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ABSTRACT
Iterative stencil loops (ISLs) are used in many applications
and tiling is a well-known technique to localize their compu-
tation. When ISLs are tiled across a parallel architecture,
there are usually halo regions that need to be updated and
exchanged among different processing elements (PEs). In
addition, synchronization is often used to signal the comple-
tion of halo exchanges. Both communication and synchro-
nization may incur significant overhead on parallel architec-
tures with shared memory. This is especially true in the case
of graphics processors (GPUs), which do not preserve the
state of the per-core L1 storage across global synchroniza-
tions. To reduce these overheads, ghost zones can be created
to replicate stencil operations, reducing communication and
synchronization costs at the expense of redundantly com-
puting some values on multiple PEs. However, the selection
of the optimal ghost zone size depends on the character-
istics of both the architecture and the application, and it
has only been studied for message-passing systems in a grid
environment. To automate this process on shared memory
systems, we establish a performance model using NVIDIA’s
Tesla architecture as a case study and propose a framework
that uses the performance model to automatically select the
ghost zone size that performs best and generate appropriate
code. The modeling is validated by four diverse ISL applica-
tions, for which the predicted ghost zone configurations are
able to achieve a speedup no less than 98% of the optimal
speedup.

1. INTRODUCTION
Iterative stencil loops (ISL) [21] are widely used in im-

age processing, data mining, and physical simulations. ISLs
usually operate on multi-dimensional arrays, with each ele-
ment computed as a function of some neighboring elements.
These neighbors comprise the stencil. Multiple iterations
across the array are usually required to achieve convergence
and/or to simulate multiple time steps. Tiling [16, 26] is
often used to partition the stencil loops among multiple pro-
cessing elements (PEs) for parallel execution, and we refer
to a workload partition as a tile in this paper. Similar tiling
techniques also help localize computation to optimize cache
hit rate for an individual processor [11].
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Figure 1: (a) Iterative stencil loops and halo regions.
(b) Ghost zones help reduce inter-loop communica-
tion.

Tiling across multiple PEs introduces a problem because
stencils along the boundary of a tile must obtain values that
were computed remotely on other PEs, as shown in Fig-
ure 1(a). This means that ISL algorithms may spend con-
siderable time stalled due to inter-loop communication and
synchronization delays to exchange these halo regions. In-
stead of incurring this overhead after every iteration, a tile
can be enlarged to include a ghost zone. This ghost zone en-
larges the tile with a perimeter overlapping neighboring tiles
by multiple halo regions, as shown in Figure 1(b). The over-
lap allows each PE to generate its halo regions locally [29] for
a number of iterations proportional to the size of the ghost
zone. As Figure 1(b) demonstrates, ghost zones group loops
into stages, where each stage operates on overlapping stacks
of tiles, which we refer to as trapezoids. Trapezoids still
produce non-overlapping data at the end, and their height
reflects the ghost zone size.

Ghost zones pose a tradeoff between the cost of redun-
dant computation and the reduction in communication and
synchronization among PEs. This tradeoff remains poorly
understood. Despite the ghost zone’s potential benefit, an
improper selection of the ghost zone size may negatively im-
pact the overall performance. Previously, optimization tech-
niques for ghost zones have only been proposed in message-
passing based grid environment [29]. These techniques no
longer fit for modern chip multiprocessors (CMPs) for two

skadron
Text Box
This is the author’s version of the work. It is postedhere by permission of ACM for your personal use. Not forredistribution.



reasons. First, communication in CMPs is usually based on
shared memory and its latency model is different from that
of message-passing systems. Secondly, the optimal ghost
zone size is commonly one on a grid environment [1], allow-
ing for a reasonably good initial guess for adaptive meth-
ods. However, this assumption may not hold on some shared
memory CMPs, as demonstrated by our experimental results
later in the paper. As a result, the overhead of the adaptive
selection method may even undermine performance. This
paper presents the first technique that we know of to auto-
matically select the optimal ghost zone size for ISL appli-
cations executing on a shared-memory multicore chip multi-
processor (CMP). It is based on an analytical model for opti-
mizing performance in the presence of this tradeoff between
the costs of communication and synchronization versus the
costs of redundant computation.

As a case study for exploring these tradeoffs in manycore
CMPs, we base our analysis on the architectural considera-
tions posed by NVIDIA’s Tesla GPU architecture [24]. We
choose GPUs because they contain so many cores and some
extra complexity regarding the L1 store and global synchro-
nization. In particular, the use of larger ghost zones is es-
pecially valuable in the Tesla architecture, because unlike
the grid environment where a tile’s data may persist in its
PE’s local memory, data in all PEs’ local memory has to be
flushed to the globally shared memory and reloaded again
after the inter-loop communication. Our performance model
and its optimizations are validated by four diverse CUDA
applications consisting of dynamic programming, an ordi-
nary differential equation (ODE) solver, a partial differen-
tial equation (PDE) solver, and a cellular automaton. The
optimized ghost zone sizes are able to achieve a speedup
no less than 98% of the optimal configuration. Our per-
formance model for local-store based memory systems can
be extended for cache hierarchies given appropriate memory
modeling such as that proposed by Kamil et al.[17].

Our performance model can adapt to various ISL applica-
tions. In particular, we find that ghost zones benefit more for
ISLs with narrower halo widths, lower computation/commu-
nication ratios, and stencils operating on lower-dimensional
neighborhood. Moreover, although the Tesla architecture
limits the size of thread blocks, our performance model pre-
dicts that the speedup from ghost zones tends to grow with
larger tiles or thread blocks.

Finally, we propose a framework template to automate
the implementation of the ghost zone technique for ISL pro-
grams in CUDA. It uses explicit code annotation and implic-
itly transforms the code to that with ghost zones. It then
performs a one-time profiling for the target application with
a small input size. The measurement is then used to esti-
mate the optimal ghost zone configuration, which is valid
across different input sizes.

In short, the main contributions of this work are a method
for deriving an ISL’s performance as a function of its ghost
zone, a gradient descent optimizer for optimizing the ghost
zone size, and a method for the programmer to briefly an-
notate conventional ISL code to automate finding and im-
plementing the optimal ghost zone.

2. RELATED WORK
Tiling is a well-known technique to optimize ISL applica-

tions [26, 16, 30, 18, 25]. In some circumstances, compil-
ers are able to tile stencil iterations to localize computation
or/and exploit parallelism [11, 32]. On the other hand, APIs
such as OpenMP are able to tile stencil loops at run-time
and execute the tiles in parallel [7]. Renganarayana et al.
explored the best combination of tiling strategies that opti-
mizes both cache locality and parallelism [27]. Researchers
have also investigated automatic tuning for tiling stencil

computations [21, 8]. Specifically, posynomials have been
widely used in tile size selection [28]. However, these tech-
niques do not consider the ghost zone technique that reduces
the inter-tile communication. Although loop fusion [23] and
time skewing [33] are able to generate tiles that can exe-
cute concurrently with improved locality, they cannot elim-
inate the communication between concurrent tiles if more
than one stencil loops are fused into one tile. This enforces
bulk-synchronous systems, such as NVIDIA’s Tesla archi-
tecture, to frequently synchronizes computation among dif-
ferent PEs, which eventually penalizes performance.

Ghost zones are based on tiling and they reduce communi-
cation further by replicating computation, whose purpose is
to replicate and distribute data to where it is consumed [10].
Krishnamoorthy et al. proposed overlapped tiling that em-
ploys ghost zones with time skewing and they studied its
effect in reducing the communication volume [19]. However,
their static analysis does not consider latencies at run-time
and therefore the optimal ghost zone size cannot be deter-
mined to balance the benefit of reduced communication and
the overhead of redundant computation.

Ripeanu et al. constructed a performance model that
can predict the optimal ghost zone size [29], and they con-
clude the optimal ghost zone size is usually one in grid en-
vironment. However, the performance model is based on
message-passing and it does not model shared memory sys-
tems. Moreover, their technique is not able to make case-by-
case optimizations — it predicts the time spent in parallel
computation using time measurement of the sequential exe-
cution. This obscures the benefit of optimization — an even
longer sequential execution is required for every different in-
put size even it is the same application running on the same
platform.

Alternatively, Allen et al. proposed adaptive selection of
ghost zone sizes which sets the ghost zone size to be one
initially and increases or decreases it dynamically according
to run-time performance measurement [1]. The technique
works fine in grid environment because the initial guess of
the ghost zone size is usually correct or close to the optimal.
However, our experiments on NVIDIA’s Tesla architecture
show that the optimal ghost zone size varies significantly for
different applications or even different tile sizes. Therefore
an inaccurate initial guess may lead to long adaptation over-
head or even performance degradation, as demonstrated in
Section 5.4. Moreover, the implementation of the adaptive
technique is application-specific and it requires nontrivial
programming effort.

The concept of computation replication involved in ghost
zones is related to data replication and distribution in the
context of distributed memory systems [3, 20], which are
used to wisely distribute existing data across processor mem-
ories. Communication-free partitioning has been proposed
for multiprocessors as a compiling technique based on hy-
perplane, however, it only covers a narrow class of stencil
loops [14]. To study the performance of 3-D stencil com-
putations on modern cache-based memory systems, another
performance model is proposed by Kamil et al. [17] which is
used to analyze the effect of cache blocking optimizations.
Their model does not consider ghost zone optimizations.

An implementation of ghost zones in CUDA programming
is described by Che et al. [4]. The same technique can be
used in other existing CUDA applications ranging from fluid
dynamics [12] to image processing [34].

Another automatic tuning framework for CUDA programs
is CUDA-lite [31]. It uses code annotation to help program-
mers select what memory units to use and transfer data
among different memory units. While CUDA-lite performs
general optimizations and generates code with good perfor-
mance, it does not consider the trapezoid technique which
serves as an ISL-specific optimization.



3. GHOST ZONES ON GPUS
We show an example of ISLs and illustrate how ghost

zones are optimized in a grid environment. We then intro-
duce CUDA programming and NVIDIA’s Tesla architecture
and show how ghost zones are implemented in a different
system platform.

3.1 Ghost zones in Grid Environment

Listing 1: Simplified HotSpot code as an example of
iterative stencil loops

/∗ A and B are two 2−D ROWS x COLS arrays ∗
∗ B po in t s to the array with va lues produced ∗
∗ prev ious ly , and A po in t s to the array with ∗
∗ values to be computed . ∗/

f l o a t ∗∗A, ∗∗B;
/∗ i t e r a t i v e l y update the array ∗/
f o r k = 0 : num i t e ra t i ons

/∗ in each i t e r a t i o n , ar ray e lements are ∗
∗ updated with a s t e n c i l in p a r a l l e l ∗/

f o r a l l i = 0 : ROWS−1 and j = 0 : COLS−1
/∗ d e f i n e i n d i c e s o f the s t e n c i l and ∗
∗ handle boundary cond i t i on s by ∗
∗ clamping over f lown i n d i c e s to ∗
∗ array boundar i e s ∗/

top = max( i −1, 0 ) ;
bottom = min ( i +1, ROWS−1);
l e f t = max( j −1, 0 ) ;
r i gh t = min( j +1, COLS−1);
/∗ compute the new value us ing the ∗
∗ s t e n c i l ( ne ighborhood elements ∗
∗ produced in the prev ious i t e r a t i o n ) ∗/

A[ i ] [ j ] = B[ i ] [ j ] + B[ top ] [ j ] \
+ B[ bottom ] [ j ] + B[ i ] [ l e f t ] \
+ B[ i ] [ r i gh t ] ;

swap (A, B) ;

Listing 1 shows a simple example of ISLs without ghost
zones. A 2-D array is updated iteratively and in each loop,
values are computed using stencils that include data ele-
ments in the upper, lower, left and right positions. Com-
puting boundary data, however, may require values outside
of the array range. In this case, the values’ array indices are
clamped to the boundary of the array dimensions. When
parallelized in a grid environment, each tile has to exchange
with its neighboring tiles the halo regions, which is com-
prised of one row or column in each direction. Using ghost
zones, multiple rows and columns are fetched and they are
used to compute halo regions locally for subsequent loops.
For example, if we wish to compute an N × N tile for two
consecutive loops without communicating among PEs, each
PE should start with a (N + 4) × (N + 4) data cells that
overlaps each neighbor by 2N cells. At the end of one it-
eration it will have computed locally (and redundantly) the
halo region that would normally need to be fetched from its
neighbors, and the outermost cells will be invalid. The re-
maining (N + 2) × (N + 2) valid cells are used for the next
iteration, producing a result with N × N valid cells.

3.2 CUDA and the Tesla Architecture
To study the effect of ghost zones on large-scale shared

memory CMPs, we program several ISL applications in CUDA,
a new language and development environment from NVIDIA
that allows execution of general purpose applications with
thousands of data-parallel threads on NVIDIA’s Tesla ar-
chitecture. CUDA abstracts the GPU hardware using a
few simple abstractions [24]. As Figure 2 shows, the hard-
ware model is comprised of several streaming multiproces-
sors (SMs), all sharing the same device memory (the global
memory on the GPU card). Each of these SMs consists of

a set of scalar processing elements (SPs) operating in SIMD
lockstep fashion as an array processor. In the Tesla architec-
ture, each SM consists of 8 SPs, but CUDA treats the SIMD
width or “warp size” as 32. Each warp of 32 threads is there-
fore quad-pumped onto the 8 SPs. Each SM is also deeply
multithreaded, supporting at least 512 concurrent threads,
with fine-grained, zero-cycle context-switching among warps
to hide memory latency and other sources of stalls.

In CUDA programming, a kernel function implements a
parallel loop by mapping the function across all points in the
array. In general, a separate thread is created for each point,
generating thousands or millions of fine-grained threads. The
threads are further grouped into a grid of thread blocks,
where each thread block consists of at most 512 threads, and
each thread block is assigned to a single SM and executes
without preemption. Because the number of thread blocks
may exceed (often drastically) the number of SMs, thread
blocks are mapped onto SMs as preceding thread blocks fin-
ish. This allows the same program and grid to run on GPUs
of different sizes or generations.

The CUDA virtual machine specifies that the order of
execution of thread blocks within a single kernel call is un-
defined. This means that communication between thread
blocks is not allowed within a single kernel call. Commu-
nication among thread blocks can only occur through the
device memory, and the relaxed memory consistency model
means that a global synchronization is required to guaran-
tee the completion of these memory operations. However,
the threads within a single thread block are guaranteed to
run on the same SM and share a 16 KB software controlled
local store or scratchpad. This has gone by various names
in the NVIDIA literature but the best name appears to be
per-block shared memory or PBSM. Data must be explicitly
loaded into the PBSM or stored to the device memory.

Figure 2: CUDA’s shared memory architecture.
Courtesy of NVIDIA.

3.3 Implementing Ghost zones in CUDA
Without ghost zones, a thread block in CUDA can only

compute one stencil loop because gathering data produced
by another thread block requires the kernel function to store
the computed data to the device memory, restart itself, and
reload the data again. Different from the case in grid envi-
ronment, where each tile only has to fetch halo regions, all
data in PBSM is flushed and all has to be reloaded again.
Moreover, thread blocks often contend for the device mem-
ory bandwidth. Therefore, the penalty of inter-loop com-
munication is especially large. Using ghost zones, a thread



block is able to compute an entire trapezoid that spans sev-
eral loops without inter-loop communication. At least three
alternative implementations are possible.

First, as the tile size decreases loop after loop in each
trapezoid, only the stencil operations within the valid tile
are performed. However, the changing boundary-testing
increases the amount of computation and leads to more
control-flow divergence within warps, which undermines SIMD
performance.

Alternatively, a trapezoid can be computed as if its tiles
do not shrink along with the loops. At the end, only those
elements that fall within the boundary of the shrunk tile are
committed to the device memory. This method avoids fre-
quent boundary-testing at the expense of unnecessary stencil
operations performed outside the shrunk tiles. Nevertheless,
experiments show that this method performs best among all,
and we base our study upon this method although we can
model other methods equally well.

Finally, the Tesla architecture imposes a limit on the thread
block size, which in turn limits the size of a tile if one
thread operates on one data element. To allow larger tiles
for larger trapezoids, a CUDA program can be coded in a
way that one thread computes multiple data elements. How-
ever, this complicates the code significantly and experiments
show that the increased number of instructions cancels out
the benefit of ghost zones and this method performs the
worst among all.

4. MODELINGMETHODOLOGY
We build a performance model in order to analyze the

benefits and limitations of ghost zones used in CUDA. It is
established as a series of a multivariate equations and it can
demonstrate the sensitivity of different variables. The model
is validated using four diverse ISL programs with various
input data.

4.1 Performance Modeling for Trapezoids on
CUDA

The performance modeling has to adapt to application-
specific configurations including the shape of input data and
halo regions. For stencil operations over a D-dimensional ar-
ray, we denote its length in the ith dimension as DataLengthi.
The width of the halo region is defined as the number of
neighborhood elements to gather along the ith dimension of
the stencil, and is denoted by HaloWidthi, which is usu-
ally the length of the stencil minus one. In the case of
code in Listing 1, HaloWidth in both dimensions are set
to two. The halo width, together with the number of loops
within each stage and the thread block size, determines the
trapezoid’s slope, height (h), and the size of the tile that it
starts with, respectively. We simplify the model by assum-
ing the common case where the thread block is chosen to
be isotropic and its length is constant in all dimensions, de-
noted as blk len. The width of the ghost zone is determined
by the trapezoid height as HaloWidthi × h. We use the
average cycles per loop (CPL) as the metric of ISL perfor-
mance. Since a trapezoid spans across h loops which form
a stage, the CPL can be calculated as the cycles per stage
(CPS) divided by the trapezoid’s height.

CPL =
CPS

h
(1)

CPS is comprised of cycles spent in the computation
of all trapezoids in one stage plus the global synchroniza-
tion overhead (GlbSync). Trapezoids are executed in the
form of thread blocks whose execution do not interfere with
each other except for device memory accesses; when multi-
ple memory requests are issued in bulks by multiple thread

blocks, the requests are queued in the device memory and
a thread block may have to wait for requests from other
thread blocks to complete before it continues. Therefore, the
latency in the device memory accesses (MemAcc) needs to
consider the joint effect of memory requests from all thread
blocks, rather than be regarded as part of the parallel exe-
cution. Let CPT (computing cycles per trapezoid) be the
number of cycles for an SM to compute a single trapezoid as-
suming instantaneous device memory accesses, T be the the
number of trapezoids in each stage, and M be the number
of multiprocessors, we have:

CPS = GlbSync + MemAcc + CPT ×
T

M
(2)

Where the number of trapezoids can be approximated by
dividing the total number of data elements with the size of
non-overlapping tiles with which trapezoids end.

T =

QD−1
i=0 DataLengthi

QD−1
i=0 (blk len − HaloWidthi × h)

(3)

Figure 3: Abstraction of CUDA implementation for
ISLs with ghost zones.

Furthermore, ISLs, when implemented in CUDA, usually
take several steps described in Figure 3. As it shows, laten-
cies spent in device memory accesses (MemAcc) are addi-
tively composed of three parts namely:

• LoadSten: cycles for loading the ghost zone into the
PBSM to compute the first tile in the trapezoid.

• IterMem: cycles for other device memory accesses in-
volved in each stencil operation for all the loops.

• Commit: cycles for storing data back to the device
memory.

CPT , the cycles spent in a trapezoid’s parallel computa-
tion, is additively comprised of two parts as well:

• IterComp: cycles for computation involved in a trape-
zoid’s stencil loops.

• MiscComp: cycles for other computation that is per-
formed only once in each trapezoid.

We now discuss the modeling of these components indi-
vidually. The measuring of GlbSync is described as well.



4.2 Memory Transfers
Due to the SIMD nature of the execution, threads from

half a warp coalesce their memory accesses into memory
requests of 16 words (CoalesceDegree = 16). Since con-
current thread blocks execute the same code, they tend to
issue their memory requests in rapid succession and the re-
quests are likely to arrive at the device memory in bulks.
Therefore, our analytical model assumes that all memory
requests from concurrent blocks are queued up. The device
memory is optimized for bandwidth: for the GeForce GTX
280 model, it has eight 64-bit channels and can reach a peak
bandwidth of 141.7 GBytes/sec [5]. The number of cycles
to process one memory request with x bytes is

CyclesPerReq(x) =
x

MemBandwidth ÷ ClockRate
(4)

Because the Tesla architecture allows each SM to have up
to eight concurrent thread blocks (BlksPerSM = 8), the
total number of concurrent thread blocks is

ConcurBlks = BlksPerSM × M (5)

With ConcurBlks thread blocks executing in parallel,
T

ConcurBlks
stages necessary for T thread blocks to complete

their memory accesses. To estimate the number of cycles
spent to access n data elements of x bytes in the device
memory, we have:

stages =
T

ConcurBlks
(6)

MemCycles(n) = stages× [UncontendedLat + α×

n × CyclesPerReq(x× CoalesceDegree)

stages× CoalesceDegree
] (7)

where UncontendedLat is the number of cycles needed for
a memory request to travel to and from the device memory.
It is assumed to be 300 cycles in this paper, however, later
studies show its value does not impact the predicted perfor-
mance as significantly as the memory bandwidth does, given
large data sets. Besides the peak bandwidth, the memory
overhead is also affected by pipelining whose depth is not
publicly available, and bank conflicts, which depends on the
execution of particular applications. Therefore, we intro-
duce an artificial factor, α = D

PipelineDepth
, that compen-

sates for their effect on the memory access overhead. We
assume accessing higher dimensional arrays leads to more
bank conflicts and lower memory throughput. Moreover,
the memory throughput increases with more pipeline depth,
which is assumed to be four according to the depth of the
prefetch buffer in DDR2 [22].

For a trapezoid over a D-dimensional thread block with
a size of blk lenD, it typically loads blk lenD data elements
including the ghost zone. Usually, only one array is gathered
for stencil operations (NumStencilArrays = 1), although
in some rare cases multiple arrays are loaded. After loading
the array(s), each tile processes
QD

i=1 (blk len − HaloWidthi) elements. Zero or more data
elements (NumElemPerOp ≥ 0) can be loaded from the
device memory for each stencil operation, whose overhead
is include in the model as IterMem. Because our imple-
mentation computes a trapezoid by performing the same
number of stencil operations in each loop and only commit-
ting the valid values at the end (Section 3.3), the number of
additional elements to load in each loop remains constant.
Finally, the number of elements for each trapezoid to store
to the device memory is

QD−1
i=0 (blk len − HaloWidthi × h).

We summarize these components as:

LoadSten = NumStencilArrays

×MemCycles(T × blk len
D) (8)

Commit = MemCycles(T×

D−1
Y

i=0

(blk len − HaloWidthi × h)) (9)

IterMem = NumElemPerOp × h×

MemCycles(T ×

D−1
Y

i=0

(blk len − HaloWidthi))(10)

4.3 Computation
We estimate the number of instructions to predict the

number of computation cycles that a thread block spends
other than accessing the device memory. Because threads
are executed in SIMD, instruction counts are based on warp
execution (not thread execution!). We set the cycles-per-
instruction (CPI) to four because in Tesla, a single instruc-
tion is executed by a warp of 32 threads distributed across
eight SPs, each takes four pipeline stages to complete the
same instruction from four threads. Reads and writes to
the PBSM are treated the same as other computation be-
cause accessing the PBSM usually takes the same time as
accessing registers. After all, the computation cycles for a
thread block can be determined as

CompCycles = NumWarpInsts

×ActiveWarpsPerBlock × CPI (11)

where NumWarpInsts is the number of instructions exe-
cuted by each warp and ActiveWarpsPerBlock is the num-
ber of warps that has one or more running threads not sus-
pended by branch divergence. While ActiveWarpsPerBlock
can be deduced from the tile size, NumWarpInsts has to
be synthesized for different trapezoid heights. We categorize
NumWarpInsts into two parts: those that are performed
once for each trapezoid (NumWarpInstsMC), which ac-
count for MiscComp, and those that are performed itera-
tively in all stencil loops (NumWarpInstsIC×h), which ac-
count for IterComp. We use the CUDA Profiler [6] to count
NumWarpInstsMC and NumWarpInstsIC separately when
processing a small data set sized N with no ghost zones ap-
plied (h = 1). The recorded numbers, InstsPerSMMC and
InstsPerSMIC, respectively, are the numbers of instruc-
tions executed by all the warps on the same multiprocessor,
which relates to NumWarpInsts as:

NumWarpInsts =
InstsPerSM

WarpsPerSM

= InstsPerSM ÷
N

WarpSize × M
(12)

ActiveWarpsPerBlock is an integer value where a warp
without all threads active should still be counted as one.
We approximate it with floating point numbers so that it
can be represented as the number of active threads divided

by the the warp size. It is therefore estimated as blk lenD

WarpSize

for MiscComp and
QD−1

j=0 (blk len−HaloWidthj)

WarpSize
for IterComp.

Substituting these expressions into Equation 11, we have

MiscComp(n) =

InstsPerSMMC × M

N
× blk len

D
× CPI (13)



IterComp(n) = h ×
InstsPerSMIC × M

N

×

D−1
Y

j=0

(blk len − HaloWidthj) × CPI (14)

Note that computation involved in IterComp is repeated
h times and therefore its number of cycles is multiplied by
h.

4.4 Global Synchronization
To exchange the halo region, a thread block needs only

synchronize with its neighbors. However, in CUDA, the only
way to do this is global synchronization that involves termi-
nating a kernel function and restarting a new one. Due
to the lack of publicly available technical details, we as-
sume that the exposed overhead of global synchronization is
the time to terminate and restart concurrent blocks, whose
quantity is calculated in Equation 5. The time spent for
other blocks is hidden by the computation of concurrent
blocks.

In the case of GTX 280, there are 240 concurrent thread
blocks. We therefore measured the time spent in restart-
ing a kernel function with 240 empty thread blocks, which
averages at 3350 cycles.

GlbSync = 3350 (15)

4.5 Extendability
Our performance model focuses on shared memory CMPs

with local store based memory system. Therefore, it can be
extended to model the Cell Broadband Engine (CBE) [13].
Specifically in CBE, a tile needs not flush its data to the
globally shared memory in order to communicate with oth-
ers. Moreover, the model needs to consider the effect of
latency hiding in the light of direct memory access (DMA)
operations.

Given an appropriate memory latency model, the perfor-
mance model can also be generalized to systems with cache
hierarchies. Several additional factors need to be modeled
including caching efficiency and the effect of prefetching.
One candidate cache latency model for ISLs is Kamil et al.’s
Stencil Probe [17] which does not take into account the ef-
fects of ghost zones yet.

5. EXPERIMENTS
We validate our performance model using four distinct

ISL applications that fall in the categories of dynamic pro-
gramming, ODE and PDE solvers, and cellular automata.
We compare their performance predicted by the model with
their actual performance on the GeForce GTX 280 graphics
card, whose architectural parameters are summarized in Ta-
ble 1 and are used in our performance model for optimiza-
tions. These parameters are retrieved using device query
and some are obtained literally through the GTX 280 spec-
ifications [5]. We then use the performance model to select
the optimal trapezoid height and evaluate its accuracy.

While the major workload is carried out by the GPU, the
benchmarks are launched on a host machine with an Intel
Core2 Extreme CPU X9770 with a clock rate of 3.2 GHz.
The CPU connects to the GPU through NVIDIA’s MCP55
PCI bridge. The actual time measurement only includes the
computation performed on the GPU.

5.1 Benchmarks
Our benchmark suite contains four distinct ISL applica-

tions programmed in CUDA. They have different dimension-

clock rate 1.3 GHz
coalesce width 16
warp size 32
number of SMs 30
concurrent blocks per SM 8
number of SPs per SM 8
SP pipeline depth 4
average CPI 4
memory bandwidth 141.7 GBytes/sec
maximum number of threads per block 512
maximum memory pitch 262144 bytes

Table 1: Architecture parameters used in our per-
formance model.

ality, computation intensities, and memory access intensi-
ties.

• PathFinder uses dynamic programming to find a path
on a 2-D grid from the bottom row to the top row with
the smallest accumulated weights, where each step of
the path moves straight ahead or diagonally ahead.
It iterates row by row, each node picks a neighboring
node in the previous row that has the smallest accu-
mulated weight, and adds its own weight to the sum.

• HotSpot [15] is a widely used tool to estimate proces-
sor temperature. A silicon die is partitioned into func-
tional blocks based on a floorplan, and the simulation
solves a ODE iteratively, where new temperature in
each block is recalculated based on its neighborhood
temperatures in the previous time step.

• Poisson numerically solves the poisson equation [9]
which is a PDE widely used in electrostatics and fluid
dynamics. The solver iterates until convergence, using
stencils to calculate the Laplace operator over a grid.

• Cell is a cellular automaton used in Game of Life [2]. In
each iteration, each cell, labeled as either live or dead,
counts the number of live cells in its neighborhood,
and determines whether it will be live or dead in the
next time step.

The benchmark-specific parameters used in our perfor-
mance model are listed in Table 2.

PathFinder HotSpot Poisson Cell

stencil dimensionality 1 2 2 3
stencil size 3 3 × 3 3 × 3 3 × 3 × 3
halo width 2 2 × 2 2 × 2 2 × 2 × 2
NumStencilArrays 1 2 1 1
NumElemPerOp 1 0 0 0
Pro↓ling Input Size (N) 100,000 500 × 500 500 × 500 60 × 60 × 60
InstsPerSMMC (N) 1998 13488 12825 71603
InstsPerSMIC (N) 1859 16645 12474 220521

Table 2: Benchmark parameters used in our perfor-
mance modeling.

5.2 Model Validation
We verify our performance model by increasing the input

size of each benchmark and comparing the experimental and
theoretical results. The performance is measured in CPU
cycles and is then normalized to GPU cycles. The measured
execution time is then compared with the time predicted by
the performance model.

In the experiment shown in Figure 4, we increase the input
size of PathFinder, HotSpot, Poisson and Cell from 100, 000
to 1, 000, 000, 500× 500 to 2000× 2000, 500× 500 to 2000×
2000, and 40× 40× 40 to 100× 100× 100, respectively. The
trapezoid height is set to two uniformly and the thread block
size is set to 256 for PathFinder, 20×20 for HotSpot, 16×16
for Poisson, and 8 × 8 × 8 for Cell. The prediction error is
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Figure 4: Model verification by scaling the input size
of (a) PathFinder, (b) HotSpot, (c) Poisson, and (d)
Cell. Although the prediction error ranges from 2%
to 30%, the performance model captures the overall
scaling trend for all benchmarks.

9-22% for PathFinder, 2-12% for HotSpot, 2-8% for Poisson,
and 28-30% for Cell. Nevertheless, the performance model
captures the overall scaling trend for all benchmarks.

5.3 Sources of Inaccuracy
Our performance modeling may be subject to three sources

of inaccuracy:

• Unpredictable dynamic events. This includes control-
flow divergence, bank-conflicts in both the PBSM and
the device memory, and the degree of device memory
contention. Although the error introduced by control
flow divergence is minimized by run-time profiling the
number of dynamic instructions, the other two types of
errors are intrinsic in shared memory systems and they
are difficult to reduce. The degree of bank-conflict in
the device memory is estimated using arrays’ dimen-
sionality because higher dimensionality leads to strided
accesses that are more likely to incur bank conflicts.
Moreover, due to the homogeneity of thread blocks, we
assume thread blocks are likely to issue device mem-
ory requests close in time and therefore requests are
queued and processed in bulks, maximizing the mem-
ory bandwidth. Note that the effect of latency hiding
using multi-threading is considered in our model —
SMs can switch to another concurrent thread block
upon device memory accesses and therefore memory
requests from all concurrent thread blocks can be is-
sued and queued together.

• Insufficient technical details. Due to the lack of in-
formation regarding the launching of kernel functions
and the depth of memory pipelining, we are not able
to accurately estimate the latency for global synchro-
nization and the overhead of queuing due to memory
contention. Instead, we measure the latency of global
synchronization based on a simplified model, and in-
troduce an artificial factor α to compensate the effect
of pipelining.

• Approximation Error. To maintain a continuous func-
tion for gradient based optimization, we have to cal-
culate ActiveWarpsPerBlock as floating point values
rather than integers. This error is more significant

for thread blocks narrow in length which lead to more
branch divergence on the boundary, such is the case
with Cell. In this scenario, a warp with most threads
suspended may be counted as a small fraction, while
in reality is should be counted as one.

Despite these sources of inaccuracy, we show that the per-
formance modeling reflects the experimental performance
scaling and it is sufficient to guide the selection of the opti-
mal ghost zones or trapezoid configuration for ISL applica-
tions in CUDA.

5.4 Performance Optimization

5.4.1 Choosing Tile Size
We formulate the cost-effectiveness of a trapezoid as the

ratio between the size of the tile that it produces at the end
and the size of the tile that it starts with. It is represented
as

CostEffect =

QD

i=0 (blk len − HaloWidthi × h)
QD

i=0(blk len − HaloWidthi)
(16)

For a given trapezoid height, a larger tile size always in-
creases the cost-effectiveness of trapezoid, reducing the per-
centage of stencil operations to replicate and achieving bet-
ter performance, as we will demonstrate in Section 6.3. In
our CUDA implementation, the tile size is determined by
the thread block size which is set as large as possible within
the architectural limit of 512.

5.4.2 Selecting Ghost Zone Size
The optimal ghost zone size is determined by the optimal

trapezoid height, which in turn depends on the dynamics
among computation and memory access. Our technique es-
timates the optimal trapezoid height in two steps. First, we
comment out part of the application code in order to obtain
InstsPerSMMC and InstsPerSMIC separately using the
CUDA Profiler [6]. The run-time profiling is performed once
for each ISL algorithm, and it only requires the computation
of one stencil loop with a minimum input size big enough
to occupy all the SMs. The resulting instruction counts
are then used to compute the optimal trapezoid height in
Equation 1. While Equation 1 is not a posynomial func-
tion, it is convex and we can obtain a unique solution using
gradient-based constrained nonlinear optimization. We ap-
ply a constraint that sets the upper bound of the trapezoid
height so that a tile produced at the end of a thread block
has a positive area:

∀i ∈ [0, D), blk len − HaloWidthi × h > 0 (17)

The run-time profiling and ghost zone optimization needs
to be performed only once for each ISL. However, they need
to be recalculated if the same application is ported to sys-
tems with different settings (e.g. memory bandwidth, num-
ber of SMs, etc).

The performance model estimates that the optimal trape-
zoid height is 14 for PathFinder with a thread block size
of 256, 2 for HotSpot and Poisson with a thread block size
of 20 × 20, and 1 for Cell with a thread block size of 8.
The input size involved in the calculation is 1,000,000 for
PathFinder, 2000× 2000 for HotSpot, 2000× 2000 for Pois-
son, and 100 × 100 × 100 for Cell.

The predictions are compared to experimental results shown
in Figure 5 and they turn out to match the results of PathFinder
and Cell. Even though experiments show that the optimal
performance is achieved at a trapezoid height of three for
both HotSpot and Poisson, the performance at the predicted
trapezoid height is no worse than 98% of the optimal per-
formance. The resulting speedups compared to performance



without ghost zones are 2.29X, 1.45X, 1.51X, and 1.00X for
PathFinder, HotSpot, Poisson and Cell, respectively.

Our estimation of the optimal trapezoid height can also
serve as the initial guess for an adaptive selection method.
Suppose run-time profiling calculates the average execution
time for every two loops and decides whether to increment
or decrement the trapezoid height, and there is a total of
30 iterations. With a more accurate initial guess, our adap-
tive technique achieves speedups of 2.29X, 1.44X, 1.50X, and
0.90X for PathFinder, HotSpot, Poisson and Cell, while an
initial guess of one, as proposed in [1], results in speedups
of 1.93X, 1.39X, 1.45X and 0.90X, respectively. The slow-
down in Cell is because the performance does not benefit
from ghost zones, however, the adaptive method still probes
a trapezoid height of two.

6. SENSITIVITY STUDY
Using the validated modeling, we are able to further study

the performance scaling brought by ghost zones on shared
memory architectures. We show how it affects the execu-
tion time spent in computation, memory access, and global
synchronization. We also investigate what applications and
system platforms may benefit more from ghost zones.

6.1 Component Analysis
We transform Equation 2 to the accumulation of six com-

ponents, each term represents average cycles spent in one
component within a stencil loop:

CPL = GlbSync
′ + LoadSten

′

+Commit
′ + MiscComp

′

+IterComp
′ + IterMem

′ (18)

GlbSync
′ =

GlbSync

h
(19)

LoadSten
′ =

LoadSten

h
(20)

Commit
′ =

Commit

h
(21)

MiscComp
′ =

MiscComp × T

h × M
(22)

IterComp
′ =

IterComp × T

h × M
(23)

IterMem
′ =

IterMem

h
(24)

Our performance model shows that the execution time
is dominated by IterComp′, and followed by LoadSten′,
MiscComp′, and IterMem′ when applicable. Figure 6 il-
lustrates how each component reacts to the increased trape-
zoid height or ghost zone size. Each component’s execution
time is normalized to its time spent with a trapezoid height
of one. The figure is drawn using a synthetic benchmark
similar to HotSpot but with NumElemPerOp set to one
instead of zero to illustrate the scaling curve of IterMem.

Time for IterComp′ and IterMem′ increases monoton-
ically with taller trapezoids due to increased computation
replication. However, time spent in LoadSten′, Commit′,
and MiscComp′ decreases first with taller trapezoids due to
reduced inter-loop communication and the number of stages.
Nevertheless, they eventually increase dramatically due to
the exploding number of thread blocks resulted from taller
trapezoids which end with tiny non-overlapping tiles.

Moreover, Equations 19 to 24 can be regarded as functions
of h, and their derivatives are all monotonically increasing,
as can be seen from Figure 6. As a result, the overall objec-
tive function is convex and it has a unique minimum.
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Figure 6: The effect of the trapezoid’s height on
each component with the execution time for each
component normalized to the case where a trape-
zoid’s height is one.

6.2 Software Sensitivity
According to the performance model, we summarize sev-

eral characteristics that enable an application to benefit
from ghost zones.

Stencils operating on lower-dimensional neighborhood. In
fact, with the same trapezoid height and the same halo width
in each dimension, the ratio of replicated operations grows
exponentially with more dimensionality, as can be seen from
Equation 8, 14, and 10. This phenomenon is observed in
Section 5 where the 1-D PathFinder benefits the most, fol-
lowed by 2-D HotSpot and Poisson, and the 3-D Cell does
not benefit at all.

Narrower halo widths. A wider halo region increases the
amount of operations to replicate, therefore it increases
IterComp′ which usually dominates the overall performance.
The peak speedup becomes smaller and it tends to be reached
with a shorter trapezoid (Figure 7).
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Figure 7: Comparing the effect of various halo
widths for (a) PathFinder, (b) HotSpot, (c) Pois-
son, and (d) Cell. Smaller stencils with smaller halo
width can benefit more from the trapezoid tech-
nique, as demonstrated by our performance mod-
eling by synthesizing four benchmarks with various
halo width.

Smaller computation/communication ratio. The penalty
for replicating computation-intensive operations may be large
enough to obscure ghost zone’s savings in communication
and synchronization. In this case, peak speedup is likely to
be achieved with shorter trapezoids.

In addition, different input sizes hardly affect the rela-
tive performance scaling over different trapezoid configura-
tions. This is because it is only reflected in the number
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Figure 5: Evaluating the performance optimization by scaling the trapezoid height of (a) PathFinder, (b)
HotSpot, (c) Poisson, and (d) Cell. The predicted optimal trapezoid height is 14 for PathFinder, 2 for
HotSpot and Poisson, and 1 for Cell. While experiments show that the optimal performance is achieved at
a trapezoid height of 3 for both HotSpot and Poisson, the performance at the predicted trapezoid height is
no worse than 98% of the optimal performance.

of thread blocks and is a linear factor to all components
except GlbSync′, which contributes little to the overall per-
formance.

6.3 System Sensitivity
Although our performance model is based on the Tesla

architecture, it can be easily extended to model other shared
memory parallel systems. We investigate how ghost zone’s
benefits vary across different system platforms.

Larger tile size. As we discussed in Section 5.4.1, by us-
ing larger tiles, less computation needs to be replicated and
performance can be improved. As Figure 8 shows, a larger
thread block size increases the peak speedup and shifts the
best configuration towards taller trapezoids. The benefit of
ghost zones may be more significant for architectures that
easily allow for larger tile sizes, such as CBE.
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Figure 8: Compare the effect of various block sizes
for (a) PathFinder, (b) HotSpot, (c) Poisson, and
(d) Cell. Code programmed with larger thread
blocks can benefit more from ghost zones, as demon-
strated using our performance modeling to scale the
thread block size beyond the architectural limit.

Longer synchronization latency. One benefit of ghost zones
is the elimination of inter-loop synchronization. As Fig-
ure 6 shows, GlbSync′ always decreases with taller trape-
zoids. Nevertheless, latency in synchronization is not a ma-
jor contributor to the overall performance on GTX 280.

Longer memory access latency. The savings in inter-loop
communication is more evident with longer memory access
latency. This can be caused by higher bandwidth demand,
higher contention, or higher transferring overhead. For CBE

Listing 2: Code annotation for automatic trapezoid
optimization
f l o a t ∗∗A, ∗∗B;
f o r k = 0 : num i t e ra t i on s with trapezoid . height=[H]

f o r a l l i = 0 : ROWS−1 and j = 0 : COLS−1
/∗ d e f i n e the array ( s ) to be loaded from ∗/
apply trapezoid . obj=[B]
/∗ d e f i n e the d imen s i ona l i t y o f the array ∗/
apply trapezoid . dimension=2
/∗ d e f i n e the halo width in a l l d imensions
apply trapezoid . gather [−1 ,+1][−1 ,+1]
top = max( i −1, 0 ) ;
bottom = min ( i +1, ROWS−1);
l e f t = max( j −1, 0 ) ;
r i g h t = min ( j +1, COLS−1);
A[ i ] [ j ] = B[ i ] [ j ] + B[ top ] [ j ] \

+ B[ bottom ] [ j ] + B[ i ] [ l e f t ] \
+ B[ i ] [ r i gh t ] ;

swap (A, B) ;

whose memory bandwidth is not as optimized as Tesla, it is
likely that ISL applications benefit more from ghost zones.

Smaller CPI. Technology is driving towards a smaller CPI
— either by improving the instruction-level parallelism (ILP)
or increasing the computation bandwidth (e.g. SIMDiza-
tion). A smaller CPI puts less weight on computation and
more on memory accesses, therefore programs can benefit
from the ghost zones further.

7. AN AUTOMATED FRAMEWORK TEM-

PLATE FORTRAPEZOIDOPTIMIZATION
Since the benefit of ghost zones depends on various fac-

tors related to both the application and the system plat-
form, it is hard for programmers to find out the best con-
figuration. Moreover, implementing ghost zones for ISL ap-
plications involves nontrivial programming efforts and it is
often error-prone. We therefore propose a framework tem-
plate that automatically transform ISL programs in CUDA
to that equipped with the optimal trapezoid configuration.
The framework is comprised of three parts: code annotation
and transformation, one-time dynamic profiling and off-line
optimization.

Listing 2 illustrate the proposed code annotation for the
pseudocode in Listing 1. The programmer specifies the ar-
ray to be loaded from and its dimensionality, as well as the
halo width of the stencil operations. The framework is then
able to transforms the code to that equipped with ghost
zones. The code transformation also implicitly distinguishes
computation involved in stencil loops from the rest for the
purpose of profiling.

With the transformed code, the framework then counts



the instructions and estimates the computation intensity us-
ing the CUDA Profiler, as described in Section 4.3. Profiling
is performed once implicitly and the results are used for cal-
culation in the performance model. Finally, the performance
model estimates the optimal trapezoid configuration based
on the current system platform — as described in Section 5.4
— and generates appropriate code.

8. CONCLUSIONS AND FUTUREWORK
We establish a performance modeling of ISL applications

programmed in CUDA and study the benefits and limita-
tions of ghost zones. The performance modeling based on
the Tesla architecture is validated using four distinct ISL
applications and it is able to estimate the optimal trapezoid
configuration. The trapezoid height selected by our per-
formance model is able to achieve a speedup no less than
98% of the optimal speedup for our benchmarks. Our per-
formance model can be extended and generalized to other
shared memory systems. Several application- and architecture-
characteristics that can leverage the usage of ghost zones are
identified. Finally, we propose a framework template that
can automatically incorporate ghost zones to ISL applica-
tions in normal CUDA code and optimize it with the selec-
tion of trapezoid configurations. An immediate step in our
future work will be to port our infrastructure to the OpenCL
standard once suitable tools are available. Extensions can
be implemented for CMPs with cache-based memory sys-
tems. It will also be interesting to study how the benefit
from ghost zones is effected by cache prefetching and cache
blocking optimizations.
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