The Usage of Compiler Optimization by Programmers:

A Sociological Study of the Extent of Their Use and the

Rationales Behind this Usage

A Thesis

In TCC 402

Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

John Miranda

March 27, 2001

On my honor as a University student, on this assignment I have neither given nor received unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Approved___(Technical Advisor)

 K. Skadron

Approved___(TCC Advisor)

 W. Carlson

Abstract

This project investigated the reasons why computer programmers use or do not use compiler optimization and explored what this may imply to people designing compilers and processors. Compilers are tools that convert programmers' code into a language that the computer can understand. Optimization transforms the machine code in order to make this conversion as efficient as possible. Optimization options are usually available with these compilers. Computer architects often design processors under the assumption that the programs using their processors were compiled with optimization. If optimization was not turned on in the compiler, the software will not run optimally with the processor. I found data on the usage of compiler optimization by conducting interviews of programmers with a variety of backgrounds and situations. I found that most programmers do, in fact, turn on optimization and the results suggest that new layered execution platforms should support dynamic optimization that is compatible with software debugging tools.

Table of Contents

iiAbstract

ivList of Tables

ivList of Figures

1Chapter One: Why Study the Usage of Compiler Optimization?

11.1 The Need for Optimization

31.2 Introducing Literature

31.3 Project Objectives

4Chapter 2: Background: What are Compilers and Compiler Optimizations?

42.1 Compilers

52.2 Compiler Optimization

8Chapter Three: Surveying Programmers

83.1 The Approach

93.2 Interview Subjects

113.3 Why Use In-Person Interviews Over Other Methods?

13Chapter Four: Summary of Interviews and Trends

134.1 Explanation of Tables

154.2 Are Programmers Using Optimization?

164.3 Programmers Identifying What Level of Optimization they are using

164.4 Level of Optimization Used

174.5 Is Optimization Turned off When Problems Arise?

184.6 Implementing Optimization in the Hardware?

19Chapter Five: What does the Survey Suggest Might be done?

195.1 Implications for Compiler Developers and Computer Architects

225.2 Implications for Computer Programmers

23Chapter Six: Significance

236.1 Larger Problem

246.2 Summary of Findings

256.3 Savings for Business

256.4 Impact on the Public

26Bibliography

Appendix A: The Survey……………………………………………………………....A-1

List of Tables

10Table 1. Breakdown of Interview Subjects

14Table 2. How responses differed amongst programmers in industry and academia.

15Table 3. How responses differed amongst users of different compilers.

List of Figures

6Figure 1. Interaction of a programmer's code, a compiler, and compiler optimizations.

20Figure 2. Hewlett Packard’s Dynamo dynamic optimizer.

Chapter One: Why Study the Usage of Compiler Optimization?

Many in the academic community actively study optimization techniques and they have advanced the effectiveness of compiler optimization. However, through anecdotal data, it is known that computer programmers do not always use them. This means research and work is being put into a technology that is not being used to its potential. Computer architects design the hardware of the computer, often designing processors under the assumption that the programs that will use the hardware were compiled with optimization. If the computer programmer did not use optimization, the efficiency of the program may suffer. This project was intended to make programmers aware of compiler optimization and help compiler writers and computer architects design more effective computer programs and hardware. The purpose of this project was to learn why computer programmers use or do not use compiler optimization and discover what this may imply to people designing compilers and processors.

1.1 The Need for Optimization

The usage of compiler optimization affects people in the computer programming and architecture fields as well as the general public. Improving the running time and efficiency of any software can increase its capabilities. A person using a computer at work would save time if the computer programs he or she uses ran more quickly. These employees would have more time to do other work and this would decrease the cost to their employers. This increase in productivity will benefit computer users as well as the profits of any business using computers. If a program can run faster, then it can do more computations in less time. A program that performs intensive computation can solve larger problems if the program runs faster.

For example, improvements in programs for the medical community can affect all communities. If image resolution is not currently at its potential, it could be improved, allowing the medical community to more effectively treat people in remote locations. This technology would also enable the small number of top specialists in a specific medical field to treat people in that area of medicine in more locations.

As another example, improvements in computer simulation could improve the training of pilots. The pilots could be subjected to dangerous situations through a simulation that might occur, but would be impossible to illustrate using a real plane. Also, military pilots could be subjected to more realistic battle training exercises to prepare them for battles that would be hard to enact using real weapons and vehicles. Better pilot training would mean increased safety and a decrease in the number of injuries due to airplane turbulence and crashes. It could also lead to a decrease in the number of injuries and casualties to military pilots.

These are just a few of the improvements to society that could be made as a result of improving the running time of programs. This problem also specifically affects the computer programming community. If programmers could make their code run faster, they could solve larger problems with their code. Increased speed in the particular applications that the programmers are using would increase their productivity by decreasing their wait time while programs on the computer start up. Increasing productivity improves the programming community, as well as improving the bottom lines of the companies employing those programmers. Also, improving productivity would drive prices down on software applications, which would benefit the consumer.

1.2 Introducing Literature

To my knowledge, this is the first attempt to investigate how programmers use compiler optimization. I researched programmer behavior and found information on the psychology of programming and how programmers think about problems. Brooks describes a theory of how computer programmers go about comprehending a program (543). Sources are also available that explore the psychology of programming in teams and designing interactive systems (Shneiderman, 5). Although these and other studies exist on the psychology of programmers, I found no literature dealing with programmers’ usage of compiler optimization.

1.3 Project Objectives

The following are the objectives that this project achieved:

1. Investigated how often compiler optimization is being used in industry.

2. Discovered the reasons compiler optimization is or is not used.

3. Explored what these results imply for the compiler and computer architecture communities.

Chapter 2: Background: What are Compilers and Compiler Optimizations?

A compiler is a software application that converts the code written by a programmer into a language that the computer can understand. This language that the computer can understand is called machine language. The compiler community consists of the people who build and design these compilers. Compiler optimization is a feature of many compilers that, when enabled, can speed up the execution of programs by increasing their efficiency.

2.1 Compilers

A compiler is a software application that converts the code that a programmer has written into machine language, which is a combination of 1s and 0s that a particular computer can understand (Cohoon, 13). A computer programmer typically writes software using high-level programming languages. These languages include C++, Java, and many others. These languages that are easy for people to understand must be converted to a language that a processor can understand. Assembly language is the language that the processor can understand and is simply a mapping of combinations of letters and numbers (the machine language) into various combinations of 1s and 0s (Heuring, 4). Assembly language uses letters and numbers so that a human can understand it, but a processor looks at the 1s and 0s to understand the code.

A computer programmer could write programs directly in assembly language, but a high-level programming language is much easier for a human to understand. There are many ways that a piece of code written in a high-level programming language can be converted to assembly language. Two different pieces of code in assembly language could be equivalent in what they do, but perform this work using a different sequence of steps. For example, when adding three numbers together, 1, 2, and 3, there are a few different ways the computer could execute this. One way would be to add 1 and 2 together and then add 3 to that result ((1 + 2) + 3). Another way to add the three numbers would be to add 2 and 3 together, and then add 1 to that result ((2 + 3) + 1). Thus, a compiler has many choices in which specific implementation of assembly language it will choose in making the translation from the high-level programming language (Heuring, 10).

2.2 Compiler Optimization

Compiler optimization attempts to convert the high-level programming language code to an efficient code in assembly language. Compilers do not always generate the most efficient assembly language code possible. In some applications where speed and size of the program are of utmost importance, high-level programming languages are not used and assembly language code is written directly by the programmer (Heuring, 12). Assembly language code is directly written for applications such as hearing aids, electronic fever thermometers, and small toys. These devices need extremely efficient code to conserve space and battery power. In this way, the programmer can make sure the specific hardware being used is utilized to its potential. Optimizations cannot do as good of a job as humans can, but they can improve the code of larger programs that would not be feasible to do by hand.

	Programmer’s code

(high-level language)

[programmer can understand]

	

	Compiler

Using

Optimization

	

	Optimized code

(machine language)

[computer can understand]

Figure 1. Interaction of a programmer's code, a compiler, and compiler optimizations.

There are many examples of optimizations that can be performed. One example of an optimization is eliminating common subexpressions. Common subexpressions, or identical code that is used often, can be identified by the optimizer and copies can be eliminated in the machine code (Aho 592). Another example of an optimization is code motion (Aho 596). Programs often use loops to repeat a set of instructions with a slight variation. These loops can be optimized if we reduce the amount of code inside the loop. This reduces the number of instructions that are repeated, thus increasing the efficiency of the code.

Compilers can also allow the user to decide which specific optimizations to use, giving users the flexibility to disregard optimization options that may not be useful on their current project. An optimization option within the compiler is often available that will cause all optimizations to be performed. Also, options are often available for specific optimizations or groups of optimizations. For example, the GNU C++ compiler allows the user to specify various optimizations levels: -O1, -O2, -O3, and -O4. As the number increases, that level of optimization is more intense and therefore more time-consuming.

Why Are All Optimizations Not Used All the Time?

The reason optimizations are not performed all the time is that they take time to complete. Programmers must find a balance between the amount of optimization to use and the time it takes to run the chosen optimizations (Aho, 15). Not using any level of optimization at all can be detrimental to the efficiency and speed of the program. A compiler that optimizes code very well, but takes excessively long to compile the code can waste the time of the programmer, as well as the resources of the company employing that programmer.

Chapter Three: Surveying Programmers

A survey was used to gather the data concerning programmers’ usage of compiler optimization. The survey was used as a guide while I conducted interviews of programmers with a variety of backgrounds and situations. I conducted consistent interviews using the survey as a framework for the discussion with each programmer.

3.1 The Approach

Finding information through interviewing software developers in person was a good approach because the information had not previously been compiled and the state of the problem rested on anecdotal data. Programmers had thought about this issue, but no data had been collected to substantiate any claims. The interview subjects were informed that nothing they said would be quoted or referred to, either anonymously or otherwise, without their specific consent. This helped eliminate any fear of revealing less than ideal software engineering practices of the company that they worked for. It also raised awareness of the issue, since the interview subjects and their colleagues learned of this project through the interview.

The survey questions were clear and concise to help ensure that the interviews would be conducted in a consistent and professional way. The first three questions revealed the type of software that the interview subject was working on, as well as the types of operating systems, compilers, and hardware in use in the development of their software. The next two questions inquired whether any size or performance criteria had to be met in the development of the software. The programmer was asked whether memory leaks in the code were checked with any software applications. Then, the programmer was asked if optimization was used when compiling the code and if so, what levels of optimization were used. Then, the programmer was asked what the main goal of using optimization was for that particular software project. The programmer was asked if optimization was ever not in use and if so, to explain when this occurred. Also, he was asked whether optimization was ever in use, but then turned off because of problems in the software that seemed to be caused by the optimization. Finally, the interview subject was asked whether he thought optimization of code should be the responsibility of software engineers or whether computer architects should bear the responsibility of implementing optimizations. The complete survey can be found in Appendix A.

3.2 Interview Subjects

My interview subjects consisted of fifteen people who have experience and backgrounds in different fields of Computer Science. These programmers have different skills and write programs for very different reasons. The programmers in the academic community consisted of either Computer Science graduate students or professors of the Computer Science Department. The programmers in industry write code that will be sold, while programmers in the academic community often write code to advance the state of some aspect of Computer Science, with less emphasis on the software product’s immediate success in the marketplace. Interviewing people who are programming in different environments enabled me to see any differences in their compiler optimization usage practices. I grouped employees of the Institute for Advanced Technology in the Humanities (IATH) as employees in Industry, since they make products for clients who are members of the academic community.

Table 1. Breakdown of Interview Subjects

	
	Number of People Interviewed

	Industry and employees of the Institute for Advanced Technology in the Humanities (IATH)
	9

	Members of the academic community
	6

This spread of interview subjects was chosen because they covered a good cross-section of programmers. They were working on very different projects within the area of software development. The following criteria were used in selecting the interview subjects:

· Since I had chosen to conduct face-to-face interviews, the interview subjects needed to work in the Charlottesville area.

· The person needed to be currently working on a software development project.

· The person had to be willing to spend ten minutes to talk with me concerning their experiences with compilers and compiler optimization.

One Exclusion

I found out that one of the interview subjects did not meet all of the criteria listed above. To keep my results as consistent as possible, his answers will not be used in the charts and analysis that follow.

3.3 Why Use In-Person Interviews Over Other Methods?

I decided to use face-to-face interviews to discover how often and when my interview subjects used compiler optimization. This method was chosen so that I could make the subject feel comfortable in answering the questions in a casual environment. I wanted to show the interview subject that his answers mattered so that his answers might be more thoughtful. I felt that a busy programmer might regard an electronic survey with less respect, skipping questions that would take a little thought.

The main reason behind interviewing the programmers face-to-face was to make the interview subjects feel comfortable about revealing information that may not reflect well on their company’s less desirable software engineering practices. A person may not have wanted to write down any undesirable information concerning his work with his employer. He may have felt that others in his company might find out what he had written and so would avoid addressing the questions that revealed any of his own or the company’s shortcomings, either intentional or necessary. For instance, a software product might have been released without optimization simply because the company had to release the product as soon as possible or face huge financial losses.

Another reason for the face-to-face interviews was to assure the programmers that they would not be quoted in the document. I was looking for trends in the software development community and did not need to identify any of the interview subjects in this document to reveal my results. I felt that a simple disclaimer atop a written or electronic survey ensuring the interview subject of this anonymity would be either missed or skimmed by the interview subject. Without knowing the sincerity of this disclaimer, the interview subject would be less likely to reveal undesirable information concerning his experiences with using compiler optimization.

Necessary Exceptions

I conducted two of the interviews by telephone due to scheduling conflicts, but efforts were made to make them consistent with the face-to-face interviews. I felt that conducting interviews via telephone was the closest alternative to the face-to-face interviews. This method allowed me to reassure the interview subject that he would not be quoted, as well as make him feel comfortable answering all the questions. This deviation from my other interviews did not adversely affect my results due to the small number of interviews conducted this way, as well as the consistency in the way the questions were asked. Questions were read from the list of survey questions and I took notes of the responses while conducting both the face-to-face and the phone interviews.

Chapter Four: Summary of Interviews and Trends

The survey allowed me to discover trends in the usage of compiler optimization by programmers. I discovered how people view optimizations and learned about when optimization is turned off.

4.1 Explanation of Tables

Both Tables 2 and 3 include the entry “[The programmer] has turned off optimization when a problem occurs (excluding debugging).” Debugging occurs when a programmer must step through the execution of the code, one piece at a time, to see where the error is occurring. The debugger is a software tool used to debug code. It is common and often deemed necessary to turn off optimization while using the debugger. This is because the optimization may change the position of pieces of code to increase the efficiency. When you use the debugger and find an error, the debugger may not be able to find exactly where that unconverted code, or programming code before it was turned to machine language code by the compiler, is located (Microsoft Corporation).

Table 2 shows how responses differed among programmers in industry and the academic community. The totals indicate the total number of interview subjects that fall in that category.

Table 3 shows how responses differed among programmers using different compilers. The totals indicate the total number of interview subjects that fall in that category. The totals add to 17, which is 3 more than the total number of programmers that were interviewed. This occurred because some of the interview subjects use more than one programming language and compiler. In these cases, I have separate answers for these questions based on each of the compilers that they are using.

In Table 3 I have also grouped together all the C/C++ compilers running in a UNIX environment, since they all have similar command line interfaces.

Below are some of the results of the interviews in a convenient format.

Table 2. How responses differed amongst programmers in industry and academia.

	The programmer…
	Industry (Total: 8)
	Academic (Total: 6)

	Uses some level of optimization.
	7
	6

	Has turned off optimization when a problem occurs (excluding debugging).
	1
	3

	Uses a software tool to find memory leaks.
	5
	4

	Uses the highest possible level of optimization
	1
	2

Table 3. How responses differed amongst users of different compilers.

	The programmer…
	C/C++ Compilers in UNIX environment (GNU, G++, GCC)

(Total: 9)
	Microsoft Visual C++

(Total: 4)
	Java

(Total: 4)

	Uses some level of optimization.
	9
	4
	3

	Could identify exactly what level of optimization was being used.
	9
	1
	3

	Has turned off optimization when a problem occurs (excluding debugging).
	5
	1
	0

	Uses a software tool to find memory leaks.
	5
	2
	4 (JAVA does this)

	Uses the highest possible level of optimization.
	1
	0
	3

4.2 Are Programmers Using Optimization?

The programmers that I interviewed are generally using some level of optimization at some point during their software development. All of the programmers that I spoke with in the academic community are using some optimization. Only one person working in industry that I spoke with is not using compiler optimization at all. Table 2 contains the results of this and other questions asked of the programmer.

4.3 Programmers Identifying What Level of Optimization they are using

I found that all of the programmers in the C/C++ UNIX environment knew exactly which level of optimization they were using. The same is true for the Java programmers. Only one of the four Microsoft Visual C++ users could identify the level of optimization they were using, without going into their compiler settings to see what was set. The Java users knew this information because the Java compilers only have one optimization option. Optimization can either be turned on or turned off. I believe programmers in the UNIX environment could identify which level of optimization is being used because they are simple additions to the command line. Typing “-O1” turns on a low level of optimization, which is a group of optimizations that the compiler writers have grouped together under this one option. Typing “-O4” turns on the highest level of optimization. This is the most intensive group of optimizations. The optimization options in the Microsoft Visual C++ environment are not quite so obvious. Different levels of optimizations can be set in the compiler, but they are located in a menu that is not easy to find. I observed this during the interview sessions, when programmers took time to search for the level of optimization they were using.

4.4 Level of Optimization Used

I observed little difference in the levels of optimization that were being used by the programmers in industry versus those in academic endeavors. I did, however, find differences in the level of optimization used when comparing the usage of different compilers. Only 1 user of C/C++ compilers in the UNIX environment used the highest level of optimization offered by their compiler. No programmer that I interviewed using Microsoft Visual C++ used the highest level of optimization, unless they were and were simply unaware of that fact. All the Java users who use optimization were using the highest level offered, since the Java compilers only offer one level of optimization.

The programmers using C/C++ compilers in the UNIX environment generally used the “–O2” level of optimization when compiling their code. Also, some of the programmers thought that higher levels of optimization introduce bugs in the software. They said that this level seemed like a reasonable level that was not overly aggressive. Many did not want to take a chance on a high level of optimization, thinking that it might just cause problems. Another reason to use the “-O2” rather then the higher-level “-O4” optimizations is time constraints. The “-O2” takes a reasonable amount of time while the “-O4” optimizations take much longer, for small or unnoticeable gains in performance.

One programmer uses the baseline optimization level, “-O” because he trusts that it will not cause problems with his code and it does not interfere with the debugger. He does not turn on the risky optimizations so that he can debug the code with the optimizations on and not have to keep switching between no optimizations and optimizations.

4.5 Is Optimization Turned off When Problems Arise?

As mentioned in Section 4.1, optimization is often turned off when the programmer is debugging the code to make debugging easier. I wanted to find out if optimization was turned off in release versions of the code if a problem arises and it appears that the optimizations caused that problem. Five of the programmers that were interviewed reported that they have turned off optimization on code in which the optimization seemed to cause problems. This occurred when the code simply would not compile when optimization was turned on, but compiled successfully with optimization turned off.

4.6 Implementing Optimization in the Hardware?

The last question posed to the interview subjects was as follows:

Do you believe that optimization of code for increased performance and decreased size should be the responsibility of software engineers, or should computer architects bear the responsibility of implementing optimizations?

Most programmers indicated that they would like to see the simple optimizations implemented in the hardware. By simple, they mean optimizations that could be done without fear of them ever causing problems with a programmer’s code. If optimizations in the hardware did cause problems with the code, programmers would have to implement messy work-a-rounds to make their software work correctly.

Chapter Five: What does the Survey Suggest Might be done?

The survey allowed me to find out how programmers are actually using compiler optimization in industry and in academic settings. These results can be used to suggest improvements to compilers and computer hardware.

5.1 Implications for Compiler Developers and Computer Architects

I found that generally, programmers in both industry and academic environments are using compiler optimization at some point during software development. I also found that most of them find that it is necessary to turn off the optimizations in order to use debugging tools to find errors. Many programmers also mentioned that they would like to see optimizations done transparently, so the programmer does not have to worry about turning on optimization flags for simple syntactic optimizations that should be performed at all times. These results suggests that there is a need for a compiler that can optimize the code while still enabling the programmer to debug that optimized code easily and effectively.

Implementing Optimizations in a Low-Overhead Software Layer

I believe optimizations currently being performed by the compiler should be performed transparently through the use of a low-overhead software layer. This implementation needs to be designed so that it will not interfere with debugging. This would allow a programmer to debug the same code that will ultimately be released.

A type of software layer has been developed in Hewlett Packard’s Dynamo dynamic optimizer. Dynamo is a software application that converts already compiled machine language code into a faster version of that code. It converts code that has already been compiled and performs additional translations on it to increase the code’s efficiency (Jannotti). Dynamo acts as a software layer between the optimized code and the processor, as shown below in Figure 2. Dynamo also keeps a cache of commonly seen machine language instruction sequences. If that same code is needed again, it does not need to be re-optimized, since it is already located in the cache and can be used again quickly. This software does not perform the optimizations that are normally seen in compiler optimizations.

	Programmer’s code

(high-level language)

[programmer can understand]

	

	Compiler

	

	Machine Language Code

[computer can understand]

	

	Optimized Machine Language Code

[computer can still understand, but its now more efficient code]

Figure 2. Hewlett Packard’s Dynamo dynamic optimizer.

Strata

A new approach under development has the potential to solve many of the problems expressed by the programmers in this survey. The Computer Science Department at the University of Virginia is working on Strata, a layered execution platform. The layered execution platform “supports the implementation of dynamic optimizers in addition to a variety of other non-performance-improving applications (Scott).” A problem with Hewlett Packard’s Dynamo is that it costs so much time to do the conversions that code improvements must be very large for a user to see a net speedup. The developers of Strata intend to perform optimizations with low overhead. My results suggest that Strata should support this dynamic optimization so that it is compatible with debugging. This would allow the programmer to debug the optimized version of the code, which is the same code that would ultimately be released as the final product.

Why not Implement the Optimizations Only in the Hardware?

After considering implementation and speaking with people in the computer architecture community, I realized that implementing optimizations in the hardware would not be cost-effective. The optimizations placed in the processor would need to be closely tied to the compiler. Otherwise, they may end up performing many redundant optimizations if current compilers with optimization enabled were used with these processors. Also, if a syntactic optimization was built into the processor and an error was subsequently found, the processor might need to be replaced to correct the problem.

5.2 Implications for Computer Programmers

Most of the programmers using Microsoft Visual C++ had difficulty finding which optimizations they currently use. This seems to be because Microsoft provides default optimization options from pull-down menus. While these defaults are a good idea, they make the programmer less aware of what optimizations are being run and therefore more likely to use these defaults without exploring whether higher levels of optimizations will provide additional improvements to their code. These results suggest that programmers should learn more about the compilers they are using so that they can compile code that runs as efficiently and quickly as possible.

Programmers need to be careful when turning off optimization when problems arise, because optimization may have simply brought out errors that were already in the code. Five of the programmers that were interviewed reported that they have turned off optimization on code in which the optimizations seemed to cause problems. Although two of them specifically found particular errors in the optimizations, the others had not. This suggests that optimizations may have simply been bringing out errors in the programmer’s that would otherwise go undetected until found later by using the program for longer periods of time. Although these particular results are not conclusive, software developers should always be careful when problems arise when optimization is turned on that did not seem to be there without it.

Chapter Six: Significance

The implications of the survey results will ultimately increase the speed of computer programs. This will increase productivity and decrease costs to consumers and businesses.

6.1 Larger Problem

The larger problem to which this project responds is the problem that software does not have development methods that are as good and reliable as methods in other engineering fields. Software engineers in industry use methods based on available published information and their own experience. There is no accepted standard of how to specify what the software will do to which everyone adheres. The inconsistent use of compiler optimization illustrates a small part of this problem. Since compiler optimization is used sometimes, but not others, there should be clear, specific reasons established of when and when not to use it. This lack of consistency illustrates just one part of the problem of software engineering today.

This project also responds to the fact that programmers are not always making software that runs as efficiently as it could. This project attempts to fix this problem by finding out when compiler optimization is being used and identifying reasons that compiler optimization is not always used.

6.2 Summary of Findings

Optimization needs to be performed so that it will not interfere with debugging. Compiler optimization is often turned off when a programmer needs to debug the code. Programmers are compiling programs one way while developing and debugging code, and another way when they go to release and distribute the code to customers. Working with two versions of the code creates inconsistencies and is bound to cause problems. Bugs that come up in the release version of the code may not be found until a customer complains. Because of this, I suggest that future implementations of optimizations need to be compatible with tools used in debugging. This will allow programmers to compile the same version of their code every time, instead of compiling different versions of the same program code.

Compiler optimizations should occur without the programmer’s intervention and should not disturb the programmer’s development and debugging. Utilizing optimization during software development is essential in order to produce the most efficient software products possible. Optimization helps produce efficient code that the processor will run from the programs that the programmer writes in high-level programming languages. To ensure that optimizations are in use, their use should not depend on a programmer to turn them on. In addition, the optimizations should not interfere with any of the programmer’s software practices, such as debugging the code, so that the programmer will not want to disable the optimizations.

6.3 Savings for Business

Improving the speed of software benefits businesses using computers, saving them time and money. Implementing optimizations so that they are always used will result in more software products compiled with optimizations. Software will run faster and more efficiently on consumers’ computers. People can save time when programs run faster, increasing their productivity. When an employee spends less time waiting for software to run, the company spends less money paying that person to complete the task. In addition, when companies can reduce the cost of their employees, they can make more profit.

6.4 Impact on the Public

The results of this project will make computer software that performs more quickly and uses fewer resources than before. The public can also benefit from decreased prices for products and services as a result of the decreased labor costs for employees using faster computer software. Also, these results will help create computer systems that have decreased response times, which can help the public in many situations. For example, faster computer systems can make airline and banking web sites faster, so customers don’t have to wait as long to obtain information. The public will gain easier access to information when computer programs work faster and more efficiently.

Bibliography

1. Aho, Alfred, and Sethi, Ravi, and Ullman, Jeffrey. Compilers: Principles, Techniques, and Tools. Reading, Massachusetts: Addison-Wesley, 1986.

2. Aho, Alfred, and Johnson, S. C., and Ullman, Jeffrey. "Code Generation for Expressions with Common Subexpressions." Journal of the Association for Computing Machinery. Vol. 24, Issue 1 (1977): 146-160.

3. Bradburn, Norman, and Sudman, Seymour. Improving Interview Method and Questionnaire Design. San Francisco, California: Jossey-Bass, 1979.

4. Brooks, R. “Towards a theory of the comprehension of computer programs.” International Journal of Man-Machine Studies. 18 (1983): 543-554.
5. Cohoon, James, and Davidson, Jack. C++ Program Design: An Introduction to Programming and Object-Oriented Design. Boston, Massachusetts: Irwin McGraw-Hill, 1997.

6. Heuring, Vincent, and Jordan, Harry. Computer Systems Design and Architecture. Menlo Park, California: Addison-Wesley, 1997.

7. Jannotti, John. “HP’s Dynamo.” Ars Technicia: The PC Enthusiast’s Resource. Viewed 23 March 2001. Available at: <http://arstechnica.com/reviews/1q00/dynamo/dynamo-1.html>.

8. Scott, Kevin. “Layered Execution and Dynamic Optimization.” Viewed 23 March 2001. Available at: <http://www.cs.virginia.edu/~jks6b/talks/pitt-feb-abs.html>.

9. Shneiderman, B. Software Psychology: Human Factors in Computer and Information Systems. Cambridge, Massachusetts: Winthrop, 1980.

10. Microsoft Corporation. “Debugging Optimized Code.” MSDN Online Library. Viewed 23 March 2001. Available at: <http://msdn.microsoft.com/library/default.asp?URL=/library/devprods/vs6/visualc/vccore/_core_debugging_optimized_code.htm>.

Appendix A: The Survey

The following page contains the survey that was used as a guide for me while conducting the interviews.

John Miranda

12/1/00

Survey of software engineers on their usage of compiler optimization.

The information collected from this interview will not be quoted in the document without the subject's approval. This work will be used to find trends in the software development community.

1) What kind of software are you involved in making?

2) What type of operating systems, compilers, and hardware are used in writing the software?

3) What types of hardware will be running this software?

4) With this software, do certain installation size requirements have to be met? Does the software have to be small to account for the hardware?

5) Do certain performance criteria have to be met, or is current hardware fast enough to handle the software being written without much problem?

6) Are any methods in use to ensure that memory leaks are not occurring in the software?

7) Do you use optimization when compiling code? When? In the release version? In the baseline of debugged versions?

8) If optimization is used, what is the goal of using it?

9) If optimization is ever not in use, when does this happen?

10) Is optimization ever in use, but then turned off because of problems caused by the optimization?

11) Do you believe that optimization of code for increased performance and decreased size should be the responsibility of software engineers, or should computer architects bear the responsibility of implementing optimizations?

PAGE
iv

