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GLOSSARY OF TERMS 

And Gate – a digital logic element that outputs a logic high signal if both of its inputs are 

logic high signals. 

Clock Gating – the practice of placing an and gate in front of the clock input to a circuit, 

effectively creating an enable signal for the clock signal going into the circuit, and 

allowing the designer of the chip to disable sections of the chip whey they are not needed 

by lowering this enable signal (Li et al., 2003, p. 1) 

Fragment Program – program that the graphics processor executes that tells the graphics 

processor how to color and order the pixels it processes 

Index Rendering – using several asynchronous data flows that are converged by the index 

to render an image (Liang, Lee, Yeh, and Jen, 2002, p. 343) 

Pixels – colored points that form images when a computer monitor displays them 

Prefetching – guessing which pixels are likely to be used and placing these in the pixel 

cache (Park et al., 2003, p. 1501) 

Programmability – ability to change the hardware operations of a graphics processor 

Vertex Program – program that the graphics processor executes that tells the graphics 

processor how to move and color the vertices it processes 

Rasterization – the process of converting triangles from descriptions of vertices and 

colors in the memory of a computer to sets of pixels 

Rendering pipeline – the sequence of steps a program takes to transform a model of a 

scene in memory into a set of pixels to display 
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ABSTRACT 

 This project determined the relationship between the different programmable 

operations, specifically vertex and fragment program operations, of a graphics processor 

and how much energy it consumes.  It is necessary because modern graphics processors 

are consuming more power than ever before, and the need for power-conservative 

graphics processors is rapidly rising, as embedded applications of computer graphics are 

becoming widespread.  This project is founded upon an experiment in which Tiwari 

repeatedly executed the operations of a computer processor and recorded the amount of 

power each type consumed.  This opened the door for power models based upon 

empirical power characterizations of processors.   

 In order to reveal this relationship, programs were written that rendered arrays of 

millions of vertices repeatedly using arbitrary vertex and fragment programs.  Test vertex 

and fragment programs that repeated each vertex and fragment program operation were 

then written.  Finally, the power consumption of the NVIDIA GeForce FX 5900 was 

empirically observed while rendering the vertices using each of the test programs. 

 The results of the experiment were surprising.  The experiment showed that there 

is no relationship between which vertex or fragment operation the graphics processor 

executes and how much power it consumes.  This is probably because the processor does 

not use clock gating.  This project is still useful, however, because it shows that the 

programmer’s choice of operations does not affect power consumption, it reveals that the 

processor’s architecture does not use clock gating, and it provides a framework to easily 

determine the relationship between choice of operation and power consumption on future 

clock-gated graphics processors. 

 vi



CHAPTER ONE: THE NEED FOR A POWER CHARACTERIZATION 

 Modern graphics processors have shattered expectations and unleashed 

imaginations in ways that were only dreamed about until recently, but have also 

consumed more power and produced more heat than ever before.  Currently, researchers 

know little about the relationship between the operations that a graphics processor 

executes and the amount of power it consumes.  This project determined that no 

relationship exists between which operation a programmable graphics card executes and 

how much energy the card consumes.   

HISTORY OF GRAPHICS PROCESSORS 

 To begin to understand why an examination of this relationship is important, we 

will first examine the history of computer graphics hardware, summarized in Figure 1.  

Primitive personal computers contained very little specialized graphics hardware and 

mainly displayed text.  The first advances in graphics hardware came from companies 

that specialized in creating advanced graphics computers and displays, such as Silicon 

Graphics.  These machines were too expensive for the mainstream of personal 

A History of Graphics Processors 
Generation: New Features: Example Cards: 

First 
(1998) 

Rasterizing triangles, applying 
textures 

RIVA TNT2, ATI Rage, 3Dfx 
Voodoo3 

Second 
(1999) 

3D vertex transformation and 
lighting 

NVIDIA GeForce 2, ATI 
Radeon 7500 

Third 
(2001) 

Vertex and Fragment 
Processing Customization 

NVIDIA GeForce 3/4, ATI 
Radeon 8500 

Fourth 
(2003) 

Vertex and Fragment 
Programmability 

NVIDIA GeForce FX, ATI 
Radeon 9700 

Figure 1.  A History of Graphics Processors.  [Adapted by  
Richard David McWhorter, III from Fernado and Kilgard, 2003, p. 10-12] 



computing, but their developers were responsible for many of the foundational concepts 

of computer graphics (Fernando and Kilgard, 2003, p. 10). 

 The first mainstream graphics processors became widely available around 1998.  

These cards could rasterize triangles and apply textures to these images.  Triangle 

rasterization refers to the process of converting triangles from descriptions of vertices and 

colors in the memory of a computer to sets of pixels, or colored points that form images 

when a computer monitor displays them.  Texturization refers to the process of applying 

an image, or texture, to the surface of a geometric object to make it look real.  The second 

generation of graphics processors, circa 1999, added the ability to transform a scene, or 

change the perspective of the viewer to the scene, and to light a scene, or change the 

brightness of objects in the scene and the background of the scene, in hardware.   

The third set, released in 2001, offered highly configurable vertex and pixel level 

processing.  This vertex and pixel level processing lets developers specify a few 

customized operations that the graphics processor applies to each vertex and pixel, 

respectively (Fernando and Kilgard, 2003, p. 10-11).  Up to this point in time, graphics 

processors contained no real programmability, or ability to change the hardware 

operations of the processor.  This lack of programmability meant that the decisions a 

developer made in implementing a program that used the graphics processor caused little 

to no variation in the power consumption of the graphics processor.  

ENERGY AMBIGUITY OF MODERN GRAPHICS PROCESSORS 

 The fourth and current (as of this writing) generation of graphics processors 

feature fully programmable vertex and fragment engines.  This means that the 

programmer can write programs to tell the graphics processor how to move the vertices, 
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using vertex programs, and how to color the pixels of an image, using fragment programs 

(Fernando and Kilgard, 2003, p. 11).   

This capability to program the graphics processor is very significant because it is 

enormously powerful, and represents a way in which processor behavior can vary, based 

upon the design of a graphics program.  Prior to the introduction of programmable 

graphics processors, the set of operations that the processor performed was a relatively 

fixed part of the rendering pipeline, or the sequence of steps a program takes to transform 

a model of a scene in memory into a set of pixels to display.  Before the programmer 

could precisely control the graphics processor through these vertex and fragment engines, 

it was reasonable to assume that the amount of power the graphics processor consumed 

was relatively constant.  This was because the graphics processor was doing the same 

things for each vertex and each fragment it processed.  Now the graphics processor’s 

power consumption could vary easily, based upon the operations the programmer wants 

the graphics processor to execute. 

POWER CONSUMPTION OF PROGRAMMABLE GRAPHICS PROCESSORS 

This variation or programmability of the graphics processor is the subject of 

investigation for this project.  The aim of this project is to show the relationship between 

the different choices that the programmer makes and how much power the graphics card 

consumes.  Knowing this relationship is significant for many reasons including enhancing 

the design of software and hardware for minimal power consumption and designing 

hardware to maximize thermal efficiency. 

The scope of this project was limited in that it examined a specific graphics 

processor to gain an understanding of how different programmable operations of a 

 3



graphics processor consume power.  The project examined only one processor because of 

the limited time frame of the project and the amount of work required to test each 

graphics processor.  The original aim of the project was to determine empirically the 

amount of power that the NVIDIA GeForce FX 5900 graphics card consumes while 

performing each vertex and fragment operation; integrate these results into Qsilver, a 

computer graphics architecture simulator explained later in this report; and provide 

examples of how vertex and fragment programs could be optimized based upon these 

results.  Because the outcome of the experiment was much different than expected, the 

report instead presents the results of the experiment to determine empirically the power 

consumption of the graphics card while performing each vertex and fragment program 

operation and discusses numerous implications of these results. 

OVERVIEW OF PROJECT PROCEDURES 

 To achieve a clear model of how a graphics processor consumes power, the 

following procedures were completed: 

 Observed the relationship between power consumption and the number of vertices 

processed by the graphics card as a preliminary experiment 

 Observed the amount of power the graphics processor consumes for each vertex 

and fragment program operation 

 Inferred information about the probable architecture of the graphics processor 

from the above power consumption data 
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OVERVIEW OF THE REPORT 

The balance of this report takes a step back to examine the context of the project 

and then presents the details of the research.  First, it considers the broader social and 

ethical dimensions of the research, including how it affects the computer graphics 

community, graphics hardware manufacturers, and graphics card consumers to place the 

project in the appropriate context.  Next, it examines the existing research in the fields of 

computer architecture and computer graphics to determine the value of this power 

characterization.  The relevant research includes architecture-level CPU power 

characterizations, existing power consumption minimization efforts, and power 

consumption research specific to graphics.  The report also details the materials used and 

the methods followed in the actual experiments to determine the amount of power 

consumed by each of the vertex and fragment operations.  Next, it reveals the surprising 

results of the power characterization.  Finally, it explores the implications of these results. 

 5



CHAPTER TWO: THE EFFECTS OF A POWER CHARACTERIZATION 

 There are at least three groups of people that affect and are affected by this 

research.  First, it could enable graphics microarchitecture researchers to design more 

thermally efficient graphics processors and to design power optimized graphics software.  

Second, it could have economic impacts on graphics hardware manufacturers.  Third, it 

could enable people who use graphics cards to have faster and more energy efficient 

cards to power their computing, communication, and entertainment.   

COMPUTER GRAPHICS COMMUNITY 

 To begin, the report will examine the effect that this power consumption model 

could have on the computer graphics community.  First, practical applications of the 

project could include allowing researchers to build faster and cooler graphics processors 

using temperature-aware design (Skadron et al., 2003, p. 52) and though redesigning 

power bottlenecks in processor designs.  A program that characterizes how a graphics 

processor consumes power based upon its architecture would be of enormous value to 

those designing graphics processors.  These faster chips, explains Macedonia (2003), 

could also enable the community to make advances in the areas of using graphics 

processors to solve complex math problems and render audio (p. 107-108).   

 The computer graphics research community could also use the power model to 

start building power-optimized graphics software.  When Tiwari et al. (1994) performed 

similar research on the main computer processor, they showed that it is possible to trade 

power consumption for performance by trading high power instructions for lower power 
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ones (p. 444).  Thus, one could operate a high power graphics processor in a reduced 

power consumption mode just by changing the software that it runs. 

GRAPHICS CARD MANUFACTURERS 

 Next, the report will examine the impact of the power model on graphics card 

manufacturers.  In a free market economic system such as that of the United States, 

financial profit primarily drives technical development.  In particular, Takahashi (2003) 

notes, two corporations currently dominate the market for stand-alone graphics cards and 

battle each other constantly for business: NVIDIA Corporation, or NVIDIA, and Array 

Technology Inc., or ATI (p. 23).  The implications of understanding how their graphics 

cards consume power could give either corporation an advantage, particularly in the areas 

of embedded and mobile computing.   

For example, if ATI discovers a way to reduce their mobile chip’s power 

consumption by even ten percent from an instruction-level power model, computer 

manufacturers could decide to buy ATI chips instead of NVIDIA chips and thus ATI 

would gain market share.  Perhaps even more significantly, imagine a competitor that is 

currently not doing well in the consumer graphics market, such as 3DLabs or Matrox, 

according to Case, (2002, p. 2), making a breakthrough in their power models and is able 

to produce chips that consume far less power than those of ATI or NVIDIA.  This could 

cause a significant shift in the main competitors in the graphics hardware market.   

Realistically speaking, this is probably only likely to happen if substantial research is 

undertaken in response to this project.  However, if ATI or NVIDIA determined that this 

power research would likely lead to an increase in market share and profit, either could 

jump at the chance to explore the possibilities. 
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Embedded computing is one area of particular interest to graphics hardware 

companies when considering power consumption.  As mentioned above, areas such as 

cellular phones and personal digital assistants are a primary application of power-

optimized graphics.  In the past few years, many companies, including Sun and 

Microsoft, have been pushing forward various application-programmer interfaces for 

mobile computing, such as OpenGL Embedded Systems and Direct3D Mobile (Merritt, 

2003, p. 1).  If a hardware manufacturer is able gain an advantage in implementing these 

interfaces by looking carefully at the power consumption of its cards, this could again 

push the competitive advantage in its favor and result in economic gain for the company.   

This project could also have an economic impact in the area of manufacturing 

costs and reliability.  One of the most significant factors, according to Skadron et al. 

(2003), in keeping manufacturing costs low and chips reliable is the rise in heat density 

that results from speed increases (p. 52).  If, for example, this research exposes that one 

particular operation of a graphics processor is producing a huge amount of heat, then ATI 

or NVIDIA could save money in manufacturing costs and increase the reliability of their 

chips by simply correcting this one operation.  On the other hand, according to Bose et al. 

(2003), reducing power consumption might require additions to the microarchitectural 

design, and microarchitectural complexity often brings increased manufacturing cost and 

often reduces the ability to verify correctness (p. 10).  Hence, the project could have 

positive or negative effects on manufacturing costs. 

GRAPHICS CARD CONSUMERS 

The third and most obvious group that could affect and be affected by the 

development of this power model includes the consumers of graphics hardware.  
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According to Liang et al. (2002), graphics hardware has become a core component of 

multimedia systems, virtual reality, and entertainment (p. 343), as evidenced by the 

record sales of mobile graphics processors in the fourth quarter of 2003 (Jon Peddie 

Research Says PC Graphics Chips Hit Record Highs Q4 2003; Market Shares Shift.,  

2004, p. 1).  Hence, consumers of graphics hardware demand faster graphics processors 

to run their mobile devices as well as their personal computers.  This power consumption 

characterization could enable mobile multimedia devices to become more powerful as it 

enables graphics processors to become faster and cooler.   

Possible negative effects that this speed and temperature improvement could have 

include causing consumers to become more dependent on technology and causing them 

to become less intellectually stimulated as they rely on technology to entertain them.  For 

example, Krikke (2001) explains that in Japan, mobile phones are replacing the personal 

computers as the primary gateway to the Internet (p. 9) and that at every moment people 

have web sites available to keep them occupied instead of educational and service-

oriented activities.   

From an examination of the effect that this project could have on these three 

groups of people, it would seem that the potential for negative and positive effects exist.  

The project could bring faster and more energy-efficient graphics cards and increased 

competition among graphics card manufacturers.  It could also increase widespread 

dependence upon technology.  Nevertheless, it also seems reasonably clear that there is 

far greater potential for good to arise from the project than for the project to cause harm 

on those it affects.
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CHAPTER THREE: THE BASIS FOR A POWER CHARACTERIZATION 

To set the stage for exactly what this project involves, the report now turns to 

examine the ideas that experts in the fields of computer graphics and computer 

architecture have produced that form the basis for this project.  First, it steps back to the 

level of the computer processor and examines how researchers developed an architecture-

level model of the power consumption of the central processor and the many advances 

that have come because of this model.  Second, it turns to examine existing efforts at 

minimizing graphics processor power consumption.  Finally, it examines the existing 

research relating graphics architectures to power consumption. 

ARCHITECTURE-LEVEL CPU MODEL 

The foundational work for this project is Vivek Tiwari’s (1994) architecture-level 

power characterization of a central processor.  In it, Tiwari explains a method for 

developing a power model for essentially any processor.  Tiwari measures the current 

drawn by a processor while it executes specific types of instructions and uses the supply 

voltage of the processor and execution time of the test program to determine how much 

energy each specific instruction consumes.  For his sample processor, he used this data to 

develop a model of how a central processor consumes power (p. 437-444).   

Tiwari (1994) went on to use this model to propose ways to optimize current 

software for minimal power consumption by using certain instructions liberally.  He 

centered this optimization on replacing the most expensive operations with alternative 

operations that consumed less power (p. 437-444).  Tiwari’s research also inspired a host 

of other advances related to architecture-level power management; for example, Flinn 
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(2004) developed an application that optimizes the instructions a program executes at 

runtime based on power consumption (p. 137).   

 It is interesting to note that in addition to a strict instruction-level empirical power 

characterization, Brandolese et al. (2002) attempted to generalize the power model by 

breaking instructions into different fundamental types and characterizing the power 

consumption of these types (p. 1306-1315).  This is significant because it represents a 

desire to generalize the power consumption model beyond having to take current 

measurements for each individual chip that one wants to characterize.   

POWER CONSUMPTION MINIMIZATION EFFORTS 

 Brooks, Tiwari, and Martonosi realized this desire to have a general power 

consumption model in 2000 when they developed Wattch.  Wattch is a framework for 

characterizing a processor’s power consumption based upon what components are present 

in the microarchitecture.  Brooks, Tiwari, and Martonosi took the empirical power 

consumption data that comes from examining how a processor consumes power and used 

this to determine how the components of the architecture consume power.  Brooks, 

Tiwari, and Martonosi then built this into a configurable tool that architecture designers 

can use to evaluate power consumption long before they actually build their design (p. 

83-93).  Brooks et al. developed a similar framework called PowerTimer in 2003 that 

they based upon a set of energy consumption functions (p. 653). 

COMPUTER GRAPHICS POWER RESEARCH 

 Next, the report will turn to examine some of the existing efforts to reduce the 

power of graphics processors.  Akenine-Moller and Strom (2003) took the approach of 
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attempting to minimize memory accesses in the graphics processing of mobile phones by 

simplifying and approximating some aspects of the rendering process (p. 801).  Park et al. 

(2003) took a similar approach in reducing memory bandwidth but also attempted to 

minimize pixel cache misses using prefetching, or guessing which pixels were likely to 

be used and placing these in the pixel cache (p. 1501).  Woo et al. (2002) went further 

and designed a rendering engine that consumes only 120 milliwatts (mW) of power by 

integrating the memory and the processor into a single chip (p. 1352).  In 2003, 

Kameyama et al. used clock gating, explained later in this report, to lower power 

consumption with a minimal in performance hit on a particular cellular phone.  These 

mobile applications are increasingly important as Krikke (2001) asserts that the cellular 

phone is becoming the primary means of accessing the Internet and its applications (p. 9).   

One particularly interesting effort to reduce graphics processor power came from 

Liang, Lee, Yeh, and Jen in 2002.  They proposed a way to eliminate unnecessary 

operations in the traditional graphics pipeline through index rendering, or using several 

asynchronous data flows that are converged by the index to render the final image (p. 

343).  The efforts so far at reducing graphics power consumption for mobile applications 

have focused largely on the power consumed by memory access.   

 Curiously, there is not an abundance of research related to graphics processors 

and power consumption at the architecture level.  Graphics processor architectures differ 

significantly from computer processor architectures, with graphics processors devoting 

most of their chip area to computational engines and computer processors tending to have 

large amounts of cache (Macedonia, 2003, p. 106-107).  Some of the core components of 

a graphics architecture include pixel pipes, texturing units, and vertex pipelines (Salvator, 
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2004, p. 2) while fundamental central processor components include logic units and many 

cache levels.  Thus, significant differences exist in the way the chips consume power and 

the way software can exploit architectures to maximize efficiency.   

 One interesting development came from Yoon et al. in 2001 when they created a 

specialized multimedia processor for video acceleration and 3-D rendering on embedded 

systems.  They took the approach of designing their architecture from the ground up for 

power consumption optimization by using existing knowledge of various architectural 

components and existing knowledge of how those components consumed power (p. 

1758).  This project aims toward a similar goal, but with a particular thrust toward 

understanding the particular intricacies of graphics components and the ability to model 

arbitrary graphics processors. 

Perhaps a few of the people researching power consumption in graphics 

processors at the architecture level are Shaeffer, Luebke, and Skadron (2004).  They have 

created Qsilver, a microarchitectural simulator of a graphics processor.  They use it to 

explore performance bottlenecks and estimate energy consumption.  Their power model, 

however, is “admittedly crude” because it bases the power consumption assumptions of 

most of the components on estimates available from components in central processors.  

Even from crude models, they found ways to reduce energy consumption at minimal 

performance cost (p. 5).  This further illustrates the importance of an accurate power 

model. 

This project has created an architecture-level power characterization of the 

various operations of a graphics processor that enables detailed simulation of the power 

characteristics of an arbitrary graphics processor.  The research is clearly valuable in the 
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area of graphics hardware development as is evidenced by the existing work in the field, 

including the way similar characterizations had enormous applications for central 

processors and the way it could be used to fill a gap in graphics architecture simulation.   
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CHAPTER FOUR: THE METHOD FOR THE POWER CHARACTERIZATION 

MATERIALS 

Provided by the UVA Computer Science Department: 

- Computer with a 2.8 GHz Intel Pentium 4 

Processor and 1Gb of RAM 

- NVIDIA GeForce FX 5200 (used in 

preliminary power test) 

- NVIDIA GeForce FX 5900 (used in main 

vertex and fragment program tests), 

illustrated in Figure 2. 

Figure 2.  NVIDIA GeForce FX 
5900.  [Created by Richard David 

McWhorter, III.] 

- 2 Samsung 910T 19-inch LCD displays 

- Fluke 189 Digital Multimeter (used to measure 

current going to the graphics processor), 

illustrated in Figure 3. 

- Various Multimeter Test Leads 

- Microsoft Visual Studio .NET 2003 Figure 3.  Fluke 189 
Digital Multimeter  

[Created by Richard 
David McWhorter, III.] Provided by Researcher: 

- RadioShack 22-812 Digital Multimeter (used to measure voltage going to the 

graphics processor), illustrated in Figure 4 on the next page. 

- Multimeter Test Leads 

- Dell Inspiron 8000 Laptop Computer 
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- Various Wires 

- Electrical Tape 

- Wire strippers 

- Molex PC Power Extension Cable (used to measure current and voltage to the 

graphics processor), illustrated in Figure 5. 

 

 

 

Figure 4.  RadioShack 22-812 
Digital Multimeter  [Created by 
Richard David McWhorter, III.] 

Figure 5.  Molex PC Power Extension Cable  
[Created by Richard David McWhorter, III.] 

METHODS 

 In order to accurately characterize how the NVIDIA GeForce FX 5900 consumes 

power, the project involved first writing an accurate test for each of the vertex and 

fragment operations and then running this test while recording power consumption.  

Before this main content could be undertaken, a preliminary test to confirm that power 

consumption was proportional to the number of vertices processed by the graphics 

processor was performed to test the feasibility of the project. 

Preliminary Test 

 In order to illustrate the way in which a stage of the rendering pipeline can be 

isolated and its power consumption characterized, the project started by constructing an 

example program that determines if a linear increase in the number of vertices a program 
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is processing per unit of time implies a linear increase in the amount of power it is 

consuming.  This program drew quadrilaterals on the screen that covered a constant area, 

that is, contained the same number of fragments, but increased the number of vertices 

each time.  The hope was to verify that as the number of vertices increases, power 

consumption increases.  The source for this program is available in Appendix A.   

 This preliminary experiment also illustrated the method of determining power 

consumption.  An ammeter was simply inserted into the external power source of the 

NVIDIA GeForce FX 5200 video card being used in the experiment to determine the 

current it was drawing from the external 5V and 12V lines.  Current was then multiplied 

times the voltage to determine power consumption.  This method is explained in more 

detail in the following tests.   

Vertex and Fragment Program Tests 

 The project then moved into the main test phase.  Here the goal became 

developing test programs that would simply repeat each of the vertex and fragment 

program operations at a regular interval so that the power consumption could be 

recorded.  It is important to understand that two types of programs were designed for this 

project:  general programs that executed on the central processor and made calls to 

configure and control the graphics processor, and vertex and fragment programs which 

actually execute on the graphics processor, but are controlled by the general central 

processor programs.  First, general programs that drew a huge number of vertices in close 

succession using either an arbitrary vertex or fragment program were designed.  Then 

vertex and fragment programs for each vertex and fragment program operation were 

 17



designed.  Finally, the test program was executed for each test vertex and fragment 

program and the power consumption recorded for each vertex and fragment operation. 

 Designing a program that simply rendered vertices in rapid succession using a 

vertex or fragment program proved to be quite a challenge.  To begin, the program 

simply made the appropriate calls to render a small vertex array at a regular interval.  As 

development progressed, however, a better strategy became apparent.  The new strategy 

that emerged was to render an enormous vertex array a few times as quickly as possible.  

This would allow for recording of an operation’s power consumption while the operation 

was being executed as frequently as possible.  The final test programs were very similar 

for vertex and fragment programs; the source of the vertex program tester is available in 

Appendix B and the source of the fragment program tester is available in Appendix C.   

 The design of actual vertex and fragment programs that simply repeated an 

operation also proved to be more challenging than expected.  The challenge arose 

because the graphics card driver, the software that controls the interaction between the 

general program and the graphics processor hardware, would optimize out some of the 

operations in a vertex or fragment program if it determined they did not change the 

output of the program.  Thankfully, the UVA Computer Science department had a 

working relationship with NVIDIA and had a confidential method of preventing the 

driver from optimizing fragment programs, so these test programs were easy to design.  

An example test fragment program, for the addition operation, is included in Appendix D 

and a full listing of the fragment program operations is included in Appendix E.  The 

only problem encountered for fragment programs was that four of the operations, listed in 
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the listing of instructions in Appendix E but not in the results in Appendix J, proved too 

difficult to design test cases for, so they are not included in the power characterization.   

Unfortunately, no such optimization prevention method existed for vertex 

programs and these proved quite difficult to design.  The main goal in keeping the driver 

from reducing the length of a vertex program was to make sure each operation, listed in 

Appendix F, was dependent on the operation before it.  For some operations, such as 

addition, the design was trivial; simply adding a variable to itself repeatedly satisfied the 

dependency requirement.  Designing vertex programs for other operations, however, such 

as absolute value, proved to be impossible, as taking the absolute value of a vector more 

than once produces the same result.  Hence, the results for the absolute value, distance 

vector, move, and reciprocal vertex program operations are not significant.  An example 

vertex test program, again for the addition operation, is included in Appendix G.  Again, 

a two of the vertex program operations, listed in the listing of instructions in Appendix F 

but not in the results in Appendix I, proved too difficult to design test cases for and are 

not included in the power characterization. 

Finally, after the general test program and specific vertex and fragment test 

programs were written, the test program was executed using each of the vertex and 

fragment test programs and the power recorded while the each vertex and fragment test 

program was executing.  To record the power consumption of the board, the current 

through and the voltage across both the 5 volt and 12 volt wires of the card’s external 

power supply were measured.  This was done using an extension to the power supply 

cable by inserting an ammeter in series with the line under test, and by inserting a 

voltmeter in parallel with the line under test, as shown in Figure 6 on the next page for 
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the 5 volt line and Figure 7 for the 12 volt line.  Since the card draws most, if not all, of 

its power from this external power supply, measuring the currents and voltages coming 

into the card through the accelerated graphics port bus was not necessary.   

Figure 6.  Power consumption test setup for 5V 
line.  The red wire is the positive 5V lead, and 
is placed in series with the ammeter.  The leads 
exiting the bottom of the picture are attached to 
the ammeter.  The black wires are ground.  The 
voltmeter, whose cords exit the picture to the 
right, is place in parallel with the 5V line and 

ground.   [Created by Richard David 
McWhorter, III.] 

Figure 7.  Power consumption test setup for 
12V line.  The orange wire is the positive 12V 
lead, and is placed in series with the ammeter.  
The leads exiting the bottom of the picture are 
attached to the ammeter.  The black wires are 
ground.  The voltmeter, whose cords exit the 

picture to the right, is place in parallel with the 
12V line and ground.   [Created by Richard 

David McWhorter, III.] 
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CHAPTER FIVE: THE RESULTS OF THE POWER CHARACTERIZATION 

 Now that the report has described the experimental setup for the power 

characterization experiments, it moves on to reveal the results of these experiments.  

First, the report reveals the results of the initial test to assure that power consumption 

tracked linearly with the number of vertices the graphics card processed.  Next, it moves 

to the heart of the project and reveals the results of the vertex program test for each 

operation.  Finally, it reveals the results of the fragment program test for each operation. 

PRELIMINARY POWER CONSUMPTION TEST 

Figure 8 shows the results of the preliminary experiment to verify that an increase 

in the number of vertices that the graphics processor is processing per unit of time 

was consuming based upon the number of vertices it was processing per unit of time, while holding all 
other factors constant.  The graph clearly shows that it takes a definite amount of power to process each 

vertex because of the linear relationship.  [Created by Richard David McWhorter, III.] 

Figure 8.  The results of the preliminary experiment that tested the amount of power the graphics card 
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implied a linear increase in power consumption.  As expected, the amount of power 

consumed by the card did track linearly with the number of vertices processed by the 

card.  The full set of results for this experiment is available in Appendix H.   

VERTEX PROGRAM OPERATIONS TESTS 

 
The results of the power characterization for vertex programs are illustrated in 

Figure 9.  A full listing of the recorded voltages, currents, margins of error, and powers 

re included in Appendix I.  What is significant to note about the results of this power 

characterization experiment is that there is no power difference, outside of the margin of 

error, between any of the vertex program operations. 

Figure 9.  The results of the vertex program power characterization experiment.  The graph 
tion and includes error bars indicating the 
y Richard David McWhorter, III.] 
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FRAG

Similarly, the results of the power characterization for fragment programs are 

and powers are included in Appendix J.  What is significant to note about the results of 

this power characterization experiment is that, as with vertex program operations, there is 

ween any of the fragment program 

operations. 

MENT PROGRAM OPERATIONS TESTS 

 

Figure 10.  The results of the fragment program power characterization experiment.  The graph 
includes the recorded power consumptions of each operation and includes error bars indicating the 

margin of error for each measurement.  [Created by Richard David McWhorter, III.] 

illustrated in Figure 10.  A full listing of the recorded voltages, currents, margins of error, 
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CHAPTER SIX: THE MEANING OF THE POWER 

CHARACTERIZATION 

The results of the power characterization experiments were very surprising.  This 

ver al 

d 

anner produced a change in power consumption of the graphics card.  

Knowing this, the project proceeded directly to address its purpose, finding the 

relationship between the different vertex and fragment program operations and the 

amount of power the graphics processor consumed. 

chapter first looks at the results of the preliminary power characterization test as well as 

reasons why these results supported the feasibility of the project.  It then examines the 

reason there is no power difference between the vertex and fragment program operations, 

specifically, because it is likely that the graphics processor in question does not use clock 

gating.  Finally, it explains why this research is still valuable and particularly how 

someone could use the testing methodology to produce results that are more interesting 

for future generations of graphics cards.   

PRELIMINARY POWER CONSUMPTION TEST 

The main purposes of the preliminary power consumption test were to evaluate 

the experimental setup for recording power consumption of the graphics card and to 

ify that changes to the scenes the graphics card is rendering do indeed produce logic

changes in power consumption.  This test took place before the project was proposed an

confirmed its feasibility.  It was useful because it provided a first try at recording power 

levels of the card.  It mainly proved that changing one variable on the graphics card in a 

controlled m
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VERTEX AND FR  

The power characteriza d fragment program 

operati

 

 

w 

Explanation for the Lack of Power Correspondence: Clock Gating 

idely used technique for reducing 

power c

ic 

 

led.  

ifferent 

se clock gating, it is likely to have 

the same power consumption regardless of what operations it is performing.  A 

fundamental assumption behind this experiment was that the graphics processor used 

AGMENT PROGRAM OPERATIONS POWER TEST

tion experiment for vertex an

ons revealed that, for the NVIDIA GeForce FX 5900, there is no correspondence 

between which vertex or fragment operation the graphics processor is executing and how

much power the graphics processor is consuming.  While this result is surprising, it can

be explained.  The most likely reason for the lack of relationship between vertex and 

fragment program operation and power consumption is that the graphics processor does 

not use clock gating.  This project still produces a valuable result, however, for a fe

different reasons.  

According to Li et al. (2003), clock gating is a w

onsumption.  Specifically, clock gating refers to the practice of placing an and 

gate, a digital logic element that outputs a logic high signal if both of its inputs are log

high signals, in front of the clock input to a circuit, effectively creating an enable for the 

clock signal going into the circuit (p. 1).  This allows the designer of the chip to disable 

sections of the chip when they are not needed, by lowering this enable signal going into 

the and gate with the clock.  Hence, for one operation, certain sections of the chip that are

not used for that operation can be disabled, while for other operations they are enab

This results in the chip having varied power consumption when it is executing d

instructions. 

The converse is also true.  If a chip does not u

 25



clock gating.  Since hardware manufacturers such as NVIDIA do not release any sort of 

architec itecture 

This research has numerous useful outcomes.  It reveals that all of the vertex and 

fragment program operations have the same cost.  This means that programmers are free 

to choose any vertex or fragment program operation to accomplish their goals at the same 

ption is to 

shorten

 

ture specifications for their chips, it is impossible to know for sure if arch

of the GeForce FX 5900 is clock-gated.  The fact that the chip does not change power 

based upon which operations it is executing, however, is strong evidence that the chip 

does not use clock gating. 

Implications of the Lack of Power Correspondence 

cost, and that the only way for the programmer to reduce power consum

 the vertex or fragment program.  The fact that the architecture of the graphics 

processor uses no clock gating is a useful result, as it provides information to improve 

simulators of graphics architectures, such as Qsilver.  Finally, it provides a framework 

that can easily be used to determine the power differences among vertex and fragment 

program operations in future graphics processors that use clock gating, which is likely as

graphics architectures continue to mature as central processor architectures did. 
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CHAPTER SEVEN: THE FUTURE OF THE POWER CHARACTERIZATION 

 This project has examined the relationship between different programmable 

operations of a graphics processor, the NVIDIA GeForce FX 5900, and how much pow

the processor consumes.  This work is important to and has potential impact upon the 

computer graphics commun

er 

ity; graphics processor manufacturers; and graphics processor 

consumers.  It is based upon a similar experiment performed by Vivek Tiwari in 1994 in 

which Tiwari wrote tests for a central processor that executed the different operations of 

the processor in a loop and then empirically recorded the power consumption of the 

processor as it was executing the instructions (p. 437-444).   

 To determine the relationship between the different vertex and fragment program 

operations and the graphics processor’s power consumption, a preliminary experiment 

was first performed that confirmed that power consumption increases linearly as the 

number of vertices the graphics card is processing increases linearly.  Next, general 

programs that caused millions of vertices to be rendered as quickly as possible using 

vertex or fragment program were written, as well as vertex and fragment programs for 

each of the vertex and fragment program operations that executed the respective 

operation repeatedly.  Finally, the power consumption of the graphics processor was 

recorded while executing each of these vertex and fragment programs.  These 

observations revealed that there is no relationship between which vertex or fragment 

program operation the graphics processor executes and the amount of power the graphics 

processor consumes.  This is probably because the GeForce FX 5900 almost certainly 

does not use clock gating. 
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ting.  While the outcomes of this research are clearly valuable 

now, only time will tell how valuable they truly become. 

The set of power consumption values for the GeForce FX 5900 is quite accurate 

and close to complete.  It is not as significant of a finding as was hoped before the 

experiment, but it is valuable because it reveals a key fact about the architecture of the 

graphics processor, namely, that it does not use clock gating.  Knowing this fact is 

significant to programmers because they can know with confidence that it does not matter 

which operations their programs use, only how long they are, when trying to minimize 

graphics processor power consumption.  It is also valuable to graphics architecture 

simulators, such as Qsilver, as they become much more accurate when they know tha

architecture they are simulating does not use clock gating.    

 It would be reasonable to say that this project was ahead of its time.  It has 

constructed a detailed model of how to determine the power consumption of various 

vertex and fragment programs if they were to be implemented using clock gating.  Gi

that this practice has become widely used in central processor design, it is reasonable

think that future graphics processors will take advantage of clock gating.  Hence, whe

they do, the framework this project provides will become very valuable in determining 

how much power the different vertex and fragment program operations consume.

 In conclusion, while the finding that there is no relationship between which 

operations a modern programmable graphics processor is executing, and the am

power it consumes is not terribly interesting, it is important for those who desire to kn

how the vertex and fragment engines of those processors are likely implemented in 

hardware.  This project also provides a great framework for future research on graphics

processors that use clock ga
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APPENDICES 

TEST 

// Powe
// bein
// of power consumed by the GPU. 

// 
// Adap
// http
 
#includ
#includ
#include <iostream> 
#includ
#includ
#include <GL/glext.h> 

#include <ctime> 
 
using n
 
bool in
 
float state = 2; 
const i
 
void display() 
{ 
 if( !initialized )  
 { 
  /* 
  //VERTEX PROGRAM CODE 
 
  glhInit("GL_ARB_vertex_program"); 
 

string ProgramStr( "!!ARBvp1.0\n#Input\nATTRIB InPos = “ 
“vertex.position;\nATTRIB InColor = vertex.color;\n"  

   "#Output\nOUTPUT OutPos = result.position;\nOUTPUT”  
“OutColor = result.color;\n"  
"PARAM MVP[4] = { state.matrix.mvp }; # Modelview” “Projection 
Matrix.\nTEMP Temp;\n"  

   "#Transform vertex to clip space\nDP4 Temp.x,” 
    “MVP[0], InPos;\nDP4 Temp.y, MVP[1], InPos;\n"  
   "DP4 Temp.z, MVP[2], InPos;\nDP4 Temp.w, MVP[3],” 

“InPos;\n#Output\nMOV OutPos, temp;\n"  
   "MOV OutColor, InColor;\nEND\n;TEMP Temp2;\n” 

“ADD InColor, OutColor, Temp2;\n"); 
 
  const char * Program = ProgramStr.c_str(); 
 
  unsigned int VP; 
  glGenProgramsARB(1,&VP); 
  glProgramStringARB(GL_ARB_vertex_program, 

GL_PROGRAM_FORMAT_ASCII_ARB,strlen(Program),Program); 
 
  glBindProgramARB(GL_ARB_vertex_program,VP); 
 
  glEnable(GL_ARB_vertex_program);   
 

APPENDIX A – SOURCE OF THE PRELIMINARY POWER CONSUMPTION 

r test to determine that the number of vertices 
g processed directly corresponds to the amount 

// 
// Author: David McWhorter 

ted from OpenGL Win32 Tutorial 
://www.nullterminator.net/opengl32.html 

e <string> 
e <windows.h> 

e <GL/gl.h> 
e <GL/glu.h> 

#include <GL/glh.h> 
#include <GL/glut.h> 

amespace std; 

itialized = false; 

nt MAX_STATE = 252; 
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  if ( GL_INVALID_OPERATION == glGetError() ) 
  { 
   GLint errPos; 
   glGetIntegerv( GL_PROGRAM_ERROR_POSITION_ARB,  

&errPos ); 

  printf((char *) errPos); 
  printf(" :"); 

*) errString); 
   exit(445); 

UFFER_BIT); 

QUADS); 

dth = 1.0 / state; 
l1 = true; 
l2 = true; 

z = -0.5; horiz < 0.49; horiz += squareWidth ) 

awLevel1 ) drawLevel2 = true; 

oat vert = -0.5; vert < 0.49; vert += squareWidth ) 

drawLevel2 ) 

 glColor3f(1.0, 1.0, 1.0); 
glVertex3f(horiz,  vert, 1); 
glColor3f(1.0, 1.0, 1.0); 

 glVertex3f(horiz + squareWidth, vert, 0); 
  glColor3f(1.0, 1.0, 1.0); 

glVertex3f(horiz + squareWidth,  
vert + squareWidth, -1); 

glColor3f(1.0, 1.0, 1.0); 
iz, vert + squareWidth, 0); 

 
 } 

     glFlush(); 
} 

G WI PI Win wProc am) 
 

   stat c PAIN STRUCT

  case WM_PAINT: 

 glViewport(0, 0, LOWORD(lParam), HIWORD(lParam)); 

   const GLubyte *errString =  
glGetString( GL_PROGRAM_ERROR_STRING_ARB ); 

   printf("Error at position "); 
 
 
   printf((char 

  } 
 

   initialized = true;
 printf("this is working");  

  */ 
}  

  
     glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_B

glMatrixMode( GL_PROJECTION );    
     glBegin(GL_
  

i float squareW
e bool drawLev

 bool drawLeve
 

ri for( float ho
 { 

 dr  if(
 else drawLevel2 = false;  

  for( fl
 {  

   if( 
   { 
   
    

    
   

  
    

    
    glVertex3f(hor

  }  
   drawLevel2 = !drawLevel2; 

 }  
 drawLevel1 = !drawLevel1; 

 
     glEnd(); 

 
LON NA do (HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lPar
{ 
 i T  ps; 
 
    switch(uMsg) { 
  
  display(); 

 BeginPaint(hWnd, &ps);  
  EndPaint(hWnd, &ps); 
  return 0; 
 
    case WM_SIZE: 
 
  PostMessage(hWnd, WM_PAINT, 0, 0); 

 return 0;  
 

  case WM_CHAR:   
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  switch (wParam)  
  { 
  case 27:   /* ESC key */ 
      PostQuitMessage(0); 
      exit(0); 
  case :   /* SPA
   state +

32 CE */ 

x, int y, int width, int height, BYTE type, 

  int 

e hInstance as a flag.*/ 

MessageBox(NULL, "RegisterClass() failed:  “ 
“Cannot register window class.",  

 "Error", MB_OK); 
  return NULL; 

ndow("OpenGL", title, WS_POPUP | WS_MAXIMIZE |  
NGS | WS_CLIPCHILDREN, x, y, width, height, NULL, NULL, hInstance, 

ow 

ow() failed:  “  

guarantee that the contents of the stack that become 

= 50; 
   if( state > MAX_STATE ) exit(0); 
   display(); 
   BeginPaint(hWnd, &ps); 
   EndPaint(hWnd, &ps); 
   break; 
  } 
  return 0; 
 
    case WM_CLOSE: 

ssage(0);   PostQuitMe
turn 0;   re

    } 
 
    return DefWindowProc(hWnd, uMsg, wParam, lParam);  
}  
 

ND CrHW eateOpenGLWindow(char* title, int 
DWORD flags) 
{ 
          pf; 
    HDC         hDC; 
    HWND        hWnd; 
    WNDCLASS    wc; 
    PIXELFORMATDESCRIPTOR pfd; 
    static HINSTANCE hInstance = 0; 
 
    /* only register the window class once - us
    if (!hInstance)  
    { 
  hInstance = GetModuleHandle(NULL); 
  wc.style         = CS_OWNDC; 
  wc.lpfnWndProc   = (WNDPROC)WindowProc; 
  wc.cbClsExtra    = 0; 
  wc.cbWndExtra    = 0; 
  wc.hInstance     = hIn
  wc.hIcon         = LoadIcon(NULL, IDI_WINLOGO); 

stance; 

  wc.hCursor       = LoadCursor(NULL, IDC_ARROW); 
  wc.hbrBackground = NULL; 
  wc.lpszMenuName  = NULL; 
  wc.lpszClassName = "OpenGL"; 
 

 (!RegisterClass(&wc))    if
  { 
   

   
 
  } 

}     
 
    hWnd = CreateWi

WS_CLIPSIBLI
NULL); // fullscreen wind

 
    if (hWnd == NULL)  
 { 

"CreateWind  MessageBox(NULL, 
“Cannot create a window.", "Error", MB_OK); 

  retu
  } 

rn NULL; 
  
 
    hDC = GetDC(hWnd); 
 
    /* there is no 
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       the pfd are zeroed, therefore _make sure_ to clear these bits.*/ 

  pfd wFlags OW | PFD_SUPPORT_OPENGL | flags; 

) failed:  “ 
 suitable pixel format.",  

MB_OK);  

ALSE) { 
ormat() failed:  “ 

 return 0; 

 DescribePixelFormat(hDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd); 

NSTANCE hCurrentInst, HINSTANCE hPreviousInst, 
CmdShow) 

/* device context */ 

PFD_TYPE_RGBA,  

 
WM_PAINT, 0, 0); 

ssage(&msg, hWnd, 0, 0, 0)) { 

, NULL); 
; 

C); 

    memset(&pfd, 0, sizeof(pfd)); 
    pfd.nSize        = sizeof(pfd); 
    pfd.nVersion     = 1; 

AW_TO_WIND  .d       = PFD_DR
    pfd.iPixelType   = type; 
    pfd.cColorBits   = 32; 
 
    pf = ChoosePixelFormat(hDC, &pfd); 
    if (pf == 0)  { 
  MessageBox(NULL, "ChoosePixelFormat(

“Cannot find a
   "Error", 
  return 0; 
    }  
  
    if (SetPixelFormat(hDC, pf, &pfd) == F

"SetPixelF  MessageBox(NULL, 
“Cannot set format specified.", "Error", MB_OK); 

 
    }  
 
   
    ReleaseDC(hWnd, hDC); 
 
    return hWnd; 
}     
 
int APIENTRY WinMain(HI
 LPSTR lpszCmdLine, int n
{ 
    HDC   hDC;    
    HGLRC hRC;    /* opengl context */ 
    HWND  hWnd;    /* window */ 

  /* message */     MSG   msg;  
 
    hWnd = CreateOpenGLWindow("minimal", 0, 0, 256, 256, 

; 0)
    if (hWnd == NULL) exit(1); 
 
    hDC = GetDC(hWnd); 
    hRC = wglCreateContext(hDC); 
    wglMakeCurrent(hDC, hRC); 
 
    ShowWindow(hWnd, nCmdShow); 
 
    static PAINTSTRUCT ps; 
 
    clock_t LastRefresh = clock(); 
    clock_t CurrentTime = clock(); 
 
    while(true) 
    { 
  CurrentTime = clock(); 
 

 // refresh the display every 5ms  
  if( ((float)(CurrentTime - LastRefresh) /  

(float)CLOCKS_PER_SEC) >= 0.005 ) { 
  LastRefresh = CurrentTime; 

   PostMessage(hWnd, 
  } 
  if(PeekMe
   GetMessage(&msg, hWnd, 0, 0); 
   TranslateMessage(&msg); 
   
  } 

DispatchMessage(&msg); 

    } 
    wglMakeCurrent(NULL
    ReleaseDC(hWnd, hDC)

  wglDeleteContext(hR  
    DestroyWindow(hWnd); 
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    return msg.wParam; 
} 
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APPENDIX B – SOURCE OF THE VERTEX PROGRAM TESTER 

/*************************************** 
/ Vertex Program Tester 
/ David McWhorter 
/ mcwhorter@virginia.edu 
/ 
/ Some window initialization code adapted  
/ from OpenGL Win32 Tutorial 
/ http://www.nullterminator.net/opengl32.html 
/**************************************/ 
 
#pragma comment(lib, "opengl32.lib") 
#pragma comment(lib, "glu32.lib") 
#pragma comment(lib, "glaux.lib") 
#pragma comment(lib, "glh.lib") 
 
#include <windows.h> 
#include <gl\gl.h>  
#include <gl\glu.h>  
#include <gl\glh.h> 
#include <cassert> 
#include <fstream> 
#include <string> 
#include <ctime> 
 
#include "glenumlookup.h" 
 
using namespace std; 
 
HINSTANCE globalHInstance; 
HDC       globalDeviceContext;  // Handle to device context 
HGLRC     globalRenderingContext; // Rendering Context for OpenGL 
HWND      globalHWnd; 
RECT      globalRect; 
 
const int SCREEN_WIDTH  = 1280; 
const int SCREEN_HEIGHT = 1024; 
const int SCREEN_DEPTH  = 16; 
const int MAX_VP_SIZE   = 50000; 
 
const int    NUMBER_OF_VERTICIES = 10000002; // should be divisble by 3  
           
 // b/c we're drawing triangles 
double       verticies[NUMBER_OF_VERTICIES*3]; 
unsigned int globalVertexProgramID; 
 
const char * VP_SOURCES[27] = { "AbsTest.asm",  
           "AddTest.asm", 
           "ArlTest.asm", 
           "Dp3Test.asm", 
           "Dp4Test.asm", 
        "DphTest.asm", 
        "DstTest.asm", 
        "Ex2Test.asm", 
        "ExpTest.asm", 
        "FlrTest.asm", 
        "FrcTest.asm", 
        "Lg2Test.asm", 
        "LitTest.asm", 
        "LogTest.asm", 
        "MadTest.asm", 
        "MaxTest.asm", 
        "MinTest.asm", 
        "MovTest.asm", 
        "MulTest.asm", 
        "PowTest.asm", 
        "RcpTest.asm", 
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        "RsqTest.asm", 

        "SubTest.asm", 
  "SwzTest.asm", 
  "XpdTest.asm" }; 

 hInstance); 
width, int height); 

ream &errStream); 

, HINSTANCE hprev, PSTR cmdline, int ishow) 

ram invocation indicates which 
tested 

u
Se pWindow(hInstance); 
 = NULL) return -1; 
(globalHWnd, &globalRect);  

e OpenGL 
penGL(globalRect.right, globalRect.bottom); 

ertex array 

artTime, TestEndTime; 

put fi  

CES[i] << endl; 
lization errors: "; 

[i], fout); 

 "; 

 TestStartTime / CLK_TCK  

        "SgeTest.asm", 
        "SltTest.asm", 

      
      

 
HWND SetUpWindow(HINSTANCE

id InitializeOpenGL(int vo
void PopulateArrays(); 

r * vpSrc, ofstbool SetUpRendering(const cha
void render(ofstream &errStream); 
void DeInit(); 
 
int WINAPI WinMain(HINSTANCE hInstance
{  
 // Integer argument to prog

g  // vertex program is bein
int i = atoi(cmdline);  

 
et // Windows s p 

 globalHWnd = tU
=  if(globalHWnd

t GetClientRec
 

z // Initiali
O Initialize

 
 // Initialize the v

PopulateArrays();  
 

clock_t TestSt 
  
 // Error and message out le
 ofstream fout("Output.txt"); 
 
 fout << VP_SOUR

fout << "Initia 
 
 SetUpRendering(VP_SOURCES
 
 fout << endl; 

fout << "Rendering errors: 
 
 TestStartTime = clock(); 
 render(fout); 
 TestEndTime = clock(); 
 

fout << endl;  
 fout << "<<Start time: " << (long double)
  << ">>" << endl; 
 fout << "<<End time: " << (long double) TestEndTime / CLK_TCK  
  << ">>" << endl; 
 fout << "<<Test length: " << (long double)  
  (TestEndTime - TestStartTime) / CLK_TCK << ">>" << endl << endl; 
 
 DeInit(); 
 return 0; 
} 
 
void render(ofstream &errStream) 
{ 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 glDisable(GL_DEPTH_TEST);  // Disable depth testing so the card 
        // renders every triangle 
 glClearColor(0.0f, 0.0f, 1.0f, 1);   
 glMatrixMode( GL_MODELVIEW ); 
 glLoadIdentity(); 
 gluLookAt(50, 50, 150,     50, 50, 149,     0, 1, 0); 
 
 glEnableClientState(GL_VERTEX_ARRAY); 
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 glVertexPointer(3, GL_DOUBLE, 0, &verticies); 
 
 glEnable(GL_VERTEX_PROGRAM_ARB); 
 glBindProgramARB( GL_VERTEX_PROGRAM_ARB, globalVertexProgramID ); 
 
 // Main testing loop.  Draws an array of 10000000 verticies 

// 20 times.  
 for( int i = 0; i < 20; i++ ) { 
  glDrawArrays(GL_TRIANGLES, 0, NUMBER_OF_VERTICIES); 

_ARB); 
eClientState(GL_VERTEX_ARRAY); 

TRING_ARB );  
  err rrPos << (char *) errString << endl; 

lDeviceContext );  

find file: " << vpSrc << endl; 

GRAM_ARB,globalVertexProgramID); 
RROR ); 

TEX_PROGRAM_ARB,GL_PROGRAM_FORMAT_ASCII_ARB, 
char *) Program),Program); 
(glGetError()) << endl; 

  glGe RROR_POSITION_ARB, &errPos );  
 );  

  err dl; 

id Pop lateAr

 < ( NUMBER_OF_VERTICIES * 3 ); i = i + 9 ) 
{ 

NUMBER_OF_VERTICIES ) / 33.3333333333333333); 

33333); 

3333333333333333) + 1; 
)   

333333333333333); 

 ) / 33.3333333333333333) + 1; 

 } 
 
 glDisable(GL_VERTEX_PROGRAM
 glDisabl
 
 errStream << glEnumLookup(glGetError()) << endl; 
 GLint errPos; 
    glGetIntegerv( GL_PROGRAM_ERROR_POSITION_ARB, &errPos );  

ing( GL_PROGRAM_ERROR_S const GLubyte *errString = glGetStr
tion:" << e  Stream << "error at posi

  
 SwapBuffers( globa
} 
 
bool SetUpRendering(const char * vpSrc, ofstream &errStream) 
{ 
 char Program[MAX_VP_SIZE]; 
  
 ifstream fin(vpSrc); 
 if( !fin.is_open() ) { 

d not   errStream << "Coul
  return false; 
 } 
 
 fin.read(Program, MAX_VP_SIZE); 
 fin.close(); 

char * temp = strstr(Program, "END");  
 temp[3] = 0; 
  

assert( glGetError() == GL_NO_ERROR );  
 glEnable(GL_VERTEX_PROGRAM_ARB); 
 assert( glGetError() == GL_NO_ERROR ); 
 glBindProgramARB(GL_VERTEX_PRO
 assert( glGetError() == GL_NO_E
 glProgramStringARB(GL_VER
  (GLsizei) strlen((

up errStream << glEnumLook
 GLint errPos; 

PROGRAM_E  tIntegerv( GL_
 const GLubyte *errString = glGetString( GL_PROGRAM_ERROR_STRING_ARB
  Stream << "error at position:" << errPos << (char *) errString << en
 as  glGetError() == Gsert( L_NO_ERROR );  
 glDisable(GL_VERTEX_PROGRAM_ARB); 
 return true; 
} 
 

u rays() vo
{ 
 for( int i = 0; i
 
  verticies[i] = ((double) i) /  
   (((double) 
  verticies[i+1] = ((double) i) /  
   (((double) NUMBER_OF_VERTICIES ) / 33.33333333333
  verticies[i+2] = 0; 
  verticies[i+3] = ((double) i) /  

V TICIES  / 33.   (((double) NUMBER_OF_ ER  )
le) i /  verticies[i+4] = ((doub

   (((double) NUMBER_OF_VERTICIES ) / 33.3
  verticies[i+5] = 0; 

 verticies[i+6] = ((double) i) /   
   (((double) NUMBER_OF_VERTICIES
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  verticies[i+7] = ((double) i) /  
   (((double) NUMBER_OF_VERTICIES ) / 33.3333333333333333) + 1; 
  verticies[i+8] = 0; 
 } 
} 
 

handles all the initialization for OpenGL. // This function  
id In ght)  

ontext = GetDC(globalHWnd);    

 our program 

 

     

 // Pass in the appropriate OpenGL flags 
D_DOUBLEBUFFER;  

//  want RGB and Alpha pixel type 
 // Here we use our #define for the color 

  pfd
al bitplanes 

  // We desire no stencil bits 

t matches the one passed in from the device 
alDeviceContext, &pfd)) == FALSE )  

     iled", "Error", MB_OK);  
ge(0);  

t we just created the one we want to use 

  // Prevent A Divide By Zero error 
{ 

;   // Make the Height Equal One 

// Make our viewport the whole window 

rix 

ce  

 the 

// Select The Modelview Matrix 

vo itializeOpenGL(int width, int hei
{   
    globalDeviceC
  // This sets our global HDC 
     // We don't free this hdc until the end of
 

  PIXE  LFORMATDESCRIPTOR pfd;  
    int pixelformat;  
  
    pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);    
  // Set the size of the structure 
    pfd.nVersion = 1;         
  // Always set this to 1 
       

   
 
    pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PF
    pfd.dwLayerMask = PFD_MAIN_PLANE; // We want the standard mask 
    pfd.iPixelType = PFD_TYPE_RGBA;     
    pfd.cColorBits = SCREEN_DEPTH; 
bits 
  .cDepthBits = SCREEN_DEPTH;  // Depthbits is ignored for RGBA 
    pfd.cAccumBits = 0;     // No speci
needed 

its = 0;      pfd.cStencilB
  
 // This gets us a pixel format that bes
    if ( (pixelformat = Choo

  {  
sePixelFormat(glob

  
LL, "ChoosePixelFormat fa   MessageBox(NU

Messa        PostQuit
  }    

  
 // This sets the pixel format that we extracted from above 
    if (SetPixelFormat(globalDeviceContext, pixelformat, &pfd) == FALSE)  
    {  
        MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);  
        PostQuitMessage(0); 
    }  
 
    globalRenderingContext = wglCreateContext(globalDeviceContext);   
  // This creates a rendering context from our hdc 
 

nder gContext);     MakeCurrent(globalDeviceContext, globalR in
 

  wgl e
  // This makes the rendering contex
 

if (height==0)   
 
  height=1
 } 
 
 glViewport(0,0,width,height);   
 
 glMatrixMode(GL_PROJECTION);   // Select The Projection Mat
 glLoadIdentity();    // Reset The Projection Matrix 
 

ow.  The parameters are:  // Calculate The Aspect Ratio Of Th
 (vie

e Wind
 // w angle, aspect ration of the width to the height, the closest distan
 // to the camera before it clips, FOV, Ratio,  
 // farthest distance before it stops drawing) 
 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height, .5f, 150.0f); 
 
 glMatrixMode(GL_MODELVIEW);   
 glLoadIdentity();    // Reset The Modelview Matrix 
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 gl (" _vertex_program"); // Initialize Vertex Program functionality hInit GL_ARB
 

lGetError() == GL_NO_ERRO assert( g R ); 

ur errupted. 
AM lParam) 

  

 

sktop 

ndclass

 LoadIc n(NULL  IDI_AP
e cu or 

hCursor = LoadCursor(NULL, IDC_ARROW);   

} 
 
// O window proc. does nothing because we do not want to be int

PARAM wParam, LPARLRESULT CALLBACK WinProc(HWND hWnd,UINT uMsg, W
{ 
 return 0; 
} 
 
// This function cleans up and then posts a quit message to the window 
void DeInit() 
{ 
 if (globalRenderingContext)        
    
 { 
  wglMakeCurrent(NULL, NULL);  // This frees our rendering memory  

 // and sets everything back to normal       
 
  // Delete our OpenGL Rendering Context  
  wglDeleteContext(globalRenderingContext);
    
 } 
  
 if (globalDeviceContext)  
  // Release our HDC from memory 
  ReleaseDC(globalHWnd, globalDeviceContext);  
   
   
 ChangeDisplaySettings(NULL,0);  // If So Switch Back To The De
 ShowCursor(TRUE);     // Show Mouse Pointer 
 
 // Free the window class 

UnregisterClass("VertexPowerText", globalHInstance);   
 

   // Post a QUIT message to the window  PostQuitMessage (0); 
} 
 
HWND SetUpWindow(HINSTANCE hInstance) 
{ 
 HWND hWnd; 
 WNDCLASS wndclass; 
 

// Init the size of the class  
 memset(&wndclass, 0, sizeof(WNDCLASS));  
 // Regular drawing capabilities 
 wndclass.style = CS_HREDRAW | CS_VREDRAW;  
 // Pass our function pointer as the window procedure 
 wndclass.lpfnWndProc = WinProc; 
 // Assign our hInstance 

w .hInstance = hInstance;        
 // General icon 

hIcon = o , PLICATION);   wndclass.
 An a // rrow for th rs

 wndclass.
 // A white window 
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW+1);  
 // Assign the class name 
 wndclass.lpszClassName = "VertexPowerTest";    
 
  // Register the class 
 RegisterClass(&wndclass);       
 

IPCHILDREN;  DWORD dwStyle = WS_POPUP | WS_CLIPSIBLINGS | WS_CL
 
 

//*** Changing to full screen mode ****//  
 DEVMODE dmSettings;       // Device Mode variable 
 memset(&dmSettings,0,sizeof(dmSettings)); // Makes Sure Memory's Cleared 
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 // Get current settings -- This function fills our the settings 
 // This makes sure NT and Win98 machines change correctly 
 if(!EnumDisplaySettings(NULL,ENUM_CURREN

{ 
T_SETTINGS,&dmSettings)) 

 // Display error message if we couldn't get display settings 
MB_OK); 

dmSettings.dmPelsWidth = SCREEN_WIDTH;  // Selected Screen Width 

e pro am 
r", MB_OK); 

 screen mode ***// 

Requested Height 

 Reque ed Si  

rTest", "Vertex Power Test Program",  

Window.top, NULL, NULL, hInstance, NULL); 

 Show the window 
/ Draw the window 

eyboard Focus To The Window  

 
 
  MessageBox(NULL, "Could Not Enum Display Settings", "Error", 
  return NULL; 
 } 
 
 
 dmSettings.dmPelsHeight = SCREEN_HEIGHT; // Selected Screen Height 
  

 function actually changes the screen to full screen  // This
 // CDS_FULLSCREEN Gets Rid Of Start Bar. 
 // We always want to get a result from this function to check if we failed 
 int result = ChangeDisplaySettings(&dmSettings,CDS_FULLSCREEN);  
 
 // Check if we didn't recieved a good return message From the function 
 if(result != DISP_CHANGE_SUCCESSFUL) 

{  
  // Display the error message and quit th gr
  MessageBox(NULL, "Display Mode Not Compatible", "Erro

0);   PostQuitMessage(
 } 
 //*** end changing to full
 
 ShowCursor(FALSE);   // Hide the cursor 
  

= hInstance;  globalHInstance 
 
 RECT rWindow; 
 rWindow.left = 0;         // Set Left Value To 0 
 rWindow.right = SCREEN_WIDTH;       // Set Right Value To Requested Width 
 rWindow.top     = 0;        // Set Top Value To 0 
 rWindow.bottom = SCREEN_HEIGHT;      // Set Bottom Value To 
 
 // Adjust Window To True st ze

AdjustWindowRect( &rWindow, dwStyle, false);   
 
 hWnd = CreateWindow("VertexPowe
  dwStyle, 0, 0, rWindow.right  - rWindow.left,  
  rWindow.bottom - r
 
 if(!hWnd) return NULL; 
 
 ShowWindow(hWnd, SW_SHOWNORMAL);  //
 UpdateWindow(hWnd);    /
 
 SetFocus(hWnd);    // Sets K
 
 return hWnd; 
} 
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A DIX C – SOURCE OF THE FRAGMENT PROGRAMPPEN TER 

openg

ragma

nclud

ND   

nst i

nst i S = 10000002; // should be divisble by 3  
      

nst c 33] =                 
           "AddTest.asm", 
           "CmpTest.asm", 

       "CosTest.asm", 
               "Dp3Test.asm", 
               "Dp4Test.asm", 
        "DphTest.asm", 
        "DstTest.asm", 
        "Ex2Test.asm", 
        "FlrTest.asm", 
        "FrcTest.asm", 
        "KilTest.asm", 
        "Lg2Test.asm", 
        "LitTest.asm", 
        "LrpTest.asm", 
        "MadTest.asm", 
        "MaxTest.asm", 
        "MinTest.asm", 
        "MovTest.asm", 
        "MulTest.asm", 
        "PowTest.asm", 

 TES

/*************************************** 
/ Fragment Program Tester 
/ David McWhorter 

inia.edu / mcwhorter@virg
 /

/ Some window initialization code adapted  
/ from OpenGL Win32 Tutorial 

llterminator.net/ l32.html / http://www.nu
/**************************************/ 
 
#pragma comment(lib, "opengl32.lib") 
#pragma comment(lib, "glu32.lib") 

 comment(lib, "glaux.lib") #p
#pragma comment(lib, "glh.lib") 
 

s.h> #include <window
#include <gl\gl.h>  
#include <gl\glu.h>  
#include <gl\glh.h> 

t> #include <casser
#include <fstream> 

e <string> #i
#include <ctime> 
 
#include "glenumlookup.h" 
 
using namespace std; 
 
HINSTANCE globalHInstance; 

ntext HDC       globalDeviceContext;  // Handle to device co
HGLRC     globalRenderingContext; // Rendering Context for OpenGL 

   globalHWnd; HW
RECT      globalRect; 
 

nt SCREEN_WIDTH  = 1280; co
const int SCREEN_HEIGHT = 1024; 
const int SCREEN_DEPTH  = 16; 
const int MAX_FP_SIZE   = 50000; 
 
co nt    NUMBER_OF_VERTICIE

     
 // b/c we're drawing triangles 
double       verticies[NUMBER_OF_VERTICIES*3]; 
nsigned int globalFragmentProgramID; u

 
har * FP_SOURCES[ {             "AbsTest.asm",  co
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        "RcpTest.asm", 

        "SgeTest.asm", 
  "SinTest.asm", 
  "SltTest.asm", 

    "SubTest.asm", 
    "SwzTest.asm", 
    "TexTest.asm", 

  "TxbTest.asm", 
  "TxpTest.asm", 

 "XpdTest.asm" }; 

T uMsg, WPARAM wParam, LPARAM lParam); 
eight); 

Src, ofstream &errStream); 
 

N ANCE hInstance, HINSTANCE hprev, PSTR cmdline, int ishow) 

gument to program invocation indicates which 
ogram is being tested 
(cmdline); 

 setup 
indow(hInstance); 
LL) return -1; 

globalHWnd, &globalRect);  

 
gl

ray
); 

stEndTime; 

ut file 
); 

stSta Time = lock(  

        "RsqTest.asm", 
        "ScsTest.asm", 

      
      

    
    

    
      

      
       
 
WND SetUpWindow(HINSTANCE hInstance); H

LRESULT CALLBACK WinProc(HWND hWnd,UIN
nt hvoid InitializeOpenGL(int width, i

void PopulateArrays(); 
 vpbool SetUpRendering(const char *

oid render(ofstream &errStream);v
void DeInit(); 
 
int WINAPI WinMain(HI ST
{  

r // Integer a
 // vertex pr

i int i = ato
 

// Windows 
 globalHWnd = SetUpW

if(globalHWnd == NU 
 GetClientRect(
 
 // Initialize OpenGL
 InitializeOpenGL(globalRect.right, obalRect.bottom); 
 

he vertex ar   // Initialize t
 PopulateArrays(
 
 clock_t TestStartTime, Te
  

tp // Error and message ou
 ofstream fout("Output.txt"
 
 fout << FP_SOURCES[i] << endl; 
 fout << "Initialization errors: "; 
 
 SetUpRendering(FP_SOURCES[i], fout); 
 

fout << endl;  
 fout << "Rendering errors: "; 
 
 Te rt  c );
 render(fout); 
 TestEndTime = clock(); 
 
 fout << endl; 
 fout << "<<Start time: " << (long double) TestStartTime / CLK_TCK  
  << ">>" << endl; 
 fout << "<<End time: " << (long double) TestEndTime / CLK_TCK  
  << ">>" << endl; 
 fout << "<<Test length: " << (long double)  
  (TestEndTime - TestStartTime) / CLK_TCK << ">>" << endl << endl; 
 
 DeInit(); 
 return 0; 
} 
 
 
void render(ofstream &errStream) 
{ 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
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 glDisable(GL_DEPTH_TEST);  // Disable depth testing so the card 
                                  // renders every triangle 
 glClearColor(0.0f, 0.0f, 1.0f, 1);   
 glMatrixMode( GL_MODELVIEW ); 
 glLoadIdentity();         

S); 

e(GL_FRAGMENT_PROGRAM_ARB); 

  glG RROR_POSITION_ARB, &errPos );  

  err os << (char *) errString << endl; 

file: " << fpSrc << endl; 

; 

RB); 
RROR ); 

ROGRAM_ARB,globalFragmentProgramID); 
_NO_ERROR ); 

GMENT_PROGRAM_ARB,GL_PROGRAM_FORMAT_ASCII_ARB,(GLsizei) 
m); 

_ARB );  
  err < endl; 

 

for( int i = 0; i < ( NUMBER_OF_VERTICIES * 3 ); i = i + 9 ) 

uble) i) /  

  
 gluLookAt(50, 50, 150,     50, 50, 149,     0, 1, 0); 
 
 glEnableClientState(GL_VERTEX_ARRAY); 
 glVertexPointer(3, GL_DOUBLE, 0, &verticies); 
 
 glEnable(GL_FRAGMENT_PROGRAM_ARB); 
 glBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, globalFragmentProgramID ); 
 
 // Main testing loop.  Draws an array of 10000000 vertices 
 // 20 times. 
 for( int i = 0; i < 20; i++ ) { 
  glDrawArrays(GL_TRIANGLES, 0, NUMBER_OF_VERTICIE
 } 
 

glDisabl 
 glDisableClientState(GL_VERTEX_ARRAY); 
 
 errStream << glEnumLookup(glGetError()) << endl; 
 GLint errPos; 
  etIntegerv( GL_PROGRAM_E
 const GLubyte *errString = glGetString( GL_PROGRAM_ERROR_STRING_ARB );  
  Stream << "error at position:" << errP
  
 SwapBuffers( globalDeviceContext );  
} 
 
bo tUpRendering(const chaol Se r * fpSrc, ofstream &errStream) 
{ 
 char Program[MAX_FP_SIZE]; 
  
 ifstream fin(fpSrc); 

if( !fin.is_open() ) {  
  errStream << "Could not find 

eturn false;   r
 } 
 
 fin.read(Program, MAX_FP_SIZE); 
 fin.close(); 
 char * temp = strstr(Program, "END")
 temp[3] = 0; 
  
 assert( glGetError() == GL_NO_ERROR ); 
 glEnable(GL_FRAGMENT_PROGRAM_A
 assert( glGetError() == GL_NO_E

ENT_P glBindProgramARB(GL_FRAGM
 assert( glGetError() == GL

_FRA glProgramStringARB(GL
rlen(st (char *) Program),Progra

errStream << glEnumLookup(glGetError()) << endl;  
 GLint errPos; 
    glGetIntegerv( GL_PROGRAM_ERROR_POSITION_ARB, &errPos );  
 co Lubyte *errString nst G = glGetString( GL_PROGRAM_ERROR_STRING
  Stream << "error at position:" << errPos << (char *) errString <
 as  glGetError() == Gsert( L_NO_ERROR ); 
 glDisable(GL_FRAGMENT_PROGRAM_ARB); 
 return true; 
} 
 
void PopulateArrays() 
{ 
 
 { 
  verticies[i] = ((do

  (((double) NUMBER_OF_VERTICIES ) / 33.3333333333333333);  
  verticies[i+1] = ((double) i) /  
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   (((double) NUMBER_OF_VERTICIES ) / 33.3333333333333333); 

) / 33.3333333333333333) + 1; 

 

 of our program 

 

     

D_DOUBLEBUFFER;  

// We want RGB and Alpha pixel type 

 // Depthbits is ignored for RGBA 
 // No special bitplanes needed 

encil bits 

ets us a pixel format that best matches the one passed in from the device 
alDeviceContext, &pfd)) == FALSE )  

iled", "Error", MB_OK);  

acted from above 
ormat, &pfd) == FALSE)  

eContext);   
ur hdc 

nt to use 

vent A Divide By Zero error 

  // Make the Height Equal One 

// Reset The Projection Matrix 

 Calc

  verticies[i+2] = 0; 
)    verticies[i+3] = ((double) i / 

   (((double) NUMBER_OF_VERTICIES ) / 33.3333333333333333) + 1; 
  verticies[i+4] = ((double) i) /  
   (((double) NUMBER_OF_VERTICIES ) / 33.3333333333333333); 
  verticies[i+5] = 0; 

 verticies[i+6] = ((double) i) /   
   (((double) NUMBER_OF_VERTICIES 
  verticies[i+7] = ((double) i) /  
   (((double) NUMBER_OF_VERTICIES ) / 33.3333333333333333) + 1; 
  verticies[i+8] = 0; 
 } 
} 
 

itialization for OpenGL. // This function handles all the in
vo itializeOpenGL(int width, int heiid In ght)  
{   

ontext = GetDC(globalHWnd);        globalDeviceC
 // This sets our global HDC  

     // We don't free this hdc until the end
 

  PIXELFORMATDESCRIPTOR pfd;    
    int pixelformat;  
  
    pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);    
  // Set the size of the structure 
    pfd.nVersion = 1;         
  // Always set this to 1 
       

   
  // Pass in the appropriate OpenGL flags 
    pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PF
    pfd.dwLayerMask = PFD_MAIN_PLANE; // We want the standard mask 
    pfd.iPixelType = PFD_TYPE_RGBA;     

ts = SCREEN_DEPTH; // Here we use our #define for the color bits     pfd.cColorBi
    pfd.cDepthBits = SCREEN_DEPTH; 
    pfd.cAccumBits = 0;  
    pfd.cStencilBits = 0;    // We desire no st
  
 // This g
    if ( (pixelformat = ChoosePixelFormat(glob
    {  
        MessageBox(NULL, "ChoosePixelFormat fa
        PostQuitMessage(0);  
    }  
  
 // This sets the pixel format that we extr
    if (SetPixelFormat(globalDeviceContext, pixelf
    {  
        MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);  
        PostQuitMessage(0); 
    }  
 

  glo  balRenderingContext = wglCreateContext(globalDevic
s a rendering context from o  // This create

 
    wglMakeCurrent(globalDeviceContext, globalRenderingContext);   
  // This makes the rendering context we just created the one we wa
 
 if (height==0)    // Pre
 { 

 height=1;  
 } 
 
 glViewport(0,0,width,height);   // Make our viewport the whole window 
 

// Select The Projection Matrix  glMatrixMode(GL_PROJECTION);   
 glLoadIdentity();    
 

ow.  The parameters are:  // ulate The Aspect Ratio Of The Wind
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 // w  aspect ration of the width to the height, the closest dis
tio,  

 (vie angle,
 // to the camera before it clips, F

 the 

tance  

hInit

oc. does nothing because we do not want to be interrupted. 
SULT AM lParam) 

a quit message to the window 

t)        

This rees o  rend ing memory  

sktop 

memset(&wndclass, 0, sizeof(WNDCLASS));  

ce = hInstance; 

oadIc n(NULL  IDI_AP
e cu or 
 Load ursor( ULL, ID

 

OV, Ra
 // farthest distance before it stops drawing) 
 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height, .5f, 150.0f); 
 
 glMatrixMode(GL_MODELVIEW);  // Select The Modelview Matrix 

// Reset The Modelview Matrix  glLoadIdentity();   
 
 gl (" _vertex_program"); // Initialize Vertex Program functionality GL_ARB
 
 assert( glGetError() == GL_NO_ERROR ); 
} 
 

Our window pr// 
LRE CALLBACK WinProc(HWND hWnd,UINT uMsg, WPARAM wParam, LPAR
{ 
 return 0; 
} 
 

 is fu ts   // Th nction cleans up and then pos
void DeInit() 
{ 
 if (globalRenderingContex

    
 { 
  wglMakeCurrent(NULL, NULL); //  f ur er
      // and sets everything back to normal 
 
  // Delete our OpenGL Rendering Context  
  wglDeleteContext(globalRenderingContext);  
    
 } 
  
 if (globalDeviceContext)  
  // Release our HDC from memory 
  ReleaseDC(globalHWnd, globalDeviceContext);  
   
   
 ChangeDisplaySettings(NULL,0);  // If So Switch Back To The De

ShowCursor(TRUE);     // Show Mouse Pointer  
 
 // Free the window class 
 UnregisterClass("VertexPowerText", globalHInstance);  
 

   // Post a QUIT message to the window  PostQuitMessage (0); 
} 
 
HWND SetUpWindow(HINSTANCE hInstance) 
{ 
 HWND hWnd; 
 WNDCLASS wndclass; 
 

// Init the size of the class  
 
 // Regular drawing capabilities 
 wndclass.style = CS_HREDRAW | CS_VREDRAW;  
 // Pass our function pointer as the window procedure 
 wndclass.lpfnWndProc = WinProc; 
 // Assign our hInstance 
 wndclass.hInstan       
 // General icon 
 wndclass.hIcon = L o , PLICATION);  
 // rrow for th rs

hCursor = C N C_ARROW);   
 An a

 wndclass.
 // A white window 
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW+1);  
 // Assign the class name 
 wndclass.lpszClassName = "VertexPowerTest";    
 

 // Register the class  
 RegisterClass(&wndclass);      
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IPCHILDREN;  DWORD dwStyle = WS_POPUP | WS_CLIPSIBLINGS | WS_CL

 
 

//*** Changing to full screen mode ****//  
 DEVMODE dmSettings;       // Device Mode variable 

0,s eof( a memset(&dmSettings, iz Se s)); // Makes Sure Memory's Cledm tting red 

T_SETTINGS,&dmSettings)) 
{ 

MB_OK); 

Width = SCREEN_WIDTH;  // Selected Screen Width 

 

r", MB_OK); 

 screen mode ***// 

// Set Right Value To Requested Width 

 Requested Height 

 Reque ed Si  

rTest", "Vertex Power Test Program",  

Window.top, NULL, NULL, hInstance, NULL); 

 Show the window 
/ Draw the window 

eyboard Focus To The Window  

 
 // Get current settings -- This function fills our the settings 
 // This makes sure NT and Win98 machines change correctly 
 if(!EnumDisplaySettings(NULL,ENUM_CURREN
 
  // Display error message if we couldn't get display settings 
  MessageBox(NULL, "Could Not Enum Display Settings", "Error", 
  return NULL; 
 } 
 

dmSettings.dmPels 
 dmSettings.dmPelsHeight = SCREEN_HEIGHT; // Selected Screen Height 
  

 function actually changes the screen to full screen  // This
// CDS_FULLSCREEN Gets Rid Of Start Bar.  

 // We always want to get a result from this function to check if we failed 
 int result = ChangeDisplaySettings(&dmSettings,CDS_FULLSCREEN);  
 
 // Check if we didn't recieved a good return message From the function 
 if(result != DISP_CHANGE_SUCCESSFUL) 
 {
  // Display the error message and quit th gre pro am 
  MessageBox(NULL, "Display Mode Not Compatible", "Erro

0);   PostQuitMessage(
 } 
 //*** end changing to full
 
 ShowCursor(FALSE);   // Hide the cursor 
  

= hInstance;  globalHInstance 
 
 RECT rWindow; 
 rWindow.left = 0;   // Set Left Value To 0 
 rWindow.right = SCREEN_WIDTH; 
 rWindow.top     = 0;  // Set Top Value To 0 
 rWindow.bottom = SCREEN_HEIGHT;       // Set Bottom Value To
 
 // Adjust Window To True st ze

AdjustWindowRect( &rWindow, dwStyle, false);   
 
 hWnd = CreateWindow("VertexPowe
  dwStyle, 0, 0, rWindow.right  - rWindow.left,  
  rWindow.bottom - r
 
 if(!hWnd) return NULL; 
 
 ShowWindow(hWnd, SW_SHOWNORMAL);  //

 / UpdateWindow(hWnd);   
 
 SetFocus(hWnd);    // Sets K
 
 return hWnd; 
} 
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APPEN DITION TEST) 

nput 

D Tes

D Tes

D Tes

D Tes

D Tes

D Tes

D Tes  Test,

D Tes

D Tes

 Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 

DIX D – EXAMPLE TEST FRAGMENT PROGRAM (AD

!!ARBfp1.0 
 
#I
ATTRIB InPos = fragment.position; 
ATTRIB InColor = fragment.color.primary; 
 
#Output 
OUTPUT OutPos = result.depth; 
OUTPUT OutColor = result.color; 
 
TEMP Test; 
 
ADD Test, InColor, InColor; 
ADD Test, Test, Test; 

 Test; ADD Test, Test,
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 

t, Test, Test; AD
ADD Test, Test, Test; 
ADD Test, Test, Test; 

Test; ADD Test, Test, 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 

Test; ADD Test, Test, 
ADD Test, Test, Test; 

t, Test, Test; AD
ADD Test, Test, Test; 

 Test; ADD Test, Test,
ADD Test, Test, Test; 

t, Test, Test; AD
ADD Test, Test, Test; 
DD Test  A , Test, Test;

ADD Test, Test, Test; 
; AD t, Test, Test

ADD Test, Test, Test; 
t, Test, Test; AD

ADD Test, Test, Test; 
ADD Test, Test, Test; 

t, Test, Test; AD
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 

t,  Test; AD
ADD Test, Test, Test; 

t, Test, Test; AD
ADD Test, Test, Test; 
ADD Test, Test, Test; 
DD Test, Test, Test; A

ADD Test, Test, Test; 
t, Test, Test; AD

ADD Test, Test, Test; 
D Test, Test, Test; AD

ADD

 50



ADD Test, Test, Test; 

ADD Test, Test, Test; 
st, Test; 
st, Test; 

, Test, Test; 

 Test, Test; 

st, Test; 
st, Test; 

ADD Test, Test, Test; 
ADD Test, Test, Test; 

ADD Test, Te
DD Test, TeA

ADD Test
ADD Test, Test, Test; 
ADD Test, Test, Test; 
DD Test, Test, Test; A

ADD Test,
ADD Test, Test, Test; 
ADD Test, Test, Test; 
DD Test, Test, Test; A

ADD Test, Te
DD Test, TeA

ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
 
#Output 
MOV OutPos, InPos; 
MOV OutColor, Test; 
 
END 
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APPENDIX E – LISTING OF OPENGL FRAGMENT PROGRAM OPERATIONS 

ertex program instructions.  The instructions and their respective 
eters are summarized in the table below.  “v” indicates a floating-

utput, “s” indicates a floating-point scalar input, “ssss” indicates a 
 across a 4-component result vector, "ss--" indicates two scalar 

 components, "u" indicates a texture image unit identifier, and "t" 
et. 

There are thirty-three v
input and output param
point vector input or o
scalar output replicated
outputs in the first two
indicates a texture targ
 
      Instruction Inputs Output Description 

v         absolute value 
v         add 
         compare 
sss     cosine with reduction to [-PI,PI] 
ssss     3-component dot product 
ssss     4-component dot product 

           v,v      ssss     homogeneous dot product 
    v          distance vector 
   ssss     exponential base 2 

LR            v        v          floor 
      FRC            v        v          fraction 
      KIL             v        v          kill fragment 
      LG2            s         ssss     logarithm base 2 
      LIT             v        v          compute light coefficients 
      LRP            v,v,v  v          linear interpolation 
      MAD          v,v,v  v          multiply and add 
      MAX          v,v     v          maximum 
      MIN            v,v     v          minimum 
      MOV           v       v          move 
      MUL           v,v    v          multiply 
      POW           s,s     ssss      exponentiate 
      RCP            s        ssss      reciprocal 
      RSQ            s        ssss      reciprocal square root 
      SCS             s        ss--      sine/cosine without reduction 
      SGE            v,v     v          set on greater than or equal 
      SIN             s        ssss      sine with reduction to [-PI,PI] 
      SLT             v,v    v          set on less than 
      SUB            v,v     v          subtract 
      SWZ           v        v          extended swizzle 
      TEX            v,u,t   v         texture sample 
      TXB            v,u,t   v         texture sample with bias 
      TXP            v,u,t   v         texture sample with projection 
      XPD            v,v     v         cross product 
 

(Beretta et al.) 

      ABS            v        
      ADD           v,v     
      CMP           v,v,v  v
      COS           s         s
      DP3            v,v      
      DP4            v,v      
      DPH
      DST            v,v 
      EX2            s      
      F
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APPENDIX F – LISTING OF OPENGL VERTEX PROGRAM OPERATIONS 

 
e 

    Instruction

There are twenty-seven vertex program instructions.  The instructions and their respectiv
input and output parameters are summarized in the table below.  “v” indicates a floating-
point vector input or output, “s” indicates a floating-point scalar input, “ssss” indicates a 
scalar output replicated across a 4-component result vector, and “a” indicates a single 
address register component. 
 
   Input Output Description
      ABS             v        v        absolute value 

ss register load 
ent dot product 

 2 (approximate) 

n 
 base 2 

coefficients 
(approximate) 

ntiate 
l 

are root 
er than or equal 

      ADD            v,v     v        add 
      ARL             v        a        addre
      DP3              v,v     ssss    3-compon
      DP4              v,v     ssss    4-component dot product 
      DPH             v,v     ssss    homogeneous dot product 
      DST             v,v      v        distance vector 
      EX2             s         ssss    exponential base 2 
      EXP             s         v        exponential base
      FLR             v         v        floor 
      FRC             v         v        fractio
      LG2             s         ssss    logarithm
      LIT              v         v        compute light 
      LOG            s          v        logarithm base 2 
      MAD           v,v,v   v        multiply and add 
      MAX           v,v      v        maximum 
      MIN            v,v      v         minimum 
      MOV           v         v        move 
      MUL           v,v      v         multiply 
      POW           s,s       ssss    expone
      RCP             s         ssss    reciproca
      RSQ            s          ssss    reciprocal squ
      SGE            v,v       v        set on great
      SLT             v,v      v         set on less than 
      SUB            v,v       v        subtract 
      SWZ            v         v        extended swizzle 
      XPD            v,v      v         cross product 
 
(Akeley et al.) 
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APPENDIX G – EXAMPLE TEST VERTEX PROGRAM (ADDITION TEST) 

on; 
TPUT OutColor = result.color; 

iew Projection Matrix. 

D Test, Test, Test; 
Test; 
Test; 

ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 

!!ARBvp1.0 
 
#Input 
ATTRIB InPos = vertex.position; 
ATTRIB InColor = vertex.color; 
 
#Output 
OUTPUT OutPos = result.positi
OU
 
PARAM MVP[4] = { state.matrix.mvp }; # Modelv
TEMP Test; 
 
ADD Test, InColor, InColor; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
AD
ADD Test, Test, 
ADD Test, Test, 
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ADD Test, Test, Test; 

ADD Test, Test, Test; 
st, Test; 
st, Test; 

, Test, Test; 

 Test, Test; 

st, Test; 

ip space 
InPos; 
InPos; 
InPos; 
InPos; 

ADD Test, Test, Test; 
ADD Test, Test, Test; 

ADD Test, Te
DD Test, TeA

ADD Test
ADD Test, Test, Test; 
ADD Test, Test, Test; 
DD Test, Test, Test; A

ADD Test,
ADD Test, Test, Test; 
ADD Test, Test, Test; 
DD Test, Test, Test; A

ADD Test, Test, Test; 
est, Test; ADD Test, T

DD Test, TeA
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
ADD Test, Test, Test; 
 
TEMP TempPos; 
 
#Transform vertex to cl
DP4 TempPos.x, MVP[0], 
DP4 TempPos.y, MVP[1], 
DP4 TempPos.z, MVP[2], 
DP4 TempPos.w, MVP[3], 
 
#Output 
MOV OutPos, TempPos; 
MOV OutColor, Test; 
 
END 
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APPENDIX H – RESULTS OF PRELIMINARY POWER CONSUMPTION TEST 

 
8 vertices Current (mA) Voltage (V) Power (mW) 
5V EXT #1 826 5 4130 
12V EXT #1 402 12 4824 
Total:   8954 
1352 vertices Current (mA) Voltage (V) Power (mW) 
5V EXT #1 838 5 4190 
12V EXT #1 403 12 4836 
Total:   9026 
5202 vertices Current (mA) Voltage (V) Power (mW) 
5V EXT #1 871 5 4355 
12V EXT #1 403 12 4836 
Total:   9191 
11552 vertices Current (mA) Voltage (V) Power (mW) 
5V EXT #1 947 5 4735 
12V EXT #1 404 12 4848 
Total:   9583 
20402 vertices Current (mA) Voltage (V) Power (mW) 
5V EXT #1 1053 5 5265 
12V EXT #1 409 12 4908 
Total:   10173 
31752 vertices Current (mA) Voltage (V) Power (mW) 
5V EXT #1 1182 5 5910 
12V EXT #1 411 12 4932 
Total:   10842 
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 APPENDIX I – VERTEX PROGRAM OPERATION TEST RESULTS 

This appendix includes the full results from the vertex program power characterizations.  
I  below, Er u tes ho bserved current or 
voltage was moving in the steady state while rendering the verticies for the corresponding 
o rror for Ammeter or Voltmeter Accuracy indicates the error from the 
stated accuracy of the Ammeter or Voltmeter.  The accuracy of the Ammeter, or the 
F al Mul .3 gnifi urrent 
m  in the range of up to 5 amps.  The accu cy of the Vo r, or the 
R -812 Digital Mul er, was ±0.3% plus four significant digits for 
voltage m ents in the range of up to 40 V. 
 

  

n the tables ror from Meas rement indica w much the o

peration and E

luke 189 Digit timeter was ±0 % plus ten si cant digits for c
easurements ra ltmente
adioShack 22

easurem
timet

Test 
Program

12V current 
(A)

Err. from Err. from Ammeter 
Acc. 

12 oltage V V Err. from 
Meas. (±A) (± )A (V) Meas. (±V)

Err. from Voltmeter 
Acc. (±V)

ABS 2.57 0.07 0.1132 12.13 0 0.06645
2.35 1 0.06642
2.42 0.01 0.11215 12.13 0 0.06642
2.44 0.02 0.1123 12.13 0 0.06642
2.43 0.01 0.1122 12.13 0 0.06642
2.57 1 0.06642
2.34 1 0.06645
2.34 0.0 0.11175 12.14 0 0.06645
2.44 0.01 0.11225 12.13 0 0.06642
2.44 0.01 0.11225 12.13 0.06642
2.34 1 0.06645

2.4 1 0.06642
2.34 0.0 0.11175 12.14 0 0.06645
2.35 0.01 0.1118 12.14 0 0.06645
2.41 0.01 0.1121 12.14 0.06645
2.41 0.01 0.1121 12.13 0.06642

OV 2.51 0.11 0.1131 12.13 0.01 0.06642
MUL 2.41 0.01 0.1121 12.13 0.01 0.06642
POW 2.41 0.03 0.1122 12.13 0.01 0.06642
RCP 2.58 0.06 0.1132 12.13 0.01 0.06642
RSQ 2.34 0.01 0.11175 12.13 0.01 0.06642
SGE 2.41 0.01 0.1121 12.13 0.01 0.06642
SLT 2.4 0.01 0.11205 12.13 0.01 0.06642
SUB 2.33 0.01 0.1117 12.14 0.01 0.06645
XPD 2.34 0.02 0.1118 12.14 0.01 0.06645

Test 

.02
ADD 0.01 0.1118 2.13 0.01
DP3 .01
DP4 .01
DPH
DST

.01

.010.07
0.01

0.1132
0.11175

2.13 0
2.14 0.01EX2

EXP 1 .01
FLR .01
FRC 0.01
LG2
LIT

0.01
0.01

0.11175
0.11205

2.14 0.01
2.13 0.01

LOG 1 .01
MAD .01
MAX
MIN

0.01
0.01

M

Err. from Err. from Ammeter 5V Voltage Err. from Err. from Voltmeter 
Program 5V current (A) Meas. (±A) Acc. (±A) (V) Meas. (±V) Acc.
ABS 0.67 0.07 0.1037 5.17 0.01 0.04554
ADD 0.43 0.05 0.1024 5.18 0 0.04554
DP3 0.47 0.005 0.102375 5.18 0.01 0.04557
DP4 0.47 0.005 0.102375 5.18 0.01 0.04557
DPH 0.47 0.005 0.102375 5.18 0.01 0.04557
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DST 0.67 0.06 0.10365 5.17 0.01 0.04554
0.04554

EXP 0.43 0.005 0.102175 5.18 0 0.04554

554
554

4557
4554

.04557
5.18 0 0.04554

CP 0.64 0.06 0.1035 5.18 0 0.04554
RSQ 0.43 0.005 0.102175 5.18 0 0.04554
SGE 0.47 0.005 0.102375 5.18 0 0.04554
SLT 0.47 0.005 0.102375 5.18 0 0.04554
SUB 0.43 0.005 0.102175 5.18 0 0.04554
XPD 0.41 0.005 0.102075 5.18 0 0.04554

Test 

EX2 0.43 0.005 0.102175 5.18 0

FLR 0.51 0.005 0.102575 5.17 0 0.04551
FRC 0.51 0.005 0.102575 5.17 0 0.04551
LG2 0.43 0.005 0.102175 5.18 0 0.04554
LIT 0.47 0.005 0.102375 5.18 0.01 0.04557
LOG 0.43 0.005 0.102175 5.18 0 0.04
MAD 0.43 0.005 0.102175 5.18 0 0.04
MAX 0.47 0.005 0.102375 5.18 0.01 0.04557
MIN 0.47 0.005 0.102375 5.18 0.01 0.0
MOV 0.67 0.07 0.1037 5.18 0 0.0
MUL 0.47 0.005 0.102375 5.18 0.01 0
POW 0.42 0.005 0.102125
R

Mar. of Err. 

 

Program Power (W) (±W) (Trial 1) (Trial 2)
ABS 34.638 3.430603176 4.1 4.1
ADD 30.7329 2.498531704 27 26.9
DP3 31.7892 2.279539364 14.1 14
DP4 32.0318 2.40573859 13.8 13.7
DPH 31.9105 2.280917706 14 14
DST 34.638 3.34807623 4.1 4.1
EX2 30.635 2.260063774 26.9 26.8
EXP 30.635 2.260063774 26.9 26.7
FLR 32.2339 2.277206317 10 10
FRC 32.2339 2.277206317 9.9 9.9
LG2 30.635 2.260063774 26.9 26.7
LIT 31.5466 2.27678268 14 13.9
LOG 30.635 2.260063774 26.8 26.6
MAD 30.7564 2.261442919 29.9 26.7
MAX 31.692 2.279461648 14 13.9
MIN 31.6679 2.278161022 14 13.9
MOV 33.9169 3.8782142 4.6 4
MUL 31.6679 2.278161022 14 13.9
POW 31.4089 2.514583293 30.1 30.1
RCP 34.6106 3.215518668 4.3 4.2
RSQ 30.6116 2.258768769 26.8 26.9
SGE 31.6679 2.271292979 14 14.1
SLT 31.5466 2.269914637 14 14.1
SUB 30.5136 2.258684629 27 27
XPD 30.5314 2.382169511 40.2 40.5

Time to draw 10000000 triangles 
20 times (s)

4.1
26.95
14.05
13.75

14
4.1

26.85
26.8

10
9.9

26.8
13.95

26.7
28.3

13.95
13.95

4.3
13.95

30.1

27
40.35

4.25
26.85
14.05
14.05
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APPENDIX J – FRAGMENT PROGRAM OPERATION TEST RESULTS 

This appendix includes the full results from the fragment program power 
characterizations.  In the tables below, Error from Measurement indicates how much the 
observed current or voltage was moving in the steady state while rendering the verticies 
for the corresponding operation and Error for Ammeter or Voltmeter Accuracy indicates 
the error from the stated accuracy of the Ammeter or Voltmeter.  The accuracy of the 
Ammeter, or the Fluke 189 Digital Multimeter was ±0.3% plus ten significant digits for 
current measurements in the range of up to 5 amps.  The accuracy of the Voltmenter, or 
the RadioShack 22-812 Digital Multimeter, was ±0.3% plus four significant digits for 
voltage measurements in the range of up to 40 V. 
 

 
 
 
 
 

Test 12V current Err. from Err. from Ammeter 12V Voltage Err. from Err. from Voltmeter 
Program (A) Meas. (±A) Acc. (±A) (V) Meas. (±V) Acc. (±V)
ABS 2.34 0.01 0.11175 12.13 0.01 0.06642
ADD 2.37 0.01 0.1119 12.13 0.01 0.06642
CMP 2.33 0.01 0.1117 12.14 0.01 0.06645
COS 2.35 0.01 0.1118 12.14 0.01 0.06645
DP3 2.41 0.01 0.1121 12.13 0.01 0.06642
DP4 2.4 0.01 0.11205 12.13 0.01 0.06642
DPH 2.43 0.01 0.1122 12.13 0.01 0.06642
DST 2.35 0.01 0.1118 12.14 0.01 0.06645
EX2 2.35 0.01 0.1118 12.14 0.01 0.06645
FLR 2.34 0.01 0.11175 12.14 0.01 0.06645
FRC 2.34 0.01 0.11175 12.13 0.01 0.06642
KIL 2.32 0.01 0.11165 12.14 0.01 0.06645
LG2 2.33 0.01 0.1117 12.13 0.01 0.06642
LIT 2.32 0.01 0.11165 12.14 0.01 0.06645
LRP 2.31 0.01 0.1116 12.14 0.01 0.06645
MAD 2.32 0.01 0.11165 12.14 0.01 0.06645
MAX 2.33 0.01 0.1117 12.14 0.01 0.06645
MIN 2.32 0.01 0.11165 12.14 0.01 0.06645
MOV 2.32 0.01 0.11165 12.14 0.01 0.06645
MUL 2.35 0.01 0.1118 12.14 0.01 0.06645
POW 2.32 0.01 0.11165 12.14 0.01 0.06645
RCP 2.33 0.01 0.1117 12.14 0.01 0.06645
RSQ 2.32 0.01 0.11165 12.14 0.01 0.06645
SCS 2.32 0.01 0.11165 12.14 0.01 0.06645
SGE 2.33 0.01 0.1117 12.14 0.01 0.06645
SIN 2.33 0.01 0.1117 12.14 0.01 0.06645
SLT 2.32 0.01 0.11165 12.14 0.01 0.06645
SUB 2.34 0.01 0.11175 12.13 0.01 0.06642
XPD 2.32 0.01 0.11165 12.14 0.01 0.06645
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Test 5V current Err. from Err. from Ammeter 5V Voltage Err. from Err. from Voltmeter 
Program (A) Meas. (±A) Acc. (±A) (V) Meas. (±V) Acc. (±V)
ABS 0.39 0.005 0.101975 5.18 0 0.04554

0.04554

4
4

4554
4
4
4

554
5.18 0 0.04554

2 0.39 0.005 0.101975 5.18 0 0.04554
LIT 0.38 0.005 0.101925 5.18 0 0.04554
LRP 0.38 0.005 0.101925 5.18 0 0.04554
MAD 0.38 0.005 0.101925 5.18 0 0.04554
MAX 0.39 0.005 0.101975 5.18 0 0.04554
MIN 0.39 0.005 0.101975 5.18 0 0.04554
MOV 0.39 0.005 0.101975 5.18 0 0.04554
MUL 0.4 0.005 0.102025 5.18 0 0.04554
POW 0.38 0.005 0.101925 5.18 0 0.04554
RCP 0.39 0.005 0.101975 5.18 0 0.04554
RSQ 0.38 0.005 0.101925 5.18 0 0.04554
SCS 0.38 0.005 0.101925 5.18 0 0.04554
SGE 0.39 0.005 0.101975 5.18 0 0.04554
SIN 0.39 0.005 0.101975 5.18 0 0.04554
SLT 0.39 0.005 0.101975 5.18 0 0.04554
SUB 0.4 0.005 0.102025 5.18 0 0.04554
XPD 0.38 0.005 0.101925 5.18 0 0.04554

Test 

ADD 0.39 0.005 0.101975 5.18 0
CMP 0.38 0.005 0.101925 5.18 0 0.04554
COS 0.39 0.005 0.101975 5.18 0 0.0455
DP3 0.38 0.005 0.101925 5.18 0 0.0455
DP4 0.39 0.005 0.101975 5.18 0 0.04554
DPH 0.39 0.005 0.101975 5.18 0 0.0
DST 0.39 0.005 0.101975 5.18 0 0.0455
EX2 0.39 0.005 0.101975 5.18 0 0.0455
FLR 0.39 0.005 0.101975 5.18 0 0.0455
FRC 0.39 0.005 0.101975 5.18 0 0.04
KIL 0.38 0.005 0.101925
LG

Mar. of 

 
 
 
 
 
 
 

Program Power (W) Err. (±W) (Trial 1) (Trial 2)
ABS 30.4044 2.25589295 20.5 18.75
ADD 30.7683 2.26002798 8.2 7.5
CMP 30.2546 2.25508986 73.4 67.1
COS 30.5492 2.2585671 20.5 19.9
DP3 31.2017 2.26482239 20.4 19.7
DP4 31.1322 2.26416301 21.3 20.7
DPH 31.4961 2.26829803 21.6 20.9
DST 30.5492 2.2585671 20.4 19.7
EX2 30.5492 2.2585671 20.6 19.9
FLR 30.4278 2.25718796 20.5 19.9

19.625
7.85

70.25

21.25
20.05
20.25

20.2

Time to draw 1000000 triangles 
20 times (s)

20.2
20.05

21
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FRC 30.4044 2.25589295 20.5 19.9
KIL 30.1332 2.25371071 39.4 38.9
LG2 30.2831 2.25451461 20.5 20.3
LIT 30.1332 2.25371071 39.6 39.3
LRP 30.0118 2.25233157 41.2 40.7
MAD 30.1332 2.25371071 9.1 9.1
MAX 30.3064 2.25580881 20.8 20.7
MIN 30.185 2.25442967 20.8 20.7
MOV 30.185 2.25442967 20.5 20.4
MUL 30.601 2.25928606 8.2 8.2
POW 30.1332 2.25371071 39.4 39.3
RCP 30.3064 2.25580881 20.5 20.5
RSQ 30.1332 2.25371071 39.7 39.7
SCS 30.1332 2.25371071 39.6 39.7
SGE 30.3064 2.25580881 20.8 20.9
SIN 30.3064 2.25580881 20.5 20.5
SLT 30.185 2.25442967 20.8 20.7
SUB 30.4562 2.25661191 8.2 8.2
XPD 30.1332 2.25371071 39.9 39.9

8.2
39.9

39.65
20.85

20.5
20.75

8.2

40.95

39.35
20.5
39.7

9.1
20.75
20.75
20.45

20.2
39.15

20.4
39.45
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