 
Dimension 

CPU GPU 
Speedup 

32 1.20 9.25 0.13 

64 6.82 12.56 0.54 

128 49.96 2.05 24.41 

256 396.13 7.04 56.26 
             

       TABLE 1 – Timing data and speedup vs. dimension (created by author) 
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CPU & GPU Running Times vs. Output Dimension
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 GRAPH 5 – CPU and GPU running time as a function of output resolution, logarithmic scale (created by 
author) 
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 GRAPH 6 - GPU speedup as a function of output resolution (created by author) 
 

Timing results varied widely for this project because of their dependence on I/O 

operations (i.e. disk or memory access).  These times included time spent loading scans 

from disk.  For the CPU program, this meant loading scan files and moving them into 
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local memory.  The GPU program incurred the additional overhead of moving scans from 

local memory to GPU memory, and intensity values from GPU memory to CPU memory.  

Furthermore, the first execution of the program after compiling (for both CPU and GPU 

versions) typically took much longer than subsequent executions.  This occurred because 

the scans cached after the first execution and thus loaded quicker in future executions.  

The timing results in this report do not reflect the first run of either program since these 

times were outliers. 

  Running times on the GPU for small output resolutions seem inconsistent with 

the assertion that GPUs map well to backprojection.  In fact, with a small output space, 

the GPU program took much longer to execute than the CPU program.  However, this 

behavior is common in parallel programs because of the overhead of parallelization.  

With so few voxel intensities to calculate at low resolution, the overhead of memory 

setup and transfer dominates the amount of computation for each thread.  This overhead 

diminishes as the output size increases, since the time to compute intensities exceeds the 

time to set up the GPU.  The GPU program’s running time hit a minimum with an output 

size around 128x128x128 voxels and then linearly increased. 

The speedup figures demonstrate that the FDK algorithm strongly benefits from 

parallelization on the GPU.  The GPU generated intensities for over two million voxels in 

roughly two seconds and intensities for sixteen million voxels in eight seconds.  These 

times are orders of magnitude less than those from the CPU program, and are comparable 

to those achieved by Xu and Mueller.  More importantly, the speedup increased as the 

output size grew, meaning this program scales well on the GPU.  The final chapter, 

Chapter 6, illustrates the importance of these results in a broader scope.
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CHAPTER 6: CONCLUSION & RECOMMENDATIONS FOR FUTURE RESEARCH 

This section serves to recapitulate the findings of this project.  This includes both 

reiterating the results of this project and assessing how well these results accomplished 

the intended goals of this project.  Lastly, this section proposes ideas for future work on 

this project, as well as guidelines for how others should use its findings. 

This project hoped to improve processing times for CT scan reconstruction via 

graphics hardware.  It failed in that it unsuccessfully reconstructed the torso phantom in 

three dimensions.  However, it did successfully convert a slow uniprocessor 

backprojection program to a fast, parallelized program on the NVIDIA 8800 GPU.  The 

GPU program ran 25 times faster than the CPU program for a small output size of 

128x128x128 voxels and over 50 times faster for an average output size of 256x256x256 

voxels.  The duration of the backprojection process decreased from minutes on the CPU 

to seconds on the GPU.  These results are tentative, though, since the program is 

unfinished. 

This project cannot establish any absolute claims about the performance of GPUs 

for CT scan reconstruction since it produced invalid output.  At a critical level, this 

project took a broken program, parallelized it, and sped it up to create a faster broken 

program.  Thus, one could view this project simply as a parallelization exercise for the 

researcher.  Yet, this view naïvely undervalues the process of parallelization. 

 The greatest strength of this project is that it produced identical CPU and GPU 

output.  For most applications that can benefit from parallelization on a GPU, the 

programmer typically begins with a working CPU code base and must convert this code 

to GPU code.  Therefore, the important lesson of this project was not learning medical 
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imaging algorithms but learning how to take slow sequential code and convert it to fast 

parallel code on the GPU.  This skill will prove useful with the increasing ubiquity of 

parallel computer architectures. 

 Other programmers and researchers should find this project useful because it 

provides a non-expert view of CUDA.  CUDA has only existed for about six months and 

few, except NVIDIA employees, have documented their experiences with it.  Overall, the 

new programming paradigm worked well for this application.  This project did not have 

significant problems porting CPU code to fit the CUDA model, and had no problems 

moving from the CUDA simulator to the physical hardware.  At the same time, this 

project used an easily parallelizable algorithm.  CUDA is slower and less intuitive to 

program for algorithms requiring thread communication.  Therefore, this project cannot 

assert that all parallel programs will run faster with CUDA, yet it can make stronger 

claims about the FDK algorithm’s performance. 

Despite its output, this project illustrates much about the potential of creating a 

GPU-accelerated reconstruction system with CUDA.  The speedup results show that 

GPUs perform well with data parallel algorithms, especially those with large amounts of 

data to process.  Even though this project cannot show correct output to prove this claim, 

its results, along with those of previous researchers, indicate that the GPU model fits well 

with the FDK algorithm.  The FDK algorithm clearly expresses a high degree of data 

parallelism because it contains no inter-iterational dependencies. This project believes 

that its backprojection program is correct, but that a filtering program must first process 

its input.  Even if this project’s reconstruction algorithm is not the correct FDK algorithm, 

it closely resembles FDK algorithms described in medical imaging literature.  As such, a 
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complete GPU reconstruction system may not achieve the same speedup as this project, 

but should receive a speedup nonetheless. 

 Given that the reconstruction program is still incorrect, this project has several 

suggestions for anyone continuing this research.  This includes ways in which hospitals 

should use this project, particularly to maintain an ethically and socially responsible 

setting.  Though the GPU sped up the backprojection code by orders of magnitude, 

further code optimizations could make this speedup even greater.  First, CUDA cards 

have varying memory latencies depending on data types.  In particular, CUDA chips 

store constant values in their fastest memory.  This project denoted most of the constant 

values as such, but the compiler complained that the card could not put some of the 

values in constant memory.  The program compiled when it allocated these values in 

shared memory, which is still fast, but not as fast as constant memory.  Apparently 

NVIDIA documents a workaround for this problem in their latest CUDA documentation.  

Using constant memory for all constants would decrease the overall running time, but 

probably not by a significant amount. 

A future researcher could also optimize the task mapping strategy in the GPU 

code.  Currently, the methods for calculating the thread ID, the {x,y,z} coordinates and 

output array location use fairly expensive operations such as modulus, division, and 

several multiplications.  Another mapping of tasks to processors, keeping in mind the 

thread per block limit, could reduce the number of calculations required to find the ID, 

coordinates, and array location. 

In addition to hardware optimizations, the GPU program could further benefit 

from algorithmic optimization.  This project implemented the most straightforward form 
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of the FDK algorithm.  This algorithm is O(D3 
• S), where D is the length of one side of 

the output space and S is the total number of input scans.  However, other researchers 

have created less expensive versions of the FDK algorithm, such as Basu and Bresler’s 

O(N2 log2N) implementation [21], that could lessen the overall running time even further.  

These algorithms may or may not map easily to the CUDA programming model. 

This project’s GPU implementation worked up to an output size of 484x484x484, 

at which point the GPU ran out of memory.  To get results for greater output spaces, a 

researcher would have to create a multi-pass system.  This means that the program would 

stream some number of voxels within the GPU’s memory limit to the GPU for processing, 

process them, stream them back into CPU memory, and then repeat this process until the 

all voxels had an intensity value.  This allows for a potentially infinite output size, but 

would run slower than the current program due to memory transfers. 

Clearly, this project should generate correct 3D output.  Medical imaging papers 

indicate that backprojection only works with filtered scan data.  A future researcher has 

two ways of obtaining filtered scan data: filtering the data manually, or finding pre-

filtered data from some other source.  This project searched for filtered scan data on the 

internet with no results, but perhaps other resources, such as hospitals or other 

universities, could provide such data.  If not, a future researcher must create a filtering 

stage in the backprojection program.  According to other members of Prof. Skadron’s 

research group, the best way to filter data involves performing a Fourier transform on the 

data, thus moving it to the frequency domain, then multiplying the transformed data by 

some filtering kernel, then performing an inverse Fourier transform to move the filtered 

data back to the spatial domain.  A programmer can use the FFT (Fast Fourier Transform) 
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library in the CUDA SDK to perform the transformation steps required for filtering.  If 

the incorrect output does not stem from filtering, a future researcher should contact a 

medical imaging expert, perhaps Xu or Mueller, to get advice on how to correctly 

implement reconstruction algorithms. 

 If a future researcher ever completes a fully operational reconstruction system, 

hospitals must use this system judiciously.  First, doctors should ensure that they screen 

patients to avoid complications with exposure to contrast dye or radiation.  Secondly, 

hospitals must secure all computers running their reconstruction software so that 

outsiders cannot access confidential patient information or maliciously attack the system.  

Most importantly, doctors should recall that, while 3D CT reconstructions provide greater 

detail than 2D images, they are not a panacea.  Doctors should still use all resources 

available to treat a patient and not rely solely on scans. 

 Nevertheless, this project provides great benefits for hospital radiology 

departments everywhere.  Using GPUs to reconstruct CT scans provides hospitals with 

two distinct advantages over current uniprocessor reconstruction systems: faster system 

performance and lower system cost.  Faster reconstructions translate to more efficient 

hospital operation.  Faster reconstructions should also encourage the use of CT.  For 

patients, increased use of CT should equate to more frequent and earlier diagnoses, which 

potentially saves lives. 
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APPENDIX A – FIGURES 

 

 

FIGURE 3 – Initial software development cycle (drawn by author) 

 
 
 
 

 
FIGURE 4 – Modified software development cycle (drawn by author) 
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FIGURE 5 – Complete FDK algorithm [20] 
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    FIGURE 6 – C implementation of FDK algorithm (created by author) 

 

for(x = 0; x < OUT_DIM; x++) { 

  for (y = 0; y < OUT_DIM; y++) { 

    for (z = 0; z < OUT_DIM; z++) { 

 intensity = 0.0f; 

 for (scan_num = start; scan_num < start+RANGE; scan_num++) { 

   beta = scan_num*1.5f*DEGTORAD; 

   s =  x * cosf(beta) + y * sinf(beta); 

   t = -x * sinf(beta) + y * cosf(beta); 

   d = D / (D - s); 

   u = t * d; 

   v = z * d; 

   w = powf(d, 2); 

   data_u = (int)u; 

   data_v = (int)v; 

 

   if ((data_u >= 0 && data_u < OUT_DIM) && 

       (data_v >= 0 && data_v < OUT_DIM)) { 

     intensity += w*scan_data[scan_num][data_u][data_v]; 

   } 

 } 

 intensity_data[x][y][z] = intensity; 

    } 

  } 

} 
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      FIGURE 7 – NVIDIA CUDA task organization model [19] 
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FIGURE 8 – General CUDA thread grouping model for the FDK algorithm (drawn by author) 
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FIGURE 9 – CUDA thread grouping model for the FDK algorithm for 64x64x64 output 
resolution (drawn by author) 
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  FIGURE 10 – Formula for thread ID and mapping of thread ID to {x,y,z} coordinates (drawn by author) 
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APPENDIX B – TABLES 

Running Time (s) 
Dimension 

CPU GPU 
Speedup 

32 1.20 8.99 0.13 

  1.19 7.70 0.15 

  1.20 11.05 0.11 

64 7.17 13.00 0.55 

  6.74 12.27 0.55 

  6.55 12.42 0.53 

128 51.41 2.05 25.11 

  49.30 2.02 24.47 

  49.17 2.08 23.66 

256 394.34 7.03 56.09 

  393.97 7.02 56.16 

  400.07 7.08 56.52 

                TABLE 2 – Running times and speedup for CPU and GPU 
              programs at four output resolutions (created by author) 
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APPENDIX C – GRAPHS 
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APPENDIX D – LISTINGS 

 

 
         LISTING 1 – System specifications for Dell XPS system with NVIDIA 8800 (generated by dxdiag.exe) 

------------------ 
System Information 
------------------ 
Time of this report: 3/24/2007, 14:41:38 
       Machine name: SKADRONDELL4 
   Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 2 (2600.xpsp.061012-0254) 
           Language: English (Regional Setting: English) 
System Manufacturer: Dell Inc.                 
       System Model: Dell DXG061                   
               BIOS: Phoenix ROM BIOS PLUS Version 1.10 1.1.3  
          Processor: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz (2 CPUs) 
             Memory: 1022MB RAM 
          Page File: 411MB used, 2048MB available 
        Windows Dir: C:\WINDOWS 
    DirectX Version: DirectX 9.0c (4.09.0000.0904) 
DX Setup Parameters: Not found 
     DxDiag Version: 5.03.2600.2180 32bit Unicode 
 
--------------- 
Display Devices 
--------------- 
        Card name: NVIDIA GeForce 8800 GTX 
     Manufacturer: NVIDIA 
        Chip type: GeForce 8800 GTX 
         DAC type: Integrated RAMDAC 
       Device Key: Enum\PCI\VEN_10DE&DEV_0191&SUBSYS_039C10DE&REV_A2 
   Display Memory: 768.0 MB 
     Current Mode: 1280 x 1024 (32 bit) (75Hz) 
          Monitor: Plug and Play Monitor 
  Monitor Max Res: 1600,1200 
      Driver Name: nv4_disp.dll 
   Driver Version: 6.14.0010.9773 (English) 
      DDI Version: 9 (or higher) 
Driver Attributes: Final Retail 
 Driver Date/Size: 2/2/2007 15:25:00, 5365504 bytes 
      WHQL Logo'd: No 
  WHQL Date Stamp: None 
              VDD: n/a 
         Mini VDD: nv4_mini.sys 
    Mini VDD Date: 2/2/2007 15:25:00, 5957024 bytes 
Device Identifier: {D7B71E3E-42D1-11CF-4355-962303C2CB35} 
        Vendor ID: 0x10DE 
        Device ID: 0x0191 
        SubSys ID: 0x039C10DE 
      Revision ID: 0x00A2 
      Revision ID: 0x00A2 
 
------------------------ 
Disk & DVD/CD-ROM Drives 
------------------------ 
      Drive: C: 
 Free Space: 65.5 GB 
Total Space: 76.0 GB 
File System: NTFS 
      Model: n/a 
 
      Drive: D: 
      Model: HL-DT-ST DVD-ROM GDRH10N 
     Driver: c:\windows\system32\drivers\cdrom.sys, 5.01.2600.2180 (English), 8/4/2004 08:00:00, 49536 bytes 
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LISTING 2 – Complete code listing for sequential (CPU) backprojection code (created by author) 

 
////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project           // 

//             // 

// feldkamp.c            // 

// Sequential (CPU) version of the FDK backprojection algorithm // 

//             // 

////////////////////////////////////////////////////////////////// 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

 

const int SCAN_DIM = 1024; 

const int AREA = 1048576; 

const int MAX_INTENSITY = 4096; 

const float DEGTORAD = 0.01745f; 

const float RADTODEG = 57.29577f; 

const int BYTES_PER_PIXEL = 2; 

const float D = 5.0f; 

 

int main(int argc, char **argv) 

{ 

int i, j, x, y, z, start, RANGE, scan_num, OUT_DIM, base, data_u, data_v, 

    index, io = 0; 

  float intensity, percent_done; 

  char currentfile[256], scannumbuf[20], *filepath; 

  FILE *in_file; 

  // scan data matrix 

  short int ***scan_data, *scan_mem; 

  // result matrix 

  float ***intensity_data, *intensity_mem; 

  float s, t, d, u, v, w, beta; 

 

  // Args: starting file path, start #, range, out dimension, I/O boolean 

  if (argc == 6) { 

    filepath = argv[1]; 

    start = atoi(argv[2]); 

    RANGE = atoi(argv[3]); 

    OUT_DIM = atoi(argv[4]); 

    io = atoi(argv[5]); 

  } 

  else { 

    printf("Argument error: Need path, start, range, and output resolution\n"); 

    exit(1); 

  } 

 

  // Set up scan data matrix 

  scan_mem = (short int*)malloc(RANGE*AREA*sizeof(short int)); 

  scan_data = (short int***)malloc(RANGE*sizeof(short int**)); 

 

  for (i = 0; i < RANGE; i++) { 

    scan_data[i] = (short int**)malloc(SCAN_DIM*sizeof(short int*)); 

  } 

 

  // make memory contiguous 

  for (i = 0; i < RANGE; i++) { 

    for (j = 0; j < SCAN_DIM; j++) { 

      scan_data[i][j] = &scan_mem[i*RANGE*SCAN_DIM+j*SCAN_DIM]; 
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    } 

  } 

 

  // Set up intensity matrix 

  intensity_mem = (float*)malloc(OUT_DIM*OUT_DIM*OUT_DIM*sizeof(float)); 

  intensity_data = (float***)malloc(OUT_DIM*sizeof(float**)); 

 

  for (i = 0; i < OUT_DIM; i++) { 

    intensity_data[i] = (float**)malloc(OUT_DIM*sizeof(float*)); 

  } 

 

  // make memory contiguous 

  for (i = 0; i < OUT_DIM; i++) { 

    for (j = 0; j < OUT_DIM; j++) { 

      intensity_data[i][j] = &intensity_mem[i*OUT_DIM*OUT_DIM+j*OUT_DIM]; 

    } 

  } 

 

  // read in all scans from disk 

  for (scan_num = start; scan_num < start+RANGE; scan_num++) { 

    // create filenames to load 

    strcpy(currentfile, filepath); 

    strcat(currentfile, "."); 

    sprintf(scannumbuf, "%d", scan_num); 

    strcat(currentfile, scannumbuf); 

 

    in_file = fopen(currentfile, "rb"); 

    if (!in_file) { 

      perror("File Error"); 

    } 

 

    base = scan_num - start; 

 

 // load scans to memory 

    fread(scan_data[base][0], BYTES_PER_PIXEL, AREA, in_file); 

    fclose(in_file); 

  } 

 

  // Feldkamp algorithm 

  for(x = 0; x < OUT_DIM; x++) { 

    for (y = 0; y < OUT_DIM; y++) { 

      for (z = 0; z < OUT_DIM; z++) { 

  intensity = 0.0f; 

  for (scan_num = start; scan_num < start+RANGE; scan_num++) { 

    beta = scan_num*1.5f*DEGTORAD; 

    s =  x * cosf(beta) + y * sinf(beta); 

    t = -x * sinf(beta) + y * cosf(beta); 

    d = D / (D - s); 

    u = t * d; 

    v = z * d; 

    w = powf(d, 2); 

    data_u = (int)u; 

    data_v = (int)v; 

 

    if ((data_u >= 0 && data_u < OUT_DIM) && 

     (data_v >= 0 && data_v < OUT_DIM)) { 

   intensity += w*scan_data[scan_num][data_u][data_v]; 

    } 

  } 

  intensity_data[x][y][z] = intensity; 

   } 

     } 

  } 
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  if (io) { 

    for(x = 0; x < OUT_DIM; x++) { 

      for (y = 0; y < OUT_DIM; y++) { 

 for (z = 0; z < OUT_DIM; z++) { 

   printf("%f\n", intensity_data[x][y][z]); 

 } 

      } 

    } 

  } 

 

  // deallocate memory 

  free(scan_mem); 

  free(scan_data); 

  free(intensity_mem); 

  free(intensity_data); 

 

  return 0; 

} 
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LISTING 3 – Complete C++ code listing for sequential (CPU) backprojection code integrated with 

visualization tool. This includes each .h and .cpp file (created by author) 
 

////////////////////////////////////////////////////////////////// 

//                // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// camera.h                          // 

// Defines a camera class.                                      // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#ifndef CAMERA_H 

#define CAMERA_H 

 

#include "geometry.h" 

#include "timer.h" 

 

class Camera { 

 public: 

  Camera(); 

  Vector pos;  // position vector 

  Vector angle; // angles (heading, pitch, yaw) 

  Vector size; // size 

  Vector velocity; 

  float speed; 

}; 

   

#endif 

 
 
////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// camera.cpp            // 

// Implements camera functions                                  // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#include "camera.h" 

#include <math.h> 

#include <iostream> 

using namespace std; 

 

// default constructor 

Camera::Camera() { 

 angle = Vector(45.f, 45.0f, 0.0f); 

 size = Vector(0.3f, 1.8f, .1f); 

 pos = Vector(0.0f, 128.0f, 0.0f); 

 speed = 100.0f; 

} 



 49 

////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// geometry.h            // 

// Defines a geometric classes and constants.  This includes    // 

// points and vectors, as well pi and angle conversion          // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#ifndef GEOMETRY_H 

#define GEOMETRY_H 

#include <math.h> 

 

const float PI = 3.141592f; 

const float DEGTORAD = PI / 180.0f; 

 

class Point2D { 

 public: 

  Point2D(): x(0), y(0) {} 

  Point2D(int a, int b): x(a), y(b) {} 

  int x, y; 

}; 

 

class Point3D { 

 public: 

  Point3D(): x(0), y(0), z(0) {} 

  Point3D(int a, int b, int c): x(a), y(b), z(c) {} 

  int x, y, z; 

}; 

 

class Vector { 

 public: 

  Vector(): x(0.0f), y(0.0f), z(0.0f) {} 

  Vector(float a, float b, float c): x(a), y(b), z(c) {} 

  Vector scalMult(float a) { return Vector(x*a, y*a, z*a); } 

  float magnitude() { return sqrt(x*x+y*y+z*z)*1.f; } 

  Vector normalize() { return Vector(x/magnitude(), 

y/magnitude(), z/magnitude()); } 

  float x, y, z; 

}; 

  

#endif 
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////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// timer.h             // 

// Defines a reconstruction object. This object represents a    // 

// 3D CT reconstruction                                         // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#ifndef Reconstruction_H 

#define Reconstruction_H 

#include <iostream> 

#include <GL/freeglut.h> 

#include "geometry.h" 

using namespace std; 

 

#define DIM 1024 

#define OUT_DIM 512 

#define MAX_INTENSITY 4096 

#define RADTODEG 57.29577f; 

#define BYTES_PER_PIXEL 2 

#define D 128.0f 

#define EPSILON 0.001f 

 

class Reconstruction { 

 public: 

  Reconstruction(char *file); 

  void draw(bool wire); 

  Point2D pStart; 

 private: 

  float intensity[OUT_DIM][OUT_DIM][OUT_DIM]; 

  short int ***raw_data, *mem; 

}; 

 

#endif 
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////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project               // 

//              // 

// reconstruction.cpp                // 

// Implements a reconstruction object. This is where            // 

// backprojection and display occur          // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#include "reconstruction.h" 

#include "timer.h" 

#include <iostream> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

using namespace std; 

 

// constructor 

Reconstruction::Reconstruction(char *filepath) { 

  int x, y, z, start = 0, RANGE = 133, scan_num; 

  FILE *in_file; 

  float i; 

  char currentfile[256]; 

  char scannumbuf[20]; 

 

  float s, t, u, v, w, beta; 

 

  // Set up scan data matrix 

  mem = (short int*)malloc(RANGE*DIM*DIM*sizeof(short int)); 

  raw_data = (short int***)malloc(RANGE*sizeof(short int**)); 

 

  for (x = 0; x < RANGE; x++) { 

    raw_data[x] = (short int**)malloc(DIM*sizeof(short int*)); 

  } 

 

  for (x = 0; x < RANGE; x++) { 

    for (y = 0; y < DIM; y++) { 

      raw_data[x][y] = &mem[x*DIM*DIM+y*DIM]; 

    } 

  } 

 

  // read in all scans from disk 

  for (scan_num = start; scan_num < start+RANGE; scan_num++) { 

    // fun C string business 

    strcpy(currentfile, filepath); 

    strcat(currentfile, "."); 

    sprintf(scannumbuf, "%d", scan_num); 

    strcat(currentfile, scannumbuf); 

 

    in_file = fopen(currentfile, "rb"); 

    if (!in_file) { 

      printf("File Error, can't find %s", currentfile); 

      exit(1); 

    } 
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    printf("Loading %s\n", currentfile); 

 

    int base = scan_num - start; 

    fread(raw_data[base][0], BYTES_PER_PIXEL, DIM*DIM, in_file); 

    fclose(in_file); 

  } 

 

  Timer clk = Timer(); 

  clk.Start(); 

 

  int count = 0; 

  int total_voxels = (int)powf(OUT_DIM, 3); 

  int prev_percent = 0, percent_done = 0; 

 

  // Feldkamp algorithm 

  for(x = 0; x < OUT_DIM; x++) { 

    for (y = 0; y < OUT_DIM; y++) { 

      for (z = 0; z < OUT_DIM; z++, count++) { 

 i = 0.0f; 

 for (scan_num = start; scan_num < start+RANGE; scan_num++) { 

   beta = scan_num*1.5f*DEGTORAD; 

   s =  x * cos(beta) + y * sin(beta); 

   t = -x * sin(beta) + y * cos(beta); 

   u = (t * D) / (D - s); 

   v = (z * D) / (D - s); 

   w = pow(D / (D - s), 2); 

 

   int data_u = (int)u; 

   int data_v = (int)v; 

   if ((data_u >= 0 && data_u < OUT_DIM) && 

       (data_v >= 0 && data_v < OUT_DIM)) { 

     i += w*raw_data[scan_num][data_u][data_v]; 

   } 

 } 

 intensity[x][y][z] = i; 

 

 // display progress 

 prev_percent = percent_done; 

 percent_done = (int)((count/(total_voxels*1.0f))*101); 

 if (percent_done != prev_percent) 

   printf("%3d%% complete\n", percent_done); 

      } 

    } 

  } 

 

  clk.Stop(); 

  printf("Elapsed time: %f\n", clk.Time()); 

} 

 

// draw the reconstructed scan model 

void Reconstruction::draw(bool wire) { 

  for (int x = 0; x < OUT_DIM; x++) { 

    for (int y = 0; y < OUT_DIM; y++) { 

      for (int z = 0; z < OUT_DIM; z++) { 

  float c = (1.0f*intensity[x][y][z]) / MAX_INTENSITY; 

  if (c > EPSILON) { 

    glColor3f(c, c, c); 
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    // points are much faster to draw 

    if (wire) { 

      // draw a point 

   glBegin(GL_POINTS); 

   glVertex3f(x, y, z); 

   glEnd(); 

    } 

    else { 

      // draw a cube 

   glBegin(GL_QUADS);      

    

 

   glVertex3f(x , y  , z-1.0f); 

   glVertex3f(x-1.0f , y  , z-1.0f); 

   glVertex3f(x-1.0f , y  , z  ); 

   glVertex3f(x , y  , z  ); 

 

   glVertex3f(x , y-1.0f, z  ); 

   glVertex3f(x-1.0f , y-1.0f, z  ); 

   glVertex3f(x-1.0f , y-1.0f, z-1.0f ); 

   glVertex3f(x , y-1.0f, z-1.0f ); 

 

   glVertex3f(x,  y,  z); 

   glVertex3f(x-1.0f, y,  z); 

   glVertex3f(x-1.0f, y-1.0f, z); 

   glVertex3f(x,  y-1.0f, z); 

 

   glVertex3f(x,  y-1.0f, z-1.0f); 

   glVertex3f(x-1.0f, y-1.0f, z-1.0f); 

   glVertex3f(x-1.0f, y,  z-1.0f); 

   glVertex3f(x,  y,  z-1.0f); 

 

   glVertex3f(x-1.0f, y,  z  ); 

   glVertex3f(x-1.0f, y,  z-1.0f ); 

   glVertex3f(x-1.0f, y-1.0f, z-1.0f ); 

   glVertex3f(x-1.0f, y-1.0f,  z  ); 

 

   glVertex3f(x, y,  z-1.0f ); 

   glVertex3f(x, y,  z  ); 

   glVertex3f(x, y-1.0f,  z  ); 

   glVertex3f(x, y-1.0f, z-1.0f ); 

 

   glEnd(); 

    } 

  } 

      } 

    } 

  } 

} 
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////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// timer.h             // 

// Defines a timer object. This code was taken from CS445,      // 

// Intro. to Computer Graphics with Greg Humphreys.      // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#ifndef TIMER_H 

#define TIMER_H 

 

#if defined( _unix ) 

#include <sys/time.h> 

#elif defined( _WIN32 ) 

#include <windows.h> 

#endif 

 

 class Timer { 

 public: 

  Timer(); 

  ~Timer(); 

 

  void Start(); 

  void Stop(); 

  void Reset(); 

 

  double Time(); 

 

 private: 

  double time0, elapsed; 

  bool running; 

  double GetTime(); 

 

#if defined( __sgi ) 

  int fd; 

  unsigned long long counter64; 

  unsigned int counter32; 

  unsigned int cycleval; 

 

  typedef unsigned long long iotimer64_t; 

  typedef unsigned int iotimer32_t; 

  volatile iotimer64_t *iotimer_addr64; 

  volatile iotimer32_t *iotimer_addr32; 

 

  void *unmapLocation; 

  int unmapSize; 

#elif defined( _WIN32 ) 

  LARGE_INTEGER performance_counter, performance_frequency; 

  double one_over_frequency; 

#elif defined( _unix ) 

  struct timeval timeofday; 

#endif 

 }; 

#endif 
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////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// timer_win.cpp            // 

// Implements a timer object. This code was taken from CS445,   // 

// Intro. to Computer Graphics with Greg Humphreys.      // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#include <iostream> 

 

using namespace std; 

 

#if defined( __sgi )  

#include <stddef.h> 

#include <fcntl.h> 

#include <sys/time.h> 

#include <sys/types.h> 

#include <sys/mman.h> 

#include <sys/syssgi.h> 

#include <sys/errno.h> 

#include <unistd.h> 

#elif defined( _WIN32 ) 

#include <windows.h> 

#elif defined( _unix ) 

#include <sys/time.h> 

#elif defined( powerc ) 

#include <ctime> 

#else 

#error TIMER ARCHITECTURE 

#endif 

#include "timer.h" 

 

Timer::Timer() 

{ 

#if defined( __sgi ) 

 __psunsigned_t phys_addr, raddr; 

 int poffmask = getpagesize() - 1; 

 int counterSize = syssgi(SGI_CYCLECNTR_SIZE); 

 

 phys_addr = syssgi(SGI_QUERY_CYCLECNTR, &(cycleval)); 

 if (phys_addr == ENODEV) { 

  cerr << "Sorry, this SGI doesn't support timers." << endl; 

  exit(0); 

 } 

 

 raddr = phys_addr & ~poffmask; 

 fd = open("/dev/mmem", O_RDONLY); 

 

 if (counterSize == 64) { 

  iotimer_addr64 = 

   (volatile iotimer64_t *)mmap(0, poffmask, PROT_READ, 

            

      MAP_PRIVATE, fd, (off_t)raddr); 

  unmapLocation = (void *)iotimer_addr64; 
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  unmapSize = poffmask; 

  iotimer_addr64 = (iotimer64_t 

*)((__psunsigned_t)iotimer_addr64 + 

    (phys_addr & poffmask)); 

 } 

 else if (counterSize == 32) { 

  iotimer_addr32 = (volatile iotimer32_t *)mmap(0, poffmask, 

PROT_READ, 

    MAP_PRIVATE, fd, 

    (off_t)raddr); 

  unmapLocation = (void *)iotimer_addr32; 

  unmapSize = poffmask; 

  iotimer_addr32 = (iotimer32_t 

*)((__psunsigned_t)iotimer_addr32 + 

    (phys_addr & poffmask)); 

 } 

 else { 

  cerr << "Fatal timer init error" << endl; 

  exit(0); 

 } 

#elif defined( _WIN32 ) 

 QueryPerformanceFrequency( &performance_frequency ); 

 one_over_frequency = 1.0/((double)performance_frequency.QuadPart); 

#endif 

 time0 = elapsed = 0; 

 running = 0; 

} 

 

 

double Timer::GetTime() 

{ 

#if defined( __sgi ) 

 if (iotimer_addr64) { 

  volatile iotimer64_t counter_value; 

  counter_value = *(iotimer_addr64); 

  return ((double) counter_value * .000000000001) * (double) 

cycleval; 

 } 

 else { 

  volatile iotimer32_t counter_value; 

  counter_value = *(iotimer_addr32); 

  return ((double) counter_value * .000000000001) * (double) 

cycleval; 

 } 

#elif defined( _WIN32 ) 

 QueryPerformanceCounter( &performance_counter ); 

 return (double) performance_counter.QuadPart * one_over_frequency; 

#elif defined( _unix ) 

 gettimeofday( &timeofday, NULL ); 

 return timeofday.tv_sec + timeofday.tv_usec / 1000000.0; 

#elif defined( powerc ) 

 return (double) clock() / CLOCKS_PER_SEC; 

#else 

#error TIMER ARCH 

#endif 

} 
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Timer::~Timer() 

{ 

#if defined( __sgi ) 

 close( fd ); 

#endif 

} 

 

void Timer::Start() 

{ 

    running = 1; 

    time0 = GetTime(); 

} 

 

void Timer::Stop() 

{ 

    running = 0; 

 

    elapsed += GetTime() - time0; 

} 

 

void Timer::Reset() 

{ 

    running = 0; 

    elapsed = 0; 

} 

 

double Timer::Time() 

{ 

 if (running) { 

  Stop(); 

  Start(); 

 } 

 return elapsed; 

} 
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////////////////////////////////////////////////////////////////// 

//                   // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// main.cpp             // 

// Application entry point for visualization tool               // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#include "reconstruction.h" 

#include "timer.h" 

#include "camera.h" 

#include "timer.h" 

#include <iostream> 

#include <math.h> 

#include <time.h> 

using namespace std; 

 

#define NEAR_PLANE 0.1f 

#define FAR_PLANE 10000.0f 

#define ASPECT_RATIO 1.6f 

#define X_SENSITIVITY .25f 

#define Y_SENSITIVITY .08f 

#define WIDTH 640 

#define HEIGHT 480 

 

// flags 

bool wPressed, sPressed, aPressed, dPressed, rPressed; 

bool fullScreen = true, recticle = false, wire = false; 

// keep frames synched 

Timer frameTimer; 

float lastTime; 

// mouse positions 

Point2D oldMouse; 

Vector oldPos; 

// instanciations of Reconstruction and Camera 

Reconstruction *model; 

Camera *cam; 

 

void clearMatrices() { 

  glMatrixMode(GL_MODELVIEW); 

  glLoadIdentity(); 

  glMatrixMode(GL_PROJECTION); 

  glLoadIdentity(); 

} 

 

void display( void ) 

{ 

  glutWarpPointer(WIDTH / 2, HEIGHT / 2); 

  // clear out matrices and buffers 

  glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

  clearMatrices(); 

  gluPerspective(45.0, ASPECT_RATIO, NEAR_PLANE, FAR_PLANE); 

   

  glRotatef(-cam->angle.y, 1.0f, 0.0f, 0.0f); 

  glRotatef(-cam->angle.x, 0.0f, 1.0f, 0.0f); 
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  glTranslatef(-cam->pos.x, -cam->pos.y, -cam->pos.z); 

   

  // draw the scene 

  model->draw(wire); 

   

  glColor3f(1.0f, 1.0f, 1.0f); 

   

  // draw recticle (easier to aim camera) 

  if (recticle) { 

    glDisable(GL_LIGHTING); 

    glDisable(GL_TEXTURE_2D); 

    clearMatrices(); 

    gluOrtho2D(-4.0f, 4.0f, -3.0f, 3.0f); 

    glLineWidth(2.0f); 

    glColor3f(1.0f, 1.0f, 0.0f); 

    glBegin(GL_LINES); 

    glVertex2f(-0.1250f, 0.0f); 

    glVertex2f(-0.0625f, 0.0f); 

    glVertex2f( 0.0625f, 0.0f); 

    glVertex2f( 0.1250f, 0.0f); 

    glVertex2f(0.0f,-0.1250f); 

    glVertex2f(0.0f,-0.0625f); 

    glVertex2f(0.0f, 0.0625f); 

    glVertex2f(0.0f, 0.1250f); 

    glEnd(); 

  } 

  glColor3f(1.0f, 1.0f, 1.0f); 

  glutSwapBuffers(); 

} 

 

void initgl(void) 

{ 

  glClearColor(0.0f, 0.0f, 0.0f, 0.0f);     

  glClearDepth(1.0);         

  glDepthFunc(GL_LESS);         

  glEnable(GL_DEPTH_TEST);        

  glEnable(GL_CULL_FACE); 

  glFrontFace(GL_CW); 

  glShadeModel(GL_SMOOTH);        

  glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); 

  glutFullScreen(); 

  glutSetCursor(GLUT_CURSOR_NONE); 

  // init flags 

  wPressed = sPressed = aPressed = dPressed = rPressed = false; 

  frameTimer.Start(); 

  cam->pos.x = model->pStart.x; 

  cam->pos.z = model->pStart.y; 

   

  glPolygonMode(GL_FRONT, GL_FILL); 

} 

 

void reshape( int w, int h ) 

{ 

  static int first = 1; 

  if (first) 

    { 

      first = 0; 
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      initgl(); 

    } 

  glViewport( 0, 0, w, h ); 

  clearMatrices(); 

  gluPerspective(45.0, ASPECT_RATIO, NEAR_PLANE, FAR_PLANE); 

  glutPostRedisplay(); 

} 

 

void keyboard( unsigned char key, int x, int y ) 

{ 

  // ESC to quit 

  if (key == 27) 

    { 

      exit(1); 

    } 

  // w to walk forward 

  if (key == 87 || key == 119) 

    { 

      wPressed = true; 

    } 

  // s to walk backward 

  if (key == 83 || key == 115) 

    { 

      sPressed = true; 

    } 

  // a to walk left 

  if (key == 65 || key == 97) 

    { 

      aPressed = true; 

    } 

  // d to walk right 

  if (key == 68 || key == 100) 

    { 

      dPressed = true; 

    } 

  // r for recticle (aimer) 

  if (key == 82 || key == 114) { 

    recticle = !recticle; 

  } 

  // for full screen 

  if (key == 70 || key == 102) { 

    if (fullScreen) { 

      glutReshapeWindow(WIDTH, HEIGHT); 

      glutPositionWindow(0, 0); 

    } 

    else glutFullScreen(); 

     

    fullScreen = !fullScreen; 

  } 

  // q for wireframe 

  if (key == 81 || key == 113) 

    { 

      wire = !wire; 

    } 

  glutPostRedisplay(); 

} 
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void keyup( unsigned char key, int x, int y ) 

{ 

  // w to walk forward 

  if (key == 87 || key == 119) 

    { 

      wPressed = false; 

    } 

  // s to walk backward 

  if (key == 83 || key == 115) 

    { 

      sPressed = false; 

    } 

  // a to walk left 

  if (key == 65 || key == 97) 

    { 

      aPressed = false; 

    } 

  // d to walk right 

  if (key == 68 || key == 100) 

    { 

      dPressed = false; 

    } 

  glutPostRedisplay(); 

} 

 

// idle function 

void idle() { 

  float xMove, yMove, zMove; 

  float timeElapsed = frameTimer.Time() - lastTime; 

  float distance = timeElapsed * cam->speed; 

   

  // adjust pitch and yaw 

  xMove = sinf(cam->angle.x* DEGTORAD) * distance; 

  yMove = sinf(cam->angle.y* DEGTORAD) * distance; 

  zMove = cosf(cam->angle.x* DEGTORAD) * distance; 

   

  float delta = 10.f; 

  // move the camera based on input 

  if (wPressed) { 

    cam->velocity.x = xMove; 

    cam->velocity.y = yMove; 

    cam->velocity.z = zMove; 

    cam->pos.x -= cam->velocity.x; 

    cam->pos.y += cam->velocity.y; 

    cam->pos.z -= cam->velocity.z; 

  } 

  if (sPressed) { 

    cam->velocity.x = xMove; 

    cam->velocity.y = yMove; 

    cam->velocity.z = zMove; 

    cam->pos.x += cam->velocity.x; 

    cam->pos.y -= cam->velocity.y; 

    cam->pos.z += cam->velocity.z; 

  } 

  if (aPressed) { 

    cam->velocity.x = -zMove; 

    cam->velocity.z = xMove; 
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    cam->pos.x += cam->velocity.x; 

    cam->pos.z += cam->velocity.z; 

  } 

  if (dPressed) { 

    cam->velocity.x = -zMove; 

    cam->velocity.z = xMove; 

    cam->pos.x -= cam->velocity.x; 

    cam->pos.z -= cam->velocity.z; 

  } 

  // reset timers and repaint 

  if (cam->angle.z >= 2*PI) cam->angle.z = 0.0f; 

  if (frameTimer.Time() > 1.0) { 

    frameTimer.Reset(); 

    frameTimer.Start(); 

  } 

  lastTime = frameTimer.Time(); 

  oldPos.x = cam->pos.x; 

  oldPos.z = cam->pos.z; 

  glutPostRedisplay(); 

} 

 

static bool doing_it = false; 

 

void mouse( int button, int state, int x, int y ) 

{ 

  if (state == GLUT_UP) 

    { 

      doing_it = true; 

    } 

  else doing_it = false; 

  glutPostRedisplay(); 

} 

 

void look( int x, int y ) 

{  

  int tempX = x - WIDTH/2; 

  int tempY = y - HEIGHT/2; 

  cam->angle.x -= tempX * X_SENSITIVITY; 

  cam->angle.y -= tempY * Y_SENSITIVITY; 

  glutPostRedisplay(); 

} 

 

int main( int argc, char *argv[] ) 

{ 

  char *filename = "../../CTdata/3Dtest"; 

   

  if (argc == 2) { 

    filename = argv[1]; 

  } 

   

  glutInit( &argc, argv ); 

  glutInitWindowSize(WIDTH, HEIGHT); 

  glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE ); 

   

  glutCreateWindow( "Reconstruction Viewer 1.0" ); 

  glutDisplayFunc( display ); 

  glutReshapeFunc( reshape ); 
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  glutKeyboardFunc( keyboard ); 

  glutKeyboardUpFunc( keyup ); 

  glutMouseFunc( mouse ); 

  glutPassiveMotionFunc( look ); 

  glutIdleFunc( idle ); 

   

  cam = new Camera(); 

  model = new Reconstruction(filename); 

   

  glutMainLoop();   

  delete cam; 

  delete model; 

  return 0; 

} 
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LISTING 4 - Complete code listing for parallel (GPU) backprojection code, including two .cu files (created 
by author) 

 
////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// gpuct.cu             // 

// Application entry point for GPU backprojection program. This // 

// loads the CT data from disk and calls the GPU processing     // 

// function.                      // 

////////////////////////////////////////////////////////////////// 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

 

#ifdef _WIN32 

#include <gpuct_kernel.cu> 

#endif 

 

const int SCAN_DIM = 1024; 

const int AREA = 1048576; 

const int BYTES_PER_PIXEL = 2; 

 

// forward declaration 

extern "C" void CUDA_backproject_scans(float *out_intensity, short int 

 *scan_mem, const int &range, const int &out_dim, const int 

 &intensity_mem_size, const int &scan_mem_size, const int 

 &total_voxels); 

 

int main(int argc, char **argv) 

{ 

 int i, j, scan_num, start, range, out_dim, scan_mem_size, 

    intensity_mem_size, total_voxels, io = 0; 

 char *filepath; 

 FILE *in_file; 

 char currentfile[256]; 

 char scannumbuf[20]; 

 

 // scan data matrix 

 short int* scan_mem; 

 short int ***scan_data; 

 

 // Args: starting file path, start #, RANGE 

 if (argc == 6) { 

  filepath = argv[1]; 

  start = atoi(argv[2]); 

  range = atoi(argv[3]); 

  out_dim = atoi(argv[4]); 

  io = atoi(argv[5]); 

 } 
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 else { 

printf("Argument error: Need path, start, range, and out 

  file resolution\n"); 

  exit(1); 

 } 

 

 // pre-compute memory usage 

 scan_mem_size = range*AREA*sizeof(short int); 

 total_voxels = (int)powf(out_dim, 3); 

 intensity_mem_size = total_voxels*sizeof(float); 

 

 // Set up scan data matrix 

 scan_mem = (short int*)malloc(scan_mem_size); 

 scan_data = (short int***)malloc(range*sizeof(short int**)); 

 

 for (i = 0; i < range; i++) { 

  scan_data[i] = (short int**)malloc(SCAN_DIM 

   *sizeof(short int*)); 

 } 

 

 // make memory contiguous 

 for (i = 0; i < range; i++) { 

  for (j = 0; j < SCAN_DIM; j++) { 

   scan_data[i][j] = &scan_mem[SCAN_DIM*(i*range+j)]; 

  } 

 } 

 

 // read in all scans from disk 

 for (scan_num = start; scan_num < start + range; scan_num++) { 

  // get file names to load 

  strcpy(currentfile, filepath); 

  strcat(currentfile, "."); 

  sprintf(scannumbuf, "%d", scan_num); 

  strcat(currentfile, scannumbuf); 

 

  in_file = fopen(currentfile, "rb"); 

  if (!in_file)  

   perror("File Error"); 

 

  int base = scan_num - start; 

 

  fread(scan_data[base][0], BYTES_PER_PIXEL, AREA, in_file); 

  fclose(in_file); 

 } 

 

 float *intensity = (float*)malloc(intensity_mem_size); 

 

 // GPU call 

 CUDA_backproject_scans(intensity, scan_mem, range, out_dim, 

     intensity_mem_size, scan_mem_size, total_voxels); 

 

 if (io) { 

  for(i = 0; i < powf(out_dim, 3); i++) { 

   printf("%f\n", intensity[i]); 

  } 

 } 
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 free(scan_mem); 

 free(scan_data); 

 free(intensity); 

 

 return 0; 

} 

 
 
 
////////////////////////////////////////////////////////////////// 

//              // 

// Drew Maier            // 

// 4th Year Thesis Project          // 

//              // 

// gpuct_kernel.cu                 // 

// Definition of GPU program. This transfers scans to GPU and   // 

// computes each voxel intensity.               // 

//              // 

////////////////////////////////////////////////////////////////// 

 

#ifndef _GPUCT_KERNEL_H_ 

#define _GPUCT_KERNEL_H_ 

#include <cutil.h> 

#include <stdio.h> 

 

// primitive task function 

__global__ void CUDA_func(short int* scan, float* intensity, 

  int *out_dim, int *scan_range) { 

 

  __constant__ int SCAN_DIM = 1024;  

  __constant__ float DEGTORAD = 0.01745f;  

  __constant__ float D = 5.0f; 

  __constant__ float ANGLE_INC = 1.5f; 

 

  __shared__ int dim; 

  __shared__ int range; 

  __shared__ short int* scan_data; 

 

  dim = *out_dim; 

  range = *scan_range; 

  scan_data = scan; 

   

  // calculate the thread ID 

  int tID = (blockIdx.x*blockDim.x*blockDim.y) 

+ (threadIdx.x + threadIdx.y*blockDim.x); 

 

  // translate the thread ID into x,y,z coordinates 

  int x = blockIdx.y; 

  int y = tID / dim; 

  int z = tID % dim; 

 

  float beta, d, s, t, u, v, w, vox_intensity = 0.0f; 

  int scan_num, data_u, data_v, index; 

 

  // Feldkamp algorithm 

  for (scan_num = 0; scan_num < range; scan_num++) { 



 67 

    beta = scan_num*ANGLE_INC*DEGTORAD; 

    s =  x * cosf(beta) + y * sinf(beta); 

    t = -x * sinf(beta) + y * cosf(beta); 

    d = D / (D - s); 

    u = t * d; 

    v = z * d; 

    w = pow(d, 2); 

    data_u = (int)u; 

    data_v = (int)v; 

 

    if ((data_u >= 0 && data_u < dim) && 

 (data_v >= 0 && data_v < dim)) { 

      // translate 3D coordinates to 1D array 

      index = data_v + SCAN_DIM*(data_u + scan_num * range); 

      vox_intensity += w*scan_data[index]; 

    } 

  } 

  int intensity_index = (blockIdx.y*gridDim.x*blockDim.x*blockDim.y) 

+ tID; 

  intensity[intensity_index] = vox_intensity; 

} 

 

// sets up GPU for computation 

extern "C" void CUDA_backproject_scans(float *out_intensity, short int 

*scan_mem, const int &range, const int &out_dim, const int 

&intensity_mem_size, const int &scan_mem_size, const int 

&total_voxels) { 

 

  // allocate scan memory on GPU 

  short int *scan_GPU; 

  cudaMalloc((void**)&scan_GPU, scan_mem_size); 

  // move scans onto GPU 

  cudaMemcpy(scan_GPU, scan_mem, scan_mem_size, cudaMemcpyHostToDevice); 

 

  // allocate memory for results from GPU 

  float *intensity_GPU; 

  cudaMalloc((void**)&intensity_GPU, intensity_mem_size); 

 

  // allocate memory for dimension on GPU 

  int *dim_GPU; 

  cudaMalloc((void**)&dim_GPU, sizeof(int)); 

  // put output dimension on GPU 

  cudaMemcpy(dim_GPU, &out_dim, sizeof(int), cudaMemcpyHostToDevice); 

 

  // allocate memory for range on GPU 

  int *range_GPU; 

  cudaMalloc((void**)&range_GPU, sizeof(int)); 

  // put range on GPU 

  cudaMemcpy(range_GPU, &range, sizeof(int), cudaMemcpyHostToDevice); 

 

  // 16x16 is the sweet spot 

  int BSIZE = 16; 

 

  // set up thread blocks 

  dim3 dimBlock(BSIZE, BSIZE); 

 

  // create grid of blocks 
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  int gx = powf(out_dim/BSIZE,2); 

  int gy = out_dim; 

  dim3 dimGrid(gx, gy); 

   

  // run the function 

  CUDA_func<<<dimGrid, dimBlock>>>(scan_GPU, intensity_GPU, dim_GPU, 

     range_GPU); 

 

  // copy computed answer back to host 

  cudaMemcpy(out_intensity, intensity_GPU, intensity_mem_size, 

 cudaMemcpyDeviceToHost); 

 

  cudaFree(scan_GPU); 

  cudaFree(intensity_GPU); 

  cudaFree(dim_GPU); 

  cudaFree(range_GPU); 

} 

 

#endif 
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APPENDIX E – PROJECT UPDATE 

 
Since completing this document over a month ago, I have continued research for 

GPUCT.  Prof. Skadron has kindly allowed me to work on this project full-time this 

summer until I move in August.  We hope to make significant progress with the 

program’s output and hope to accomplish some of the goals I set out in the last chapter of 

this thesis report.  Our ultimate goal is to publish a paper on using CUDA for CT 

reconstruction. 

I recently met with a post-doctorate who has experience with the FDK algorithm.  

Seeing my output, he believes that I am implementing the algorithm incorrectly.  He 

stated that filtering would only enhance the quality of otherwise correct output, but would 

not explain incorrect surfaces.  Thus, I must experiment with my implementation of the 

FDK algorithm, making sure that I am manipulating the input data correctly.  With more 

time to devote to this research, I should be able to fix this quickly. 

 

Drew Maier 

April 27, 2007 

 

 




