
Exploiting Inter-thread Temporal Locality for Chip Multithreading

Jiayuan Meng
Department of Computer Science

University of Virginia
Charlottesville, Virginia

jm6dg@virginia.edu

Jeremy W. Sheaffer
Department of Computer Science

University of Virginia
Charlottesville, Virginia
jws9c@cs.virginia.edu

Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, Virginia
skadron@cs.virginia.edu

Abstract—Multi-core organizations increasingly support
multiple threads per core. Threads on a core usually share
a single first-level data cache, so thread schedulers must try
to minimize cache contention among threads. While this has
been studied for concurrent threads with disjoint working
sets, the problem has not been addressed for multi-threaded
data-parallel workloads in which threads can be scheduled or
constructed to improve inter-thread cache sharing. This paper
proposes the symbiotic affinity scheduling (SAS) algorithm in
which work is first partitioned according to the number of
cores (i.e., the number of caches), and these partitions are then
subdivided and scheduled among each core’s available thread
contexts so that threads sharing a core operate on neighboring
elements to maximize cache locality.

We demonstrate this concept with a series of data-parallel
benchmarks. Simulations on M5 achieve an average speedup
of 1.69× and 36% energy savings over conventional scheduling
techniques that are oblivious to whether threads share a
cache. Even compared to an approach that extends oblivious
scheduling to ensure that the sum of the threads’ working sets
fits in the cache, symbiotic affinity scheduling is able to exploit
greater temporal locality and provide 30% performance gains
on average. Symbiosis also outperforms adaptive contention
reduction techniques by 17%.

Keywords-chip multithreading; data locality; fine-grained
parallelism; data parallelism; task scheduling;

I. INTRODUCTION

Workloads with significant data parallelism are gaining
commercial and social importance and driving processor
design in many markets. For applications with sufficient
parallelism, it has been shown that a chip multithreading
(CMT) organization comprising many simple, multithreaded
cores maximizes performance within a given area bud-
get [21]. Multi-threading hides latencies and can better
utilize precious memory bandwidth. This design philosophy
is apparent in a number of contemporary and proposed
architectures, including Niagara [30], the Cell Broadband
Engine (CBE) [24], and GPUs [17], [2] (which despite their
origin in rendering, have proved effective at a variety of non-
rendering, general-purpose workloads [13]). The addition
of single-instruction, multiple-data (SIMD) hardware further
increases thread count. SIMD organizations are appealing
because they boost area efficiency for data-parallel work-
loads and amortize the cost of instruction storage, fetch,
decode, and sequencing across multiple processing elements.
Wide SIMD loads can also make more efficient use of

memory bandwidth [19]1.
Thread counts per core seem likely to increase, even

though L1 cache sizes are unlikely to keep pace. Unfor-
tunately, the benefits of increasing threads per core will be
limited by cache contention unless threads are carefully co-
scheduled. Unfortunately, current schedulers typically treat
each thread as if it ran on a separate virtual processor
and hence are oblivious to interactions when threads share
a cache. Previous techniques attempt to mitigate cache
contention by reconfiguring the cache [11], [47], [53] or
selecting the best combination of heterogeneous parallel
threads that provide the best throughput [40], [48], [50]. Yet,
these techniques view threads as competing entities working
on disjoint sets of data. Data-parallel tasks share a common
data set and typically exhibit predictable access patterns.
Work should be partitioned first according to the number of
caches, and threads within a core should then be cooperative
and access data in a pattern maximizing spatial and temporal
locality. We name this concept Symbiotic Affinity Scheduling
(SAS) and demonstrate its benefits on a wide spectrum of
data-parallel applications ranging from media processing and
scientific computation, to mining and machine learning.

It may appear that conventional affinity-aware techniques
can be straightforwardly adapted to symbiotic threads as a
form of SAS. However, as we will discuss in Section II-A,
these techniques only address cache affinity for an individual
thread or among dependent threads, rather than among con-
currently executed symbiotic threads. Even if some cache-
aware techniques can be adapted to ensure the joint working
set of symbiotic threads fit in the local cache, they may still
suffer from conflict misses and a cache block may not be
reused in time before it gets replaced.

The solution to this issue is to also exploit temporal
locality among symbiotic threads to maximize sharing and
data reuse. By allowing symbiotic threads to simultaneously
process adjacent data, the overall sequence of memory
addresses they access is similar to that of a single thread
that iterates through tasks in order. As a result, they can

1Vectors are one form of SIMD. Although they are currently only four
lanes wide in most commodity processor ISAs, they will grow to 8- and
16-wide with the introduction of future ISAs [16], [46]. An alternative
SIMD organization is the array organization (dubbed “SIMT” by NVIDIA
for Single Instruction, Multiple Threads), in which each lane is scalar
and executes a separate thread context, and the SIMD lockstep operation
is implicit and not directly exposed in the ISA. Array processing has a
rich history in high performance computing, and GPUs are the commodity
exemplar of this architecture.

skadron
Text Box
This is the author’s version of the work. It is posted here by permission of IEEE for 
your personal use. Not for redistribution. The definitive version will appear in 
Proc. of IPDPS 2010. (c) 2010, IEEE.



achieve parallel performance scaling without sacrificing
locality. However, due to run-time dynamics, fine-grained
coordination among symbiotic threads is required to ensure
inter-thread temporal locality; some data may incur more
computation or cache misses than others. In such cases, it
is important for symbiotic threads to re-adjust their task2

distribution so that adjacent data can still be reused in time.
Therefore, we propose SAS as a run-time approach with
two stages. First, independent tasks are grouped into blocks
using cache-affinity optimizations based on the layout and
capabilities of the cache hierarchy; each block is assigned
to an individual core to leverage spatial locality. Secondly,
because nearby tasks in the same block are likely to share
data for regular access patterns, each core then traverses its
block and dispatches neighboring tasks to multiple concur-
rent symbiotic threads on the same core to leverage temporal
locality.

In SAS, a block of tasks is traversed by a per-core
scheduler according to an affinity graph of independent
tasks (AGIT) as an indicator of locality among tasks. In
an AGIT, tasks are represented as vertices and those that
share data are connected by undirected edges. For many
parallel applications with regular data access patterns, the
AGIT may be constructed implicitly without programmer
intervention (e.g. the AGIT can be formed into regular
meshes, lists or trees according to different data structures
and access patterns). Otherwise, AGIT construction would
rely on instrumentation.

In this paper, we demonstrate SAS for data-parallel ap-
plications whose parallelism is often expressed in nested,
parallel for loops. Specifically in this scenario, a task refers
to the data-parallel computation scoped within the innermost
parallel for loop, where each task can be identified by a
particular loop index. The AGIT is implicitly constructed
as a multi-dimensional mesh according to the loop space.
Conventional tiling or blocking techniques [10], [27], [45]
group a set of neighboring tasks into blocks called tiles
and execute each tile within an individual thread. These
techniques are referred to in this paper as Individual Tiling
(I-tile). Using SAS, we propose Symbiotic Tiling (S-tile)
that improves inter-thread temporal locality by allowing a
tile to be collaboratively processed by symbiotic threads;
concurrent threads execute neighboring tasks, which are
likely to access adjacent data. We compare S-tile to I-tile
on a CMT processor with 16 threads per core and a two-
level coherent cache hierarchy. Due to the unavailability
of general purpose CMT processors with a high degree of
multi-threading, we simulate a set of nine benchmarks se-
lected from Splash2 [54], MineBench [38] and Rodinia [13].
Experiments show that S-tile provides an average speedup
of 1.69× and energy savings of 33% compared to I-tile.
Even if I-tile is adapted to assign smaller tiles to each
thread so that the aggregate can fit in the L1 cache capacity
(I-tile(part)), S-tile still achieves greater locality and 30%
performance gains. We also compare S-tile to SOS (Sample,

2We refer to a set of dynamic instructions that have to be executed
sequentially as a task, and it often corresponds to the code section in the
innermost parallel loop.

Optimize, Symbios) scheduling, an adaptive contention re-
duction technique that reduces the number of active threads
when contention is detected; results show S-tile outperforms
SOS by 17%.

II. BACKGROUND

To avoid cache contention among threads on the same
core, we propose to regard threads on the same core as a
joint set of work and improve their joint cache affinity. We
investigate not only inter-thread spatial locality where the
joint working set of symbiotic threads fits in the cache ca-
pacity, but also inter-thread temporal locality where threads
reuse the same data within a small time interval. In short,
for a given partition of the data, both spatial and temporal
locality are maximized if threads operate on immediately
adjacent data elements, rather than further partitioning the
data into disjoint blocks.

There are abundant studies that aim at effectively reorder-
ing or distributing computation tasks to maximize memory
system throughput. They can be further divided into two
complementary categories: techniques that map computation
tasks to cores according to cache affinity or data locality, and
techniques that reduce contention once tasks have already
been mapped to cores. We present a road map of these
techniques and study the differences between the proposed
technique and the conventional techniques.

A. Affinity-Aware Task Scheduling

Affinity-aware task scheduling can occur during two
stages: first, threads are constructed as virtually independent
cores where each processes a disjoint block of neighboring
tasks; and second, threads are scheduled on the underlying
architecture with a particular order or mapping that opti-
mizes cache-affinity.

1) Affinity-Aware Thread Construction: An individual
thread can be created in a way that maximizes spatial locality
by computing a sequence of neighboring tasks that are
likely to access adjacent data. For tasks with regular access
patterns, Tiling or Blocking can be employed to partition
the workload into consecutive chunks that each map to a
thread [10], [20], [22], [23], [27], [29], [31], [36], [42], [45]
When data accesses are irregular, the underlying system can
still reorder independent sections of code according to user-
instrumented address hints that indicate data locality among
code sections [41] or runtime discovery.

These techniques improve data locality within an individ-
ual thread. Nevertheless, when multiple threads share the
same cache, their working sets do not necessarily overlap,
and their joint data-accesses are likely scattered, leading to
a higher possibility of conflict and capacity misses. Even if
some cache-aware techniques may adapt to multi-threaded
cores by subdividing a data partition that fits in the cache
capacity among symbiotic threads, they still suffer from a
lack of inter-thread temporal locality. For temporal locality
within a thread, a cache block may have to persist in the
cache for a long time to be reused again. On the other
hand, for reuse across threads, if the cache block can be
simultaneously reused by multiple threads (our approach),
its risk of being replaced before fully reused becomes lower.



This observation is justified in Section VI by comparing the
performance of two techniques (i.e. I-tile(part) and S-tile).

2) Affinity-aware Thread Scheduling: Once threads are
created, there are several approaches to improve cache
affinity:

• An individual thread is scheduled on the core where it
has run previously to reuse remaining data in the private
cache [52].

• An individual thread migrates closer to the cache or
memory from which it frequently requests data [12],
[28], [35].

• Dependent threads are scheduled on the same core to
save data communication [6], [7], [14], [49].

These scheduling techniques are based on the history
about where threads have executed or the knowledge of data
dependency among threads, neither of which indicate affinity
between concurrent threads sharing data, a challenge raised
when data-parallel applications run on multi-threaded cores.

3) Affinity-aware Workload Partitioning: While the above
techniques improve data locality either within a thread or
among dependent threads, there is limited work in improving
affinity among concurrent symbiotic threads, an issue raised
by multi-threaded cores. Lo et al. proposed a workload
partitioning technique that subdivides a page of data among
concurrent threads on the same core to minimize TLB
footprints [33]. However, such static approaches cannot be
easily adapted to reduce cache footprints, which requires
a more fine-grained orchestration between threads. A more
detailed discussion can be found in Section III-A. One
adaptation of this technique to reduce cache footprints is to
further divide a data partition that fits in the cache capacity
among concurrent threads. We refer to it as I-tile(part) and
Section VI shows that it is inferior to S-tile.

B. Contention Reduction among Threads

Once threads are created and mapped to cores, it may
occur that some storage resources may be shared among
multiple threads. These resources include the shared last-
level cache, private caches and TLBs. There are two main
approaches to reduce such contention:

• Only a few threads are selected from a pool of
threads whose joint working set minimizes cache con-
tention [40], [48], [50], [57].

• Shared storage can be dynamically partitioned among
threads according to their distinct demands [11], [47],
[53].

These techniques are mostly intended for heterogeneous
threads with different demands in cache capacity or asso-
ciativity. While they are able to prevent cache thrashing
and optimize cache throughput, they do not address data
reuse among threads that would further improve the compu-
tational throughput. Because only the overall performance is
dynamically profiled, these techniques are not aware of data
access patterns among concurrent threads and are not able
to improve inter-thread data sharing.

Nevertheless, contention reduction techniques can serve
as complementary optimizations to cache sharing; there
can be severe contention even if data is intensively reused

among threads. We study the impact of these techniques in
Section VI with I-tile(SOS) and S-tile(SOS).

C. Fine-grained Parallelism and Vector Processing

The trends for deeply multi-threaded cores to support fine-
grained parallelism can be observed from Niagara [30], the
Cell Broadband Engine (CBE) [24], and graphics processors
such as NVIDIA’s Tesla [17] that are sometimes used
for general purposed computation. While hardware support
has been proposed to assist fast dispatching of fine-trained
tasks [32], we are not aware of any prior technique that aims
to automatically improve affinity among concurrent, fine-
grained tasks, even in the newest OpenMP specification [8].

Vector processing may appear similar to our proposed
technique; “threads” are grouped into vectors and the need
to access data in vector-sized chunks forces the programmer
to build affinity among threads in the same vector. Vector
processors may have multiple, vector-width threads so that
the core can switch among them to hide memory latency,
however, there is nothing to force the programmer to assign
neighboring tasks to threads in different vectors, which
requires an understanding of the data access patterns for each
vector. Our proposed technique accomplishes this at runtime
without burdening the programmer or compiler. Compared
to CUDA [39], whose abstraction of the explicitly-managed,
per-block shared memory requires the programmer to man-
ually manage data affinity at a greater effort, our technique
works with implicitly managed caches, and it automatically
schedules fine-grained tasks with inter-thread data affinity at
runtime.

III. SYMBIOTIC AFFINITY SCHEDULING FOR
DATA-PARALLELISM

We first introduce some common concepts about tiling.
An example is then used to illustrate the conceptual benefits
of our technique.

A. Tiling for Symbiotic Threads

Tiling targets data-parallel applications with nested, par-
allel for loops. An N level nested parallel for loop
intuitively defines an N -dimensional grid of loop indices.
An innermost iteration corresponds to a parallel task, which
is associated with a particular loop index. A tile is a block of
tasks that associates with a block of contiguous loop indices.
Given regular data access patterns, a tile demonstrates good
internal data locality. Conventionally, a tile is assigned to an
individual thread, and because each thread is assumed to run
on a separate processor with its own cache, the only locality
is intra-thread data locality. These techniques are referred to
in this paper as individual tiling (I-tile) and are widely used
in parallel programming models such as OpenMP [18] and
TBB [15].

Sadly, I-tile does not address the temporal locality of data
accesses among symbiotic threads; even if two threads on the
same core are assigned neighboring tiles that have bordering
tasks, the amount of data-sharing is negligible compared to
threads’ overall working set. In addition, because threads in
I-tile traverse tiles independently, neighboring tasks belong-
ing to different tiles are seldom executed close in time to



(a) code sample (b) I-tile (c) S-tile (d) D-cache misses

Figure 1: Comparing I-tile and S-tile in the context of HotSpot. (a) Pseudocode of HotSpot (b) I-tile: the nested parallel
loop is partitioned into smaller tiles, each maps to an available thread context. Symbiotic threads work on distinct, scattered
data, risking uneven cache-set usage and conflict misses. (c) S-tile: the nested parallel loop is partitioned into larger tiles,
each maps to a D-cache. Symbiotic threads work on neighboring tasks with data locality. (d) D-cache misses as a function
of number of threads per core on a quad core system.

reuse data. It may also appear that I-tile can be adapted to
symbiotic threads by creating smaller partitions so that the
sum of all the working sets of all threads on the same core
will fit in the cache. However, it is very difficult for such
an approach to cope with conflict misses, as we will show
in Section VI with I-tile(part).

We propose symbiotic tiling (S-tile) that performs tiling
according to the number of D-caches rather than the number
of threads and dispatches data sharing tasks to concurrent
threads. Because tasks with neighboring loop indices are
more likely to share data given regular access patterns, the
conceptual AGIT corresponding to the nested, parallel for
loop can be simply regarded as a multi-dimensional mesh
defined according to the lower bound, upper bound, and
stride in each dimension of the tile. The AGIT is then
traversed by symbiotic threads in a round robin fashion to
ensure threads execute neighboring tasks.

It may appear that S-tile can be achieved by static analy-
sis: tasks can be distributed to symbiotic threads in a cyclic
way, similar to what Lo et al. proposed in cyclic scheduling
where a page of data is distributed cyclicly among simul-
taneous threads in order to reduce TLB footprints [33].
However, reuse of cache blocks, rather than pages, is more
sensitive to run-time dynamics; threads with unbalanced
workloads, due to control flow or memory latency, may
fall behind, and static approaches fail to re-align their task
assignment. These fall-behind threads may not able to reuse
cache blocks in time. Threads may fall behind even in
SIMD cores — although threads in the same SIMD group
are synchronized with their tasks are aligned, there are
usually multiple SIMD groups on the same core, and threads
in different SIMD groups may execute asynchronously for
latency hiding purposes. In addition, static scheduling in a

cyclic way requires knowledge of cache capacity and tile
size, which either varies in different processors or may not
be known until runtime. This leads to high complexity and
poor portability. Given all of these factors, we implement
our solution as a user-level, runtime library.

B. Case Study: HotSpot

HotSpot [25] is a thermal simulator that estimates pro-
cessor temperature based on block layout and performance
measurement in architectural simulation. It is a member of
the structured grid dwarf [4], in which computation can be
regionally divided into sub-blocks with high spatial locality.
Structured grid applications are at the core of many scien-
tific computations. Other notable examples include Lattice
Boltzmann hydrodynamics [43] and Cactus [3].

Figure 1a shows a simplified 2-D version of HotSpot’s
code. In each iteration, a task gathers five neighboring
elements on a 2-D grid to produce a new value. Assuming
data array is row-major, the 5 neighboring elements are
scattered in three D-cache blocks.

When HotSpot is parallelized using I-tile, it queries for
the number of existing thread contexts and tiles its parallel
loop accordingly. As Figure 1b illustrates, on an example
parallel system with four 4-way multithreaded cores, sixteen
256 × 256 tiles are created to operate over a 1024 × 1024
grid to match the number of hardware thread contexts.
Each thread then executes a distinct tile. Since tiles have
minimally overlapping working sets, there is hardly any
cache sharing among threads on the same core. Concurrent
tasks executing over the same D-cache request 20 elements
scattered among 12 D-cache blocks.

S-tile, on the other hand, partitions the same parallel
nested loop into four 512×512 tiles to match the number of



D-caches. In our example of a four-core CMT, each tile is
then assigned to a core with four threads sharing the same
cache. Consecutive, neighboring tasks in the same tile are
then dispatched to concurrent threads. As Figure 1c shows,
concurrent neighboring tasks reuse adjacent data in a short
span of time; in fact, at the same time in the case of SIMD
access. As a whole, our example requests only 14 elements
scattered in three D-cache blocks, assuming each D-cache
block is 32 B and can host up to eight elements in a row.
In this way, S-tile’s L1 cache footprint is similar to that of
a single threaded core! Although it may seem that I-tile can
achieve the same data locality by only activating one thread
per core, this would lose all the benefits of multithreading.
This comparison is further evaluated in Section VI-A.

As a result, we show in Figure 1d that as we increase
the number of threads per core together with D-cache
associativity from one to 16, HotSpot experiences dramatic
increases in D-cache misses with I-tile because of D-cache
contention. On the contrary, the number of D-cache misses
remains relatively constant with S-tile. I-tile(part) helps, but
because each thread works on disjoint tiles—even though
these tiles were sized to try to fit in the cache—run time
dynamics can lead to contention that S-tile does not suffer.
The reduced D-cache contention leads to better speedup and
energy efficiency, as will be shown in Section VI.

IV. IMPLEMENTATION

Due to the lack of commercialized systems with many
general purpose cores that have a high degree of multithread-
ing, we simulated our benchmarks on MV5, an event-driven,
cycle-accurate multicore simulator based on M5 [37], [5].
Since TBB [15] and OpenMP [8] programs use the Pthread
library, which does not execute properly in system emula-
tion mode, we implemented a user-level runtime threading
library supporting basic operations required for a split-join
threading model. A nested, parallel for loop is abstracted
as a generic C++ class whose member function can be
derived to encapsulate code sections within the innermost
loop. This member function computes an individual task
given a particular loop index. When instantiated with loop
boundaries and strides, the C++ object invokes the threading
library which partitions the loop, schedules and executes all
the tasks. Figure 2 gives an example of how our threading
API transforms a parallel for loop. Such an API is not
new, and there are existing techniques that can automatically
extract boundaries and strides of a parallel for loop such
as employed by OpenMP [8]. Given appropriate compiler
support or code transformation, our runtime technique can
work with with existing APIs without modifying applica-
tions’ source code; our threading API is only designed to
mimic the programming interface in existing parallel APIs
in our simulation. Benchmarks are all cross-compiled to the
Alpha ISA using gcc 4.1.0.

Internally, the run-time library interprets the upper
bounds, lower bounds, and strides of nested parallel for
loops. The run-time library then creates a monitor thread that
executes on a randomly chosen core. The monitor thread in
turn spawns threads on all available hardware thread contexts
and then acts as the centralized tile scheduler, which is

responsible for constructing the AGIT and partitioning the
loop according to either I-tile or S-tile.

The AGIT for regularly strided, parallel for loops is a
two dimensional array with three rows, each representing
the upper bounds, and lower bounds, and strides in all
levels of the nested loop. It is allocated in the heap of
the monitor thread, and the cost in the memory space is
negligible (N words, where N is the number of levels in
the nested loop. Note N does not increase with a larger
input size). The monitor thread is only activated during
the sequential phase right before the parallel phase. After
it partitions the loop space and distributes the tiles, it is
suspended with its context switched out. The amount of
work it performs does not scale with the input size and is
small compared to the actual tasks performed by the parallel
threads. For heterogeneous architectures, the monitor thread
can run on a latency-oriented out-of-order core, while other
parallel threads run on a set of throughput-oriented cores.

In I-tile, the centralized tile scheduler evenly partitions the
loop according to the number of hardware thread contexts.
Tiles are represented concisely by their boundaries and
strides, and are stored in a shared memory structure. On
each core, an individual thread repeatedly checks a flag to
see whether a new tile is available, and acquires the tile if so.
It then computes the tile by repeatedly calling the function
representing the innermost loop within the tile boundary.

In S-tile, the centralized tile scheduler evenly partitions
the loop according to the number of cores. Each multi-
threaded core has one of its threads accept the tile in a
manner similar to I-tile. This thread then acts as the per-
core task scheduler. It first allocates queues for storing loop
indices for each thread on that core. It then iterates through
the tile; instead of computing tasks, it only generates loop
indices which are then pushed into the pre-allocated queues
in a round robin fashion. Afterwards, threads on the same
core, including the per-core task scheduler, fetch loop indices
from their associated queues and execute tasks in parallel.
As a result, multiple threads do not compete for the same
task queue. The per-core task scheduler keeps filling a queue
that is nearly empty. A thread will be busy waiting once it
finds its queue empty.

The runtime library in S-tile effectively dispatches fine-
grained tasks to symbiotic threads; hardware support for
fine-grained parallelism, such as that proposed by Kumar
et al. [32], is helpful but not necessary for three reasons.
First, overhead in the operating system is negligible because
everything takes place at user-level except for creating the
initial threads. Secondly, dispatching a task is as simple
as copying the next loop index from a queue and calling
the function representing the innermost loop. Finally, it
usually takes the per-core task scheduler fewer than 10
instructions to advance to the next loop index and buffer
it. Therefore it does not create noticeable overhead since
each task usually takes hundreds or thousands of instructions
to execute. By manually experimenting with the run-time
overhead, we found that a latency of 10 cycles in scheduling
each task yields an average performance overhead of 0.7%.
Note that some of the computational latency resulting from
task scheduling can be hidden due to the overlap of memory



(a) Conventional code with a parallel for
loop.

(b) The expression of a parallel for loop
in our threading API

Figure 2: Representation of a parallel for loop.

accesses. However, if tasks are only a few cycles long, the
overhead in the run-time may still be significant. In such
cases, a hardware task scheduler can be used instead. We
have modeled it using a Virtex-II Pro XC2VP30 FPGA [55].
The hardware implementation requires an equivalent gate
count of 3117, while even a simplest, single-threaded in-
order core would still take at least tens of thousands of gates
(35K gates for a 32-bit LEON2 processor compliant with the
SPARC V8 architecture [1]). The hardware implementation
is able to generate a loop index every cycle at 1.0 GHz.

A. Over-Decomposition and Load Balancing

Workloads are always balanced among symbiotic threads
because the per-core task scheduler keeps filling the queues
of loop indices, and any idle thread can fetch a new task
from its queue. Under most circumstances, tiles are similar
in size with similar amounts of computation, and workloads
among cores are balanced as well. Therefore, the number
of tiles by default equals the number of cores in S-tile.
However, in the case of those applications that may have
unbalanced workloads among tiles, programmers can over-
decompose the parallel loop into smaller tiles with a larger
quantity than the number of cores [31]. Load-balancing is
then achieved by having idle cores fetch remaining tiles.
Over-decomposition is not used when generating the results

presented in Section VI.

V. METHODOLOGY

Our simulations model multi-threaded cores that operate
over coherent cache hierarchies, resembling those found in
Niagara [30], Larrabee [46], and Fermi []. Our core model
can host hundreds of thread contexts. With such a degree of
multi-threading, a deeply pipelined, out-of-order core may
be neither area nor energy efficient. Instead, SIMT (Single
Instruction, Multiple Threads) is more common for highly
multi-threaded cores, and therefore we base our experiments
upon SIMT modeling. SIMT cores group multiple scalar
threads into SIMD batches that operate under a common
instruction sequencer. Different from traditional SIMD struc-
tures based on vectorization, SIMT is formed by multiple
scalar threads that maintain their own registers and they
may follow different control flows. These properties entitle
the processor to accommodate SPMD (Single Program,
Multiple Data). SIMT is now used in commodity graphics
processors such as NVIDIA’s Tesla [17]. It is used not only
for graphics but also for a wide range of general purpose
applications [13]. While our evaluation focuses on SIMT,
the principles of SAS and symbiotic tiling apply to mul-
tithreaded cores of any width. To explore the applicability
of symbiotic tiling on cores with various SIMD widths and
multithreading depths, e.g. Niagara or Larrabee, we scale
the SIMT width from one to eight in Section VI-A.

A. Modeling and Configuration

We model cache latency using Cacti [51]. Pullini et
al. [44] provide the basis for our interconnect latency model-
ing. The per-thread IPC (instructions-per-cycle) is assumed
to be one except for memory references, which are modeled
faithfully through the memory hierarchy (although we do not
model memory controller reordering effects). Cores switch
SIMT groups in zero cycles upon a cache access by pointing
to another set of register files, as commodity GPUs do [17].

The on-chip memory system has a two level hierarchy.
Each core has a private I-cache and a private D-cache. D-
caches are banked to cater to the bandwidth demands of
multiple thread contexts. A thread context can access any
D-cache bank. If bank conflicts occur, memory requests are
serialized and a one cycle queuing overhead is charged;
the queuing overhead is much smaller than the hit latency
because we assume requests can be pipelined. I-caches are
not banked because only one instruction is fetched every
cycle for an entire SIMT group. All L1 caches share the
L2 cache through a crossbar. The L2 cache is inclusive
and can hold more than twice as much data as all of the
L1 caches combined. Caches are physically indexed and
physically tagged. We employ the MESI directory-based
coherence protocol. Table I summarizes the main system
parameters.

Energy is modeled in four parts. We use Cacti 4.2 [51]
to calculate dynamic energy for reads and writes as well as
the leakage power of the caches. We estimate the energy
consumption of the cores using Wattch [9]. The pipeline
energy is divided into seven parts including fetch and de-
code, integer ALUs, floating point ALUs, register files, result



Tech. Node 65 nm
Cores Alpha ISA, 1.0 GHz, 0.9V Vdd. in-order.

16-way multithreaded:
two SIMT groups of width eight

L1 Caches physically indexed, physically tagged
16 KB I-cache and 16 KB D-cache, 32 B line size
16-way associative, 16 MSHRs, write-back
3 cycle hit latency, 4 banks, LRU

L2 Cache physically indexed, physically tagged
16-way associative, 128 B line size, 16 banks
1024 KB, LRU, 32 cycle hit latency, write-back
64 MSHRs, ≤ 8 pending requests each

Interconnect crossbar, 300 MHz, 57 GB/s
Memory Bus 266 MHz, 16 GB/s
Memory 50 ns access latency

Table I: Default system configuration

bus, clock and leakage. Dynamic energy is accumulated each
time a unit is accessed. Energy in crossbar’s switches and
routers are also modeled after the work of Pullini et al. [44],
and we assume the physical memory consumes 220 nJ per
access [26]. We neglect refresh power.

B. Benchmarks

We select a set of parallel benchmarks from several
benchmark suites. Our primary objective is to obtain rep-
resentative data-parallel applications with distinct data ac-
cess and communication patterns. To maintain manageable
simulation times, the input size is carefully chosen so that
it assigns sufficient work to each core and the overall
working set is larger than the capacity of the L2 cache size.
This is large enough, since our technique mainly addresses
L1 cache misses. We have tried some experiments with
larger input sizes and the speedups stayed almost the same.
Table II summarizes our selected benchmarks, including the
dominant application behavior.

Benchmark Description
FFT Fast Fourier Transform (Splash2 [54])

Spectral methods. Butterfly computation
Input: a 1-D array of 32,768 (215) numbers

Filter Edge Detection of an Input Image
Convolution. Gathering a 3 × 3 neighborhood
Input: a gray scale image of size 500 × 500

HotSpot Thermal Simulation (Rodinia [13])
Iterative partial differential equation solver
Input: a 300 × 300 2-D grid, 100 iterations

LU LU Decomposition (Splash2 [54]). Dense linear algebra
Alternating row-major and column-major computation
Input: a 300 × 300 matrix

Merge Merge Sort. Element aggregation and reordering
Input: a 1-D array of 300,000 integers

N-W Needleman-Wunsch DNA alignment (Rodinia [13]).
Dynamic programming: Updating matrix with
a diagonal wavefront
Input: a 2-D array of size 512 × 512

Short Winning Path Search for Chess. Dynamic programming.
Neighborhood calculation based on the previous row
Input: 6 steps each with 150,000 choices

KMeans Unsupervised Classification (MineBench [38]). Map-Reduce.
Distance aggregation. Input: 10,000 points in a 20-D space

SVM Supervised Learning (MineBench [38])
Support vector machine’s kernel computation.
Input: 1,024 vectors with a 20-D space

Table II: Simulated benchmarks with descriptions and input
sizes.

1 2 4 8 16
0

5

10

FFT

1 2 4 8 16
0

10

Filter

1 2 4 8 16
0

10

HotSpot

1 2 4 8 16
0

5

10

LU

1 2 4 8 16
0

5

Merge

1 2 4 8 16
0

5

N−W

1 2 4 8 16
0

10

20

Short

1 2 4 8 16
0

10

20
KMeans

1 2 4 8 16
0

5

10

SVM

I−tile I−tile(SOS) I−tile(part) S−tile S−tile(SOS)

Figure 3: Speedup vs. Number of threads per core, measured on
four cores each with two SIMT groups except for the case with
one thread per core. D-cache associativity equals the number of
threads. Speedup is normalized to single-threaded execution.

Configuration SAS Adaptive Cache-aware
No. of Threads Data Partition

I-tile N N N
I-tile(SOS) N Y N
I-tile(part) N N Y

S-tile Y N N
S-tile(SOS) Y Y N

Table III: Different partitioning and scheduling combinations

VI. EVALUATION

We use I-tile as a baseline and compare its performance
to S-tile. Two other implementations, adapted from conven-
tional techniques, are also compared: I-tile(part) subdivides
a data partition that fits the cache capacity among symbi-
otic threads; I-tile(SOS) is named after Sample, Optimize,
Symbios (SOS) scheduling that selects an appropriate set of
threads to reduce cache contention [48]. In our adaptation,
SOS first experiments with different SIMT widths and then
chooses the one that yields the best throughput—wider
SIMT execution increases parallelism but also increases
cache contention. The optimal SIMT width can be equal to
or less than the available pipeline width (i.e. the number of
SIMD lanes) provided by the hardware. SOS can be applied
to S-tile as well as a complementary technique, and we name
it S-tile(SOS). Table III summarizes the combinations of
partitioning and scheduling techniques that we study.

To take into account the run-time dynamics, the perfor-
mance of each configuration is presented as the mean of the
outputs from five simulations. Within each simulation we
randomly assign tiles to threads (in I-tile systems) or cores
(in S-tile systems). For simulation results belonging to the
same configuration, the coefficient of variation for executed
cycles usually falls below 1%.



FFT Filter HotSpot LU Merge N−W Short KMeans SVM
0

10

20

30

40

50

60

70

80

A
vg

 #
 o

f D
ca

ch
e 

B
lo

ck
 R

eu
sa

ge

I−tile
I−tile(part)
S−tile

Figure 4: The average number of reuses for D-cache blocks.
Data are measured with four cores each with two SIMT
groups of width eight. The D-cache associativity is 16.

A. Performance Speedup

To compare the overall performance scalability for the five
systems, we increase the number of threads per core from 1
to 16. Experiments are conducted on a simulated four-core
CMT. Within each core, execution switches among active
threads or thread groups to hide memory latency (except of
course when only one thread context is available). Switching
among threads costs zero cycles.

As Figure 3 shows, for two, four, eight and 16 threads, the
average speedup of S-tile over I-tile is 1.08×, 1.25×, 1.43×,
and 1.69×, respectively. Not surprisingly, S-tile is more
beneficial to high-dimensional access patterns — strided ac-
cesses resulting from tasks nested in multilevel parallel loops
(FFT, Filter, HotSpot, LU) or tasks that gather and scatter
high-dimensional data (Filter, HotSpot, LU, N-W, Short).
Tasks in these applications involve scatter or gather memory
addresses with large strides, leading to less locality. Cache
conflicts are more likely to happen and therefore exploiting
cache affinity becomes more critical. This phenomenon is
more evident in Figure 4 where D-cache misses and reuses
are characterized; S-tile improves data reuse significantly in
those workloads.

Although I-tile(SOS) is able to improve I-tile’s perfor-
mance to some extent, or to degrade more gracefully, it does
not achieve as much performance gain as S-tile does alone;
different from I-tile(SOS), S-tile reduces cache contention
without decreasing SIMT pipeline utilization. I-tile(SOS)
may also fail to adapt to runtime phase changes, and its
performance may even degrade. In general, S-tile outper-
forms I-tile(SOS) by 31% on an 8-way CMT and 17% on
a 16-way CMT.

On the other hand, Figure 3 shows that S-tile(SOS)
performs similarly to S-tile, however, SOS may benefit S-
tile where computational resources are extremely limited, as
we will show in Figure 5. In such cases, S-tile and SOS can
serve as complementary techniques; while S-tile improves
cache sharing extensively, SOS reduces cache contention
when necessary.

B. Data Reuse and Contention Reduction

Figure 4 shows S-tile’s drastic improvement in data reuse.
While I-tile(part) is able to improve cache reuse as well,
its improvement falls far behind that of S-tile in many
benchmarks due to the lack of temporal locality. As a
result, cache blocks are more likely to be replaced before
they are reused again. Compared to I-tile(part), S-tile brings
additional performance gains of 13% on an 8-way CMT and
30% on a 16-way CMT, as illustrated in Figure 3.

The effect of improved cache sharing is reflected on
conflict and capacity misses. The D-cache associativity is
varied from four-way associative to fully associative and the
resulting performance is compared in Figure 5a. As soon as
the D-cache associativity increases to the number of symbi-
otic threads, S-tile’s performance dramatically improves and
reaches optimal, leaving I-tile behind. The performance gain
with fully associative caches shows that S-tile saves capacity
misses as well. On the other hand, while I-tile(part) reduces
capacity misses in the case of fully associative caches, it
suffers from conflict misses more than S-tile.

Cache sharing also leads to better storage utilization, and
D-cache size is much less of a scaling bottleneck in S-
tile than in I-tile. We compare the performance of I-tile
and S-tile by varying the D-cache size from 4 KB to 128
KB. Results are shown in Figure 5b. With the exception
of KMeans and SVM, all benchmarks show that I-tile’s
performance drops more drastically than S-tile’s when we
shrink the D-cache size. S-tile’s reduced demand on D-cache
size also indicates that the same D-cache can host more
thread contexts in S-tile than in I-tile.

S-tile’s improvement in storage utilization also leads to
area efficiency and power savings. Several workloads show
that S-tile’s performance achieved at a D-cache size of 8
KB or 16 KB is similar to, or sometimes even better than,
I-tile’s with 128 KB D-caches. Using Cacti [51] to model
the area cost, we show that a decrease in D-cache size from
128 KB to 8 KB saves 1.89 mm2 for a system with 4
cores. On a system with 8 cores, this saving can account for
another in-order core! In addition, several techniques provide
opportunities to power down some cache segments [34],
[56]. In fact, seven out of eight cache segments can be
powered down with a 128 KB cache in S-tile to achieve
the same performance as in I-tile.

C. Scalability through Reduced L1 D-cache Footprints

S-tile achieves more scalable performance because it is
able to accommodate a larger number of symbiotic threads
with little increase in D-cache footprints. We breakdown
D-cache misses into first misses (i.e. misses that allocate
MSHRs and send data requests to the lower level caches) and
secondary misses (i.e. misses captured by MSHRs whose
requests have already been sent to the lower level storage).
We focus on the comparison of first misses since secondary
misses are not part of the critical loop of memory accesses.

Figure 6 shows the number of D-cache first misses when
the number of symbiotic threads increases for both I-tile and
S-tile. With more threads per core, I-tile often experiences
an explosion of D-cache first misses caused by contention,



(a) Speedup vs. D-cache associativity. The D-cache size is 16 KB.

(b) Normalized speedup vs. D-cache size (KB). The D-cache associativ-
ity is 16.

Figure 5: D-cache sensitivity study conducted over a 16-
way CMT. Each core has a SIMT width of eight. In each
configuration, the average speedup across all benchmarks is
shown as Average.

1 2 4 8 16
0

1

2

3
FFT

1 2 4 8 16
0

5

Filter

1 2 4 8 16
0

1

2

3
HotSpot

1 2 4 8 16
0

1

2

3
LU

1 2 4 8 16
0

1

2
Merge

1 2 4 8 16
0

1

2

3
N−W

1 2 4 8 16
0

5

Short

1 2 4 8 16
0

2

4
KMeans

1 2 4 8 16
0

1

2
SVM

I−tile I−tile(SOS) I−tile(part) S−tile S−tile(SOS)

Figure 6: Number of D-cache first misses vs. Number of
threads per core, measured with the same system configura-
tion as Figure 3.

even though the D-cache associativity scales accordingly to
the number of threads per core. This inevitably leads to
cache thrashing. The number of D-cache misses are reduced
by I-tile(part), however, it still keeps increasing with more
threads.

On the other hand, the number of S-tile’s D-cache misses
remains relatively constant under the same scaling. In most

benchmarks, the number of D-cache misses remains almost
identical to that of single-threaded cores even with eight
threads per core or more. It is also observed that S-tile
alone is equally as effective as I-tile(SOS) in reducing the
number of D-cache first misses, and this is achieved without
decreasing the number of active threads. As a result, S-tile
is able to scale parallel performance beyond other systems.

D. Sensitivity on Various Shared Cache Designs

(a) Speedup vs. LLC associativity

(b) Speedup vs. LLC size (KB)

Figure 7: Sensitivity to the LLC cache design on a 16-way
CMT. Each core has a SIMT width of eight. S-tile and I-
tile respond similarly to different LLC cache designs. S-tile
performs consistently better than I-tile. In each configura-
tion, the average speedup across all benchmarks is shown
as Average.

Performance sensitivity on shared cache designs is also
investigated. We scale the last level cache’s (LLC’s) asso-
ciativity from 4 to 32 and show the resulting performance
in Figure 7a. All systems show similar sensitivity to LLC
associativity. S-tile does not improve LLC cache sharing by
much because concurrent threads over different cores still
operate on distinct tiles. Instead, SOS may be more effective
in reducing LLC contention when the LLC’s associativity is
extremely small. Nevertheless, systems with S-tile always
outperform their I-tile equivalent.

Both S-tile and I-tile suffer when the available LLC
capacity is small, as illustrated in Figure 7b. In fact, S-tile’s
performance may even degrade to that of I-tile. In this sce-
nario, both S-tile(SOS) and I-tile(SOS) perform significantly
better than S-tile and I-tile, and S-tile(SOS) achieves the best
speedup. With an LLC larger than 1024 KB, its capacity is
no longer a scaling bottleneck, and performance starts to
benefit more significantly from S-tile than from I-tile(SOS).

E. Applicability with Various Pipeline Configurations

To demonstrate the wide variety of multi-threaded cores
S-tile can benefit, we vary the number of scalar pipelines
per core, or the width of a thread group, from 1 to 16. The



(a) Performance comparison of S-tile and
I-tile over various multi-threaded cores.
Speedup is normalized to the execution time
on four single-threaded cores. Narrower bars
denote S-tile speedup and wider bars denote
I-tile.

(b) S-tile’s average savings in D-cache
misses compared to I-tile over various mul-
tithreaded cores..

(c) S-tile’s average performance gains com-
pared to I-tile(part).

Figure 8: Applicability for different pipeline configurations. Data is averaged across all benchmarks.

degree of multithreading, or the number of thread groups,
is also varied from 1 to 16. Figure 8a illustrates the average
speedup relative to the performance of 4 single-threaded
cores over the memory system specified in Table I, with
D-cache associativities equal to the total number of threads
per core. The maximum speedups for I-tile and S-tile are
2.39× and 3.54× respectively, and both are achieved with a
moderate degree of multithreading and pipeline width; too
few thread groups are not able to sufficiently hide memory
latency, while too many thread groups may involve more
threads than necessary and increase cache contention. On
the other hand, since we only model pipelines that operate
in SIMT lockstep, a wider pipeline is more likely to suffer
from stalls due to cache misses by individual threads or from
under-utilization caused by divergent branches.

The speedup of S-tile over I-tile under the same configura-
tion is maximized with a moderate degree of multithreading
and pipeline width as well. This phenomenon has to do
with the interaction between D-cache contention and the
effectiveness of latency hiding; the benefit of S-tile can be
increased with more thread groups due to more D-cache
contention, at the same time, it may also be obscured by the
improved latency hiding. While I-tile’s performance may get
closer to S-tile with more effective latency hiding, Figure 8b
demonstrates that S-tile’s savings in D-cache misses always
grows with the number of threads per core. On the other
hand, S-tile does not always benefit more with a wider
pipeline; if S-tile is not able to eliminate cache misses
simultaneously for all threads within the same group, a
SIMT thread group has to stall anyway.

Compared to I-tile(part), S-tile’s performance gains in-
crease with a larger number of symbiotic threads, as shown
in Figure 8c. Similar to the comparison of I-tile, S-tile
benefits most with a modest degree of multi-threading and
pipeline width.

It is also important to note that S-tile does not only benefit
cores with SIMT pipelines. Even for a single scalar pipeline
that switches among multiple threads, S-tile can lead to
10% performance gains over I-tile as well as I-tile(part).
This indicates that S-tile and latency hiding techniques are
complementary.

F. Energy Savings

Since SAS promotes constructive cache sharing and sig-
nificantly reduces the number of D-cache misses, it also
significantly reduces the number of L2 cache lookups. As
Figure 9 suggests, the energy budget on the L2 cache is
reduced significantly using S-tile.

The performance gains also translate into lower leakage
energy. Leakage accounts for a significant portion of total
energy consumption at a technology node of 65nm or
smaller. Therefore, execution time correlates closely with
energy consumption. All benchmarks save energy with S-
tile, with an average energy savings of 36% compared to
I-tile and 17% compared to I-tile(SOS) and I-tile(part). We
observe the same trend that programs with high-dimensional
access patterns benefit more from symbiotic tiling in energy
consumption.

FFT Filter HotSpot LU Merge N−W Short KMeans SVM
0

0.2

0.4

0.6

0.8

1

L1 caches L2 cache crossbar core off−chip

Figure 9: Energy consumption with four cores each with
two SIMT groups of width eight. For each benchmark, five
systems are shown and from left to right they are: I-tile,
I-tile(SOS), I-tile(part), S-tile, and S-tile(SOS). Energy is
normalized to each system’s I-tile equivalent.



VII. CONCLUSIONS AND FUTURE WORK

With emerging multithreaded cores, there has been some
work on thread scheduling that reduces resource contention,
but nothing that considers cache sharing among dozens
or hundreds of concurrent threads sharing a common L1.
Conventional data partitioning techniques can be adapted to
subdivide data partitions among symbiotic threads for spatial
locality; however, threads would still operate on disparate
data and may suffer from conflict misses. The solution is to
also exploit temporal locality among symbiotic threads. We
propose symbiotic affinity scheduling (SAS) that partitions
work according to the number of L1 caches, and then use
all threads on that processing unit to work simultaneously
on adjacent data in the same partition. This becomes partic-
ularly important for high-dimensional data accesses because
their strided accesses penalize data-locality. The scheduler
demonstrates an average speedup of 1.69× and average
energy savings of 33% on the data-parallel benchmarks we
studied. Based on conventional cache-blocking techniques,
the exploited temporal locality brings additional 30% per-
formance gains. It also outperforms adaptive contention
reduction techniques by 17%.

Combining SAS with temporal blocking or hierarchical
tiling [10] is a natural extension for future work. In fact,
in this case, SAS becomes essential for CMTs, otherwise
independent threads sharing the same cache are not able
to coordinate and work on potentially time-skewed tiles
optimized for individual caches.

Future work also includes extending SAS to cover parallel
operations over trees and graphs. It would also be useful to
integrate SAS into existing parallel programming APIs such
as OpenMP [8].

VIII. ACKNOWLEDGEMENTS

This work was supported in part by SRC grant No. 1607,
NSF grant nos. IIS-0612049 and CNS-0615277, and a grant
from Intel Research. We would like to thank Shuai Che
and Jiawei Huang who helped us on the coding of HotSpot
and LU for benchmarking, Jie Li who modeled the hard-
ware schedulers in FPGA, and Michael Boyer and Mario
Donato Marino for their helpful comments. We would also
like to thank the anonymous reviewers for their insightful
comments.

REFERENCES

[1] LEON2 Processor. http://vlsicad.eecs.umich.edu/BK/Slots/
cache/www.gaisler.com/products/leon2/leon.html.

[2] NVIDIAs next generation CUDA compute architecture:
Fermi. NVIDIA Corporation, 2009.

[3] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H.-C. Hege,
G. Lanfermann, A.é Merzky, T. Radke, and E. Seidel. Cactus
grid computing: Review of current development. In Euro-Par
’01, pages 817–824, London, UK, 2001. Springer-Verlag.

[4] K. Asanovic, R. Bodik, B. Christopher C., J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of
parallel computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, December 18 2006.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 simulator: Modeling
networked systems. IEEE Micro, 26(4), 2006.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably effi-
cient scheduling for languages with fine-grained parallelism.
In ACM Proc. of Annu. Symp. on Para. Alg. and Archi., pages
1–12, 1995.

[7] R. D. Blumofe. Executing multithreaded programs efficiently.
PhD thesis, Cambridge, MA, USA, 1995.

[8] OpenMP Architecture Review Board. OpenMP application
program interface, May 2008.

[9] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. In ISCA 27, June 2000.

[10] L. Carter, J. Ferrante, and S. F. Hummel. Hierarchical tiling
for improved superscalar performance. In IPPS ’95, pages
239–245, Washington, DC, USA, 1995.

[11] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multi-processor architec-
ture. In HPCA ’05, pages 340–351, Washington, DC, USA,
2005.

[12] M. Chaudhuri. PageNUCA: Selected policies for page-grain
locality management in large shared chip-multiprocessor
caches. In HPCA, pages 227–238, Feb. 2009.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of general purpose
applications on graphisc processors using CUDA. JPDC’08,
2008.

[14] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ail-
amaki, G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas,
T. C. Mowry, and C. Wilkerson. Scheduling threads for
constructive cache sharing on CMPs. In SPAA ’07, pages
105–115, New York, NY, USA, 2007.

[15] Intel Corporation. Intel threading building blocks.

[16] Intel Corporation. Pircture the future now: Intel AVX.
http://software.intel.com/en-us/avx/.

[17] NVIDIA Corporation. GeForce GTX 280 specifications.
2008.

[18] L. Dagum. OpenMP: A proposed industry standard API for
shared memory programming, October 1997.

[19] William J. Dally et al. Merrimac: Supercomputing with
streams. In SC’03, 2003.

[20] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures. In SC ’08, pages 1–12, 2008.

[21] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing cmp
throughput with mediocre cores. In PACT ’05, pages 51–62,
Washington, DC, USA, 2005.

[22] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston,
J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan. Sequoia: Programming the memory hierarchy.
In SC’06, 2006.



[23] M. Frigo and V. Strumpen. Cache oblivious stencil compu-
tations. In ICS ’05, pages 361–366, New York, NY, USA,
2005.

[24] M. Gschwind. Chip multiprocessing and the Cell Broadband
Engine. In CF’06, New York, NY, USA, 2006.

[25] W. Huang, M. R. Stan, K. Skadron, S. Ghosh, K. Sankara-
narayanan, and S. Velusamy. Compact thermal modeling for
temperature-aware design. In DAC’04, 2004.

[26] I. Hur and C. Lin. A comprehensive approach to dram power
management. HPCA ’08, pages 305–316, 2008.

[27] W. Jalby and U. Meier. Optimizing matrix operations on a
parallel multiprocessor with a hierarchical memory system. In
Proc. Int. Conf. Parallel Processing, pages 429–432, 1986.

[28] S. Jenks and J.-L. Gaudiot. An evaluation of thread migration
for exploiting distributed array locality. In HPCA, pages 190–
195, 2002.

[29] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. In PLDI ’97, pages 346–357, New York, NY,
USA, 1997.

[30] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded sparc processor. IEEE Micro, 25(2):21–29,
2005.

[31] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter,
K. Bala, and L. Paul Chew. Optimistic parallelism benefits
from data partitioning. In ASPLOS 13, 2008.

[32] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural
support for fine-grained parallelism on chip multiprocessors.
SIGARCH Comput. Archit. News, 35(2), 2007.

[33] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M.
Tullsen. Tuning compiler optimizations for simultaneous
multithreading. In MICRO 30, pages 114–124, Washington,
DC, USA, 1997.

[34] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart memories: a modular reconfigurable
architecture. In ISCA ’00, pages 161–171, New York, NY,
USA, 2000.

[35] E. P. Markatos and T. J. LeBlanc. Using processor affinity
in loop scheduling on shared-memory multiprocessors. In
SC’92, pages 104–113, 1992.

[36] K. S. McKinley and O. Temam. Quantifying loop nest locality
using SPEC’95 and the perfect benchmarks. ACM Trans.
Comput. Syst., 17(4):288–336, 1999.

[37] J. Meng and K. Skadron. Avoiding cache thrashing due
to private data placement in last-level cache for manycore
scaling. In ICCD, Oct 2009.

[38] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary. Minebench: A benchmark suite for data
mining workloads. IISWC ’06, pages 182–188, Oct. 2006.

[39] NVIDIA Corporation. NVIDIA CUDA compute unified
device architecture programming guide, 2007.

[40] S. Parekh, S. Eggers, and H. Levy. Thread-sensitive schedul-
ing for smt processors. Technical report, 2000.

[41] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and K. Li.
Thread scheduling for cache locality. In ASPLOS-VII, pages
60–71, New York, NY, USA, 1996. ACM.

[42] V. K. Pingali, S. A. McKee, W. C. Hseih, and J. B. Carter.
Computation regrouping: restructuring programs for temporal
data cache locality. In ICS ’02, pages 252–261, New York,
NY, USA, 2002.

[43] K. N. Premnath and J. Abraham. Three-dimensional multi-
relaxation time (MRT) lattice-boltzmann models for multi-
phase flow. J. Comput. Phys., 224(2):539–559, 2007.

[44] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. D. Micheli,
and L. Benini. Bringing NoCs to 65 nm. IEEE Micro, 27(5),
2007.

[45] J. Ramanujam. Tiling of iteration spaces for multicomputers.
In Proc. 1990 Int. Conf. Parallel Processing, Vol, pages 179–
186, 1990.

[46] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee:
a many-core x86 architecture for visual computing. ACM
Trans. Graph., 27(3):1–15, 2008.

[47] A. Settle, D. Connors, E. Gibert, and A. González. A dy-
namically reconfigurable cache for multithreaded processors.
J. Embedded Comput., 2(2):221–233, 2006.

[48] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. In ASPLOS ’00, pages
234–244, New York, NY, USA, 2000.

[49] S. Subramaniam and D. L. Eager. Affinity scheduling of
unbalanced workloads. In SC ’94, pages 214–226, New York,
NY, USA, 1994.

[50] G. E. Suh, S. Devadas, and L. Rudolph. A new memory moni-
toring scheme for memory-aware scheduling and partitioning.
In HPCA ’02, page 117, 2002.

[51] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. Cacti 4.0. Technical
Report HPL-2006-86, HP Laboratories Palo Alto, 2006.

[52] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the
performance of cache-affinity scheduling in shared-memory
multiprocessors. J. Parallel Distrib. Comput., 24(2):139–151,
1995.

[53] S. Wang and L. Wang. Thread-associative memory for
multicore and multithreaded computing. In ISLPED ’06,
pages 139–142, New York, NY, USA, 2006.

[54] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. ISCA ’95, pages 24–36, June 1995.

[55] Inc. XILINX. Virtex-ii pro and virtex-ii pro x fpga user guide.

[56] S.-H. Yang, B. Falsafi, M. D. Powell, and T. N. Vijaykumar.
Exploiting choice in resizable cache design to optimize deep-
submicron processor energy-delay. In HPCA ’02, page 151,
2002.

[57] Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An
adaptive OpenMP loop scheduler for hyperthreaded SMPs.
In PDCS ’04, 2004.




