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Abstract Iterative stencil loops (ISLs) are used in many applications and tiling is a

well-known technique to localize their computation. When ISLs are tiled across a paral-

lel architecture, there are usually halo regions that need to be updated and exchanged

among different processing elements (PEs). In addition, synchronization is often used

to signal the completion of halo exchanges. Both communication and synchronization

may incur significant overhead on parallel architectures with shared memory. This is es-

pecially true in the case of graphics processors (GPUs), which do not preserve the state

of the per-core L1 storage across global synchronizations. To reduce these overheads,

ghost zones can be created to replicate stencil operations, reducing communication

and synchronization costs at the expense of redundantly computing some values on

multiple PEs. However, the selection of the optimal ghost zone size depends on the

characteristics of both the architecture and the application, and it has only been stud-

ied for message-passing systems in distributed environments. To automate this process

on shared memory systems, we establish a performance model using NVIDIA’s Tesla

architecture as a case study and propose a framework that uses the performance model

to automatically select the ghost zone size that performs best and generate appropri-

ate code. The modeling is validated by four diverse ISL applications, for which the

predicted ghost zone configurations are able to achieve a speedup no less than 95% of

the optimal speedup.
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1 Introduction

Iterative stencil loops (ISL) [24] are widely used in image processing, data mining, and

physical simulations. ISLs usually operate on multi-dimensional arrays, with each ele-

ment computed as a function of some neighboring elements. These neighbors comprise

the stencil. Multiple iterations across the array are usually required to achieve conver-

gence and/or to simulate multiple time steps. Tiling [19][29] is often used to partition

the stencil loops among multiple processing elements (PEs) for parallel execution, and

we refer to a workload partition as a tile in this paper. Similar tiling techniques also

help localize computation to optimize cache hit rate for an individual processor [13].

(a) (b)

Fig. 1 (a) Iterative stencil loops and halo regions. (b) Ghost zones help reduce inter-loop
communication.

Tiling across multiple PEs introduces a problem because stencils along the bound-

ary of a tile must obtain values that were computed remotely on other PEs, as shown

in Figure 1(a). This means that ISL algorithms may spend considerable time stalled

due to inter-loop communication and synchronization delays to exchange these halo

regions. Instead of incurring this overhead after every iteration, a tile can be enlarged

to include a ghost zone. This ghost zone enlarges the tile with a perimeter overlapping

neighboring tiles by multiple halo regions, as shown in Figure 1(b). The overlap allows

each PE to generate its halo regions locally [32] for a number of iterations proportional

to the size of the ghost zone. As Figure 1(b) demonstrates, ghost zones group loops

into stages, where each stage operates on overlapping stacks of tiles, which we refer

to as trapezoids. Trapezoids still produce non-overlapping data at the end, and their

height reflects the ghost zone size.

Ghost zones pose a tradeoff between the cost of redundant computation and the

reduction in communication and synchronization among PEs. This tradeoff remains

poorly understood. Despite the ghost zone’s potential benefit, an improper selection of

the ghost zone size may negatively impact the overall performance. Previously, opti-

mization techniques for ghost zones have only been proposed in message-passing based

distributed environments [32]. These techniques no longer fit for modern chip multi-

processors (CMPs) for two reasons. First, communication in CMPs is usually based

on shared memory and its latency model is different from that of message-passing sys-

tems. Secondly, the optimal ghost zone size is commonly one on distributed environ-

ments [1], allowing for a reasonably good initial guess for adaptive methods. However,

this assumption may not hold on some shared memory CMPs, as demonstrated by

our experimental results later in the paper. As a result, the overhead of the adap-

tive selection method may even undermine performance. This paper presents the first
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technique that we know of to automatically select the optimal ghost zone size for ISL

applications executing on a shared-memory multicore chip multiprocessor (CMP). It

is based on an analytical model for optimizing performance in the presence of this

tradeoff between the costs of communication and synchronization versus the costs of

redundant computation.

As a case study for exploring these tradeoffs in manycore CMPs, we base our analy-

sis on the architectural considerations posed by NVIDIA’s Tesla GPU architecture [27].

We choose GPUs because they contain so many cores and some extra complexity re-

garding the L1 storage and global synchronization. In particular, the use of larger

ghost zones is especially valuable in the Tesla architecture because global synchro-

nization is conventionally performed by restarting threads; unlike in the distributed

environment where a tile’s data may persist in its PE’s local memory, data in all PEs’

local memory has to be flushed to the globally shared memory and reloaded again after

the inter-loop synchronization. Even though the memory fence is later introduced into

GPU programming that allows global synchronization without restarting threads, its

overhead increases along with the input size, as we will show in Section 4.5.

Our performance model and its optimizations are validated by four diverse CUDA

applications consisting of dynamic programming, an ordinary differential equation

(ODE) solver, a partial differential equation (PDE) solver, and a cellular automaton.

The optimized ghost zone sizes are able to achieve a speedup no less than 95% of the

optimal configuration. Our performance model for local-store based memory systems

can be extended for cache hierarchies given appropriate memory modeling such as that

proposed by Kamil et al [20].

Our performance model can adapt to various ISL applications. In particular, we

find that ghost zones benefit more for ISLs with narrower halo widths, lower computa-

tion/communication ratios, and stencils operating on lower-dimensional neighborhood.

Moreover, although the Tesla architecture limits the size of thread blocks, our perfor-

mance model predicts that the speedup from ghost zones tends to grow with larger

tiles or thread blocks.

Finally, we propose a framework template to automate the implementation of the

ghost zone technique for ISL programs in CUDA. It uses explicit code annotation and

implicitly transforms the code to that with ghost zones. It then performs a one-time

profiling for the target application with a small input size. The measurement is then

used to estimate the optimal ghost zone configuration, which is valid across different

input sizes.

In short, the main contributions of this work are an analytical method for deriving

an ISL’s performance as a function of its ghost zone, a gradient descent optimizer for

optimizing the ghost zone size, and a method for the programmer to briefly annotate

conventional ISL code to automate finding and implementing the optimal ghost zone.

2 Related Work

Tiling is a well-known technique to optimize ISL applications [19][21][28][29][33]. In

some circumstances, compilers are able to tile stencil iterations to localize computation

or/and exploit parallelism [3][13][35]. Some attempt to reduce redundant computation

for specific stencil operations [10]. On the other hand, APIs such as OpenMP are able

to tile stencil loops at run-time and execute the tiles in parallel [8]. Renganarayana et

al. explored the best combination of tiling strategies that optimizes both cache locality
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and parallelism [30]. Researchers have also investigated automatic tuning for tiling

stencil computations [9][24]. Specifically, posynomials have been widely used in tile size

selection [31]. However, these techniques do not consider the ghost zone technique that

reduces the inter-tile communication. Although loop fusion [25] and time skewing [36]

are able to generate tiles that can execute concurrently with improved locality, they

cannot eliminate the communication between concurrent tiles if more than one stencil

loops are fused into one tile. This enforces bulk-synchronous systems, such as NVIDIA’s

Tesla architecture, to frequently synchronizes computation among different PEs, which

eventually penalizes performance.

Ghost zones are based on tiling and they reduce communication further by repli-

cating computation, whose purpose is to replicate and distribute data to where it is

consumed [12]. Krishnamoorthy et al. proposed overlapped tiling that employs ghost

zones with time skewing and they studied its effect in reducing the communication

volume [22]. However, their static analysis does not consider latencies at run-time and

therefore the optimal ghost zone size cannot be determined to balance the benefit of

reduced communication and the overhead of redundant computation.

Ripeanu et al. constructed a performance model that can predict the optimal ghost

zone size [32], and they conclude the optimal ghost zone size is usually one in distributed

environments. However, the performance model is based on message-passing and it does

not model shared memory systems. Moreover, their technique is not able to make case-

by-case optimizations — it predicts the time spent in parallel computation using time

measurement of the sequential execution. This obscures the benefit of optimization —

an even longer sequential execution is required for every different input size even it is

the same application running on the same platform.

Alternatively, Allen et al. proposed adaptive selection of ghost zone sizes which

sets the ghost zone size to be one initially and increases or decreases it dynamically

according to run-time performance measurement [1]. The technique works fine in dis-

tributed environments because the initial guess of the ghost zone size is usually correct

or close to the optimal. However, our experiments on NVIDIA’s Tesla architecture show

that the optimal ghost zone size varies significantly for different applications or even

different tile sizes. Therefore an inaccurate initial guess may lead to long adaptation

overhead or even performance degradation, as demonstrated in Section 5.4. Moreover,

the implementation of the adaptive technique is application-specific and it requires

nontrivial programming effort.

The concept of computation replication involved in ghost zones is related to data

replication and distribution in the context of distributed memory systems [4][23], which

are used to wisely distribute pre-existing data across processor memories. Communication-

free partitioning has been proposed for multiprocessors as a compiling technique based

on hyperplane, however, it only covers a narrow class of stencil loops [16]. To study

the performance of 3-D stencil computations on modern cache-based memory systems,

another performance model is proposed by Kamil et al. [20] which is used to analyze

the effect of cache blocking optimizations. Their model does not consider ghost zone

optimizations.

An implementation of ghost zones in CUDA programming is described by Che et

al. [5]. The same technique can be used in other existing CUDA applications ranging

from fluid dynamics [14] to image processing [37].

Another automatic tuning framework for CUDA programs is CUDA-lite [34]. It uses

code annotation to help programmers select what memory units to use and transfer

data among different memory units. While CUDA-lite performs general optimizations
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and generates code with good performance, it does not consider the trapezoid technique

which serves as an ISL-specific optimization.

We extend our prior work [26] from several perspectives. First, we introduce artifi-

cial factors to compensate for the effects in latency hiding and bank conflicts. Second,

we study the use of memory fences in global synchronization and extend the analytical

model to predict its performance. Third, more sensitivity studies show that varying the

applications’ input size rarely affects its optimal ghost zone size. Fourth, we simplify

the model and show it is insensitive to memory latency. Finally, we measured the power

consumption resulted from the ghost zone technique.

3 Ghost zones on GPUs

We show an example of ISLs and illustrate how ghost zones are optimized in dis-

tributed environments. We then introduce CUDA programming and NVIDIA’s Tesla

architecture and show how ghost zones are implemented in a different system platform.

3.1 Ghost Zones in Distributed Environments

Listing 1 Simplified HotSpot code as an example of iterative stencil loops

/∗ A and B are two 2−D ROWS x COLS arrays ∗
∗ B po int s to the array with va lues produced ∗
∗ prev ious ly , and A po int s to the array with ∗
∗ va lues to be computed . ∗/

f l o a t ∗∗A, ∗∗B;
/∗ i t e r a t i v e l y update the array ∗/
f o r k = 0 : num ite ra t i ons

/∗ in each i t e r a t i o n , array elements are ∗
∗ updated with a s t e n c i l in p a r a l l e l ∗/

f o r a l l i = 0 : ROWS−1 and j = 0 : COLS−1
/∗ de f i n e i n d i c e s o f the s t e n c i l and ∗
∗ handle boundary cond i t i on s by ∗
∗ clamping over f lown i nd i c e s to ∗
∗ array boundar ies ∗/

top = max( i −1, 0 ) ;
bottom = min( i +1, ROWS−1);
l e f t = max( j −1, 0 ) ;
r i g h t = min ( j +1, COLS−1);
/∗ compute the new value us ing the ∗
∗ s t e n c i l ( neighborhood elements ∗
∗ produced in the prev ious i t e r a t i o n ) ∗/

A[ i ] [ j ] = B[ i ] [ j ] + B[ top ] [ j ] \
+ B[ bottom ] [ j ] + B[ i ] [ l e f t ] \
+ B[ i ] [ r i g h t ] ;

swap (A, B) ;

Listing 1 shows a simple example of ISLs without ghost zones. A 2-D array is

updated iteratively and in each loop, values are computed using stencils that include

data elements in the upper, lower, left and right positions. Computing boundary data,

however, may require values outside of the array range. In this case, the values’ array

indices are clamped to the boundary of the array dimensions. When parallelized in a



6

distributed environment, each tile has to exchange with its neighboring tiles the halo

regions, which is comprised of one row or column in each direction. Using ghost zones,

multiple rows and columns are fetched and they are used to compute halo regions

locally for subsequent loops. For example, if we wish to compute an N × N tile for

two consecutive loops without communicating among PEs, each PE should start with

a (N + 4) × (N + 4) data cells that overlaps each neighbor by 2N cells. At the end

of one iteration it will have computed locally (and redundantly) the halo region that

would normally need to be fetched from its neighbors, and the outermost cells will be

invalid. The remaining (N + 2) × (N + 2) valid cells are used for the next iteration,

producing a result with N ×N valid cells.

3.2 CUDA and the Tesla Architecture

To study the effect of ghost zones on large-scale shared memory CMPs, we program

several ISL applications in CUDA, a new language and development environment from

NVIDIA that allows execution of general purpose applications with thousands of data-

parallel threads on NVIDIA’s Tesla architecture. CUDA abstracts the GPU hardware

using a few simple abstractions [27]. As Figure 2 shows, the hardware model is com-

prised of several streaming multiprocessors (SMs), all sharing the same device memory

(the global memory on the GPU card). Each of these SMs consists of a set of scalar

processing elements (SPs) operating in SIMD lockstep fashion as an array processor.

In the Tesla architecture, each SM consists of 8 SPs, but CUDA treats the SIMD width

or “warp size” as 32. Each warp of 32 threads is therefore quad-pumped onto the 8

SPs. Each SM is also deeply multithreaded, supporting at least 512 concurrent threads,

with fine-grained, zero-cycle context-switching among warps to hide memory latency

and other sources of stalls.

In CUDA programming, a kernel function implements a parallel loop by mapping

the function across all points in the array. In general, a separate thread is created for

each point, generating thousands or millions of fine-grained threads. The threads are

further grouped into a grid of thread blocks, where each thread block consists of at most

512 threads, and each thread block is assigned to a single SM and executes without

preemption. Because the number of thread blocks may exceed (often drastically) the

number of SMs, thread blocks are mapped onto SMs as preceding thread blocks finish.

This allows the same program and grid to run on GPUs of different sizes or generations.

The CUDA virtual machine specifies that the order of execution of thread blocks

within a single kernel call is undefined. This means that communication between thread

blocks is not allowed within a single kernel call. Communication among thread blocks

can only occur through the device memory, and the relaxed memory consistency model

means that a global synchronization is required to guarantee the completion of these

memory operations. However, the threads within a single thread block are guaranteed

to run on the same SM and share a 16 KB software controlled local store or scratchpad.

This has gone by various names in the NVIDIA literature but the best name appears to

be per-block shared memory or PBSM. Data must be explicitly loaded into the PBSM

or stored to the device memory.
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Fig. 2 CUDA’s shared memory architecture. Courtesy of NVIDIA.

3.3 Implementing Ghost Zones in CUDA

Without ghost zones nor memory fences, a thread block in CUDA can only compute

one stencil loop because gathering data produced by another thread block requires

the kernel function to store the computed data to the device memory, restart itself,

and reload the data again. Different from the case in distributed environments where

each tile only has to fetch halo regions, all data in PBSM is flushed and all has to be

reloaded again. Even after CUDA 2.2 introduced the memory fence that allows global

synchronization without restarting kernels, the overhead in such synchronization in-

creases along with the input size, as we will show in Section 4.5. Moreover, thread blocks

often contend for the device memory bandwidth. Therefore, the penalty of inter-loop

communication is especially large. Using ghost zones, a thread block is able to compute

an entire trapezoid that spans several loops without inter-loop communication. At least

three alternative implementations are possible.

First, as the tile size decreases loop after loop in each trapezoid, only the stencil

operations within the valid tile are performed. However, the boundary of the valid tile

has to be calculated for each iteration, which increases the amount of computation and

leads to more control-flow divergence within warps. It eventually undermines SIMD

performance.

Alternatively, a trapezoid can be computed as if its tiles do not shrink along with

the loops. At the end, only those elements that fall within the boundary of the shrunk

tile are committed to the device memory. This method avoids frequent boundary-

testing at the expense of unnecessary stencil operations performed outside the shrunk

tiles. Nevertheless, experiments show that this method performs best among all, and

we base our study upon this method although we can model other methods equally

well.
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Finally, the Tesla architecture imposes a limit on the thread block size, which in

turn limits the size of a tile if one thread operates on one data element. To allow larger

tiles for larger trapezoids, a CUDA program can be coded in a way that one thread

computes multiple data elements. However, this complicates the code significantly and

experiments show that the increased number of instructions cancels out the benefit of

ghost zones and this method performs the worst among all.

4 Modeling Methodology

We build a performance model in order to analyze the benefits and limitations of ghost

zones used in CUDA. It is established as a series of a multivariate equations and it can

demonstrate the sensitivity of different variables. The model is validated using four

diverse ISL programs with various input data.

4.1 Performance Modeling for Trapezoids on CUDA

The performance modeling has to adapt to application-specific configurations including

the shape of input data and halo regions. For stencil operations over a D-dimensional

array, we denote its length in the ith dimension as DataLengthi. The width of the

halo region is defined as the number of neighborhood elements to gather along the ith

dimension of the stencil, and is denoted by HaloWidthi, which is usually the length of

the stencil minus one. In the case of code in Listing 1, HaloWidth in both dimensions

are set to two. The halo width, together with the number of loops within each stage and

the thread block size, determines the trapezoid’s slope, height (h), and the size of the

tile that it starts with, respectively. We simplify the model by assuming the common

case where the thread block is chosen to be isotropic and its length is constant in

all dimensions, denoted as blk len. The width of the ghost zone is determined by the

trapezoid height as HaloWidthi×h. We use the average cycles per loop (CPL) as the

metric of ISL performance. Since a trapezoid spans across h loops which form a stage,

the CPL can be calculated as the cycles per stage (CPS) divided by the trapezoid’s

height.

CPL =
CPS

h
(1)

CPS is comprised of cycles spent in the computation of all trapezoids in one stage

plus the global synchronization overhead (GlbSync). Trapezoids are executed in the

form of thread blocks whose execution do not interfere with each other except for

device memory accesses; when multiple memory requests are issued in bulks by multiple

thread blocks, the requests are queued in the device memory and a thread block may

have to wait for requests from other thread blocks to complete before it continues.

Therefore, the latency in the device memory accesses (MemAcc) needs to consider the

joint effect of memory requests from all thread blocks, rather than be regarded as part

of the parallel execution. Let CPT (computing cycles per trapezoid) be the number of

cycles for an SM to compute a single trapezoid assuming instantaneous device memory

accesses, T be the the number of trapezoids in each stage, and M be the number of

multiprocessors, we have:
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CPS = GlbSync+MemAcc+ CPT × T

M
(2)

Where the number of trapezoids can be approximated by dividing the total number

of data elements with the size of non-overlapping tiles with which trapezoids end.

T =

∏D−1
i=0 DataLengthi∏D−1

i=0 (blk len−HaloWidthi × h)
(3)

Fig. 3 Abstraction of CUDA implementation for ISLs with ghost zones.

Furthermore, ISLs, when implemented in CUDA, usually take several steps de-

scribed in Figure 3. By default, the global synchronization between stages are imple-

mented by terminating and restarting the kernel. As it shows, latencies spent in device

memory accesses (MemAcc) are additively composed of three parts namely:

– LoadSten: cycles for loading the ghost zone into the PBSM to compute the first

tile in the trapezoid.

– IterMem: cycles for other device memory accesses involved in each stencil opera-

tion for all the loops.

– Commit: cycles for storing data back to the device memory.

CPT , the cycles spent in a trapezoid’s parallel computation, is additively comprised

of two parts as well:

– IterComp: cycles for computation involved in a trapezoid’s stencil loops.
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– MiscComp: cycles for other computation that is performed only once in each

thread. This mainly involves the computation for setting up the thread coordi-

nation and handling boundary conditions.

We now discuss the modeling of these components individually. The measuring of

GlbSync is described as well.

4.2 Memory Transfers

Due to the SIMD nature of the execution, threads from half a warp coalesce their

memory accesses into memory requests of 16 words (CoalesceDegree = 16). Since

concurrent thread blocks execute the same code, they tend to issue their memory re-

quests in rapid succession and the requests are likely to arrive at the device memory

in bulks. Therefore, our analytical model assumes that all memory requests from con-

current blocks are queued up. The device memory is optimized for bandwidth: for the

GeForce GTX 280 model, it has eight 64-bit channels and can reach a peak bandwidth

of 141.7 GBytes/sec [6]. The number of cycles to process one memory request with p

bytes is

CyclesPerReq(p) =
p

MemBandwidth÷ ClockRate
(4)

Because the Tesla architecture allows each SM to have up to eight concurrent thread

blocks (BlksPerSM = 8), the total number of concurrent thread blocks is

ConcurBlks = BlksPerSM ×M (5)

With ConcurBlks thread blocks executing in parallel, T
ConcurBlks passes necessary

for T thread blocks to complete their memory accesses. To estimate the number of

cycles spent to access n data elements of x bytes in the device memory, we have:

passes =
T

ConcurBlks
(6)

MemCycles(n) = passes× [UncontendedLat+ α×
n× CyclesPerReq(x× CoalesceDegree)

passes× CoalesceDegree
]

= passes× UncontendedLat+ α× n× x× ClockRate

MemBandwidth
(7)

where UncontendedLat is the number of cycles needed for a memory request to travel

to and from the device memory. It is assumed to be 300 cycles in this paper, however,

later studies show its value does not impact the predicted performance as significantly

as the memory bandwidth does, given large data sets.

Besides the peak bandwidth, the memory overhead is also affected by bank conflicts,

which depend on the execution of particular applications. Therefore, to compensate for

the effect on the memory access overhead, we introduce an artificial factor, α = σD−1,

where σ is empirically set to 5.0 to best approximate the experimental results. We

assume accessing higher dimensional arrays leads to more bank conflicts and lower

memory throughput. Further experiments show that the overall performance trend

predicted by our analytical performance model is not sensitive to the choice of σ.

For a trapezoid over a D-dimensional thread block with a size of blk lenD, it typi-

cally loads blk lenD data elements including the ghost zone. Usually, only one array is
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gathered for stencil operations (NumStencilArrays = 1), although in some rare cases

multiple arrays are loaded. After loading the array(s), each tile processes∏D
i=1 (blk len−HaloWidthi) elements. Zero or more data elements

(NumElemPerOp ≥ 0) can be loaded from the device memory for each stencil opera-

tion, whose overhead is include in the model as IterMem. Because our implementation

computes a trapezoid by performing the same number of stencil operations in each loop

and only committing the valid values at the end (Section 3.3), the number of additional

elements to load in each loop remains constant. Finally, the number of elements for

each trapezoid to store to the device memory is
∏D−1

i=0 (blk len−HaloWidthi × h).

We summarize these components as:

LoadSten = NumStencilArrays×MemCycles(T × blk lenD) (8)

Commit = MemCycles(T ×
D−1∏
i=0

(blk len−HaloWidthi × h)) (9)

IterMem = NumElemPerOp× h

×MemCycles(T ×
D−1∏
i=0

(blk len−HaloWidthi)) (10)

4.3 Computation

We estimate the number of instructions to predict the number of computation cycles

that a thread block spends other than accessing the device memory. Because threads

are executed in SIMD, instruction counts are based on warp execution (not thread

execution!). We set the cycles-per-instruction (CPI) to four because in Tesla, a single

instruction is executed by a warp of 32 threads distributed across eight SPs, each takes

four pipeline stages to complete the same instruction from four threads. Reads and

writes to the PBSM are treated the same as other computation because accessing the

PBSM usually takes the same time as accessing registers.

In addition, the performance model also has to take into account the effect of

latency hiding and bank conflicts. Latency hiding overlaps computation with memory

accesses; therefore the overall execution time is not the direct sum of cycles spent in

memory accesses and computation. We define the effectiveness of latency hiding, β,

as the number of instructions that overlap with memory accesses divided by the total

number of instructions. Due to the lack of measurement tools, we approximate the

effect of latency hiding by assuming half of the instructions overlaps with memory

accesses; therefore β equals 0.5. With regard to the overall execution time, the effect

of latency hiding is the same as that of reducing the number of warp instructions by a

factor of β.

On the other hand, a bank conflict serializes SIMD memory instructions and it

has the same latency effect as increasing the number of instructions by a factor of

BankConflictRate, which equals the number of bank conflicts divided by the number

of warp instructions, both can be obtained from the CUDA Profiler [7].

The overall effect of latency hiding and bank conflicts on computation cycles is

as if the number of instructions is scaled with a factor of τ , which equals (1 − β) ×
(1 + BankConflictRate). After all, the computation cycles for a thread block can be

determined as
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CompCycles = StageInstsPerWarp× τ ×ActiveWarpsPerBlock × CPI (11)

where StageInstsPerWarp is the number of instructions executed by an individual

warp during a trapezoid stage, and ActiveWarpsPerBlock is the number of warps

that have one or more running threads not suspended by branch divergence. While

ActiveWarpsPerBlock can be deduced from the tile size, StageInstsPerWarp has to

be synthesized for different trapezoid heights. We breakdown StageInstsPerWarp into

two additive parts: those that are performed once for each trapezoid (StageInstsPerWarpMC),

which correspond to MiscComp, and those that are performed iteratively in all stencil

loops (StageInstsPerWarpIC), which correspond to IterComp. StageInstsPerWarpMC

and StageInstsPerWarpIC are estimated separately as:

StageInstsPerWarpMC = IterInstsPerWarpMC (12)

StageInstsPerWarpIC = h× IterInstsPerWarpIC (13)

where IterInstsPerWarp stands for the number of instructions executed by an individ-

ual warp during a conventional iteration. Its two components are IterInstsPerWarpMC ,

which corresponds to MiscComp, and IterInstsPerWarpIC , which corresponds to

IterComp. With a trapezoid of height h, computation involved in IterComp is re-

peated for h iterations, therefore the number of instructions per iteration is multiplied

by h to estimate the number of instructions per stage in Equation 13. We then use the

CUDA Profiler [7] to estimate IterInstsPerWarpMC and IterInstsPerWarpIC for

each application using a small data set sized N with no ghost zones applied (h = 1).

The recorded numbers, InstsPerSMMC and InstsPerSMIC , respectively, are the

numbers of instructions per iteration executed by all the warps on the same multipro-

cessor. Each type of InstsPerSM relates to their corresponding IterInstsPerWarp

as:

IterInstsPerWarp =
InstsPerSM

WarpsPerSM
= InstsPerSM ÷ N

WarpSize×M
(14)

InstsPerSMMC and InstsPerSMIC are measured separately by commenting out

different sections of code and rerun the CUDA Profiler. Note that the resulting values

of IterInstsPerWarpMC and IterInstsPerWarpIC are independent of the input size

and the block size; once obtained, they can be used for arbitrary inputs and block sizes

as long as the underlying architecture stays the same.

In Equation 11, ActiveWarpsPerBlock is an integer value where a warp with-

out all threads active should still be counted as one. We approximate it with float-

ing point numbers so that it can be represented as the number of active threads di-

vided by the the warp size. It is therefore estimated as blk lenD

WarpSize for MiscComp and∏D−1
j=0 (blk len−HaloWidthj)

WarpSize for IterComp. Substituting these expressions into Equa-

tion 11, we obtain the computation cycles for a thread block as the sum of two terms:

MiscComp =
InstsPerSMMC ×M

N
× blk lenD × CPI (15)
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IterComp = h× InstsPerSMIC ×M

N
×

D−1∏
j=0

(blk len−HaloWidthj)× CPI (16)

4.4 Global Synchronization

To exchange the halo region, a thread block needs only synchronize with its neighbors.

In CUDA, the conventional way to perform global synchronization is to terminate and

restart the kernel function. Due to the lack of publicly available technical details, we

assume that the exposed overhead of global synchronization is the time to terminate

and restart concurrent blocks, whose quantity is calculated in Equation 5. The time

spent for restarting other thread blocks is hidden by the computation of concurrent

blocks.

In the case of GTX 280, there are 240 concurrent thread blocks. We therefore

measured the time spent in restarting a kernel function with 240 empty thread blocks,

which averages at 3350 cycles.

GlbSyncKnlRestart = 3350 (17)

4.5 Extension: Modeling Memory Fence

While the global synchronization is traditionally implemented by restarting a CUDA

kernel, the introduction of memory fences since CUDA 2.2 brings an alternative. With

memory fences, a single CUDA kernel can persist across stages until all iterations are

finished, as described in Figure 4. This leads to two changes in our performance model.

First, MiscComp — the time spent in setting up coordinates and handling boundary

conditions — only needs to be counted once for all iterations. Given a large number

of iterations, the cycles spent in MiscComp can be negligible and it is no longer a

component of CPT. Secondly, the modeling of the overheads in global synchronization

has to be adjusted.

We apply the following method to implement global synchronization using memory

fences. After synchronizing threads in the same thread block at the end of each stage

and using memory fences to make sure their device memory accesses have committed,

the first thread in each thread block atomically increments a counter in the device

memory. The thread then uses a spinlock which repeatedly reads the counter’s value

until all thread blocks complete the memory fence. Eventually, it allows the belonging

thread block to proceed to the next stage after the counter tells that all thread blocks

have committed their partial results into the device memory. We use a different counter

for each stage. Otherwise, if the same counter is reused across all stages, it has to be

reset at the end of each stage after all thread blocks release their spinlock, which

requires another round of atomic operations and memory fences.

Experiments show that the overhead in such synchronization correlates to the num-

ber of thread blocks. By measuring the execution time of a kernel function that performs

nothing but global synchronization with memory fences, and by varying the number

of thread blocks, we obtain the empirical function using linear curve fitting with 95%
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Fig. 4 Abstraction of CUDA implementation for ISLs with ghost zones.

confidence: GlbSyncMemFence = 210.3×T+δ, where δ is negligible. In reality, the la-

tency in global synchronization can overlap with computation from other thread blocks.

To compensate for such effect, we introduce an artificial factor µ and assume about

half of the time spent in global synchronization overlaps with computation (µ = 0.5).

Therefore, we have

GlbSyncMemFence = µ× 210.3× T (18)

The number of kernel instructions used for implementing the memory fence is not

included in the profiled instruction count of InstsPerSM . In fact, both InstsPerSMIC

and InstsPerSMMC stay the same as that in the implementation without memory

fences. Nevertheless, InstsPerSMMC is no longer needed because the overheads in

MiscComp is negligible in the implementation with memory fences.

4.6 Extensibility to Other Platforms

Our performance model focuses on shared memory CMPs with local store based mem-

ory system. Therefore, it can be extended to model the Cell Broadband Engine (CBE) [15].

Specifically in CBE, a tile needs not flush its data to the globally shared memory in

order to communicate with others. Moreover, the model needs to consider the effect of

latency hiding in the light of direct memory access (DMA) operations.

Given an appropriate memory latency model, the performance model can also be

generalized to systems with cache hierarchies. Several additional factors need to be

modeled including caching efficiency and the effect of prefetching. One candidate cache
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latency model for ISLs is Kamil et al.’s Stencil Probe [20] which does not take into

account the effects of ghost zones yet.

5 Experiments

We validate our performance model using four distinct ISL applications that fall in the

categories of dynamic programming, ODE and PDE solvers, and cellular automata. We

compare their performance predicted by the model with their actual performance on

the GeForce GTX 280 graphics card, whose architectural parameters are summarized

in Table 1 and are used in our performance model for optimizations. These parameters

are retrieved using device query and some are obtained literally through the GTX 280

specifications [6]. We then use the performance model to select the optimal trapezoid

height and evaluate its accuracy.

Parameter Symbol Value
GPU clock rate ClockRate 1.3 GHz
(assumed) device

memory access latency UncontendedLat 300 cycles
coalesce width - 16

concurrent blocks
per SM BlksPerSM 8
warp size - 32

number of SPs per SM - 8
number of SMs M 30
average CPI CPI 4

memory bandwidth MemBandwidth 141.7 GBytes/sec
maximum number of
threads per block - 512

maximum memory pitch - 262144 bytes

Table 1 Architectural parameters for GeForce GTX 280. Parameters not directly used in our
performance model is marked by the symbol of “-”. Although the warp size is not directly
used in the equations, it is accounted for in the measurement of InstPerSM , which counts
instructions based on warp execution; with constant workload, varying the warp size will
also vary the profiled value of InstPerSM . The coalesce width is implicitly reflected as well
in the memory bandwidth; a smaller coalesce width would undermine the effective memory
bandwidth. Note that in GTX 280, memory requests from a half-warp are always coalesced.

While the major workload is carried out by the GPU, the benchmarks are launched

on a host machine with an Intel Core2 Extreme CPU X9770 with a clock rate of 3.2

GHz. The CPU connects to the GPU through NVIDIA’s MCP55 PCI bridge. The

actual time measurement only includes the computation performed on the GPU.

5.1 Benchmarks

Our benchmark suite contains four distinct ISL applications programmed in CUDA.

They have different dimensionality, computation intensities, and memory access inten-

sities.

– PathFinder uses dynamic programming to find a path on a 2-D grid from the

bottom row to the top row with the smallest accumulated weights, where each

step of the path moves straight ahead or diagonally ahead. It iterates row by row,
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each node picks a neighboring node in the previous row that has the smallest

accumulated weight, and adds its own weight to the sum.

– HotSpot [17] is a widely used tool to estimate processor temperature. A silicon die

is partitioned into functional blocks based on a floorplan, and the simulation solves

a ODE iteratively, where new temperature in each block is recalculated based on

its neighborhood temperatures in the previous time step.

– Poisson numerically solves the poisson equation [11] which is a PDE widely used

in electrostatics and fluid dynamics. The solver iterates until convergence, using

stencils to calculate the Laplace operator over a grid.

– Cell is a cellular automaton used in Game of Life [2]. In each iteration, each cell,

labeled as either live or dead, counts the number of live cells in its neighborhood,

and determines whether it will be live or dead in the next time step.

The benchmark-specific parameters used in our performance model are listed in

Table 2.

PathFinder HotSpot Poisson Cell

stencil dimensionality 1 2 2 3
stencil size 3 3 × 3 3 × 3 3 × 3 × 3
halo width 2 2 × 2 2 × 2 2 × 2 × 2

NumStencilArrays 1 2 1 1
NumElemPerOp 1 0 0 0

Profiling 100,000 500× 500× 60 × 60
Input Size(N) 500 500 ×60

InstsPerSMMC 1998 13488 12825 71603
InstsPerSMIC 1859 16645 12474 220521

BankConflictRate0 0 0 1.1

Table 2 Benchmark parameters used in our performance modeling.

5.2 Model Validation

We verify our performance model by varying the configurations and input sizes for each

benchmark and comparing the experimental and theoretical results. The performance

is measured in CPU cycles and is then normalized to GPU cycles. The measured

execution time is then compared with the time predicted by the performance model.

Figure 5 compares the performance generated from actual experiments and that

predicted from our analytical model. In this illustration, global synchronization is car-

ried out by restarting kernel functions. We increase the size of the thread block size of

PathFinder, HotSpot, Poisson and Cell from 64 to 512, 10× 10 to 22× 22, 10× 10 to

22× 22, and 6× 6× 6 to 8× 8× 8, respectively. The performance model captures the

overall scaling trend for all benchmarks except for Cell, where performance is predicted

to improve with a larger thread block size but it actually degrades with a block size

of 8× 8× 8. Further characterizations using the CUDA Profiler show this unexpected

trend is due to a large number of bank conflicts with this particular thread block

size. However, run-time dynamics of bank conflicts are not modeled faithfully in our

analytical model.

In the experiment shown in Figure 6, we increase the input size of PathFinder,

HotSpot, Poisson and Cell from 100, 000 to 1, 000, 000, 500 × 500 to 2, 000 × 2, 000,
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Fig. 5 Model verification by scaling the thread block size of (a) PathFinder, (b) HotSpot, (c)
Poisson, and (d) Cell. The trapezoid height is set to 16 for PathFinder, two for HotSpot and
Poisson, and one for Cell. The input size is set to 1,000,000 for PathFinder, 2, 000× 2, 000 for
HotSpot and Poisson, and 100× 100× 100 for Cell. The examples shown here perform global
synchronization by restarting kernels; trends are similar with memory fences. The performance
degradation in Cell with a block size of 8× 8× 8 results from bank conflicts.
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Fig. 6 Model verification by scaling the input size of (a) PathFinder, (b) HotSpot, (c) Poisson,
and (d) Cell. The trapezoid height is set to 16 for PathFinder, two for HotSpot and Poisson,
and one for Cell. The thread block size is set to 256 for PathFinder, 20×20 for HotSpot, 16×16
for Poisson, and 8×8×8 for Cell. The performance model captures the overall scaling trend for
all benchmarks. The examples shown here perform global synchronization by memory fences;
trends are similar with restarting kernels.

500× 500 to 2, 000× 2, 000, and 40× 40× 40 to 100× 100× 100, respectively. In this

illustration, global synchronization is performed using memory fences. The performance

model captures the overall scaling trend for all benchmarks.

5.3 Sources of Inaccuracy

Our performance modeling may be subject to three sources of inaccuracy:

– Unpredictable dynamic events. This includes control-flow divergences, bank con-

flicts in both the PBSM and the device memory, and the degree of device memory

contention. Although the error introduced by control flow divergence is reduced

by profiling the number of dynamic warp instructions which account for instruc-

tions in different branches, the other two types of errors are intrinsic in shared

memory systems and they are difficult to prevent. The degree of bank conflicts

in the device memory is estimated using arrays’ dimensionality because higher di-

mensionality leads to strided accesses that are more likely to incur bank conflicts.

Experiments also reveal that the frequency of bank conflicts also correlates to the

thread block size in a nonlinear way. Moreover, due to the homogeneity of thread

blocks, we assume thread blocks are likely to issue device memory requests close

in time and therefore requests are queued and processed in bulks, maximizing the



18

memory bandwidth. Finally, the effectiveness of latency hiding is also empirically

approximated using an artificial factor.

– Insufficient technical details. Due to the lack of information regarding the launching

of kernel functions, we are not able to accurately estimate the latency for global

synchronization. Instead, we measure the latency of global synchronization based

on a simplified, empirical model.

– Approximation Error. To maintain a continuous function for gradient based op-

timization, we have to calculate ActiveWarpsPerBlock as floating point values

rather than integers. This error is more significant for thread blocks narrow in

length which lead to more branch divergence on the boundary, such is the case

with Cell. In this scenario, a warp with most threads suspended may be counted

as a small fraction, while in reality is should be counted as one.

Despite these sources of inaccuracy, we show that the performance modeling reflects

the experimental performance scaling and it is sufficient to guide the selection of the

optimal ghost zones or trapezoid configuration for ISL applications in CUDA.

5.4 Performance Optimization

5.4.1 Choosing Tile Size

We formulate the cost-efficiency of a trapezoid as the ratio between the size of the tile

that it produces at the end and the size of the tile that it starts with. It is represented

as

CostEffect =

∏D
i=0 (blk len−HaloWidthi × h)∏D

i=0(blk len−HaloWidthi)
(19)

For a given trapezoid height, a larger tile size always increases the cost-efficiency of

trapezoid, reducing the percentage of stencil operations to replicate and achieving bet-

ter performance, as we will demonstrate in Section 6.4. In our CUDA implementation,

the tile size is determined by the thread block size which is set as large as possible

within the architectural limit of 512.

5.4.2 Selecting Ghost Zone Size

The optimal ghost zone size is determined by the optimal trapezoid height, which in

turn depends on the dynamics among computation and memory access. Our technique

estimates the optimal trapezoid height in two steps. First, we comment out part of the

application code in order to obtain InstsPerSMMC and InstsPerSMIC separately

using the CUDA Profiler [7]. The run-time profiling is performed once for each ISL

algorithm, and it only requires the computation of one stencil loop with a minimum

input size big enough to occupy all the SMs. The resulting instruction counts are then

used to compute the optimal trapezoid height in Equation 1. While Equation 1 is not a

posynomial function, it is convex and we can obtain a unique solution using gradient-

based constrained nonlinear optimization. We apply a constraint that sets the upper

bound of the trapezoid height so that a tile produced at the end of a thread block has

a positive area:

∀i ∈ [0, D), blk len−HaloWidthi × h > 0 (20)
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The run-time profiling and ghost zone optimization needs to be performed only

once for each ISL. However, they need to be recalculated if the same application is

ported to systems with different settings (e.g. number of SMs, warp size, etc).

The performance model then predicts the optimal trapezoid height according to

different applications and thread block sizes. In the example of Figure 7, we configure

PathFinder with a thread block size of 256, HotSpot and Poisson with a thread block

size of 20 × 20, and Cell with a thread block size of 8. The input size involved is

1, 000, 000 for PathFinder, 2000 × 2000 for HotSpot, 2000 × 2000 for Poisson, and

100× 100× 100 for Cell.

The predictions are compared to experimental results shown in Figure 7. Using the

optimal trapezoid height obtained from actual experiments, the speedups compared

to performance without ghost zones are 2.32X, 1.35X, 1.40X, 1.0X for PathFinder,

HotSpot, Poisson and Cell, respectively; if memory fences are used, the speedups be-

come 4.50X, 1.32X, 1.29X, 1.0X, respectively. The predicted optimal trapezoid heights

turn out to exactly match the experimental results except for Poisson and PathFinder.

In the case of Poisson implemented with memory fences, the optimal trapezoid height

is predicted to be 2 but it is actually 3. In the case of PathFinder, the optimal trapezoid

height is 16, and it is predicted to be 19 with memory fences and 12 without memory

fences. Nevertheless, the performance at the predicted trapezoid height is no worse

than 95% of the optimal performance.

Our estimation of the optimal trapezoid height can also serve as the initial guess

for an adaptive selection method, assuming kernels are restarted after each stage to

reset the trapezoid height. Suppose run-time profiling calculates the average execu-

tion time for every two stages and decides whether to increment or decrement the

trapezoid height, and there is a total of 30 iterations. With a more accurate initial

guess, our adaptive technique achieves speedups of 2.29X, 1.35X, 1.40X, and 0.92X for

PathFinder, HotSpot, Poisson and Cell, while an initial guess of one, as proposed in

[1], results in speedups of 1.94X, 1.32X, 1.36X and 0.92X, respectively. The slowdown

in Cell is because the performance does not benefit from ghost zones, however, the

adaptive method still probes a suboptimal trapezoid height of two.
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Fig. 7 Evaluating the performance optimization by scaling the trapezoid height of (a)
PathFinder, (b) HotSpot, (c) Poisson, and (d) Cell. “Exp” denotes actual performance mea-
surement obtained from experiments, “Pred” denotes predicted performance obtained from
the analytical model. Two types of implementations for global synchronization are evaluated;
“KnlRestart” corresponds to restarting kernel functions, and “MemFence” corresponds to us-
ing the memory fences. The performance at the predicted trapezoid height is no worse than
95% of the optimal performance.
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5.5 The Choice to Use Memory Fences

As described in Section 4.4 and Section 4.5, global synchronization can be imple-

mented by either restarting kernel functions or using memory fences. The use of memory

fences has two effects. First, thread coordinates and boundary conditions can persist

through stages within a single kernel function call, and their corresponding computa-

tion, MiscComp, becomes negligible compared to the overall computation in all stages.

Secondly, the overhead in global synchronization increases linearly with the number of

thread blocks, which may eventually incur a latency longer than that resulted from

restarting kernels. According to our performance model, the additional GPU cycles

resulting from using memory fences can be estimated as:

OverheadMemFence = GlbSyncMemFence −
GlbSyncKnlRestart −MiscComp× T ÷M (21)

= µ× 210.3× T − 3350

−T × InstsPerSMMC

N
× blk lenD × CPI (22)

= T × δ − 3350 (23)

Given a particular architecture, a particular application, and a chosen block size,

Equation 23 shows that the overhead of memory fences only correlates to the number

of thread blocks, T . As T increases along with the input size or the trapezoid height,

eventually the factor δ determines whether using memory fences is beneficial. A pos-

itive δ predicts that using memory fences incurs overhead and thus restarting kernels

is preferred. A negative δ predicts that using memory fences is beneficial. The abso-

lute value of δ represents the confidence of the prediction. For the configurations used

for Figure 7, the δ values are 87 for PathFinder, 21 for HotSpot, 25 for Poisson, and

-464 for Cell. This prediction is reflected in our observation in Figure 7 where mem-

ory fences benefit the performance of Cell and hurts the performance of PathFinder.

However, due to the approximate in modeling global synchronization, our model is not

able to precisely predict whether using memory fences is beneficial to performance,

especially when the confidence is relatively low. HotSpot and Poisson are examples.

The model predicts that their performance will suffer from the memory fence, but they

benefit instead. Nevertheless, such misprediction only occurs when the performance

with memory fences is similar to that with restarting kernels.

6 Sensitivity Study

Using the validated modeling, we are able to further study the performance scaling

brought by ghost zones on shared memory architectures. We show how it affects the

execution time spent in computation, memory accesses, and global synchronization.

We also investigate what applications and system platforms may benefit more from

using ghost zones.
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6.1 Component Analysis

We transform Equation 2 to the accumulation of six components, each term represents

average cycles spent in one component within a stencil loop:

CPL = GlbSync∗ + LoadSten∗ + Commit∗

+MiscComp∗ + IterComp∗ + IterMem∗ (24)

GlbSync∗ =
GlbSync

h
(25)

LoadSten∗ =
LoadSten

h
(26)

Commit∗ =
Commit

h
(27)

MiscComp∗ =
MiscComp× T

h×M
(28)

IterComp∗ =
IterComp× T

h×M
(29)

IterMem∗ =
IterMem

h
(30)

We use PathFinder as an example to show the estimated performance breakdown

obtained from our analytical model. As shown in Figure 8, all components contribute

significantly to the overall performance except for GlbSync∗ in the case of restarting

kernels and MiscComp∗ in the case of memory fences. As the trapezoid height in-

creases, time spent in LoadSten∗ and Commit∗ drops while IterMem∗ and IterComp∗

increase gradually. Eventually, IterMem∗ and IterComp∗ dominate the execution

time. Note that IterMem∗ only exists for those applications that access additional

device memory objects during trapezoid computation.
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Fig. 8 The estimated performance breakdown for PathFinder obtained from our analytical
model. Data is based on an input size of 1,000,000 and a block size of 256.

Figure 9 illustrates in more detail about how each component reacts to the increased

trapezoid height or ghost zone size. Each component’s execution time is normalized to

its time spent with a trapezoid height of one. The figure is drawn using a synthetic
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benchmark similar to HotSpot but with NumElemPerOp set to one instead of zero

to illustrate the scaling curve of IterMem.
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Fig. 9 The effect of the trapezoid’s height on each component with the execution time for
each component normalized to the case where a trapezoid’s height is one.

Time for IterComp∗ and IterMem∗ increases monotonically with taller trape-

zoids due to increased computation replication. However, time spent in LoadSten∗,
Commit∗, MiscComp∗, and GlbSync∗MemFence decreases first with taller trapezoids

due to reduced inter-loop communication and the number of stages. Nevertheless, they

eventually increase dramatically due to the exploding number of thread blocks resulted

from taller trapezoids which end with tiny non-overlapping tiles.

Moreover, Equations 25 to 30 can be regarded as functions of h, and their derivatives

are all monotonically increasing, as can be seen from Figure 9. As a result, the overall

objective function is convex and it has a unique minimum.

6.2 Insensitive Factors

Although the uncontended latency (UncontendedLat) and the number of concurrent

thread blocks per SM (BlksPerSM) is directly used in our performance model to

calculate Equation 7, they are not sensitive to the overall performance. Under the

architecture of GTX 280 and assuming a full block size (blk lenD = 512), Equation 7

can be re-written as

MemCycles(n) = n× UncontendedLat

blk lenD ×M ×BlksPerSM
+

n× α× x× ClockRate

MemBandwidth
(31)

= 0.0024× n+ α× 0.0367× n (32)

with α ≥ 1. As a result, the first term involving UncontendedLat and BlksPerSM is

at least an order of magnitude smaller than the second term. Therefore, the values of

UncontendedLat and BlksPerSM hardly impact the overall performance. In fact, the

two additive terms in Equation 32 each represents the memory access time attributed
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to latency and bandwidth, respectively. It reflects the fact that the GPU performance

is usually bandwidth-bounded rather than latency-bounded.

The choice of the optimal trapezoid height also has little to do with the input size

of the application. This is because in Equation 24, all the terms are linearly related

to the input size, n, except for GlbSync∗KnlRestart when global synchronization is

implemented with restarting kernels. However, GlbSync∗KnlRestart becomes negligible

compared to other terms when the input size is sufficiently large, as illustrated in

Figure 8(a). Overall, the optimal trapezoid height remains the same for different input

sizes, as illustrated in Figure 10.
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Fig. 10 Compare the effect of various input sizes for (a) PathFinder, (b) HotSpot, (c) Poisson,
and (d) Cell. The optimal trapezoid height is independent of the input size. Data is estimated
using thread blocks sized 256 for PathFinder, 20× 20 for HotSpot and Poisson, and 8× 8× 8
for Cell. Global synchronization is implemented with memory fences but the overall trend is
almost identical to that implemented by restarting kernels.

6.3 Application Sensitivity

According to the performance model, we summarize several characteristics that enable

an application to benefit from ghost zones.

Stencils operating on lower-dimensional neighborhood. In fact, with the same trape-

zoid height and the same halo width in each dimension, the ratio of replicated opera-

tions grows exponentially with more dimensionality, as can be seen from Equation 8,

16, and 10. This phenomenon is observed in Section 5 where the 1-D PathFinder bene-

fits the most, followed by 2-D HotSpot and Poisson, and the 3-D Cell does not benefit

at all.

Narrower halo widths. A wider halo region increases the amount of operations

to replicate, therefore it increases IterComp∗ which usually dominates the overall

performance; the peak speedup becomes smaller and it tends to be reached with a

shorter trapezoid (Figure 11).

Smaller computation/communication ratio. The penalty for replicating computation-

intensive operations may be large enough to obscure ghost zone’s savings in commu-

nication and synchronization. In this case, peak speedup is likely to be achieved with

shorter trapezoids.
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Fig. 11 Comparing the effect of various halo widths for (a) PathFinder, (b) HotSpot, (c)
Poisson, and (d) Cell. Global synchronization is implemented with memory fences but the
overall trend is almost identical to that implemented by restarting kernels. Smaller stencils
with smaller halo width can benefit more from the trapezoid technique, as demonstrated by
our performance modeling by synthesizing four benchmarks with various halo width.

6.4 System Sensitivity

Although our performance model is based on the Tesla architecture, it can be easily

extended to model other shared memory parallel systems. We investigate how adding

ghost zones can benefit across different system parameters.

Larger tile size. As we discussed in Section 5.4.1, by using larger tiles, less compu-

tation needs to be replicated and performance can be improved. As Figure 12 shows,

a larger thread block size increases the peak speedup and shifts the best configuration

towards taller trapezoids. The benefit of ghost zones may be more significant for archi-

tectures that easily allow for larger tile sizes, such as CBE. Note that the benchmark

of Cell may benefit from the ghost zone technique if the architecture allows larger tile

size or thread block size.
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Fig. 12 Compare the effect of various block sizes for (a) PathFinder, (b) HotSpot, (c) Poisson,
and (d) Cell. Global synchronization is implemented with memory fences but the overall trend
is almost identical to that implemented by restarting kernels. Code programmed with larger
thread blocks can benefit more from ghost zones, as demonstrated using our performance
modeling to scale the thread block size beyond the architectural limit.

Longer synchronization latency. One benefit of ghost zones is the elimination of

inter-loop synchronization. As Figure 9 shows, GlbSync∗ always decreases with taller

trapezoids. Nevertheless, latency in synchronization is not a major contributor to the

overall performance on GTX 280.

Longer memory access latency. The savings in inter-loop communication is more

evident with longer memory access latency. This can be caused by higher bandwidth

demand, higher contention, or higher transferring overhead. For CBE whose memory

bandwidth is not as optimized as Tesla, it is likely that ISL applications benefit more

from ghost zones.
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Listing 2 Code annotation for automatic trapezoid optimization

f l o a t ∗∗A, ∗∗B;
f o r k = 0 : num ite ra t i ons with trapezoid . height=[H]

f o r a l l i = 0 : ROWS−1 and j = 0 : COLS−1
/∗ de f i n e the array ( s ) to be loaded from ∗/
apply trapezoid . obj=[B]
/∗ de f i n e the d imens i ona l i t y o f the array ∗/
apply trapezoid . dimension=2
/∗ de f i n e the halo width in a l l d imensions
apply trapezoid . gather [−1 ,+1][−1 ,+1]
top = max( i −1, 0 ) ;
bottom = min( i +1, ROWS−1);
l e f t = max( j −1, 0 ) ;
r i g h t = min ( j +1, COLS−1);
A[ i ] [ j ] = B[ i ] [ j ] + B[ top ] [ j ] \

+ B[ bottom ] [ j ] + B[ i ] [ l e f t ] \
+ B[ i ] [ r i g h t ] ;

swap (A, B) ;

Smaller CPI. Technology is driving towards a smaller CPI — either by improving

the instruction-level parallelism (ILP) or increasing the computation bandwidth (e.g.

SIMDization). A smaller CPI puts less weight on computation and more on memory

accesses, therefore programs can benefit from the ghost zones further.

6.5 Energy Consumption

Using ghost zones, the savings in energy consumption are approximately linear with

the reduction in execution time. We measure the power consumption using the power

meter WattsUp [18]. Because power is measured by plugging the machine’s AC power

into the WattsUp, the measurements are filtered by the behavior of the power supply.

Therefore, the data collected from the WattsUp represents the total power that includes

leakage and dynamic power spent by CPU, GPU, and buses. While the overall power

increases around 84 watts on average after CUDA kernels are launched, we do not

observe a noticeable change in power by using ghost zones. As a result, it appears that

energy can be modeled as linear with the execution time, regardless of whether ghost

zones are used. Since ghost zones do improve performance in most cases we studied

(Section 5.4), they also improve energy efficiency.

7 An Automated Framework Template for Trapezoid Optimization

Since the benefit of ghost zones depends on various factors related to both the appli-

cation and the system platform, it is hard for programmers to find out the best config-

uration. Moreover, implementing ghost zones for ISL applications involves nontrivial

programming efforts and it is often error-prone. We therefore propose a framework

template that automatically transform ISL programs in CUDA to that equipped with

the optimal trapezoid configuration. The framework is comprised of three parts: code

annotation and transformation, one-time dynamic profiling and off-line optimization.

Listing 2 illustrate the proposed code annotation for the pseudocode in Listing 1.

The programmer specifies the array to be loaded from and its dimensionality, as well

as the halo width of the stencil operations. The framework is then able to transforms
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the code to that equipped with ghost zones. The code transformation also implicitly

distinguishes computation involved in stencil loops from the rest for the purpose of

profiling.

With the transformed code, the framework then counts the instructions and esti-

mates the computation intensity using the CUDA Profiler, as described in Section 4.3.

Profiling is performed once implicitly and the results are used for calculation in the

performance model. Finally, the performance model estimates the optimal trapezoid

configuration based on the current system platform — as described in Section 5.4 —

and generates appropriate code.

8 Conclusions and Future Work

We establish a performance model for ISL applications programmed in CUDA and

study the benefits and limitations of ghost zones. The performance modeling based

on the Tesla architecture is validated using four distinct ISL applications and it is

able to estimate the optimal trapezoid configuration. The trapezoid height selected by

our performance model is able to achieve a speedup no less than 95% of the optimal

speedup for our benchmarks. Our performance model can be extended and generalized

to other shared memory systems. Several application- and architecture- characteristics

that can leverage the usage of ghost zones are identified. Finally, we propose a frame-

work template that can automatically incorporate ghost zones to ISL applications in

normal CUDA code and optimize it with the selection of trapezoid configurations. An

immediate step in our future work will be to port our infrastructure to the OpenCL

standard once suitable tools are available. Extensions can be implemented for CMPs

with cache-based memory systems. It will also be interesting to study how the benefit

from ghost zones is effected by cache prefetching and cache blocking optimizations.
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