
Robust SIMD: Dynamically Adapted SIMD Width and
Multi-Threading Depth

Jiayuan Meng
Leadership Computing Facility Division

Argonne National Laboratory

Argonne, Illinois

jmeng@alcf.anl.gov

Jeremy W. Sheaffer
Department of Computer Science

University of Virginia

Charlottesville, Virginia

jws9c@cs.virginia.edu

Kevin Skadron
Department of Computer Science

University of Virginia

Charlottesville, Virginia

skadron@cs.virginia.edu

Abstract—Architectures that aggressively exploit SIMD often
have many datapaths execute in lockstep and use multi-
threading to hide latency. They can yield high through-
put in terms of area- and energy-efficiency for many data-
parallel applications. To balance productivity and perfor-
mance, many recent SIMD organizations incorporate implicit
cache hierarchies. Exaples of such architectures include Intel’s
MIC, AMD’s Fusion, and NVIDIA’s Fermi. However, unlike
software-managed streaming memories used in conventional
graphics processors (GPUs), hardware-managed caches are
more disruptive to SIMD execution; therefore the interaction
between implicit caching and aggressive SIMD execution may
no longer follow the conventional wisdom gained from stream-
ing memories. We show that due to more frequent memory
latency divergence, lower latency in non-L1 data accesses,
and relatively unpredictable L1 contention, cache hierarchies
favor different SIMD widths and multi-threading depths than
streaming memories. In fact, because the above effects are sub-
ject to runtime dynamics, a fixed combination of SIMD width
and multi-threading depth no longer works ubiquitously across
diverse applications or when cache capacities are reduced due
to pollution or power saving.

To address the above issues and reduce design risks, this
paper proposes Robust SIMD, which provides wide SIMD and
then dynamically adjusts SIMD width and multi-threading
depth according to performance feedback. Robust SIMD can
trade wider SIMD for deeper multi-threading by splitting
a wider SIMD group into multiple narrower SIMD groups.
Compared to the performance generated by running every
benchmark on its individually preferred SIMD organization,
the same Robust SIMD organization performs similarly—
sometimes even better due to phase adaptation—and outper-
forms the best fixed SIMD organization by 17%. When D-
cache capacity is reduced due to runtime disruptiveness, Robust
SIMD offers graceful performance degradation; with 25% pol-
luted cache lines in a 32 KB D-cache, Robust SIMD performs
1.4× better compared to a conventional SIMD architecture.

I. INTRODUCTION

By using a single instruction sequencer to control mul-
tiple datapaths, Single instruction, multiple data (SIMD)
organizations save both area and power. Several throughput-
oriented processors have been aggressively exploiting SIMD.
Examples include graphics processors (GPUs) [11] and the
Cell Broadband Engine (CBE) [15]. Such architectures have
been increasingly used for general purpose, data parallel ap-
plications, including scientific computation, media process-
ing, signal analysis, and data mining [8], [37]. Recently, sev-
eral SIMD organizations have employed hardware-managed
cache hierarchies in order to offer both throughput and pro-
ductivity. Specifically, gather loads (i.e. load a vector from
a vector of arbitrary addresses) or scatter stores (i.e. store

Figure 1: The baseline SIMD architecture groups scalar threads into
warps and executes them using the same instruction sequencer.

a vector to a vector of arbitrary addresses) are supported
in hardware and do not require explicit programmer effort.
Such architectures include Intel’s Many Integrated Core [32],
[10] and NVIDIA’s Fermi [2].1 This paper studies SIMD or-
ganizations with cache hierarchies, as illustrated in Figure 1.

In this paper, the set of hardware units under SIMD
control is referred to as a warp processing unit or WPU [24].
The banked register files and execute units are divided
into lanes. Each hardware thread context has its register
file residing in one of the lanes. The number of threads
that operate in SIMD is referred to as SIMD width, or
width for short in this paper. Instead of using out-of-order
pipelines, SIMD processors are often in-order so that they
can accommodate more threads and improve throughput.
They hide latency by having multiple groups of SIMD
threads, or warps, and time-multiplexing warps to overlap
memory accesses of one warp with computation of another.
The number of warps is referred to as multi-threading depth
or depth. SIMD is not limited to vectors; it can also come in
the form of arrays of scalar datapaths (i.e. single instruction,
multiple threads (SIMT) organizations) in which divergent
branches, scattered loads and stores are handled implicitly
by the underlying hardware.

It may seem that SIMD organizations with cache hi-
erarchies would demonstrate similar traits to those that
use streaming memories (e.g. NVIDIA’s Tesla [2], [11]):
moderate SIMD width, deep multi-threading, and a single

1Intel’s SSE2 instruction sets operate over cache hierarchies but require
explicit programmer effort to perform gather and scatter operations and to
align the vectors.

skadron
Typewritten Text
This is the authors' version of the work. The authoritative version will appear inIPDPS 2012. Copyright 2012, IEEE.

configuration that works consistently well across a variety
of applications. However, we show that these ideas do not
apply when cache hierarchies are used instead. The reasons
are threefold.

• Memory latency divergence (i.e. when a warp exe-
cutes a memory instruction, those threads that finish
early have to wait for those that finish late) occurs more
frequently and affects performance more significantly
in cache hierarchies than in streaming memories, mak-
ing wide SIMD a risky design decision. When threads
are stalled due to memory latency divergence, the full
SIMD width is no longer utilized.

• Non-L1 data accesses are faster for cache hierarchies
than for streaming memories, therefore fewer warps are
needed to hide latency in cache hierarchies.

• Cache contention is difficult to predict, and the in-
tensity of such contention limits the total number
of active threads. When cache thrashes, adding more
warps would only impede performance rather than hide
latency.

Even worse, the effects of the above factors vary across
applications; therefore, different applications prefer different
SIMD widths and multi-threading depths, as we show in
Section III. As a result, there is a high risk in using a fixed
SIMD organization to run various applications on cache
hierarchies. In addition, application-specific static designs
are not sufficient; as shown by the last few years of general-
purpose GPU computing work, there is a large variety of
general-purpose applications that can benefit from SIMD
computation.
Furthermore, the effects of the above factors also depend

on the available cache capacity. Runtime systems may
pollute the cache, and faulty cache lines can be turned off
as well. In some circumstances, cache lines can be powered
down to save power consumption, or replicated for the
purpose of error-resilience [13], [20], [36], [38]. Moreover,
as NVIDIA’s Fermi [2] demonstrates, multiple kernels may
execute simultaneously over the same L1 storage (i.e., thread
blocks from different kernels can execute on the same
streaming multiprocessor). While such mechanisms may
improve memory efficiency, increase occupancy of hardware
thread-contexts, and enable software pipelining, it also intro-
duces L1 contention among different kernels. As we show
in Section VII-B, the runtime variation of the cache capacity
available to a kernel not only undermines performance
for an individual workload, but also changes the preferred
SIMD width and depth. Unfortunately, conventional SIMD
architectures are not able to adapt to such runtime dynamics.

To address the above issues, this paper proposes Robust
SIMD. Robust SIMD learns the preferred SIMD width and
depth at runtime. Robust SIMD provides wide SIMD in the
first place and offers the flexibility to re-configure itself to
narrower or deeper SIMD. Consequently, the same SIMD
organization can adapt to diverse applications or cache
capacities and yield robust performance. Robust SIMD can
trade wide SIMD for deep multi-threading. Several gradient-
based adaptation strategies are investigated. Experiments
show that with Robust SIMD, the same architecture can
achieve near-optimal performance for diverse applications
that prefer different SIMD widths and depths. Robust SIMD

outperforms the best fixed SIMD organization by 17%.
When the available D-cache capacity is reduced due to
runtime disruptiveness, Robust SIMD offers graceful per-
formance degradation and performs 1.3× better compared to
dynamic warp subdivision (DWS) [24] in terms of execution
time. Robust SIMD can also be integrated with DWS to
further improve performance. The area overhead is less than
1%.

II. RELATED WORK

Several techniques have been proposed to adjust a vector
organization according to traits in the workloads. Both
vector lane threading [31] and the vector-thread (VT) ar-
chitecture [19] are able to change SIMD width (but not
multi-threading depth). Nevertheless, both techniques use
the vector length or the available data parallelism provided
by the program as the desirable SIMD width. Such static
approaches fail to adapt to runtime dynamics brought by
coherent caches.

Liquid SIMD [9] and Vapor SIMD [26] advocate static
and just-in-time compilation of SIMD programs for the pur-
pose of forward migration to newer hardware generations.
Using these compilation techniques, the same program can
be executed with various SIMD widths, which is necessary
for Robust SIMD; however, Liquid SIMD and Vapor SIMD
do not dynamically adapt SIMD width or multi-threading
depth in the hardware.

Fung et al. [14] addressed under-utilization of SIMD
resources due to branch divergence. They proposed dynamic
warp formation (DWF), in which divergent threads that
happen to arrive at the same PC, even though they belong
to different warps, can be grouped and run as a wider
warp; however, DWF does not adapt overall SIMD width
or multi-threading depth. For applications with no branch
divergence, DWF would execute in the conventional way,
despite that adjusting SIMD width and multi-threading depth
may improve latency hiding or reduce cache contention.

Memory latency divergence for SIMD architectures are
addressed by adaptive slipping [35] and dynamic warp
subdivision (DWS) [24]. These techniques allow threads
that hit the cache to run ahead while those that miss
are suspended. The key difference between Robust SIMD
and these techniques is that Robust SIMD has a feedback
learning loop that takes the actual performance into con-
sideration when searching for the best width and depth.
In contrast, previous techniques apply heuristics, such as
splitting warps according to cache hits or misses, which may
risk performance degradation due to over-subdivision [24].
There are also a few other issues that are not addressed by
previous techniques. First, all threads are actively executed
until they terminate, and there is no way to turn off some
lanes or deactivate a few warps to reduce cache contention.
Second, if divergence is rare and cache misses usually occur
for all threads in the same warp, previous techniques would
be unable to adjust SIMD width or depth. All of the above
factors make previous techniques susceptible to runtime
dynamics. Section VII-C shows that when cache capacity
is reduced, the SIMD organization that DWS originally
chose would suffer drastic performance degradation, while

the same Robust SIMD organization would still generate
near-optimal performance.
There also exist many scheduling techniques to re-

duce cache contention for non-SIMD chip multi-processors
(CMPs). These techniques typically select a few threads
from a pool of threads whose joint working set minimizes
cache contention [27], [33], [34]. These techniques exploit
the heterogeneity in threads’ working sets and they do not
consider data-parallel, homogeneous tasks. Moreover, they
aim to find which threads to execute concurrently, without
considering how threads are mapped to hardware thread
contexts. SIMD organizations raise the issue of how to
organize concurrent thread contexts into warps, requiring
specifications of both SIMD width and multi-threading
depth, which are not addressed by previous techniques.
There are a wide range of adaptive techniques, from cache

replacement policies [29] to thread scheduling [33], that
follow the procedure of sampling and adjusting according
to performance feedback. Compared to these techniques,
the novelty of our work lies in identifying the need for
adaptation of SIMD configurations, addressing the chal-
lenges in dynamically modifying SIMD width and depth,
and proposing convergence mechanisms to ensure adaptation
robustness.

III. MOTIVATION

Coherent caches introduce several more runtime dynamics
than streaming memories, which affect the desired SIMD
width and multi-threading depth in several ways. Using
the simulation infrastructure described in Section V, we
demonstrate and discuss these effects individually. Note
that in our experiments, less than 1% of the messages
among caches are coherence messages (i.e., invalidations and
fetches); therefore the phenomenon presented in this study
is not caused by coherence and incoherent cache hierarchies
can be subject to the same issue. Due to space limitations
we only show four benchmarks with different data access
patterns.

A. Memory Latency Divergence

Memory latency divergence occurs more frequently and
affects performance more significantly in cache hierarchies
than in streaming memories. With streaming memories,
threads in the same warp access the same memory unit
upon a SIMD memory instruction. Data is guaranteed to
reside in the memory unit, and these threads experience
similar, if not identical, memory latencies. However, with
cache hierarchies, it is possible that some threads would hit
in L1 while others miss. In such cases, memory latencies
may differ by orders of magnitude. As a result of memory
latency divergence, the full SIMD width is often not utilized.
As Figure 2c shows, memory latency divergence is more

likely to occur with wider SIMD, making wide SIMD a
risky design decision. Wider SIMD is also more likely to
suffer from branch divergence; we do not discuss branch
divergence in detail because it occurs far less frequently than
memory latency divergence. In our experiments correspond-
ing to Figure 2, using WPUs with four 16-wide warps, our
benchmarks show that memory latency divergences occur
every 13 instructions on average, 18 times more frequently
than branch divergences.

FFT

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

1 2 3

Filter

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

5 10 15 20

Merge

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

1 1.5

SVM

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

2 4

(a) Speedup. The SIMD organization that performs best is marked with a star.
FFT

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 20 40 60 80

Filter

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 20 40 60 80

Merge

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 20 40 60 80

SVM

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 20 40 60 80

(b) Percentage of time that WPUs stall waiting for memory.
FFT

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 4 8

Filter

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 4 8

Merge

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 4 8

SVM

SIMD width

#
 w

a
rp

s

1 4 16 64
1

4

16

64

0 4 8

(c) Avg. number of memory latency divergences per 100 instructions.

Figure 2: Analysis and characterization of SIMD organizations with
cache hierarchies. Speedup is normalized to a system with four
single-threaded, in-order cores. With 32 KB, 8-way associative D-
caches whose cache line size is 128 B, we test various widths and
depths at powers of two. Details are described in Section V. We
chose four benchmarks that demonstrate diverse behavior.

B. Lower Latency in Non-L1 Data Accesses

Because streaming memories often bulk-load data with
long latency memory accesses, they require deep multi-
threading to hide latency. The long memory latency is caused
by the fact that streaming memory has only one level of
storage (i.e. the L1 scratchpad) above the device memory.
Multiple on-chip memory hierarchies are viable but they
would increase the complexity with explicit data manage-
ment. When data is not present in the L1 scratchpad, all
threads wait for hundreds of cycles to fetch from the device
memory, which warrants deep multi-threading. However,
cache hierarchies usually have two or three levels on-chip,
and most L1 misses (more than 96% in our experiments) can
be captured by the L2 cache. The overall L1 miss latency
can be only tens of cycles. Therefore, SIMD with cache
hierarchies may not need so many warps as with streaming
memories to hide latency.

C. Unpredictable Cache Contention Intensity

For caches that are not fully associative, the occurrence
of cache contention depends on application-specific data
access patterns in addition to the amount of data in use.
We are not aware of any technique that can estimate cache
contention statically and the appropriate number of active
threads accordingly.

Figure 2b demonstrates that cache contention limits the
total number of active threads. With 32 threads or more per
WPU, the SIMD pipeline stalls waiting for memory more
than 40% of the time. Moreover, adding more warps can
only hide latency effectively when the thread count per core
is small; with wide SIMD, more warps exacerbate cache
contention and increase pipeline stalls.

D. The Lack of a Single Best SIMD Width and Depth

The frequency of memory latency divergence, length of
L1 miss latency, and intensity of cache contention all affect
the desirable SIMD width and depth; yet, they all depend
on runtime dynamics. As a result, different applications,
or even different execution phases, prefer different SIMD
widths and depths. As Figure 2a shows, some benchmarks
prefer few wide warps and some prefer a combination of
modest width and depth. Moreover, performance is sensitive
to SIMD configuration; the optimal configuration for one
application may work poorly with another.
Even worse, when cache capacity is reduced dynami-

cally to save power, the preferred width and depth will
change as well, as illustrated in Figure 2a, such performance
effects also occur when the cache is shared by multiple
applications [30] or some segment of the cache is reserved
for other purposes (e.g. error resilience [36] and on-chip
communication [12]).
All the above studies lead to our conclusion that designing

a SIMD architecture over cache hierarchies requires the
ability to adjust the SIMD configuration and adapt to various
runtime dynamics. We therefore propose Robust SIMD,
which dynamically learns the desired width and depth at
runtime and yields robust performance. The alternative is to
select SIMD parameters for each application based on offline
profiling; however, this static approach incurs additional
profiling overhead, and does not take into account phase
changes, different input data, and runtime changes in the
cache capacity.

IV. HARDWARE SUPPORT FOR RUNTIME SIMD
RECONFIGURATION

Figure 3 illustrates the process of a WPU adapting to
a data-parallel code section. Adaptation is triggered by the
runtime every time a SIMD kernel is launched. There are
two phases to execute data-parallel tasks within a parallel
for loop. First, in the adaptation phase, a WPU executes
a few tasks during one sampling interval, measures the
performance within this period, and feeds this measurement
back to an Adaptation State Unit (ASU) which evaluates
the previous configuration and suggests a new one. The
WPU then reconfigures itself according to the suggested
SIMD width and multi-threading depth and repeats this
process until the ASU converges on a preferred configura-
tion. Second, in the execution phase, the WPU maintains
the converged configuration until all tasks in the current
parallel section are completed. Our study shows that data-
parallel tasks exhibit homogeneous behavior so that the
SIMD configuration preferred by the sampled tasks will
also be preferred later by other tasks belonging to the same
parallel for loop. If programmers are familiar with the
application and would like to manually set the desired SIMD

Figure 3: The process of adapting a WPU’s SIMD width and multi-
threading depth. The process is repeated for every data-parallel
section.

width and depth, an API can be provided to do so and
skip the adaptation phase. The rest of this section focuses
on the hardware modifications required for Robust SIMD.
Section VI compares several adaptation strategies that can
be employed by the ASU.

The SIMD width and multi-threading depth are only
adjusted at the end of a sampling interval. The number of
lanes in each WPU sets the upper bound of its SIMD width.
Within this limit, an adaptive WPU supports the following
operations:

• Lanes can be turned off and on to adjust SIMD width.
• Warps can be suspended or resumed to adjust multi-

threading depth.
• SIMD width can be traded for multi-threading depth

by breaking a wide warp into multiple narrower warp-
slices that can interleave their execution to hide each
other’s latency. These warp-slices can be reunited in
future intervals as a wider warp. An original warp with
full SIMD width can be regarded as a warp-slice as
well.

Note that SIMD can operate multiple datapaths in the
form of a vector or in the form of an array with a set of scalar
datapaths. The latter is referred to as single instruction,
multiple threads (SIMT). In this paper, we demonstrate with
a SIMT organization where branch divergence is handled by
a re-convergence stack [14]: when threads in the same warp
branch to different control paths, the WPU first executes
threads falling onto one path and suspends others; a bit

mask representing those active threads is pushed onto the
re-convergence stack and popped when the corresponding
threads finish their current branch path; the WPU can then
switch to execute threads falling into the alternate path. The
re-convergence stack is popped upon post-dominators that
signal control flow re-convergence at the end of each branch
path. Our technique also applies to vector organizations.
In fact, as we discuss in Section IV-A, the implementation
would be simpler in vector organizations which have no re-
convergence stacks.

A. Reconfiguring SIMD Width and Multi-threading Depth

Adjusting SIMD width and depth is effectively the same
as partitioning available warps into subsets of SIMD threads
called warp-slices. Warp-slices are treated as independent
scheduling entities similar to warps. When executing a warp-
slice, the WPU proceeds as if it executes an entire warp,
except that threads not belonging to the same warp-slice
have their corresponding lanes clock-gated according to
an active mask. The active mask marks the warp-slice’s
associated lanes so that irrelevant lanes are not accessed at
all. In one cycle, only one warp or warp-slice can execute.
The process of dividing a warp is illustrated in Figure 4.

The warp-slice table is used to keep track of warp-slices.
Each warp-slice occupies an entry in the WST that records
the active masks that identify associated threads. Creating a
warp-slice also requires duplicating its re-convergence stack
for SIMT or array organizations (for vector organizations
where branches are predicated, the WST alone would suf-
fice). The overhead of such copying is at most log

2
(W)

cycles, where W is the maximum SIMD width available.
We set this reconfiguration overhead to 10 cycles in our
experiments; such overhead is negligible compared to the
time spent in the execution phase, therefore it hardly affects
the overall execution time. Physically, the duplicated re-
convergence stacks can be combined, as shown in Fig-
ure 4(c).

At the end of each sampling interval and before the ASU
suggests a different SIMD configuration for the next interval,
all threads finish their current tasks and arrive at the same
PC with empty re-convergence stacks. Warp-slices can then
merge into complete warps by taking the logical “or” of
their active masks in WST entries. Warps are then divided
again; neighboring lanes form warp-slices with the desired
SIMD width. The number of active warp-slices are deter-
mined by the desired multi-threading depth; the remaining,
inactive warp-slices are suspended, computing no tasks in
the subsequent interval, and are referred to as dormant warp-
slices. These dormant warp-slices will be resumed once
others finish or hit a synchronization point. During this
reconfiguration step, the WPU’s pipeline is stalled; however,
this only occurs during the adaptation phase, whose overhead
is negligible for a reasonable workload. Note that a wide
warp can be divided into multiple active warp-slices to trade
SIMD width for multi-threading depth.

We impose the constraint that all warp-slices on a WPU
share the same width, so that a SIMD configuration can
be simply parameterized as a tuple, denoted by (width ×

depth), which in turn simplifies adaptation. Otherwise, the
number of possible SIMD configurations will explode. Only

when the available SIMD width is not divisible by the
suggested SIMD width would those residue threads form
warp-slices that are narrower than others. Adapting to warp-
slices with different widths is interesting future work.

It may seem that by sometimes reducing SIMD width or
suspending warps, we are underutilizing hardware to begin
with. In fact, doing this actually increases caching efficiency,
thereby reducing pipeline stalls upon memory accesses and
improving the overall utilization and throughput. Section VII
shows that to maximize throughput across different appli-
cations, it is better to provide the option of wider SIMD
and allow it to become narrower and deeper, than stick to a
narrower but fully utilized static configuration.

Because a warp-slice is never constructed with threads
belonging to different warps, Robust SIMD preserves the
register banks. Decreasing or increasing SIMD width is
basically suspending or resuming the corresponding SIMD
threads, respectively. The suspended threads will be eventu-
ally resumed when other threads exit or reach a synchro-
nization barrier. As a result, there is no need to adjust
and migrate data in register files. In other words, Robust
SIMD need not modify conventional datapaths or lanes—
we only change how datapaths are logically grouped, which
is managed by a warp-slice table (WST).

Splitting warps does not affect explicit synchronization.
We assume that any synchronization is explicit. The problem
with making a warp implicitly synchronous is that it locks
in the warp size as a legacy obligation. If a programming
model provides explicit synchronization primitives (e.g.
__syncthreads() in CUDA), threads usually synchro-
nize on the basis of a conceptual thread-block rather than
an individual warp in order to preserve flexibility. Upon
such a synchronization instruction, a warp or warp-slice can
stall waiting for other warps in a conventional way. For
vector architectures that rely on SIMD width for implicit
synchronization, we suggest to implicity insert an instruction
to synchronize warp-slices belonging to the same warp
whenever the compiler detects that an element in a vector
is comsuming another one in an unaligned vector position.

In contrasts to warp-splits in DWS, which are created
upon branch or memory latency divergences, Robust SIMD
constructs warp-slices regardless of threads’ divergence his-
tories, so that SIMD width and depth can be adjusted even
when there is no memory latency divergence. In Robust
SIMD, to form a warp-slice, a WPU only has to define
how many threads should be grouped into the new warp-
slice, without specifying which threads to be grouped. We
heuristically group threads operating on neighboring lanes
into a warp-slice. Moreover, forming and merging of warp-
slices only occur at the end of each sampling interval, rather
than upon individual cache hits or misses. Finally, each
warp-slice has its independent re-convergence stack, allow-
ing them to hide each other’s latency in spite of the occur-
rences of conditional branches. In contrast, DWS warp-splits
belonging to the same warp share the same re-convergence
stack, and may be subject to frequent synchronization upon
conditional branches, limiting the effectiveness in latency
hiding. Compared to the hardware of DWS, Robust SIMD
reuses the same structure of the warp-split table in DWS for
the warp-slice table; in addition, it tracks the TOS for each

Figure 4: An example that illustrates how a warp is split into two warp-slices using the warp-slice table (WST). Re-convergence stacks only
exist in array or SIMT organizations for handling divergent branches, therefore their modification is not necessary for vector organizations.
Note that in (e), the two TOSs, which correspond to two warp-slices, operate independently on different parts of the active mask; therefore
there is no interference and only one TOS is accessed at a given time.

warp-slice and it introduces the ASU for adaptation.

B. Hardware Overhead

Without modifying conventional datapaths, we manage
the logical grouping of datapaths using the warp-slice table
(WST). Other hardware units introduced to an adaptive WPU
mainly include the adaptation state unit (ASU) and counters
for completed tasks within one sampling interval.
The ASU, if implemented in hardware, includes a com-

parator to evaluate performance measurements, an adder to
offset the width and depth, a multiplier to scale the offset
strides, and several multiplexors to choose the appropriate
strides and directions. It also includes several registers to
store current SIMD width and depth, the recorded optimal
width and depth, the recorded optimal performance measure,
the adaptation strides, and the current state of the ASU.
Given that most of these values are below 256 and can
be stored within a single byte, we estimate that the ASU
requires 20 bytes of storage.
Assuming the WPU has two warps with a SIMD width

of 32 and it supports up to 8 warp-slices, each entry in the
WST would require 14 bytes: 32 bits for the active mask, 1
bit for the warp ID, 64 bits for the PC, 3 bits for the warp-
slice ID, 2 bits for the warp status, and 8 bits for storing
the top-of-stack (TOS) if a re-convergence stack is used. A
maximum of 8 entries are needed, resulting in a total of 112
bytes. For SIMT or array organizations, the duplicated re-
convergence stack would add an additional column of PCs
for each warp-slice. Assuming the stack can grow as high
as 8 layers and each warp can be divided into at most eight
warp-slices, this results in additional 1024 bytes. Adding the
storage requirements for the WST and the ASU, this yields
a total of 1164 bytes, or approximately 1 KB of storage.

To estimate area overhead, we measure realistic sizes for
different units of a core according to a publicly available die
photo of the AMD Opteron processor in 130nm technology.
We scale the functional unit areas to 65nm, assuming a 0.7
scaling factor per generation. The area overhead of an addi-
tional lane takes into account an additional set of functional
units, register files, and its intra-datapath interconnection.
We assume each SIMD lane has a 32 bit data path (adjacent
lanes are combined if 64 bit results are needed). We also
measure the cache area per 1 KB of capacity and scale
that according to the cache capacity. Assuming the WPU
described above has a 32 KB D-cache and a 16 KB I-cache,
the additional storage requires less than 1% of a WPU’s
area.

There are several other hardware overheads but their area
needs are negligible. First, dividing a warp into multiple
warp-slices requires more scheduling entries. Since we use
round-robin scheduling policy in all cases, such a simple
scheduler’s overhead is negligible for a few warps (no
more than 16 in a balanced configuration according to our
experiments). Second, we make the same assumption about
bypassing in all cases, and it is unaffected by SIMD width
and depth at all times. The area savings of eliminating
bypassing on such a simple datapath are small enough not
to justify the area overhead of deeper multi-threading.

V. METHODOLOGY

We model our system with the MV5 simulator [23],
the only publicly available simulator that support general
purpose SIMT architectures with coherent caches. MV5 is
a cycle-accurate, event-driven simulator based on gem5 [6].
Because existing operating systems do not directly manage

SIMD threads, applications are simulated in system emu-
lation mode with a set of primitives to create threads in a
SIMD manner.

A. Simulation Infrastructure

The modeled WPUs handle divergent branches with re-
convergence stacks. Due to the lack of compiler support, we
manually instrument application code with post-dominators.
Each lane is modeled with an IPC of one except for memory
references, which are modeled faithfully through the mem-
ory hierarchy (although we do not model memory controller
reordering effects). A WPU switches warps upon every
cache access with no extra latency—as modern GPUs do—
simply by indexing appropriately into shared scheduling and
register file resources. Using our simulator, we study chip
multi-processors (CMPs) with four homogeneous WPUs
operating over coherent caches. Since the divergence is local
to a WPU, experiments with a different WPU count produces
similar results.
The memory system is a two level coherent cache hi-

erarchy with private L1 caches and a shared L2. Each
WPU has a private I-cache and D-cache. I-caches are
not banked, because only one instruction is fetched every
cycle for all lanes. D-caches are always banked according
to the number of lanes. We assume there is a perfect
crossbar connecting the lanes with the D-cache banks. If
bank conflicts occur, memory requests are serialized and a
small queuing overhead (one cycle) is charged. The queuing
overhead can be smaller than the hit latency because requests
can be pipelined. All caches are physically indexed and
physically tagged with LRU replacement policy. Caches are
nonblocking with miss status holding registers (MSHRs).
Coherence is handled by a directory-based MESI protocol.
L1 caches schedule outgoing L2 requests on a first in,
first out (FIFO) basis. The L1 caches connect to L2 banks
through a crossbar, which has a limited bandwidth of 57
GB/s. The L2 then connects to the main memory through a
266 MHz memory bus with a bandwidth of 16 GB/s. The
latency in accessing the main memory is assumed to be 300
cycles2, and the memory controller is able to pipeline the
requests.
Table I summarizes the main architectural parameters.

Note that the aggregate L2 access latency is broken down
into L1 lookup latency, crossbar latency, and the L2 lookup
latency. The L2 lookup latency contains both tag and data
lookup.

B. Data-Parallel Programming Model

While there are commercial software systems for data-
parallel applications (e.g. TBB [17], OpenMP [7], Cg [21],
CUDA [1], OpenCL [18], and Pthreads [3]), they either lack
the capability to create SIMD threads or do not execute
properly in MV5’s system emulation mode. Therefore, we
adopted MV5’s OpenMP-style programming model and run-
time threading library [22]. Each invocation of the innermost
parallel for loop has a unique loop index and would execute
on a hardware thread context as an individual task. Such an

2Compared to our previous work on dynamic warp subdivision [24], we
increased the memory latency to 300 cycles which is common for current
GPUs

Tech. Node 65 nm
WPU 1 GHz, 0.9 V Vdd, Alpha ISA

up to 256 hardware thread contexts
and a SIMD width of up to 64

I-Cache 16 KB, 4-way associative, 128 B line size
1 cycle hit latency, 4 MSHRs, LRU, write-back

D-Cache 32 KB, 8-way associative, 128 B line size
MESI directory-based coherence
Requests are sent to L2 on a FIFO basis
3 cycle hit latency, LRU, write-back
256 MSHRs each hosts up to 8 requests

L2 Cache 4096 KB, 16-way associative, 128 B line size
30 cycle hit latency, LRU, write-back
256 MSHRs each hosts up to 8 requests

Crossbar 300 MHz, 57 Gbytes/s, store-and-forward
contention is modeled, token-based flow control

Memory 300 cycles access latency

Table I: Parameters for the two-level coherent cache hierarchy.

API is mainly designed to mimic the programming interface
in existing parallel APIs in MV5 simulations. Applications
are cross-compiled to the Alpha ISA using G++ 4.1.0.
insert bytecodes in computation kernels that signal SIMD
re-convergence to mimic the behavior of a SIMD compiler;
this step is transparent to application developers and is not
needed once full compiler support is available. We optimize
the code with O1 because higher levels of optimization
sometimes misplace the inserted bytecode.
There is no need for SIMD-specific optimizations such

as vector alignment; scalar instructions can be implicitly
grouped in hardware to operate in lockstep, in a way
similar to Cg [21]. Because implicitly managed caches
are used to ensure productivity, we assume programmers
would not (and they need not) explicitly optimize data
allocation and movement between memory hierarchies as
they would do when programming today’s GPUs (e.g. using
CUDA). The simulated runtime library is able to tile data-
parallel applications. Symbiotic tiling [22] is employed to
assign neighboring tasks to adjacent threads for locality
optimization. Characterizations show that symbiotic tiling
already balances the workload reasonably well across cores.

C. Benchmarks

The throughput-oriented WPUs target data-parallel appli-
cations with large input data sets. We adopt the set of SIMD
benchmarks provided by the MV5 [23] simulator. The same
set of benchmarks have also been used to study dynamic
warp subdivision [24]; it is therefore important to note that
these were not selected to illustrate or emphasize any partic-
ular aspects of this study. The benchmarks are data-parallel
kernels ported from Minebench [25], Splash2 [37], and
Rodinia [8]. These benchmarks exhibit diverse data access
and communication patterns [4], and cover the application
domains of scientific computing, image processing, physics
simulation, and data mining. The input size is set in such
a way that we have sufficient parallelism and still have
reasonable simulation times. Details are listed in Table II.

VI. AN INVESTIGATION OF ADAPTATION MECHANISMS

An adaptation strategy can be regarded as a simple finite
state machine implemented by the per-WPU adaptation state
unit (ASU) in hardware. Instead of searching the entire
SIMD design space by brute force, the ASU attempts to learn
the preferred configuration based on gradients in the perfor-
mance feedback. First, the ASU picks a dimension (i.e. either

Benchmark Description

FFT Fast Fourier Transform (Splash2 [37]).
Spectral methods. Butterfly computation

Input: a 1-D array of 262,144 (218) numbers
Filter Edge Detection of an Input Image.

Convolution. Gathering a 3-by-3 neighborhood
Input: a gray scale image of size 500 × 500

HotSpot Thermal Simulation (Rodinia [8]).
Iterative partial differential equation solver
Input: a 300 × 300 2-D grid, 100 iterations

LU LU Decomposition (Splash2 [37]). Dense linear algebra.
Alternating row-major and column-major computation
Input: a 300 × 300 matrix

Merge Merge Sort. Element aggregation and reordering
Input: a 1-D array of 300,000 integers

Short Winning Path Search for Chess. Dynamic programming.
Neighborhood calculation based on the the previous row
Input: 6 steps each with 150,000 choices

KMeans Unsupervised Classification (MineBench [25]).
Distance aggregation using Map-Reduce.
Input: 30,000 points in a 8-D space

SVM Supervised Learning (MineBench [25]).
Support vector machine’s kernel computation.
Input: 100,000 vectors with a 20-D space

Table II: Simulated benchmarks with descriptions and input sizes.

(a) Various SIMD widths with a
single warp

(b) Various multi-threading depths with a
SIMD width of 4

Figure 5: Comparing different adaptation strategies. Speedup is
normalized to that of a system with single-threaded in-order cores.
With narrow SIMD and few warps, all adaptation strategies perform
similarly. (a) When SIMD width increases from 4 to 64, WidthOnly
and DWrep outperform Conv and DepthOnly since they trade SIMD
width for depth. (b) When the number of warps increases from 1
to 16, DepthOnly and DWrep perform best because they are able
to deactivate some warps to reduce cache contention.

SIMD width or multi-threading depth). It then attempts to
increase and decrease the value along that dimension in the
subsequent two intervals. The amount to increase or decrease
is discussed in Section VI-B. Section VI-C discusses the
length of a sampling interval and how performance is
evaluated after one interval. The ASU then chooses the
direction which yields better performance. In the following
intervals, it suggests subsequent SIMD organizations in that
direction until it no longer gains performance. At this point,
it may choose another dimension to adapt.

A. Exploring Various Strategies

We investigate several adaptation strategies including:

• WidthOnly, which only adjusts SIMD width. The num-
ber of active warps remains constant. The preferred
SIMD width is identified by turning off more lanes in
subsequent sampling intervals until it begins to hurt
performance.

• DepthOnly, which only suspends or resumes warps to
adjust depth, using an approach similar to WidthOnly
to identify the preferred depth.

• DWrep, which adjusts depth until it converges, and then
adjusts width until it converges; it repeats until neither
depth nor width needs to be adjusted. Note that reduc-
ing SIMD width may generate more warp-slices, which

increases the upper limit of multi-threading depth.
We have also experimented with the same strategy
with SIMD width adapted first, which yields similar
performance.

We compare these strategies over various SIMD widths
and multi-threading depths. The baseline system with con-
ventional WPUs is referred to as Conv. Because of the
space limitation, we only illustrate two scenarios in Figure 5.
Our results show that DWrep performs consistently well on
various organizations, therefore DWrep is used in Robust
SIMD in the rest of this paper. Note that when the initial
configuration is already the optimal configuration, adaptive
strategies may perform slightly worse than Conv due to
adaptation phases with suboptimal configurations.
We have also experimented with adapting depth and

width simultaneously and with allowing multiple WPUs to
collaboratively explore and evaluate various SIMD organi-
zations. These strategies are susceptible to noise and are
outperformed byDWrep.

B. Convergence Robustness

At the end of each sampling interval, the ASU has to
offset the current SIMD organization with a certain stride to
suggest a new configuration. A naı̈ve implementation incre-
ments or decrements either SIMD width or multi-threading
depth after each sampling interval. Such a convergence
mechanism with a stride of one is named Inc.

However, our experiments show that Inc converges slowly
and is susceptible to noise. To address these issues, we
propose to first use a larger stride at beginning, and then
gradually decrease the stride until it reaches one (i.e. incre-
mental adjustment). We name this method quasi-annealing
(Anneal), and it can be combined with any adaptation strate-
gies described in Section VI-A. In our evaluation, the initial
stride for SIMD width is set to half of number of available
lanes. The initial stride for multi-threading depth is set to
half the number of available warps. The stride is reduced
by half once a preferred configuration is identified using the
coarser stride. The adaptation then continues with the finer
stride until the stride reaches one. Figure 6a compares Inc
and Anneal and shows that the latter performs better with
wide SIMD.

C. Evaluating a Particular SIMD Configuration

We assume that data parallel tasks within a parallel for
loop are homogeneous and propose to use the average cycles
per task (CPT) as the performance measure to be used
by the ASU. While cycles per instruction (CPI) can also
reflect overall performance, it is difficult to determine the
right sampling interval for a CPI calculation; short sampling
intervals may fail to capture a complete data-parallel task
and generate a biased, noisy performance measure, while
long sampling intervals introduce unnecessary overhead.
Because the computational workload within a data parallel
task differs across applications and application phases, we
propose to adjust the sampling interval according to task
lengths.
First, we predefine a desired number of data-parallel tasks

to be completed by an average thread in one sampling
interval. This number is set to two in the rest of the

8 16 32
0

10

20

Filter

8 16 32
0

0.5

1

1.5

Merge

8 16 32
0

2

4

Short

8 16 32
0

2

4

SIMD width

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p Harmonic Mean

Inc Anneal

(a) Comparing Robust SIMD performance with a converging stride of one (Inc) and
that with annealed strides (Anneal). WPUs each have two warps and we vary the SIMD
width.

1 2 4 8 16
0

10

20

Average tasks/thread per interval

Filter

1 2 4 8 16
0

0.5

1

1.5

Merge

1 2 4 8 16
0

2

4

Short

1 2 4 8 16
0

1

2

3

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p Harmonic Mean

(b) Comparing various sampling intervals on WPUs with two 32-wide warps.

Figure 6: Sensitivity study for convergence rate and interval length.
Speedup is normalized to a system with four single-threaded,
in-order cores. We show three benchmarks that exhibit different
responses. The overall trend is shown by taking the harmonic
mean of performance across all benchmarks. In (b), performance
decreases with more tasks per interval due to sampling overhead;
however, this overhead does not increase with larger workload.

paper based on results of the sensitivity study illustrated
in Figure 6b. Multiplying this number with the number of
threads per WPU, we derive the minimum number of tasks
to be completed by a WPU within one sampling interval.
The WPU then uses a hardware counter to count the number
of completed tasks until it exceeds the minimum threshold.
Once such a threshold is reached, the WPU will suspend
any active threads when they finish their current tasks to
prepare warp-slices for SIMD reconfiguration. According to
our experiments, the synchronization overhead accounts for
less than 9% of the adaptation phase, or less than 2% of
the entire execution time. At the end of a sampling interval,
the length of the interval in cycles is then divided by the
number of completed tasks to estimate the average cycles
per task (CPT). The lower the CPT is, the more preferred
the SIMD organization is. Note that different WPUs monitor
their sampling intervals independently.
There are cases where a parallel for loop contains only

a few long-running tasks, resulting in insufficient tasks for
adaptation. Merge, LU, and KMeans all have a portion of
their execution time that exhibits such behavior, often in
their latter phases of reduction. In these cases, we apply the
heuristic that if a parallel for loop has too few tasks to
warrant 30 sampling intervals, an empirically picked SIMD
organization with two eight-wide warps will be applied
instead; we found this to be the best default.

VII. EVALUATION

The goal of Robust SIMD is to come up with a SIMD
configuration that performs reasonably well across various

SIMD applications and despite runtime variation in available
cache capacity. In addition, the effort in space exploration
should be reasonably low compared to previous techniques.
We evaluate Robust SIMD (denoted with RobustSIMD) by
demonstrating its performance over the design space and
comparing the results against those of fixed SIMD organi-
zations (denoted with StaticSIMD) as well as SIMD organi-
zations with dynamic warp subdivision (denoted with DWS).
The comparison is made by starting the experiments with the
same initial configuration with regard to width and depth.
We examine how different techniques respond to various
applications and identify the overall best configuration for
each technique. These preferred configurations are further
compared under various degrees of D-cache pollution.

In this section, a SIMD organization with a width of W
and a depth of D is denoted W × D. Averaged perfor-
mance is calculated using the harmonic mean. Performance
measurements include both adaptation phase and execution
phase. The adaptation phase accounts for about 6% of the
total execution time on average, and it never exceeds 15%
of the total execution time. Note that larger input size
does not prolong adaptation time, because the number of
tasks required in learning the optimal SIMD configuration
is independent of the total number of data-parallel tasks.

A. Robustness Across Applications

We evaluate each technique with eight benchmarks, de-
scribed in Section V-C. In each experiment, the workload
of an application is evenly partitioned across four WPUs
which execute in parallel. Performance is measured as the
overall parallel execution time. Starting with WPUs with
private 8-way associative, 32 KB D-caches, we conduct
space exploration of various SIMD widths and depths at
powers of two. Results shown are limited to a maximum
of 64 hardware thread contexts per WPU. Our experiments
show that having more threads per WPU actually degrades
performance for all benchmarks due to cache thrashing.

StaticSIMD organizations yield the best mean perfor-
mance when WPUs have a fixed width of eight and a fixed
depth of four. However, for most benchmarks this “best on
average” configuration is not the preferred (see Row 4 in
Table III). Comparing Row 3 to Row 5 in Table III, we show
that the “best on average” StaticSIMD organization loses
16% of performance when compared with the static optimal
case defined as running each benchmark on its preferred
StaticSIMD organization.

For RobustSIMD organizations, WPUs originating from a
single, 32-wide warp perform best (Row 6 in Table III). Us-
ing RobustSIMD, WPUs with a small number of wide warps
are likely to perform well uniformly across all benchmarks.
This is because such configurations maximize throughput
when data-parallel tasks are computationally intensive, and
can be converted to multiple narrower warps or fewer
threads to hide latency or reduce contention during memory
intensive phases. As a result, RobustSIMD yields similar
performance to the static optimal case and 17% better than
the best StaticSIMD organization (compare Rows 5 and Row
6 in Table III). In fact, the “best-on-average” RobustSIMD
performs better than the static optimal in some cases. The
reasons are two-fold. First, RobustSIMD can converge to

1 Benchmarks Harmonic FFT Filter HotSpot LU Merge Short KMeans SVM
Mean

2 32KB, 8-way assoc. D-caches
3 Best StaticSIMD (8 × 4) 3.47 3.23 9.47 6.22 4.03 1.26 4.28 4.56 4.30
4 App-specific best fixed config. 8 × 4 32 × 1 8 × 4 8 × 4 4 × 2 16 × 1 8 × 2 2 × 8

5 Static optimal speedup 4.15 3.23 20.18 6.22 4.03 1.76 4.96 5.20 5.02
6 Best RobustSIMD (32 × 1) 4.07 3.36 20.32 6.31 3.18 1.79 4.88 7.62 4.00
7 Best DWS (16 × 2) 4.14 3.51 11.68 5.49 3.80 1.95 3.97 6.92 4.79
8 Best RobustDWS (16 × 2) 4.27 3.33 16.62 6.16 3.66 1.96 4.96 6.90 4.59

The same SIMD configuration
9 with D-caches reduced to 16KB, 4-way
10 StaticSIMD (8 × 4) 1.24 2.03 2.75 1.11 0.64 0.85 0.88 2.14 2.70
11 App-specific best fixed config. 4×4 8×1 4×2 4×2 2×4 8×1 4×2 2×8
12 Static optimal speedup 2.92 2.94 6.99 3.14 2.17 1.57 3.29 3.51 4.01
13 RobustSIMD (32 × 1) 2.63 2.84 9.07 3.09 2.03 1.19 3.19 4.82 2.44
14 DWS (16 × 2) 1.62 2.23 2.76 1.29 0.84 1.70 0.91 4.90 3.66
15 RobustDWS (16 × 2) 2.98 2.93 9.83 2.71 2.03 1.72 3.14 4.91 3.66

Table III: Performance comparison between StaticSIMD, RobustSIMD, DWS, and RobustDWS across various benchmarks and D-cache
settings. Performance numbers are shown as the speedup over single-threaded in-order cores.

nonstandard organizations where SIMD widths and depths
are no longer powers of two. Second, RobustSIMD can also
adapt to phase changes where applications prefer different
SIMD configurations at different parallel code sections.

We also observe a couple of benchmarks often prefer
DWS. Further analysis reveals two reasons. First, work-
loads such as LU and Merge spend significant time in
for loops with too few parallel tasks to warrant effective
adaptation. In these cases, RobustSIMD would use prede-
fined heuristics described in Section VI-C, which leads to
suboptimal performance. Second, workloads such as SVM
have fast-changing phases that exhibit different divergence
behaviors and memory intensities; therefore a stable SIMD
configuration that performs consistently well may not even
exist. As Section VII-C shows, Robust SIMD can be easily
integrated into DWS, and the resulting technique, named
RobustDWS, achieves the best performance among all (Row
8 in Table III).

B. Robustness under D-cache Pollution

The above results are obtained when each workload
possesses the entire cache capacity. However, this may not
be true in reality; not all cache lines are available to a
running workload due to faults, power saving, or runtime
pollution. For NVIDIA’s Fermi [2] and future architectures,
multiple kernels may be co-scheduled over the same WPU,
leading to contention over the L1 storage. Such kernel co-
scheduling can occur for HPC applications as well. Kernel
co-scheduling can improve occupancy of hardware thread
contexts when kernels have limited data-level parallelism3;
it improves memory efficiency by co-executing computation-
intensive and memory-intensive kernels [16]; it also en-
ables software pipelining by co-locating producer kernels
and consumer kernels for locality. However, all the above
scenarios lead to “jittering” of the cache capacity available
to a particular kernel. Hence, it is questionable whether
the preferred SIMD configurations resulting from space
exploration under an optimistic condition would continually
perform well. With Robust SIMD, the WPUs can restart the

3We have encountered such scenarios in an HPC application, GFMC [28].
It is a quantum physics application that performs Monte Carlo calculation
for light nuclei. It has tremendous thread-level parallelism, but each thread
has too few data-parallel tasks to benefit from GPU acceleration.

adaptation phase runtime variation and re-adapt to the new
environment.

Therefore, we study the “best-on-average” SIMD config-
urations in Section VII-A and compare their performance
when D-caches are polluted. To quantify the intensity of
pollution and measure its effect on performance, we man-
ually inject pollution into D-caches. Such an approach is
an approximation of the actual runtime dynamics and is
similar to error injection methods used in evaluating error-
resilience techniques [5], [39]. In this set of experiments,
D-cache lines are randomly marked as polluted and cannot
be used by the running workload. The assumption is that
runtime environment’s disruptiveness in cache accesses is in
a steady state so that its intensity can be quantified in our
evaluation. The percentage of polluted cache lines is varied
from 12% to 75% of all cache lines. For each degree of
pollution, we run every workload 10 times and report their
average performance to account for variations.

0

10

20

0
%

1.2x 0.97x

0

5

10

1
2
% 1.2x 1.1x

0

5

10

S
p
e
e
d
u
p
 w

/t
 d

if
fe

re
n
t
a
m

o
u
n
ts

 o
f
p
o
llu

te
d
 c

a
c
h
e
 l
in

e
s

2
5
% 1.4x 1.3x

0

2

4

5
0
% 1.7x 1.5x

FFT Filter HotSpot LU Merge Short KMeans SVM H−Mean
0

1

2

7
5
% 1.5x 1.3x

StaticSIMD RobustSIMD DWS

Figure 7: Comparing performance of the “best-on-average” Stat-
icSIMD (8 × 4) (left), RobustSIMD (32 × 1) (middle), and DWS
(16×2) (right) when 12%, 25%, 50%, and 75% of the D-cache lines
are polluted. D-caches are 8-way associative and are sized 32 KB.
Numbers are reported by averaging 10 independent runs to account
for variation. Performance is normalized to that of StaticSIMD
configured with (1×1) without any cache pollution. The harmonic
mean across all applications are shown as “H-Mean”. The left and
right columns of text show the speedup of RobustSIMD compared
to StaticSIMD and DWS, respectively.

As Figure 7 shows, performance of RobustSIMD degrades
much more gracefully than StaticSIMD or DWS. Although
the “best-on-average” DWS performs similarly to Robust-
SIMD without cache pollution, its performance can easily
fall victim to runtime variations of cache capacity. With
only 25% of cache lines polluted, RobustSIMD performs
1.3× better than DWS in terms of execution time. The
only benchmark that persistently prefers DWS is Merge; it
spends significant time in loops with too few parallel tasks
for RobustSIMD adaptation, and it is not sensitive to cache
pollution.

C. Robust SIMD Combined with Dynamic Warp Subdivision

SIMD width

#
 w

a
rp

s

StaticSIMD DWS RobustSIMD RobustDWS

1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64
1

4

16

64

1.6 2.7 3.8

Figure 8: Comparing the speedup of StaticSIMD, DWS, Robust-
SIMD, and RobustDWS over various SIMD organizations. Speedup
is normalized to the organization with four single-threaded, in-order
cores. Lighter color indicates more speedup. D-caches are 8-way
associative and are sized 32 KB. We experiment with SIMD widths
and depths at powers of two, with up to 64 thread contexts per
WPU. Dashed lines are contour lines connecting area-equivalent
configurations.

Robust SIMD is complementary to DWS: the former
adapts to runtime dynamics across different workloads and
jittering cache capacity, but it requires a larger number or
parallel tasks to ensure effective adaptation; the latter divides
warps instantaneously based on branch or memory latency
divergence, but cannot reduce the number of active threads
nor re-adjust according to actual performance feedback. We
therefore propose RobustDWS as a combination of Robust
SIMD and DWS to show that Robust SIMD can benefit
DWS as well. RobustDWS first calculates the total number
of tasks from the parallel for loop sizes so that it abandons
the use of Robust SIMD whenever there are too few tasks;
the calculation time is negligible compared to the overall
workload. If there are adequate tasks, RobustDWS chooses
between Robust SIMD and DWS judiciously. For each data-
parallel for loop, Robust SIMD is used at first without
DWS to converge to a preferred organization. At the end
of the adaptation phase and before the execution phase of
Robust SIMD, the WPU runs another interval that uses DWS
only. Eventually, the WPU chooses the better performer of
the two. Note that occasionally RobustDWS can choose the
worse of the two because the evaluation period for DWS
may not be long enough. Nevertheless, it usually makes the
right choice especially when the application has a strong
preference of the two techniques.
Integrating Robust SIMD and DWS in the above manner

can be achieved in hardware. The warp-slice table in Robust
SIMD is structurally the same as the warp-split table in

DWS. In addition, DWS can function well with the warp-
slices’ re-convergence stacks in Robust SIMD. The only
additional logic needed by DWS is a register that records
which threads hit in the cache and which missed during a
SIMD cache access. The value of this register is used by
DWS to subdivide a warp.

Figure 8 illustrates that RobustDWS performs best among
all techniques. Not only does it achieve better performance
than DWS and RobustSIMD, it also allows a wide selection
of starting SIMD configurations to achieve near-optimal
performance, thereby reducing design risk. The best Robust-
DWS organization has two 16-wide warps for each WPU,
and it improves the performance of RobustSIMD by another
5% with a 32 KB D-cache. With 50% polluted cache lines,
it improves the performance of RobustSIMD by 13%.

Figure 8 also reveals that DWS may perform worse than
StaticSIMD with a modest SIMD width and depth (e.g., in
the 4×8 case). In contrast, RobustSIMD and RobustDWS per-
form consistently better than their corresponding StaticSIMD
configuration. Finally, area analysis demonstrates that the
best RobustSIMD and RobustDWS configurations perform
better than any area-equivalent StaticSIMD configurations.

We have also explored other ways of integrating the
two techniques. For example, DWS can be used during the
adaptation phase as well as the execution phase of Robust
SIMD. However, due to interference among the two, such
close coupling of DWS and Robust SIMD does not provide
robust performance.

VIII. CONCLUSIONS AND FUTURE WORK

This paper studies SIMD over cache hierarchies for gen-
eral purpose applications. We show that cache hierarchies
affect the choices of SIMD width and multi-threading depth
in different ways than streaming memories. Due to more
obtrusive memory latency divergence, lower latency in non-
L1 data accesses, and relatively unpredictable L1 contention,
deep multi-threading with modest SIMD width no longer
works well consistently. The preferred SIMD width and
depth depends heavily on runtime dynamics and can vary
due to different applications and jittering cache capacities.
As a result, we propose Robust SIMD which provides wide
SIMD and offers the flexibility to re-configure itself to nar-
rower or deeper SIMD. Our experiments show that Robust
SIMD achieves performance gains of 17% when compared
to the best fixed SIMD organization. When available D-
cache capacity is reduced by 25% due to runtime dynam-
ics, performance degrades. However, in terms of execution
time, Robust SIMD performs 1.4× better compared to a
conventional SIMD architecture, and 1.3× better compared
to dynamic warp subdivision.

To further reduce adaptation time, and to improve adap-
tation when there are only a few data parallel tasks, we can
employ persistent adaptation: the preferred organization for
an application can be generated using multiple executions
and stored in a file. The system can then load the learned
SIMD organization directly for future executions. Moreover,
homogeneous, data-parallel tasks may prefer different SIMD
configurations if their data accesses are irregular; in such
circumstances, the adaptation phase can be restarted period-
ically even within the same parallel section.

IX. ACKNOWLEDGEMENTS

This work was supported in part by SRC grant No.
1607 and task 1972, NSF grant nos. IIS-0612049 and
CNS-0615277, a grant from Intel Research, a professor
partnership award from NVIDIA Research, and an NVIDIA
Ph.D. fellowship (Meng). This research is also supported
by the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357.

REFERENCES

[1] NVIDIA CUDA compute unified device architecture pro-
gramming guide. NVIDIA Corporation, 2007.

[2] NVIDIA’s next generation CUDA compute architecture:
Fermi. NVIDIA Corporation, 2009.

[3] R. A. Alfieri. An efficient kernel-based implementation of
POSIX threads. In USTC, 1994.

[4] K. Asanovic, R. Bodik, B. Christopher C., J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of
parallel computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, 2006.

[5] A. Benso and P. Prinetto. Fault injection techniques and tools
for embedded systems reliability evaluation.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 simulator: Modeling
networked systems. IEEE Micro, 26(4), 2006.

[7] OpenMP Architecture Review Board. OpenMP ap-
plication program interface. http://www.openmp.org/mp-
documents/spec30.pdf, 2008.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of general purpose
applications on graphisc processors using CUDA. JPDC,
2008.

[9] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner.
Liquid SIMD: Abstracting SIMD hardware using lightweight
dynamic mapping. In HPCA, 2007.

[10] Intel Corporation. Intel news release: Intel unveils new
product plans for high-performance computing. 2010.

[11] NVIDIA Corporation. GeForce GTX 280 specifications.
2008.

[12] N. Eisley, L.-S. Peh, and L. Shang. Leveraging on-chip
networks for data cache migration in chip multiprocessors.
In PACT, 2008.

[13] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage
power. In ISCA, 2002.

[14] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt.
Dynamic warp formation and scheduling for efficient GPU
control flow. In MICRO, 2007.

[15] M. Gschwind. Chip multiprocessing and the Cell Broadband
Engine. In CF, 2006.

[16] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron.
Enabling task parallelism in the CUDA scheduler. In PMEA
Workshop, 2009.

[17] Intel Corporation. Intel Threading Building Blocks.
http://www.threadingbuildingblocks.org.

[18] Khronos Group Std. The OpenCL Specification, Ver-
sion 1.0. http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf, April 2009.

[19] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Phar-
ris, J. Casper, and K. Asanovic. The vector-thread architec-
ture. IEEE Micro, 24:84–90, 2004.

[20] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart memories: a modular reconfigurable
architecture. In ISCA, 2000.

[21] W. R. Mark, R. Steven, R. S. Glanville, K. Akeley, and M. J.
Kilgard. Cg: A system for programming graphics hardware
in a C-like language. SIGGRAPH, 22:896–907, 2003.

[22] J. Meng, J. W. Sheaffer, and K. Skadron. Exploiting inter-
thread temporal locality for chip multithreading. In IPDPS,
page 117, 2010.

[23] J. Meng and K. Skadron. Avoiding cache thrashing due
to private data placement in last-level cache for manycore
scaling. In ICCD, 2007.

[24] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivi-
sion for integrated branch and memory divergence tolerance.
In ISCA, 2010.

[25] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary. Minebench: A benchmark suite for data
mining workloads. IISWC, 2006.

[26] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams,
D. Yuste, A. Cohen, , and A. Zaks. Vapor SIMD: Auto-
vectorize once, run everywhere. In CGO, 2011.

[27] S. Parekh, S. Eggers, and H. Levy. Thread-sensitive schedul-
ing for SMT processors. Technical report, 2000.

[28] S. C. Pieper, K. Varga, and R. B. Wiringa. Quantum Monte
Carlo calculations of A=9,10 nuclei. In Phys. Rev. C 66,
044310-1:14, 2002.

[29] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer.
Adaptive insertion policies for high performance caching. In
ISCA, 2007.

[30] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches. In MICRO 39, 2006.

[31] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis. Vector
lane threading. ICPP, 0:55–64, 2006.

[32] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee:
a many-core x86 architecture for visual computing. ACM
Trans. Graph., 27(3), 2008.

[33] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
a simultaneous multithreaded processor. In ASPLOS, pages
234–244, New York, NY, USA, 2000.

[34] G. E. Suh, S. Devadas, and L. Rudolph. A new memory moni-
toring scheme for memory-aware scheduling and partitioning.
In HPCA, page 117, 2002.

[35] D. Tarjan, J. Meng, and K. Skadron. Increasing memory miss
tolerance for SIMD cores. In SC, 2009.

[36] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khel-
lah, and S.-L. Lu. Trading off cache capacity for reliability
to enable low voltage operation. In ISCA, 2008.

[37] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. ISCA, 1995.

[38] S.-H. Yang, B. Falsafi, M. D. Powell, and T. N. Vijaykumar.
Exploiting choice in resizable cache design to optimize deep-
submicron processor energy-delay. In HPCA, 2002.

[39] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubra-
maniam. ICR: In-cache replication for enhancing data cache
reliability. ICDSN, 2003.

