
Design and Implementation of an Energy Efficient Multimedia Playback System∗

Zhijian Lu†, John Lach†, Mircea Stan†, Kevin Skadron‡,
Departments of†Electrical and Computer Engineering and‡Computer Science, University of Virginia

Charlottesville, VA 22904

{zl4j, jlach, mircea}@virginia.edu, skadron@cs.virginia.edu

Abstract

Mobile devices capable of multimedia playback have be-
come popular consumer items, making techniques for en-
ergy management during multimedia decoding increasingly
important. In this paper, we model the multimedia decoding
process as a discrete-time system excited by random input
sequences representing the incoming stream and therefore,
unlike many existing techniques, do not make any assump-
tions about the workload streams. Using this novel stochas-
tic process model, we can apply formal methods to analyze
the decoding system and design a feedback-based on-line
dynamic voltage/frequency scaling (DVS) algorithm to ef-
fectively reduce the energy consumption during multimedia
playback. We implemented our technique in a laptop com-
puter equipped with a DVS enabled processor, and results
reveal good performance for real-world video clips across
a wide range of video compression formats compared with
existing techniques.

1. Introduction

While the continuously increasing computation power
provided by technology scaling enables more complex mo-
bile applications, energy consumption becomes a limiting
factor. Since multimedia playback is among the dominant
applications in mobile devices, it is important to design en-
ergy efficient multimedia playback systems. Fortunately,
due to the variations in multimedia decoding complexity,
the required computation power changes during the play-
back, and dynamic voltage/frequency scaling (DVS) is a
powerful technique to exploit this opportunity to reduce
runtime power by lowering down the circuit speed (and
thereby power) whenever possible. However, DVS multi-
media systems should be carefully designed to avoid caus-
ing large degradation in playback quality. In this paper, we
systematically analyze the design of such a system, propose
a new design technique and validate our design through a
prototype system on a DVS enabled laptop computer.

∗This work is supported in part by the National Science Foundation
under grant Nos. EHS-0410526, CCF-0429765, CCR-0133634 (Career)
and EHS-0509245.

Designing a good multimedia playback system using
DVS involves trade-offs among multiple contradicting ob-
jects and is subject to practical constraints. Techniques pro-
posed in [5, 6, 10] require perfect predictions for decode
execution timing, which is not possible in some multimedia
compression formats. The methods in [7, 8] exploit buffer-
ing to improve the energy efficiency of DVS. However,
smaller buffer sizes might increase the frame deadline miss
rate, while larger buffer sizes not only increase hardware
costs but also increase the playback latency, which is unac-
ceptable in many real-time applications. In general, a prac-
tical solution has to seek the best trade-off between power
consumption, playback quality and hardware resources and,
in general, has to assume no specific information about the
incoming multimedia streams.

0
10
20
30
40
50
60
70
80
90

0.2 0.4 0.6 0.8 1 1.2

Normalized cpu clock frequency

P
ow

er
 (

W
)

Figure 1. MPEG decoding power at different
CPU speed.

The DVS design presented in this paper provides a good
balance between all these competing factors. We first cre-
ate a model for the available design space. Then we search
the design space with two desired properties in mind: speed
schedule uniformity and system stability. Power consump-
tion is a convex function of circuit speed. As an example, in
Figure 1, the MPEG decode power consumption of a laptop
computer is shown at different CPU speeds (i.e., frequency
and voltage settings). Though each frame can be decoded
at a different speed due to computation variations, decoding
multiple frames at a uniform speed (i.e., the average de-
coding speed) provides better energy efficiency according
to Jensen’s inequality [9]. Therefore, in an energy efficient



1 1.5 2
10

15

20

25

30

35

40

45

50

1/f

D
e

co
d

e
 t

im
e

 (
m

s)

I frame
P frame
B frame
S frame

(a)

0

2

4

6

8

10

12

14

1 1.5 2 2.5

1/f

A
ve

ra
g
e
 f

ra
m

e
 d

is
p
la

y 
tim

e
 

(m
s)

H.264 (844x480) SVQ3 (640x344)
MPEG4 (720x480) MPEG2 (720x480)

(b)

0
2
4
6
8

10
12
14
16
18
20

1 1.5 2 2.5

1/f

A
ve

ra
g

e
 d

ith
e

r 
tim

e
 p

e
r 

fr
a

m
e

 
(m

s)

H.264 (844x480) SVQ3 (640x344)
MPEG4 (720x480) MPEG2 (720x480)

(c)

Figure 2. Timing characteristics of MPEG video playback.

DVS design, a uniform speed schedule is preferable. On
the other hand, due to the complexity in many modern mul-
timedia coding formats, a good DVS solution should not
assume any prior knowledge or rely on any accurate pre-
dictions about the decoding process. Therefore, the decode
speed decisions should be solely dependent on the results of
the previous frames. Any system working in this way is in
fact a closed loop feedback system for which stability is an
important property.

The rest of the paper is organized as follows. In Sec-
tion 2, we present some video playback timing character-
istics from actual measurements of video clips with vari-
ous compression formats. Based on these observed timing
characteristics, in Section 3, we first propose a generic ar-
chitecture to model the dynamics of a variable speed video
decoding system. Then we discuss the design of the speed
controller based on speed uniformity and system stability,
and we propose an enhanced feedback based speed control
scheme. In Section 4, we describe our implementation of
various DVS techniques for video playback on a DVS en-
abled platform. Finally, Section 5 presents the performance
comparison of different DVS techniques on a set of clips
with various video formats and shows the effectiveness of
the new technique proposed in this paper.

2. Timing characteristics of MPEG workloads

In an MPEG playback application, there are two major
tasks: frame decoding and frame display. Though differ-
ent video compression formats have quite different imple-
mentation details, there are several common steps in frame
decoding: a. Huffman decoding, b. IDCT and motion esti-
mation/compensation, and c. frame dithering (i.e., convert-
ing the decoded frame from the YUV plane to the RGB
plane). The decoded frame in RGB format is then sent
to a graphics device that finishes the display task. There
are several frame types depending on the operations needed
to encode/decode a frame: I (intra-coded) frame, P (pre-
dictive coded) frame, B (bidirectionally predictive-coded)

frame and S (sprite) frame (coded using global motion esti-
mation) in MPEG4.

Figure 2(a) plots the decoding time (including dithering)
of different frame types versus the inverse of decode speed
(i.e., CPU clock frequency). This figure indicates that the
decoding time of a frame is strongly dependent of the de-
coding speed and can be modeled ast = k

u
+ m, wheret

is the decode time,u is the CPU speed, andk andm are
model parameters representing computation time and mem-
ory access time, respectively, during decoding.k is usually
several times larger thanm, which implies that MPEG de-
coding is a computation-dominated application.

On the other hand, frame display time is almost insensi-
tive to CPU speed as illustrated by Figure 2(b). This sug-
gests that energy saving opportunities are available during
frame display since one can lower the CPU frequency and
voltage when the frame is sent to the screen without affect-
ing playback quality. Choiet al. [6] made a similar observa-
tion in their study. They also reported that the time spent in
frame dithering is also insensitive to CPU speed. We plot-
ted the frame dithering time at different CPU speeds in Fig-
ure 2(c) and found that the dithering time in the video clips
we tested is actually strongly dependent on CPU speed.

3. Design and analysis of feedback based speed
control

3.1. Model of DVS multimedia decode systems

Most existing online DVS decoding schemes [5, 6, 7, 8]
determine the required decoding speed for future frames
according to the decode timing information of previous
frames. In this paper, we first propose a dynamic system
model, shown in Figure 3, to represent a design space con-
taining many of these existing schemes.

In order to explain this model more clearly, we intro-
duce the concept of frame slack time, defined as the time
interval between when the frame decoding begins and the
frame deadline (the time to display the frame). The slack
time for framen is the maximum available time for its de-



Frame decoder

( )
( 1) ( ) ( )

( )
k n

s n s n T m n
u n

 + = + − + 
 

Control ruleSpeed decision

( )
( )
r

u n
c n

= ( )( ) ( ), ( 1), ( 2), ...c n y s n s n s n= − −

( )c n
( )u n

( )s n

{ ( ), ( )}k n m n

Figure 3. A generic dynamic system model for
online DVS MPEG decoding.

coding, denoted bys(n). As discussed in Section 2, the
decoding time of a frame can be expressed ask(n)

u(n) + m(n).
Let T represent the frame display interval during playback,
and we can update the slack time for the next frame by
s(n+1) = s(n)+T − [ k(n)

u(n) +m(n)], as represented by the
“Frame decoder” block in Figure 3. By modeling the decod-
ing time for a frame as a random variable, an MPEG stream
can be represented by a sequence composed of random vari-
ablesk(n) andm(n). Therefore, the MPEG decoding pro-
cess can be modeled as a discrete time system excited by a
stochastic input sequence as shown in Figure 3. The feed-
back path in Figure 3 represents a generic approach to de-
code future frames based on previous frames, as used in
many existing online DVS MPEG decoding schemes. This
generic model makes it possible for us to explore the design
space more systematically.

The major difference in various online schemes lies in
the parameterr and the control functiony(). For example,

in the frame based schemes [5, 6],c(n) = s(n)−m′(n)
k′(n) and

r = 1, wherek′(n) andm′(n) are the predictions fork(n)
andm(n) of framen, based on previous decoding results
of s(n), s(n − 1), . . .. In the scheme proposed by Im and
Ha [7], r = WCET andc(n) = s(n) whereWCET de-
notes the worst-case frame decoding time. When a formal
PI controller is adopted as the control rule as the one pro-
posed by Luet al.[8], the control functiony() has the form:
c(n) = 1

kp(s(n)−s0)+ki

∑

n

i=1
s(i)−s0

andr = 1, wherekp

andki are the proportional and integral gains, respectively,
ands0 is the setpoint of the controller input.

3.2. Design of an enhanced feedback control scheme
with speed uniformity

Since uniform speed provides better energy savings
when the decoding throughput is matched with that of dis-
play, speed uniformity is an ideal property for any DVS
scheme. Keeping this in mind and using the dynamic model
shown in Figure 3, it is possible to design a better feedback
based speed control scheme for MPEG decoding.

Assuming that the system described in Figure 3 is oper-
ated under a constant speed, the expected value of random

variables(n) (i.e., the frame slack time), denoted byS(n),
satisfies the following relation:

S(n + 1) = E[s(n + 1)] = E
[

s(n) + T − [ k(n)
u(n) + m(n)]

]

= E[s(n)] = S(n)

sinceE
[

T − [ k(n)
u(n) + m(n)]

]

= 0, which is required by

the system steady state condition that the decoding through-
put is matched with the display throughput. Therefore, in
the desired DVS schedule, both the decoding speed and the
average value of frame slack time are constant. Since the
frame slack time is observable in the system, we propose to
use the average slack time to determine the decoding speed,
i.e., a control rulec(n) = y(S(n)) andr = 1.

Using this control rule, the feedback system can be de-
scribed by a difference equation:

s(n + 1) = s(n) + [T − [y(S(n))k(n) + m(n)]] (1)

Assuming that{k(n),m(n)} are IID (independent, iden-
tical distribution) random sequences1 and E[k(n)] =
K,E[m(n)] = M , one can apply the expected value func-
tion on both sides of Equation (1).

S(n + 1) = S(n) + [T − [y(S(n))K + M ]]

In the steady state,S(n + 1) = S(n) = S and T =
y(S)K + M , and it follows that the steady decoding speed
is

U =
1

y(S)
=

K

T − M
(2)

The expected value ofs(n) can only be estimated
from the decoding results{s(n), s(n − 1), . . .}. We
adopt a simple moving average function,s′(n) =
s(n)+s(n−1+...+s(n−i+1))

i
as the estimation of E[s(n)], in

which i is the window width of the moving operation and
s′(n) is also a random variable. During runtime, even if
the decoding speed is correctly chosen for frame n (i.e.,
u(n) = K

T−M
), u(n + 1) could be different due to the

difference betweens′(n + 1) and s′(n). The variation
of s′(n) can be estimated using the standard deviation of
∆s′(n) = s′(n) − s′(n − 1). Let σ() denote the standard
deviation function, and it can be shown that:

σ(∆s′(n)) = 1√
i
σ(T − [k(n)

U
+ m(n)])

= 1√
i

√

σ2(k(n))
U2 + σ2(m(n)) ≈ σ(k(n))√

i

1
U

(3)

becauseσ(k(n)) is usually much larger thanσ(m(n)), as
found from the timing measurements of some MPEG clips

1Frames in a clip are decoded in a predefined order specified by GOP
(Group of Pictures). Therefore two consecutive frames are not necessarily
statistically independent. The IID assumption only serves to reduce the
analysis complexity.



in Section 2. Therefore, the variation in speed decision
∆u(n) = u(n)−u(n−1) due to the variations in frame de-
coding time can be estimated according tou(n) = 1

y(s′(n) :

σ (∆u(n)) ≈
−y′(s′(n))

y2(s′(n)
σ (∆s′(n)) (4)

If we can assume that the variations of the amount of com-
putation in frame decoding is proportional to the average
amount of computation, we haveσ(k(n)) ∝ K. It follows
thatσ(∆s′(n)) is independent ofs′(n) (i.e., current speed)
because of Equation (2) and (3). We would like to choose
a functiony(x) such thatσ (∆u(n)) is also independent of
the current decoding speed ors′(n). According to Equa-
tion (4), this requires that:

y′(x)

y2(x)
= C

where C is a constant. Thus, the control functiony() in
Figure 3 has the formc(n) = y(s′(n)) = 1

as′(n)+b
, where

a andb are two constant parameters to be determined. In
other words, we have derived a simple linear control rule to
determine the next frame decoding speed as

c(n) = y(s′(n)) = 1
as′(n)+b

and
u(n) = 1

c(n) = as′(n) + b.

(5)

Essentially, this is a P (proportional) controller.
The parametersa andb can be determined according to

practical constraints such as available buffer size and de-
coding speed (clock frequency) range. For example, we can
conservatively set the full speed when the frame slack time
is less than the display period and set the minimum speed
when the display buffer is full. LetB denote the number
of available display buffer sizes, we haveMax(s′(n)) =
(B + 1) ∗ T . These settings require that:

{

a ∗ T + b = umax;
a ∗ [(B + 1)T ] + b = umin.

(6)

whereumax andumin are the maximum and minimum de-
coding speeds provided by the system. The values ofa and
b can be determined accordingly and obviouslya < 0.

3.3. Stability analysis of the proposed feedback
control system

In the above analysis, we assume the input sequences
{k(n),m(n)} are stationary (i.e.,K andM are indepen-
dent of time). During movie playback, we find that some
clips show strong phased behaviors. In order to provide
both good playback quality and low energy consumption,

S(z)

F(z)C(z)
[ ]'( )E s n∆[ ]( )E c n∆

[ ]( )E s n∆

[ ] [ ] [ ]( 1) ( ) ( )E s n E s n K E c n∆ + = ∆ − ∆i

[ ] [ ] [ ] [ ]( ) ( 1) ( 1)
'( )

E s n E s n E s n i
E s n

i

∆ + ∆ − + + ∆ − +
∆ =

⋯

[ ] [ ]( ) '( )
c

E c n l E s n∆ = ∆i

⊕

( )D n

+

+

Figure 4. Modeling the transient behaviors of
the proposed closed loop feedback system.
A pulse input D(n) models the disturbance
caused by the change in the required decode
computation power.

the feedback system should be able to adapt the speed deci-
sion to the new set ofK andM . This requires the system
to have a fast response time and be stable.

The proposed feedback control system can be analyzed
using well established linear system analysis techniques
(e.g., transfer functions). In order to do so, we first linearize
the proposed control function (Equation (5)) using the first
order Taylor expansion:

c(n) ≈ c(n − 1) + lc [s′(n) − s′(n − 1)]
and

lc = y′(E [s′(n − 1)]) = −a
E2[u(n−1)] .

(7)

Second, instead of directly analyzing the signals shown in
Figure 3, we focus on the signal difference at consecutive
time steps, e.g.,∆s(n) = s(n) − s(n − 1), ∆c(n) =
c(n) − c(n − 1), etc. In the steady state, the decoding rate
matches the display rate, andE[∆s(n)] = 0. When the re-
quired computation power is changed during the playback
(i.e., the values ofK (E[k(n)]) andM (E[m(n)]) change),
E[∆s(n)] will become non-zero and break the steady state.
If the system is stable,E[∆s(n)] will converge to zero again
and the system reaches a new steady state. The block dia-
gram in Figure 4 models this dynamic process. The changes
in K andM are modeled by injecting a disturbance signal
D(n) (usually a pulse signal) into the system, as shown in
Figure 4.

One important difference between Figure 3 and Figure 4
is that the sequences in Figure 4 are formed by applying
the expected value function to those stochastic sequences
in Figure 3, because only expected values of those random
variables are amiable for analysis using transfer functions.
Other differences between these two figures include: 1. the
blocks “Frame decoder” and “speed decision” in Figure 3
are combined into one block denoted byS(z), and 2. one
more block is added to model the moving average function
introduced in the proposed feedback system.

It can be verified that the transfer functions in Fig-
ure 4 are: S(z) = K

1−z
, C(z) = lc, and F (z) =



1
i

zi−1+zi−2+...+1
zi−1 . Consequently, the relation between

D(n) and E[∆s(n)] can be created using theirZ trans-
forms.

Z{E[∆s(n)]}
Z{D(n)} = S(z)

1−S(z)C(z)F (z)

= −Kzi−1

zi−(1−Klc
i

)zi−1+ Klc
i

(zi−2+zi−3+...+1)

Therefore the characteristic equation for the closed loop
system in Figure 4 is

zi−(1−
Klc

i
)zi−1+

Klc

i
(zi−2+zi−3+ . . .+1) = 0 (8)

The system is stable if and only if the roots of Equation (8)
are within the unit circle. The magnitude of the roots de-
termines the converging speed (i.e., response time) of the
system.

Figure 5 shows the root with the maximal magnitude of
Equation (8) at different values ofKlc andi. As indicated
by the figure, as the moving averaging window size (i) in-
creases, the system tends to be unstable and reacts more
slowly. This is expected as the new feedback signals are
weighted less with larger window sizes.

From (7), we haveKlc ≤ K −a
u2

min

≤ −aT
u2

min

=
umax−umin

Bu2

min

, because ofa = −umax−umin

BT
from (6) and as-

sumingK ≤ T . Thus, the stability condition for the system
under study can be written as:

umax − umin

Bu2
min

< Pi (9)

where there are roots on the unit circle whenKlc = Pi in
Equation (8).

Strictly speaking, condition (9) only guarantees the sta-
bility of the linearized closed loop system shown in Fig-
ure 4 and, consequently, the stability of the original system
when the system is operating near the steady state. How-
ever, condition (9) does not necessitate the global stability
of the original system due to the non-linear control func-
tion (Equation (5)). The study of the global stability of the
closed loop non-linear system is outside the scope of this
paper. In practice, we found that condition (9) is sufficient
to ensure stability in our experimental system.

3.4. Real-time guarantee
High video playback quality is accomplished by ensur-

ing that frames are decoded before their deadlines. In a
feedback based DVS decoding system (e.g., the system
shown in Figure 3), real-time guarantees are achieved by the
control functionc(n). Specifically, for the proposed control
function in Equation (5), we find that wheni = 1, no frames
will miss their deadlines if the worst-case decoding time at
full speed is less than the display intervalT and:

B ≥
umax − umin

umin

(10)

in whichB is the display buffer size.
Wheni > 1, condition (10) no longer provides hard real-

time guarantee. But it still provides helpful reference for
choosing the correct design parameter.

3.5. Trade-off analysis on design parameters

For a practical DVS system providing variable speed be-
tweenumax andumin and a target display rate (or display
interval T ), there are two design parameters for the pro-
posed feedback based decoding system: display buffer size
B and moving average window sizei. According to Equa-
tions (4) and (5), the decoding speed variation can be re-
written asσ (∆u(n)) ≈ aσ (∆s′(n)) wherea is the con-
trol function parameter in Equation (5) andσ (∆s′(n)) is
defined in Equation (3). Equations (6) and (3) indicate
that largerB andi result in smallera andσ (∆s′(n)), re-
spectively, and therefore smaller speed variation, which is
preferable for energy savings. In addition, larger display
buffer sizes help satisfy the stability condition (9) and re-
duce frame deadline misses as implied by Inequality (10).

On the other hand, there are disadvantages for larger val-
ues ofB andi. Larger display buffer sizes not only increase
hardware costs, but they also increase the playback latency
becauseB + 1 frames are decoded ahead of displaying in
the worst-case. This is especially undesirable in some real-
time multimedia applications. The disadvantages of larger
values ofi can be seen from Figure 5. A largeri tends to in-
crease the magnitude of the roots of the characteristic equa-
tion of the feedback system, thereby increasing the system
response time. It also reduces the stability range ofKlc,
causing the system to be unstable.

4. Implementation on a hardware platform
Our prototype platform is a Compaq notebook com-

puter equipped with a mobile AMD Athlon XP DVS en-
abled processor. The CPU clock frequency can be dy-
namically scaled to 14 discrete speeds between 665MHz
and 1530MHz by writing the voltage/frequency setting to
a model specific register (MSR). During the experiments,
we pull out the notebook battery and put a small sense re-
sistance (10mΩ) in series with the laptop. The voltage drop
on the sense resistance is amplified and sampled at a5K

sample rate by a desktop computer equipped with a data ac-
quisition card and LabVIEW software.

The video playback software is implemented using two
processes and runs under the Linux operating system. One
process of the software is responsible for fetching coded
frames from the hard disk, decoding the frame and putting
the decoded frame in the display buffer. The other pro-
cess is responsible for displaying frames on the screen by
fetching a frame picture from the buffer and sending it to
the X server. The display process is in sleep mode most of
time and is periodically woken up by a timer that repeatedly



−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Im
ag

 A
xi

s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Klc

M
ag

ni
tu

de

i = 1

Klc: 2 0

(a)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Im
ag

 A
xi

s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Klc

M
ag

ni
tu

de

i = 3

Klc: 2 0

(b)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Im
ag

 A
xi

s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Klc

M
ag

ni
tu

de

i = 5

Klc:2 0

(c)

Figure 5. Roots with the maximal magnitude as functions of Klc. (a) i = 1. (b) i = 3. (c) i = 5. The
plots on the left show the locations of the roots in the unit ci rcle and those on the right show the
magnitude of the roots.

times out at the display interval (i.e., the inverse of the play-
back rate). Frame deadline misses occur when the display
process tries to fetch a frame picture from an empty buffer.
When the display process is woken up, the decode process is
suspended and resumed after the display process is finished.
At the beginning of decoding a new frame, the decode pro-
cess determines the decoding speed according to the spe-
cific DVS scheme and changes the CPU frequency/voltage
using a system call. The open source codec libraryffm-
peg [1] is used in the decode process. Thus, video clips
with a wide range of different formats can be played in this
software.

5. Experimental results

We implemented various DVS MPEG decoding schemes
in our hardware platform and tested them on a set of eight
video clips with different compression formats, including
MPEG2/4, H.264 and SVQ (QuickTime movie format).
Among the clips, six are movie trailers downloaded from
the Internet [2, 3, 4]. The other two, (fs2003and fs2004),
are home-made movies. The various DVS schemes imple-
mented are similar to those examined in [8] plus the new
feedback scheme introduced in this paper:

• Full speedThe CPU always decodes frames at full
speed just as in the systems without DVS capabilities. The
CPU becomes idle until the decoded frame is displayed.
Therefore the display buffer size in the scheme is1.

• Ideal periodUsing profiling information for the video
streams, the processor calculates the correct decoding speed
such that the decoding time for each frame is exactly equal
to the display period and rounds up this calculated speed to
the available discrete speed provided by the hardware. This
scheme is equivalent to the one in [6] when their predictions
about frame decode timing are always accurate.

• OptimumIn this scheme, an off-line scheduling algo-
rithm is developed to find the best schedule such that no

frame will miss its deadline while total energy consumption
is minimized. The profiled timing information for all frames
has to be used to find the optimal schedule, and this scheme
sets up an achievable energy consumption lower bound with
DVS. This scheme was first proposed in [8] and later revis-
ited in [10].

• Panic This scheme is similar to that proposed by Im
et al. [7], which tries to spend the available slack time in
decoding the next frame and assumes the decoding time of
the next frame is equal toWCET . Again the calculated
speed is rounded up to the next available discrete speed.
The display buffer size for this scheme is5.

• Dead-zone based feedback PI controllerThis scheme
specifies a region (dead-zone) for the number of decoded
frames in the buffer. A PI controller is used to pull the sys-
tem back to this region if the current number of frames in
the buffer is out of the dead-zone. Following the design
in [8], in our implementation, the dead-zone is between3
and8 frames. When the system is within the dead-zone, the
CPU is operated at a speed calculated using the decode tim-
ing information from the previous several frames [8]. The
display buffer size for this scheme is10.

• Linear slack speed controlThis is the enhanced feed-
back DVS control scheme proposed in this paper in which
the decoding speed for the next frame is a linear function
of the averaged available slack time as indicated by Equa-
tion ( 5). In our implementation, the averaging window
size i is fixed to be3, as it is a good trade-off between
speed variation and system response time as discussed in
Section 3. We also tested this technique with different dis-
play buffer sizes and found that a five-frame buffer would
be a good design trade-off. Usingi = 3, B = 5 and
umax = 1.0, umin = 0.435 (the frequency range of our
hardware platform), one can verify that both the stability
condition (9) and real-time condition (10) are satisfied.

As revealed in Section 2, the time needed to display a



frame on the screen is insensitive to the CPU speed. There-
fore, for the sake of fair energy consumption comparisons,
in all of the above schemes, we scale the CPU speed to a
fixed low frequency when the display process tries to send
the decoded frame to the screen.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m
iss

ion
ga

m
e

sk
ele

to
n

ex
or

cis
m

fa
nt

as
tic

kin
gd

om

fs2
00

3

fs2
00

4

E
ne

rg
y 

co
ns

um
pt

io
n

ideal period panic pi control linearslack_buf5 optimum schedule

Figure 6. Total system energy consump-
tion for video playback with different DVS
schemes. The energy consumptions are nor-
malized to those for the full speedschedule.

Figure 6 plots the measured total system energy con-
sumption during video playback. As one might expect,
all DVS schemes can save significant energy consump-
tion compared to the case without DVS, and theoptimum
scheme achieves minimum energy consumption. The pro-
posed linear slack scheme with buffer size5 performs
roughly equal to or better than the rest DVS schemes in
terms of energy saving.

Table 1. Number of frames missing deadline
with different DVS schemes

video
clips

panic
(buf5)

linear slack
(buf5)

PI controller
(buf10)

mission 94 69 38
game 53 34 19
skeleton 29 0 0
exorcism 10 0 0
fantastic 95 37 0
kingdom 77 4 0
fs2003 30 3 0
fs2004 172 6 0

In the theoretical analysis carried out in Section 3, we
assume that the worst-case full speed frame decoding time
is less than the display interval. However, during practical
video play back, there are some frames exhibiting extremely
long decoding times. Therefore, a significant number of
frames might miss their deadlines. The Table 1 lists the
number of frames missing their deadline in each video clip
for different runtime DVS schemes. Though both schemes
have the same display buffer size, thelinear slackscheme
does a much better job than thepanicscheme to hide those
extreme large frames. ThePI controllerscheme can further

reduce the number of deadline misses at the cost of twice
the buffer size. Given that the total number of frames in
each clip is3000, the deadline miss rate of thelinear slack
scheme is around 1% for most clips.

6. Conclusion
Although many low-power multimedia playback tech-

niques have been proposed, many of them suffer from ide-
alized assumptions or practical constraints. The work de-
scribed in this paper seeks a balanced design by first cre-
ating a model for the available design space, then identi-
fying a preferable architecture based on desirable system
behaviors, and finally analyzing the design trade-offs using
formal methods. The implementation overhead of this new
DVS technique is ultra-low and can be easily implemented
in both software and hardware based decoding systems.

We implemented the proposed architecture on a proto-
type hardware platform and compared it with existing tech-
niques. Experimental results show that the proposed new
design achieves equal or better energy efficiency than the
existing techniques, brings close to ideal playback qual-
ity (about a 1% deadline miss rate), and only requires a
moderate buffer size (5-frame buffer). Therefore, the pro-
posed new DVS multimedia decoding architecture is indeed
a good trade-off among energy, playback quality, hardware
cost and playback latency.

References

[1] FFmpeg project.http://ffmpeg.mplayerhq.hu/.
[2] Movie trailers. http://trailer.nerodigital.

com/enu/index.html.
[3] Movie trailers.http://www.divx.com/movies.
[4] Movie trailers. http://www.apple.com/

quicktime/guide/hd/.
[5] K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-based

dynamic voltage and frequency scaling for a mpeg decoder.
In Proceedings of International Conference on Computer
Aided Design, pages 732–37, November 2002.

[6] K. Choi, R. Soma, and M. Pedram. Off-chip latency-driven
dynamic voltage and frequency scaling for an mpeg decod-
ing. In Proceedings of 41st Design Automation Conference,
pages 544 – 549, June 2004.

[7] C. Im and S. Ha. Dynamic voltage scheduling with buffers
in low- power multimedia applications.ACM Transactions
on Embedded Computing Systems (TECS), 3(4):686–705,
November 2004.

[8] Z. Lu, J. Lach, M. Stan, and K. Skadron. Reducing mul-
timedia decode power using feedback control. InProc. of
International Conference on Computer Design, pages 489–
96, October 2003.

[9] W. Rudin.Real and Complex Analysis. McGraw-Hill, 1987.
[10] Y. Tan, P. Malani, Q. Qiu, and Q. Wu. Workload predic-

tion and dynamic voltage scaling for mpeg decoding. In
Proceedings of Asia and South Pacific Design Automation
Conference, pages 911–916, January 2006.


