
Exploring the Impact of Normality and Significance Tests
in Architecture Experiments

Pitchaya Sitthi-amorn, Dee A.B. Weikle, Kevin Skadron
Department of Computer Science

University of Virginia
{ps4wd, dweikle, skadron}@cs.virginia.edu

ABSTRACT
Computer architects often use statistical tools such as means
in reporting results. While there has been discussion re-
garding which means to use for different metrics, the im-
pact of the underlying assumptions involved in reporting
results in the architecture community has been largely un-
explored. This paper investigates the validity of assump-
tions such as the normality of the data gathered and the
use of significance tests. These are demonstrated on ac-
tual branch predictor experiments using the SPECcpu2000
benchmark suite. We find our measures (IPC, branch mis-
prediction, correct branch direction, and correct branch ad-
dress rates) are mostly normally distributed in these exper-
iments. Through the use of additional statistical tests, we
also illustrate that simple visual inspection of results can be
misleading, implying differences where no statistical differ-
ence exists or disguising a difference that is important.

1. INTRODUCTION
The field of computer architecture research relies heav-

ily on results obtained from running large sets of experi-
ments on benchmark suites, most often using a simulator or
set of simulators. This methodology attempts to reduce a
large set of data into a smaller, understandable, and yet use-
ful set of information. Generally, this information is in the
form of conclusions about the relative performance among
certain hardware/software configurations according to par-
ticular evaluation metrics, or about general trends observed
during the experiments. The goal is to determine whether a
particular change in the architecture design will benefit the
performance of the computer system and chosen workload
as a whole.

This methodology requires several infrastructure compo-
nents as shown in Figure 1. First, a benchmark suite is
determined to represent the workload of interest, and then,
because of resource constraints (simulation time, for exam-
ple), the benchmark suite is sampled. Second, a simulator
is designed to model both the new and old architectures.
Operating system and compiler features are hopefully ad-
dressed in both the benchmarking component of the exper-
iments and the simulator. Once the experiments have been
run, the final step is analysis of the simulator results. Our
focus is this last step of analysis.

The analysis process is where final conclusions are drawn
and trends are discovered. It is the critical point where a
researcher attempts to make sense of the data that has been
gathered. This process makes use of many evaluation met-
rics, some of which are specific to the area of interest, such

���� ��������	
 �����	�� ������ �����	�������� ����� � �� � ��
� � ��� ��� �� ��������
 
�� �	� �
�	
��� � �� ���
 ���� �	� �
�	
��� 
�� �� ��� ��
�� �
� �� ��� �� �� ����
�� �	� �
�	
��� � !�

� � � � �����

Figure 1: Graphical Representation of Architecture
Experiment Process

as branch prediction rates, cache hit rates, or bandwidth
usage. Nearly all architecture experiments, though, are in-
terested in the effect of a new idea on overall execution time,
so the metrics of IPC (Instructions Per Clock) and/or CPI
(Clocks Per Instruction) are of particular interest.

Analysis requires statistics to summarize experimental re-
sults and infer their significance. The architecture com-
munity is becoming more aware of the importance of the
formal statistical techniques in presenting and interpreting
results. Discussions about which means to use for which
evaluation metrics, as well as the importance of validating
the underlying assumptions for using these statistics, are
given in Mashey [7], John and Eeckhout [5], and Hennessy
and Patterson [4].

Many statistical tests require validation of underlying as-
sumptions about the distribution of the data. Since the
majority of statistical techniques currently used in the archi-
tecture community require a normal distribution, we demon-
strate the application of the Shapiro-Wilk test for normality.
We also demonstrate two methods of determining the signif-
icance of differences in results, confidence intervals and the
Student’s Paired t-test. The main contribution is demon-



strating these methods on data from actual experimental
research results, and showing how conclusions may differ.

2. RELATED WORK
In [7], Mashey describes the history of the development

of benchmark suites with emphasis on the series of SPEC
suites. In addition, he discusses the importance of under-
standing statistics and their underlying assumptions, includ-
ing distributions. Some textbook examples are given and a
runtime example of an IBM eServer executing the SPEC-
cpu2000 benchmark suite is explored. We apply some of the
same techniques, but use the Shapiro-Wilk test for normal-
ity instead of the Coefficient of Determination, and analyze
results from SimpleScalar branch predictor experiments. In
addition, we address the issue of sampling of benchmark
suites for the purpose of weighted analysis. Mashey also
performs experiments to determine whether or not experi-
mental data is distributed lognormally. For our data, an ini-
tial lognormal analysis was performed, but was inconclusive.
Further investigation and reporting of these results is left as
future work. John and Eeckhout [5] provide an overview of
the current state of benchmarking, simulation techniques,
and statistical experiment design. Chapter 4, in particular,
provides an overview of the different means currently in use
in the computer architecture community and discusses their
proper use for different evaluation metrics. Almeldeen and
Wood [1] use confidence intervals and hypothesis testing to
describe the variability in results from experiments on multi-
threaded workloads. We perform a similar analysis here for
a set of branch predictor experiments, but also include some
analysis using weighted means and the associated confidence
intervals. Lilja [6] provides a detailed background on com-
puter experimental methodology and related statistics, but
does not perform tests on the underlying distribution.

3. BACKGROUND
While describing the history of benchmark suites, Mashey

[7] also describes three separate methods of benchmark anal-
ysis. These are Workload Characterization Analysis (WCA),
Sample Estimation of Relative Performance Of Programs
(SERPOP), and Workload Analysis with Weights (WAW).
WCA assumes information (detailed or general) has been
gathered about existing workloads for a given machine or
set of machines so some estimate is available of how preva-
lent any particular program may be in the original work-
load. SERPOP analysis creates a benchmark suite of sev-
eral programs, including their inputs, and characterizes it
as a sample of a larger population of programs. Ideally,
this would include an appropriate model of the population’s
distribution. WAW assumes that extensive WCA has been
performed and, if performed completely correctly, is able to
predict the performance of actual workloads under different
assumptions. He goes on to claim that, in practice, people
do as much workload characterization analysis as they can
afford, and use workload analysis with weights when they
can, but frequently must employ sample estimation because
they do not have enough data.

Using sample estimation of relative performance of pro-
grams (SERPOP) accurately, requires knowing the under-
lying distribution of the population being sampled. In most
common practice for computer architects today, this implies
knowing the underlying distribution of the SPECcpu2000

benchmark suite. Reporting means and other statistics on
this suite, as is currently done, assumes that the SPEC-
cpu2000 benchmark suite is a representative sample of a
normally distributed population AND that the metrics that
we report for that suite are also distributed normally. It
is outside the scope of this paper to address whether the
SPECcpu2000 benchmark suite is an appropriate sample of
a normal distribution. However, if the community can un-
derstand that results are reported for the benchmarks given,
which may or may not represent a particular workload, then
we can focus on the method of compiling statistics appro-
priately for a particular set of programs and allow those
programs that represent a given workload to be chosen by
the user of our research. This paper focusses on applying ap-
propriate statistics to a study of the relative performance of
a set of branch predictors for the SPECcpu2000 benchmark
suite. In particular we test the distribution of our metrics
and then the significance of those results through the use
of confidence intervals and the Student’s T-test. Section 4
explains the metrics and analysis tools used to perform the
analysis, building up from the simplest (means) to the more
complex (hypothesis testing and significance tests). The fol-
lowing sections describe our application of these statistics to
the data from our branch predictor study.

4. STATISTICAL ANALYSIS TOOLS
While the overall process of determining if a mean is an

appropriate measure begins with determining the distribu-
tion (i.e. checking for normality), performing normality
tests require first computing the mean and understanding
hypothesis testing. So, we begin our discussion of tools by
discussing means and weighting means. Then we introduce
hypothesis testing. Hypothesis testing is used in both types
of significance tests we describe, confidence intervals and
the paired student’s T-test. This section then ends with a
discussion of testing a data set for normality.

4.1 Means and Weighted Means
There has been discussion in the architecture community

about which mean should be used to report results. John
and Eeckhout, Chapter 4 [5] details which mean to use for
which metric. They choose weighting factors to develop a
mean for each metric that would give the same result as
running the entire suite as a single benchmark. Mashey [7]
focusses on weighting individual benchmarks that contribute
to a mean in such a way as to reflect a representative work-
load, and reports multiple means for each study. He also
claims that the arithmetic mean or average is generally used
when the data set has a normal distribution, or is the result
of many additive effects. Hennessy and Patterson [4] use the
arithmetic mean to predict performance. Similarly, we use
the arithmetic mean for branch prediction results to provide
consistency with average misprediction rates. We report a
geometric mean in our tables for comparison, but do not
make explicit conclusions regarding the geometric mean. A
future analysis could address different means in the context
of distributions and significance tests.

Though we use the arithmetic mean, we do weight the
mean to address the differences in the individual bench-
marks. For example, consider a suite of benchmarks each
with a fixed number of instructions, and how it should be
used to report an average branch prediction rate. Each
benchmark will have a different number of branches for the



same number of instructions. In the extreme case (albeit
unrealistic), a benchmark could have only one branch that
is always correctly predicted. In this case it would con-
tribute a 100% correct prediction rate to the average, po-
tentially skewing the results in such a way that would not
be reflected in the actual performance of a final system. To
eliminate this effect, we use a weighted mean to adjust the
effect of a single point on the overall average.

The formula for the arithmetic mean is well-known as

x̄ =
1

N

X

xi.

where the xi are the metric values being averaged, and N is
the number of benchmarks in the suite.

For the weighted mean we use:

x̄w =
1

N

X

wixi

where

wi = N
vi

V

are the weights.
vi = number of the characteristic of interest in bench-

mark i, and V = the total number of the characteristic of
interest in the whole suite. For example, in our branch pre-
dictor study, vi = number of branches for benchmark i, and
V = sum of all the vi, or total number of branches in the
suite. This weighting factor depends completely on the met-
ric being weighted, and the goals involved in the weighting
as described above. Some metrics already have the weights
”built-in”, such as misses-per-thousand-instructions, allow-
ing them to be compared between benchmarks without fur-
ther weighting. Still, if the goal is to aggregate such a metric
over the suite in such a way that the mean of the suite is
to be the same as running the suite as a single benchmark,
the misses-per-thousand-instruction metric would need to
be weighted with the number of instructions as the charac-
teristic of interest.

4.2 Hypothesis Testing
In statistics, hypothesis testing is used to make a state-

ment (hypothesis) that is true with a certain confidence
level. Traditionally, the hypothesis that we want to prove
is called the null hypothesis or H0. Similarly, the opposite
hypothesis (that H0 is not true, is traditionally called the
alternative hypothesis or H1. The conclusion from hypoth-
esis testing is then to either reject H0 in favor of H1 or do
not reject H0.

Unlike the some common usages of the term “hypothe-
sis,” statistical hypotheses are stated in a strictly true-false
form for proof or disproof. Examples of H0 from this study
are ”the data set is normally distributed”, or ”metric X on
Architecture A is equal to metric X on Architecture B.”

4.2.1 Types of Error in Hypothesis Testing
The errors that can occur with hypothesis testing are im-

portant because they are how the accuracy of the final con-
clusions are determined. These errors are classified into two
different types. Type I errors occur when H0 is wrongly re-
jected. The probability with which the type I error occurs is
called the significance level and labeled α. The type II error
occurs when the hypothesis test does not reject H0 while H1

is true, and is called β.

4.2.2 The Significance Test
The significance test is used to determine if a statisti-

cal value, p, differs from the hypothesis significance level,
α. p values are determined by making a calculation for a
given distribution, then using that calculation to index into
a statistics table for that distribution to find the p value.
The null hypothesis is rejected if p is at or below α. For
example, if the null hypothesis states that it is true with an
α = 5% significance level, but the p value is 4%, then the
null hypothesis is rejected.

4.3 Confidence Interval for Mean
If the data summarized by the mean is normally dis-

tributed, we can find the range (a low and high value) that
the actual mean falls between with some probability (usually
95%). This interval is called the (95%) confidence interval
(C.I.). If the confidence intervals of two different alterna-
tives are not overlapped, it can be stated that they are sig-
nificantly different with the confidence interval probability.
However, if they are overlapped, the alternatives may or
may not be significantly different. The general formula for
the confidence interval is

(low, hi) = M ± (t1−α/2

s√
n

)

where M is the arithmetic mean, t is the value from a statis-
tics table for the t-distribution (normal distribution) for the
significance level α and s is the standard error computed by
taking the square root of the variance:

s
2 =

n
X

i=1

(xi − x̄)2

n − 1
.

Note that the formula gives the confidence interval for
the arithmetic mean. Statistics tables can be found in most
statistics books such as [8], but another good resource is a
Math CRC such as [2].

If we are using a weighted mean, we must compute the
confidence interval using a weighted standard error. In this
case, the variance is

s
2

w =

P

wi(xi − x̄w)2

N − 1

where wi are as described in Section 4.1 on Means.

4.4 Paired Student’s T-test for Mean
Another way to analyze the significance of results is to use

the paired student’s T-test. In this study, we compare the
performance of two processors differing only in their branch
predictor on a benchmark suite and want to determine which
processor performs better. The null hypothesis can be stated
as H0: the means of the performance metric for the suite
using Architecture A are equal to the same means for the
suite using Architecture B with significance level α = 5%.
So if the p value is less than 5%, the null hypothesis is re-
jected, and the means have a 5% significant difference. The
paired student’s t-test is a good fit for this example, because
it is computed by pairing the results from the two proces-
sors for each benchmark, computing the difference and then
calculating the means of the differences.

The paired student’s t-test is similar to the confidence
interval for the mean. Let the first data set be xi and the
second be yi and ci = xi−yi. The sample standard deviation



is

sc =

v

u

u

t

n
X

i=1

(ci − c̄)2

n − 1
=

s

s2
x

nx
+

s2
y

ny
.

Note in our example the number of benchmarks in each
suite is the same so nx = ny . s2

x is the standard deviation of
the first data set, s2

y is the standard deviation of the second
set, and c̄ is the mean of the sample differences described
above.

The t-statistic, T , is

T =
c̄

sc

The value of T will be used to look up in the t distribution
function table to find the p-value, which is then compared
to our desired significance level α as described earlier. Note
that there are two kinds of t-tests, one-tailed and two-tailed.
The two-tailed t-test checks the alternative hypothesis that
the two means of the performance metric are different. In
contrast, the one-tailed t-test alternative is either that one
mean is greater than the other OR that it is less than the
other, but not both. These tests potentially have different
outcomes.

Another way to calculate the student’s t-test is to find the
confidence interval for the mean of c. If zero is not contained
in the interval, the null hypothesis is rejected.

Note that the student’s t-test requires that the sample
data comes from the normal distribution.

4.5 Distribution Testing
Since the paired student’s t-test, the confidence interval,

and even the arithmetic mean require that the distribution
of the data is normal, the data must be tested for normality
to insure the validity of the results.

There are several methods to test normality such as the
Anderson-Darling test, Kolmogorov-Smirnov, D’Agostino-
Pearson, or Shapiro-Wilk. We use the Shapiro-Wilk as it is
recommended in [8]. The test is based on the hypothesis test
where the null hypothesis states that the data is normal.

The test statistic of Shapiro-Wilk test is defined as

W =
(
P

aix
′

i)
2

P

(xi − x̄)2
,

where xi are the ordered sample values and the ai are con-
stants generated from the means, variances and covariances
of the order statistics of a sample of size n from a normal
distribution. The calculation of the ai is complicated, and
not very enlightening. The reader is referred to the program
used to generate results found on the NIST website Chapter
7.2.1.3 [8]. The test statistic is then used to index into a
table to find the p-value as described above. If the p-value
is greater than our desired error of type I, α then the data
is normally distributed.

The Anderson-Darling test is a modification of the Kolmo-
gorov-Smirnov test and has the advantage of being able to
test for additional distributions, including normal, lognor-
mal, Weibull, and extreme value Type I. Normal and log-
normal are the most common and are the distributions for
which most statistics packages are applicable.

5. CASE STUDY: BRANCH PREDICTION
In this section we report results of simulating samples of

the SPEC2000 benchmark suite on the same processor with
different branch predictors on a modified version of Sim-
pleScalar as our case study. The branch predictors are bi-
mod, gshare.32k, hybrid.32k, alpha.ev6, hashed perceptron,
ogehl, and piecewise. For details on the configurations of the
branch predictors see Table 2. For other details of the actual
experiments see [3]. One large trace sample was taken from
each benchmark to minimize warm-up effects. The single
sample was determined with a traditional SimPoint analy-
sis. We present results on the normality of the data, weight
the means according to branch frequencies within the sam-
ples, and report results on IPC and branch prediction rates,
including significance tests.

5.1 Analysis Method
When performing the analysis of the results, we used the

following steps:

Choose a normality test, report results. Several distri-
bution tests are described briefly in Section ??. We
use the Shapiro-Wilk test because it is recommended
in the NIST Handbook [8]. Mashey [7] uses the coeffi-
cient of determination, which is available in Microsoft
Excel. Which of these tests is better and what val-
ues are acceptable for reporting results for the com-
puter architecture community will become more clear
as more real data is analyzed.

Determine the group of benchmarks. It is important
to note that the group of benchmarks chosen will affect
the normality of the resulting data set. Suites should
be chosen that are representative in some way to the
user of the final analysis. When adding just one extra
benchmark, the researcher may want to view the final
data with and without that data point to see if the dis-
tribution changes significantly. Similarly, if the origi-
nal suite turns out not to be distributed normally, or
lognormally, benchmarks (and additional experiments)
can be added with the hope of improving the distribu-
tion.

Choose mean(s) to report. A description of a variety of
means and how to weight them for particular metrics
so that the end result is representative of running a
suite as one benchmark is in Chapter 4 of John and
Eeckhout [5]. Mashey [7] uses several different means,
describing the arithmetic mean as one to use on nor-
mal distributions where the values are the results of
additive effects, and the geometric mean as one to use
for logarithmic distributions where the values are the
results of multiplicative effects. Hennessy and Patter-
son [4] use the arithmetic mean to enable prediction of
run-times. We use the arithmetic mean here, weighted
to be consistent with the goals in John and Eeckhout,
and because our data is at least close to normal.

Choose weights for means. If the benchmarks directly
represent a workload of interest, including the rela-
tive execution times, the metric values can be weighted
with respect to execution times, instruction mix, etc.
to ensure that each individual benchmark contributes
to the mean appropriately. Now that most benchmarks



are only being sampled, the sampling methodology
may influence what kind of weighting can be used. For
example, if an experiment includes samples from each
benchmark such that the same number of instructions
are simulated from each benchmark, weights using the
number of instructions would not be appropriate as
they would all be the same in the experiments but not
in the ”real world”.

Choose significance test. Presented here are confidence
intervals and the Paired Student’s T-test. Confidence
intervals are easier to see on a graph. The Paired Stu-
dent’s T-test may be more sensitive (i.e. register a
significant difference more often), based on our limited
experiments. However, is needs to be understood that
these significance tests rely on the underlying distribu-
tion being normal, and only apply to the significance
of the metrics as they are reported.

Evaluate significance in context of experiment. As
mentioned above, statistical significance tests only cap-
ture the importance of variability in the results during
the reporting step, they do not address the introduc-
tion of error in the other components of the method-
ology outlined in Figure 1. Error introduced by the
other components of the infrastructure such as simu-
lator error, sampling error, or variation in the bench-
mark suite add variability and decrease confidence and
significance levels in most cases. Random errors in the
infrastructure might be able to be ignored if the num-
ber of experiments are large enough. Systematic errors
that affect all results consistently in the same direction
should not change the relationship between the results.
Quantifying this error and how to propagate it to the
analysis stage is beyond the scope of this paper and a
subject of future work.

The sections below demonstrate this procedure on the
above branch predictor study.

5.2 Normality Test
To determine if the data set is normal, we perform Shapiro-

Wilk tests and show results in Table 1. The null hypothesis
of Shapiro-Wilk states that the data comes from the nor-
mal distribution. Hence, we want the p value to be greater
than 5%. However, the p-values of ghare.32k, hashed percep-
tron, and ogehl are less than 0.05. While they appear ”very
close,” this reduces our confidence levels in the tests on the
data for these particular predictors in the significance test
for integer IPC. All of the integer prediction rates appear to
be normal. This is different from SPEC floating point where
the IPC results all are normal according to the Shapiro-Wilk
test, but several of the prediction rates are not. This differs
from the results in Mashey [7] which indicate the SpecInt
values were normally distributed while the SpecFloat values
were lognormally distributed.

5.3 Analysis of IPC
From Table 7, we plot the mean IPC values for each pre-

dictor configuration and calculate the confidence intervals.
The results are shown in Figure 2.

With only the arithmetic means and the confidence in-
tervals, we may not be able to say which branch predictor
is better than another. According to Figure 2, they are all

FM
Q

SH

KW
LE

VI
��

�O

L]
FV

MH
��

�O

EP
TL

E�
IZ

�

LE
WL

IH
CT

IV
GI

TX
VS

R

SK
IL

P

TM
IG

I[
MWI

�

���

���

���

���

�

���

���

���

���

�

���

���

���

���

-4
'

Figure 2: Confidence Interval for Mean of IPC of
SPEC Integer benchmark suite

overlapped. Although not shown, the results for the floating
point confidence intervals are also overlapped. Hence, the
confidence interval suggests that there is no significant dif-
ference between these branch predictors. The average IPC
of bimod and alpha.ev6 are very close. However, the p value
of the paired Student’s t-test between bimod and alpha.ev6
is 0.0248000. This implies that they are significantly differ-
ent. On the other hand, the p value of the t-test between
bimod and gshare.32k is 0.0565, so the null hypothesis is re-
jected and there is no 5% level significant difference between
these two. Note that the arithmetic mean of gshare.32k is
2.014. The absolute difference between this and the mean
of bimod is greater than that of bimod and alpha.ev6.

Another interesting pair is hashed perceptron and ogehl.
The means of both of them are high, but very close together.
The confidence intervals are almost impossible to differenti-
ate, but the p value of the t-test in this pair is 0.0086000.
(See Table 3.) Based on the t-test we might conclude that
ogehl performance is better than hashed perceptron perfor-
mance for SPEC integer IPC. Notice that from the tradi-
tional graph in Figure 5, we could not have seen this differ-
ence. From this we conclude that the paired student t-test
gives the greatest opportunity for noticing a significant dif-
ference. This difference should be considered in light of the
error within the experimental infrastructure, however. Sim-
ulation error, benchmark sampling error, and errors from
insufficient warm-up would all likely make this difference
insignificant.

In this paper, we use a one-tail t-test for the paired stu-
dent’s test, where the alternative hypothesis is that one
mean is greater than another and the null hypothesis is that
the means are equal. The p-values of the paired student t-
test in these tables indicate whether the means for predictor
a and b are equal. (i.e. if the p-value is less than 0.05 the
predictors are considered significantly different). So, if the
p-values are greater than 0.05, we do not reject the null hy-
pothesis, so we cannot say that the difference between them
is significant. However, because it is a one-tail test we can-
not ”accept” the alternative hypothesis either. When read-
ing the student t-test tables it is important to realize they
are not necessarily symmetric because of the lack of symme-
try in the alternative hypothesis. A statistically significant



SPEC Integer SPEC Floating
IPC Address Direction IPC Address Direction

Bimod 0.1158 0.1382 0.957 0.2515 0.0242 0.0173

Gshare 0.0418 0.5089 0.2439 0.2415 0.2195 0.2515
hybrid 0.0652 0.5145 0.4152 0.2457 0.3313 0.4218
alpha 0.0605 0.902 0.6484 0.2636 0.5574 0.7294

hashed perceptron 0.0447 0.4102 0.3979 0.1789 0.0467 0.0431

ogehl 0.0448 0.5984 0.3457 0.1785 0.0011 0.001

piecewise 0.057 0.4513 0.7966 0.1854 0.0121 0.0115

Table 1: Shapiro-Wilk test p-value of SPECinteger and SPECFloating across different branch predictors (H0:
Distribution is normal, p values greater than 0.05 are normal, highlighted values are not normal)

F
MQ

S
H
C
Y

F
MQ

S
H
C
[

K
W
L
E
VI

��
�
O
C
Y

K
W
L
E
VI

��
�
O
C
[

L
]
F
VM
H
��

�
O
C
Y

L
]
F
VM
H
��

�
O
C
[

E
PT

L
E
�I

Z
�
C
Y

E
PT

L
E
�I

Z
�
C
[

L
E
W
L
I
H
C
T
I
VG

I
T
XV

S
R
C
Y

L
E
W
L
I
H
C
T
I
VG

I
T
XV

S
R
C
[

S
K
I
L
PC

Y

S
K
I
L
PC

[

T
MI

G
I
[

MW
I
C
Y

T
MI

G
I
[

MW
I
C
[

����	

����	

����	

����	

����	

����	

�����	

1
I
E
R
�'

S
VV

I
G
X�
(

MV
I
G
XM
S
R
�6

E
XI

�4
I
VG

I
R
XE

K
I

Figure 3: C.I. for Means of Unweighted vs Weighted
Correct Direction Rate SPEC Integer benchmark
suite

difference exists between two predictor means if either of
the entries in the table for that pair is less than 0.05.

5.4 Branch Prediction Rates
The design specific metrics that we analyze here are the

address prediction rate and the correct direction prediction
rate. Because these experiments used sampled benchmarks,
each one was simulated the same number of instructions. To
compensate for this we weight the prediction rates by the
number of branches simulated in the sample instead.

From Figure 3, we can see that gshare.32k and alpha.ev6
confidence intervals almost completely overlap those of bi-
mod. (Note that weighted results are presented next to un-
weighted results, labelled with w and u repectively.) The
result of the t-test agrees that there is no significant differ-
ence among them both in weighted and unweighted data for
the Integer benchmarks.

Since the correct prediction rates are very close to one and
the weights are very small, (see Table 9) the weighted rates
are primarily influenced by the weight. Therefore, the nor-
mality testing of branch prediction rates is the result of test-
ing the normality of the distributions of the branches of the
benchmark suite with associated noise from the prediction
rates. Note that the p value of only the branch weights for

F
MQ

S
H
C
Y

F
MQ

S
H
C
[

K
W
L
E
VI

��
�
O
C
Y

K
W
L
E
VI

��
�
O
C
[

L
]
F
VM
H
��

�
O
C
Y

L
]
F
VM
H
��

�
O
C
[

E
PT

L
E
�I

Z
�
C
Y

E
PT

L
E
�I

Z
�
C
[

L
E
W
L
I
H
C
T
I
VG

I
T
XV

S
R
C
Y

L
E
W
L
I
H
C
T
I
VG

I
T
XV

S
R
C
[

S
K
I
L
PC

Y

S
K
I
L
PC

[

T
MI

G
I
[

MW
I
C
Y

T
MI

G
I
[

MW
I
C
[

����	

����	

����	

����	

����	

�����	

1
I
E
R
�'

S
VV

I
G
X�
(

MV
I
G
XM
S
R
�6

E
XI

�4
I
VG

I
R
XE

K
I

Figure 4: C.I. for Means of Unweighted vs Weighted
Correct Direction Rate SPEC Floating Point bench-
mark suite

the integer benchmarks is 0.066, and p value of the Shapiro-
Wilk test of SPEC integer branch prediction rates are close
to 0.066 (i.e. they are equally normal).

The weights for the SPEC floating point benchmarks in
Table 1 are also close to normally distributed. It is interest-
ing to note, though, that for the floating point benchmarks
the confidence intervals (particularly for bimod) are signifi-
cantly tighter.

6. CONCLUSIONS
Means alone are very limited in showing the tradeoffs be-

tween alternative designs. With confidence intervals for the
mean, we can visually see where different alternatives may
overlap in performance. The students t-test provides a more
sensitive method of determining significant differences, but
are more difficult to view in table format. We describe these
statistical methods in detail and apply them to a set of ex-
periments with different branch predictors. We find that
some results that were not significantly different visually,
are statistically different according to the student’s t-test.
This significant difference is only a statistical significance,
however. It does not consider the error from other aspects
of the experimental infrastructure such as simulation error,
or benchmark sampling error. We also test this data for



normality using the Shapiro-Wilk test and find that, with a
couple of exceptions, it is normally distributed.

7. FUTURE WORK
The results presented here are intriguing. Enough of the

distributions turn out to be borderline normal that it would
be interesting to test the distributions of other sets of data
from real experiments, and to add a lognormal test to the
experiments. The implications of different means such as the
geometric mean in conducting significance tests could also
be explored. In addition, we were unable to appropriately
compute weighted p values for the paired student’s t-test.
This test appears to be more sensitive, so it would be useful
to see the results on the weighted means. Finally, although
these statistical results indicate significant differences here,
the authors believe it is not really enough to account for pos-
sible errors in the other steps of the experimental methodol-
ogy outlined in the introduction. An extension of this work
would be to describe how to quantify an accumulated error
or confidence interval through the whole experimental pro-
cess so that the end result can be validated. The approach
for this could be to see each step outlined in the process as
a random variable with a certain amount of error.

Acknowledgments
This work is supported in part by the National Science
Foundation under grant nos. NSF CAREER award CCR-
0133634, and CNS-0340813, and a grant from Intel MRL.
We would also like to thank Michele Co and John Mashey
for their helpful input.

8. REFERENCES
[1] A. Alameldeen and D. Wood. Variability in

architectural simulations of multi-threaded workloads.
Proceedings of the Ninth IEEE Symposium on

High-Performance Computer Architecture, 2003.

[2] William H. Beyer, editor. CRC Standard Mathematical

Tables, 27th Edition. CRC Press Inc., Boca Raton, FL,
USA, 1984.

[3] M. Co and K. Skadron. Evaluating trace cache
energy-efficiency (pending revisions). ACM

Transactions on Architecture and Code Optimization,
pages –, 2005.

[4] J. Hennessy and D. Patterson. Computer Architecture -

A Quantitative Approach, Third Edition. Morgan
Kaufmann Publishers, San Franciscon, CA, 2003.

[5] L. K. John and L. Eeckhout. Performance Evaluation

and Benchmarking. CRC Press, Boca Raton, FL, USA,
2006.

[6] D. J. Lilja. Measuring computer performance: a

practitioner’s guide. Cambridge University Press, New
York, NY, USA, 2000.

[7] J. R. Mashey. War of the benchmark means: Time for
a truce. SIGARCH Computer Architure News,
32(4):1–14, 2004.

[8] NIST/SEMATECH. e-Handbook of Statistical Methods.
2006.



K
^
MT

Z
T
V

K
G
G

Q
G
J

G
VE

JX
]

T
E
VW

I
V

I
S
R

T
I
VP
F
Q

O

K
E
T

Z
S
VX

I
\

F
^
MT

�

X[
S
PJ

%
Z
I
VE

K
I

��

���

��

���

��

���

��

���

-4
'

FMQSH KWLEVI���O L]FVMH���O
EPTLE�IZ� LEWLIHCTIVGITXVSR SKILP
TMIGI[MWI

Figure 5: IPC of different SpecINT benchmarks across different branch predictors

Branch Predictor Area (KB) Configuration

gshare 8 L1: 15-bit, L2: 32K 2-bit counters, XOR: on
hybrid 8 8K-entry metachooser

8K-entry bimodal
L1: 14-bit global history register
L2: 16K-entry 2-bit counters

piecewise linear 32 34360 7-bit general weights,
2396 bias weights,
220 16-bit local history registers,
26-bit global history register

bimodal 1 4K-entry 2-bit counters
hashed perceptron 8 64 global history x 10 perceptrons per history,

10 local history
O-GEHL 8 8 2K-entry 4-bit counter tables, 1K-entry 1-bit tag table

Table 2: Branch predictor configurations evaluated.

bimod gshare.32k hybrid.32k alpha.ev6 hashed perceptron ogehl piecewise
bimod - 0.9435 0.9949 0.9752 0.9966 0.9972 0.9947

gshare.32k 0.0565 - 0.9931 0.1647 0.9995 0.9996 0.9994
hybrid.32k 0.0051 0.0069 - 0.0032 0.9970 0.9981 0.9872
alpha.ev6 0.0248 0.8353 0.9968 - 0.9980 0.9984 0.9974

hashed perceptron 0.0034 0.0005 0.0030 0.0020 - 0.9914 0.0080
ogehl 0.0028 0.0004 0.0019 0.0016 0.0086 - 0.0062

piecewise 0.0053 0.0006 0.0128 0.0026 0.9920 0.9938 -

Table 3: p-value for Integer-IPC, H0: The mean of the top predictor is less than the mean of the left predictor,
values less than 0.05 are significant



bimod gshare.32k hybrid.32k alpha.ev6 hashed perceptron ogehl piecewise
bimod - 0.9757 0.9972 0.9726 0.9994 0.9995 0.9987

gshare.32k 0.0243 - 0.9978 0.0388 0.9999 0.9999 0.9999
hybrid.32k 0.0028 0.0022 - 0.0005 0.9995 0.9997 0.9974
alpha.ev6 0.0274 0.9612 0.9995 - 0.9998 0.9999 0.9997

hashed perceptron 0.0006 0.0001 0.0005 0.0002 - 0.9769 0.0033
ogehl 0.0005 0.0001 0.0003 0.0001 0.0231 - 0.0028

piecewise 0.0013 0.0001 0.0026 0.0003 0.9967 0.9972 -

Table 4: p-value for Integer Correct Direction Rate, H0: The mean of the top predictor is less than the mean
of the left predictor, values less than 0.05 are significant

bimod gshare.32k hybrid.32k alpha.ev6 hashed perceptron ogehl piecewise
bimod - 0.9927 0.9933 0.9808 0.9933 0.9938 0.9967

gshare.32k 0.0073 - 0.9752 0.0046 0.9738 0.9797 0.9940
hybrid.32k 0.0067 0.0248 - 0.0049 0.9706 0.9777 0.9937
alpha.ev6 0.0192 0.9954 0.9951 - 0.9862 0.9884 0.9961

hashed perceptron 0.0067 0.0262 0.0294 0.0138 - 0.9197 0.1782
ogehl 0.0062 0.0203 0.0223 0.0116 0.0803 - 0.1203

piecewise 0.0033 0.0060 0.0063 0.0039 0.8218 0.8797 -

Table 5: p-value for Floating IPC, H0: The mean of the top predictor is less than the mean of the left
predictor, values less than 0.05 are significant

bimod gshare.32k hybrid.32k alpha.ev6 hashed perceptron ogehl piecewise
bimod - 0.9955 0.9953 0.9920 0.9997 0.9997 0.9994

gshare.32k 0.0045 - 0.3316 0.0024 0.9984 0.9991 0.9986
hybrid.32k 0.0047 0.6684 - 0.0032 0.9988 0.9994 0.9989
alpha.ev6 0.0080 0.9976 0.9968 - 0.9998 0.9998 0.9998

hashed perceptron 0.0003 0.0016 0.0012 0.0002 - 0.9699 0.1797
ogehl 0.0003 0.0009 0.0006 0.0002 0.0301 - 0.0651

piecewise 0.0006 0.0014 0.0011 0.0002 0.8203 0.9349 -

Table 6: p-value for Floating Correct Direction Rate, H0: The mean of the top predictor is less than the
mean of the left predictor, values less than 0.05 are significant

bimod gshare.32k hybrid.32k alpha.ev6 hashed perceptron ogehl piecewise
gzip 2.196 2.34 2.351 2.349 2.582 2.581 2.587
vpr 0.968 0.968 0.971 0.965 0.991 0.985 0.986
gcc 2.261 2.362 2.463 2.317 2.612 2.661 2.476
mcf 0.173 0.173 0.173 0.171 0.176 0.174 0.173

crafty 2.498 2.568 2.711 2.559 2.879 2.922 2.767
parser 1.84 1.918 1.956 1.873 2.116 2.136 2.05
eon 2.193 2.637 2.62 2.412 2.995 3.01 2.894

perlbmk 2.514 2.549 2.574 2.537 2.584 2.612 2.573
gap 1.782 1.841 1.845 1.798 1.869 1.872 1.855

vortex 2.914 2.834 2.957 2.912 2.993 3.002 2.991
bzip2 2.382 2.361 2.418 2.384 2.453 2.463 2.46
twolf 1.642 1.612 1.653 1.628 1.775 1.779 1.699

Average 1.947 2.014 2.058 1.992 2.169 2.183 2.126

Table 7: SPEC Integer IPC on different types of branch predictors



bimod gshare.8kb hybrid.8kb alpha.ev6 hashed perceptron ogehl piecewise
wupwise 1.813 1.92 1.925 1.879 1.962 1.993 1.989

swim 0.675 0.675 0.675 0.675 0.675 0.675 0.675
mgrid 1.308 1.309 1.309 1.308 1.309 1.309 1.309
applu 1.123 1.123 1.123 1.123 1.123 1.123 1.123
mesa 2.852 2.953 2.972 2.904 3.053 3.064 3.028
art 2.405 2.474 2.483 2.414 2.753 2.753 2.561

equake 0.407 0.408 0.408 0.408 0.408 0.408 0.408
facerec 2.551 2.644 2.649 2.598 2.701 2.703 2.704
ammp 2.305 2.323 2.328 2.301 2.436 2.438 2.433
lucas 0.744 0.744 0.744 0.744 0.744 0.744 0.744
fma3d 1.12 1.121 1.121 1.12 1.125 1.125 1.125
apsi 2.428 2.559 2.56 2.508 2.583 2.585 2.584

Average 1.644 1.688 1.691 1.665 1.739 1.743 1.724

Table 8: SPEC Floating IPC on different types of branch prediction

bimod gshare.32k hybrid.32k alpha.ev6 hashed perceptron ogehl piecewise Weight
gzip 0.8945 0.9218 0.924 0.9239 0.9629 0.9616 0.9635 0.8065
vpr 0.9382 0.9384 0.9422 0.9352 0.9564 0.9528 0.954 0.8084
gcc 0.9276 0.9434 0.9595 0.9379 0.977 0.9825 0.9601 1.1237
mcf 0.9045 0.9106 0.9134 0.9049 0.9613 0.9629 0.9491 1.3673

crafty 0.8917 0.9124 0.9361 0.9061 0.9635 0.9696 0.945 0.852
parser 0.9101 0.9319 0.938 0.9181 0.9731 0.9762 0.9613 1.1639
eon 0.8302 0.926 0.9244 0.8877 0.9934 0.9945 0.9827 0.8721

perlbmk 0.9788 0.9847 0.9884 0.9831 0.9927 0.9942 0.9889 0.9676
gap 0.962 0.9855 0.9868 0.9681 0.9947 0.997 0.9898 0.9879

vortex 0.9927 0.989 0.9963 0.9928 0.9988 0.9991 0.9986 1.34
bzip2 0.9123 0.9121 0.9237 0.9146 0.9343 0.9371 0.936 0.7949
twolf 0.8755 0.8708 0.8865 0.8737 0.9407 0.9419 0.911 0.9159

AM 0.9182 0.9356 0.9433 0.9288 0.9707 0.9725 0.9617
GM 0.9172 0.935 0.9428 0.9282 0.9705 0.9722 0.9614

WAM 0.9214 0.9376 0.9451 0.931 0.9723 0.9741 0.9631
WGM 0.9203 0.9369 0.9446 0.9303 0.9721 0.9739 0.9628

Table 9: Integer Correct Direction Rate

bimod gshare.8kb hybrid.8kb alpha.ev6 hashed perceptron ogehl piecewise Weight
wupwise 0.9348 0.9817 0.9838 0.959 0.9927 0.9998 0.9994 2.0212

swim 0.9938 0.9942 0.9942 0.9939 0.9969 0.997 0.9969 0.2842
mgrid 0.9343 0.9923 0.9795 0.9714 0.9989 0.9989 0.9988 0.0622
applu 0.9222 0.9721 0.9667 0.949 0.9902 0.9994 0.9901 0.0549
mesa 0.9384 0.9674 0.9701 0.9519 0.9874 0.9897 0.9821 1.7839
art 0.927 0.9446 0.9459 0.9287 0.9998 0.9998 0.9643 2.534

equake 0.9493 0.9736 0.9749 0.9731 0.9778 0.9773 0.9754 0.7756
facerec 0.9141 0.9728 0.9748 0.952 0.9912 0.9926 0.9926 1.2557
ammp 0.9405 0.9463 0.9479 0.9406 0.9914 0.9921 0.9899 1.5585
lucas 0.9956 0.9994 0.9995 0.9995 0.9994 0.9994 0.9995 0.3464
fma3d 0.9288 0.9431 0.9426 0.9344 0.9994 0.9996 0.9997 0.6301
apsi 0.8217 0.9775 0.9783 0.9208 0.9979 0.9998 0.9991 0.6933

AM 0.9334 0.9721 0.9715 0.9562 0.9936 0.9955 0.9907
GM 0.9325 0.9719 0.9714 0.9559 0.9936 0.9954 0.9906

WAM 0.9294 0.9642 0.9657 0.9479 0.9931 0.995 0.9858
WGM 0.9289 0.9641 0.9656 0.9477 0.9931 0.995 0.9857

Table 10: Floating Correct Direction Rate Raw Data


