
Reducing Multimedia Decode Power using Feedback Control

Zhijian Lu, John Lach, Mircea Stan
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904

{zl4j, jlach, mircea}@virginia.edu

Kevin Skadron
Dept. of Computer Science

University of Virginia
Charlottesville, VA 22904
skadron@cs.virginia.edu

Abstract

Despite recent advances, battery life continues to be a
limiting factor in mobile multimedia systems. Significant
energy savings can be achieved by adapting systems at run-
time to match the execution requirements of different tasks.
This paper introduces an on-line dynamic voltage/frequency
scaling (DVS) feedback technique that reduces voltage and
frequency to match the playback rate. A PI controller ad-
justs the decoder’s speed to keep constant the occupancy
of the buffer between the decoder and the display, effec-
tively matching the average decode rate to the display rate
without the need for any off-line profiling. MPEG simula-
tion results show that this technique reduces decoder power
consumption while providing strong real-time guarantees.

1. Introduction

Mobile multimedia systems are becoming popular con-
sumer items, but limited battery life continues to be a ma-
jor problem. Energy-efficiency, however, must be balanced
against the fact that users demand a high quality of service
(QoS).

This paper considers energy efficiency for multimedia
playback, in which a stream of multimedia frames must be
decoded before display, and frames that miss their decode
deadlines must either be delayed or dropped. Therefore, the
frame decode rate must keep up with the defined display
rate to avoid choppy playback.

Of course, the decode time for each frame in a multime-
dia stream is not necessarily uniform. For example, MPEG
frames come in three different coding types (intra (I), bi-
directional (B), and predictive (P)), each of which requires
different decoding effort. Even within these coding types,
frame decode time varies. Therefore, a simple constant-
rate decoder—running at a speed that enables the worst-
case frame to meet its deadline—actually decodes many
frames well before their deadlines, creating a great deal of

slack that can be reclaimed for energy savings by slowing
down the processor. Using dynamic voltage/frequency scal-
ing (DVS), the system can run slower with less power con-
sumption for frames that require less decoding computation.
However, this frame information is normally not known be-
fore the decode is performed, except at the crude level of
whether a frame is of type I/B/P.

This paper introduces an online feedback control tech-
nique for DVS in mobile multimedia systems that makes
the average frame decode rate the same as the display rate.
The key observations are that a buffer between decode and
playback provides protection against incorrect DVS settings
due to unforeseen changes in decoding complexity, and that
the occupancy of this display buffer becomes a natural con-
trol object for the system: a draining buffer indicates that
the decoding rate is too slow, and a growing buffer indicates
that more energy can be saved by scaling down the decoding
rate. Although our controller is designed by assuming con-
tinuous frequency and voltage scaling, our simulation re-
sults show that it works well for discrete frequency/voltage
settings.

The advantages of this buffer-based feedback-control ap-
proach over prior solutions are that no pre-playback or
server-side profiling is required and that slack can be re-
claimed across frame boundaries. No explicit frame decode
time prediction is needed, thus avoiding the missed dead-
lines caused by prediction errors. We apply formal feed-
back control techniques to effectively control the buffer oc-
cupancy. The maximum buffer size needed is about 10 de-
coded frames, which is inexpensive in common hand-held
devices [10]. Simulation results demonstrate that our feed-
back control method approaches the energy savings achiev-
able by the optimal scaling method, and up to 20% en-
ergy reduction beyond the best on-line technique [6] we are
aware of. Moreover, our method provides strong real-time
guarantees, for a zero deadline miss rate, even without any
prior frame information.

The remainder of the paper is organized as follows. Re-
lated work is discussed in Section 2. A real-time model of



the multimedia system under study is presented in Section 3
along with analysis of the real-time constraints. Our control
algorithm is detailed in Section 4. In Section 5, we present
our simulation results and compare our algorithm with dif-
ferent DVS schemes. Finally, we summarize our work in
Section 6.

2. Related work

Low power design in multimedia systems is currently a
very active research field. The major power saving tech-
niques applied to multimedia systems include DVS and
DPM (dynamic power management). In DVS, different
computational tasks are run at different voltages and clock
frequencies while still providing an adequate level of per-
formance. DPM shuts off system parts (inside or outside
the CPU) that are not in use at any given time. Structural
adaptations for multimedia systems were recently proposed
in [5].

Because a multimedia system has defined QoS require-
ments, it is usually modeled as a real-time system with soft
deadline constraints. Inter- and intra-frame scaling are con-
sidered to reduce the deadline miss rate in [5] and [1], re-
spectively. However, in both works, the decoder is assumed
to decode only one frame for each display interval. Frame-
decode-time prediction techniques are used in these works
to achieve a satisfactory tradeoff between the power savings
and QoS. Recently, Chung et al. [2] proposed that the de-
coding time information can be obtained from the multime-
dia content provider, such that the accuracy of the decode
time prediction can be improved.

There are two works [6, 10] we are aware of that use
buffers in the multimedia system to save power while pro-
viding QoS guarantees. Lu et al. [10] used an off-line algo-
rithm to schedule the frame decoding rate and respective
frequency, and they did not consider multimedia streams
that include B frames. Im et al. [6] focused on the esti-
mation of the input/output buffer size for the decoder, and
also proposed an on-line DVS technique. This technique is
essentially equivalent to a scheme we call panic factor scal-
ing in this paper. We will compare this technique with our
feedback control technique.

The design of control systems is a mature field with a
history dating back at least as far as the 1600s. Numer-
ous textbooks exist that describe basic control principles,
e.g. [3]. Control-theoretic approaches have been applied to
a variety of computer system design aspects, including CPU
scheduling [9, 16], web server QoS management [7, 11],
internet congestion control [4], and data migration [8]. In
[12], the authors apply a formal feedback control technique
on DVS for multimedia systems, but they focus on average
system performance.

3. Background and assumptions

Decoder
Display
Device

Buffer storing
decoded frames

Buffer storing
coded frames

Decoder speed
control

Frequency /
Voltage decision Buffer occupancy

information

Figure 1. Architecture of the multimedia sys-
tem studied in this paper.
The general architecture of a multimedia system is il-

lustrated in Figure 1. Frames in the decode buffer (or in
disks) are fetched and decoded sequentially and displayed
by the display device with a constant playback rate denoted
by 1

T , where T is the display interval. Our technique con-
trols the decode speed such that the energy consumption can
be reduced without the frames missing their display dead-
lines. We make the following assumptions for this multime-
dia system:

• Coded frames are decoded in their normal order, and a
frame is always available to be decoded whenever the
frames before it have already been decoded.

• After a frame is decoded and sent to the display buffer,
the decoder is ready for decoding the next frame.

• Each frame has an associated deadline, which is the
time to start displaying the frame. The deadline is al-
ways a multiple of the display interval T . For example,
frame i has a deadline of i∗T . The time needed to de-
code frame i is denoted by Ci.

• The display buffer has enough space to hold all the
frames which are decoded before their deadline.

To clarify our terminology, we state the following simple
theorem.

Theorem 1 Let S be a multimedia stream including frames
{F1,F2, . . . ,Fn}. If the decoder in the system described
above never idles when there are undecoded frames left,
S will be schedulable (all the frames meet their respective
deadlines) if and only if:

∑i
k=1 Ck

i
≤ T ∀i, 1 ≤ i ≤ n (1)

where Ck is the time needed to decode frame k, and T is the
display interval.

The proof of the above theorem is very straightforward.
Although we assume that the decoder is dedicated to only



decoding tasks, the theorem can be easily extended to ac-
commodate additional tasks that require the CPU for dis-
play (instead of using DMA (direct memory access), etc.) or
other real-time tasks (e.g., fetching the coded frames from
the disks to the decode buffer). In this scenario, we only
need to substitute Ck with the sum of the frame decoding
time and the time for additional tasks.

Theorem 1 shows that as long as the average decoding
time of the frames (the first frame, the first two frames, the
first three frames, etc.) is always less than or equal to the
display interval, all the deadlines will be satisfied. This sug-
gests that we can slow down the decoder such that some
frames may even have decoding times larger than the dis-
play interval, provided that they can make use of the slack
time from the frames with shorter decoding times. This
gives great flexibility for DVS. In contrast, if a multimedia
system has no buffer between the decoder and the display
device or the buffer can only hold one frame at a time, the
schedulability criteria must be reduced to:

Ci ≤ T ∀i, 1 ≤ i ≤ n (2)

which is much more restrictive for DVS.
In this paper, we assume a decoder with DVS and are

only concerned with the dynamic energy consumption of
the multimedia decoder. We define a variable r, the fre-
quency scaling factor with a value within [0,1], which rep-
resents the actual speed at which the decoder will run (each
speed (working frequency) is associated with an optimum
operating voltage). For example, r = 1 means the decoder
will run at its full speed, while r = 0.5 is half speed. The
actual decoding time for frame i can be approximated as Ci

r ,
where Ci is the decoding time at full speed. We adopt the
approximate energy calculation from [15] to estimate the
dynamic energy consumption of the multimedia decoder:

E(r) = r2E0 (3)

where E0 is the energy consumption for a task at full speed,
r is the frequency scaling factor, and E(r) is the actual en-
ergy consumption at a speed specified by r with the corre-
sponding minimum operating voltage.

4. Control algorithm

In this section, we introduce our DVS feedback con-
trol algorithm. The time to switch between DVS settings
is assumed to be negligible; some processors stall for as
much as 50-100 µsec., but this is less than 1% of the time
needed for decoding each frame, and newer processors may
reduce or eliminate this latency. In addition, as explained in
the following, our control algorithm involves only several
add/multiplication operations. The timing and energy over-
heads are also negligible compared to those for decoding a
frame.

4.1. Dead-zone based control algorithm

Before decoding the next frame, we do not know how
much time will be required for it. Without a buffer, we
must use the most conservative estimate to set the decod-
ing speed. But if there are some decoded frames already
in the buffer between the decoder and the display device,
we can apply an operating frequency which we predict is
close to the optimum. Although the actual decoding time
of the frames may vary greatly, its effect on the real-time
constraint is hidden by the display buffer. In our algorithm,
we always try to control the number of decoded frames in
the buffer within a region specified by [Bl ,Bh], where Bl is
the lower threshold for the number of frames in the buffer
and Bh is the higher threshold.

As long as the number of frames in the buffer is within
the specified region, we assume that the current decoder
speed is the right choice for decoding the frames; i.e. the
average decode rate is equal to the display rate. However,
if the actual number of frames in the buffer becomes higher
or lower than the respective threshold, this means the cur-
rent decoding speed is too fast or too slow, respectively. We
apply a formal feedback controller to pull the number of
frames back into the specified region by adjusting the de-
coding speed.

Since our controller will be applied only when the frame
number is out of the specified region, this forms a “dead-
zone” based control mechanism. There are two reasons for
using a dead-zone: first, we can reduce the overhead of fre-
quent frequency and voltage switches; second, the quadratic
energy equation (3) suggests using a constant speed when-
ever possible in order to minimize the overall energy con-
sumption.

Our frequency scaling factor is composed of two parts:

r = re + rc (4)

where re is the scaling factor estimation based on the de-
coding information from the previous frames in a certain
window size (e.g. 100 frames) and rc is the outcome from
a controller, which can be regarded as an adjustment to re

in order to pull back the system into the dead-zone. The
combinational effect of re and rc will be illustrated in an
example scaling curve in Section 5. The calculation of re

comes from Theorem 1, which provides the schedulability
criteria. If we look at the previous frames within a certain
window size (labeled as {F1,F2, . . . ,FWindowSize}), a lower
bound on the constant decoding speed, rlb, can be obtained
from the following equation:

∑WindowSize
k=1

Ck
rlb

WindowSize
= T

The non-scaling decoding time Ck can be determined by
the scaling factor applied to that frame and the actual tim-



ing measurement for decoding that frame. Although this
frequency scaling factor lower bound does not guarantee
schedulability for these previous frames, it would give the
minimum energy consumption if it did. We use this lower
bound as re, which will be adjusted with the controller out-
put rc.

4.2. PI controller

We adopt a formal PI controller [3] to keep the number
of frames in the buffer within the dead-zone. This controller
is specified by the following equations:

rc = Kpe+Ki∑e

and

e =







Bh −b if b > Bh;
Bl −b if b < Bl ;

0 if Bl ≤ b ≤ Bh.

where e is the control error, which is the difference between
the measured control value (i.e., number of frames in the
buffer) and the control set-point. e is the input to the con-
troller. Kp and Ki are the proportional and integral gains of
the controller, respectively. Kp produces a controller output
proportional to the current control error, while Ki memo-
rizes the history and produces an output based on the past
control errors. b is the feedback information about the ac-
tual number of frames in the buffer. The controller output,
rc, is used to adjust re, as shown in equation (4).

When the system is above the dead-zone (b > Bh), the
higher threshold is used as the set-point for the controller,
and the lower threshold is used when the system is below
the dead-zone (b < Bl). When the system is within the dead-
zone, we let e be 0, just as if the system reaches its set-point,
and the controller output rc is a constant, due to the inte-
gral component in the controller. This constant value will
be kept effective until the number of frames in the buffer
reaches the middle of Bl and Bh. If this happens, it usu-
ally implies an over-compensation by the controller, and the
controller should be cleared (i.e., rc = 0).

The control problem described in this paper is a diffi-
cult problem itself. Unfortunately, we are unable to provide
quantitative analysis for the system model as well as the
controller design. But as a rule of thumb, smaller controller
gain values tend to give stable but less responsive perfor-
mance, while larger gains tend to make the controller un-
stable but provide fast response. We found by experiments
that small gain values in the controller are sufficient for our
purpose.

4.3. Real-time guarantee

Since we control the number of frames in the buffer
within a certain range, a frame with an extremely large de-

coding time will not necessarily result in a missed deadline,
but will simply reduce the number of frames in the buffer.
However, if the buffer occupancy is too small, a large de-
coding time may still lead to a missed deadline. One way to
solve this problem is for the decoder to detect this situation
and jump to a high (safe) speed to decode this long frame.
We call the scaling factor corresponding to this high speed
the panic factor, which we denote by rp.

If the current number of frames in the buffer is b and
the time interval between the present time and the next dis-
play time point is ∆t, the panic factor can be calculated as
follows:

rp =
WCET
∆t +bT

(5)

where WCET is the worst-case execution (i.e., decoding)
time and ∆t + bT is the total allowable time to decode the
next frame. Panic factor speed is the minimum speed re-
quired to avoid a missed deadline. Im et al. [6] suggested
using this speed to scale the decoder. We will compare this
method with our algorithm in Section 5.

In our feedback control algorithm, the final decoding
speed will be chosen by:

Max(re + rc,rp)

The panic factor speed is much more conservative when the
display buffer becomes almost empty. This is the best tech-
nique we have found so far in the literature to prevent dead-
line missing. As long as we have accurate knowledge about
the worst-case decoding time, we will never miss a dead-
line with panic factor speed. Of course, it is undesirable
to frequently jump to the panic factor, because the panic
frequency always tries to spend all available slack time in
decoding the next frame. This is very energy-inefficient be-
cause the subsequent operating frequency will have to stay
high for some period of time. Fortunately, our controller is
quite robust and the panic factor is rarely engaged.

5. Simulation experiments and discussion

To demonstrate the benefits of our control algorithm, we
compare the performance of different DVS techniques for
several different MPEG clips using simulation. We choose
MPEG video as our test application because of its large
range of variation in decoding time on a frame-by-frame
basis. Thus, we believe MPEG video is at least loosely rep-
resentative of playback of other compressed streams such
as MP3 audio. We use mpeg play [13], which is one of
the standard utilities to play mpeg-1 streams in UNIX sys-
tems, to record timing information for full-speed playback
and then use this baseline timing information to simulate
the timing and energy performance of several DVS tech-
niques. Decode time for each frame is obtained by scaling



Table 1. MPEG clips used in this paper

MPEG clips Frame types
Average
decoding
time (ms)

Worst-case
decoding
time (ms)

Decoding
time

standard
deviation

(ms)

Std./Ave.
ratio

Simulated
playback
rate (Fps)

Total
number of

frame
simulated

vid small I,B,P 3.11 10.86 1.62 0.52 35 1500
vid large I,B,P 10.36 23.24 3.08 0.30 35 1500
psycho I,P 14.85 21.64 2.35 0.16 35 1500
dg 2 I,P 9.24 26 3.58 0.39 35 2500

test motion I,B,P 15.16 26 1.62 0.11 35 2500
test nomotion busybkd I,B,P 14.27 25.89 2.78 0.20 35 2500
test nomotion flatbkd I,B,P 14.30 26.5 0.69 0.05 35 2500

the full-speed time by the frequency scaling factor, and en-
ergy consumption is estimated by applying equation (3).

5.1. Characteristics of the MPEG traces

We tried to choose a set of representative MPEG clips
in our simulation experiments. They are listed in Ta-
ble 1. These clips vary greatly in terms of decod-
ing times, timing variations, and frame types. The two
streams vid small and vid large show the same movie but
with different quality (160*120 and 320*240, respectively).
Test motion is a clip with an abnormally large amount of
motion. Test nomotion busybkd and test nomotion flatbkd
exhibit no motion except during one brief interval near the
end of the clip. They differ in that the static scene in
test nomotion busybkd contains many objects and colors,
while test nomotion flatbkd contains a single object against
a flat background. Streams psycho and dg 2 have only I and
P frames.

5.2. Comparison of various DVS schemes

We compare the following DVS strategies in our simula-
tor:

• Ideal Period
A decoder with DVS but no display buffer. This will

decode only one frame in each display period. In order to
meet the deadlines for the frames, condition (2) must be sat-
isfied. The best case is that the decoder will always choose
the correct scaling factor such that the actual (scaled) de-
coding time for each frame is exactly equal to the display
period. Of course this scaling method requires that the de-
coder knows the accurate timing information before decod-
ing that frame. For this strategy, we assume continuous
frequency/voltage scaling capabilities. We call this DVS
scheme Ideal Period, and it provides the energy consump-
tion lower bound by the DVS techniques in the systems such
as those studied in [1, 2].

• Optimum

A decoder with a large display buffer and knowledge of
the exact timing information for each frame. We devel-
oped an off-line scheduling algorithm, which satisfies the
schedulability condition (1), while minimizing the total en-
ergy consumption. This scheme sets up an achievable en-
ergy consumption lower bound by DVS provided that all
the deadlines are met. We call this scheme optimum. Again,
continuous DVS is assumed in this strategy. Because frames
can be decoded across display boundaries, a fairly straight
scaling curve will be expected in this scheme to achieve the
optimal energy savings.

• Panic factor

Panic factor scheduling as proposed by Im et al. [6], as
calculated in equation (5). In order to provide real-time
guarantees, accurate worst-case information is assumed to
be available. And we apply a frequency/voltage setting
which is linearly subdivided into 40 discrete levels from 0
to full speed. This frequency/voltage model is similar to
that proposed in [14]. The calculated panic factor will be
rounded up to the closest frequency/voltage level.

• Dead-zone based control algorithm

Our decoder with a display buffer and our feedback con-
trol scheme. As introduced in Section 4, this scheme spec-
ifies a region for the number of frames in the buffer. A
PI controller is used to pull the system back to this region
if the current number of frames in the buffer is out of the
specified region. If the lower threshold of this region is
too small, deadline missing may occur before the controller
can pull the number of frames back up to the region. Our
experiments show that Bl = 3 is an appropriate choice for
this lower threshold. If the width of the specified region is
small, the system may go out of the region frequently, caus-
ing the scaling factor to oscillate, which is undesirable in
terms of energy saving due to the quadratic nature of the
energy equation (3). However, too large of a value for the
high threshold will increase the cost of the system as well
as the energy consumption of the buffer. We chose Bh = 8,
as it can provide a large cushion space, while limiting the
size of the buffer. Due to space limitations, we only report



in this paper the results where the buffer occupancy region
is specified by [Bl = 3,Bh = 8], but our simulation results
show that larger high thresholds do not necessarily provide
better performance gains. Again, a discrete 40-level fre-
quency/voltage setting is used and each frequency factor ob-
tained from our control algorithm is rounded to the closest
frequency/voltage level as the final scaling factor decision.

Notice that all of these DVS strategies provide real-time
guarantees because the accurate decode timing information
or the worst-case information is assumed to be known by
these schemes. In our later discussion, this assumption will
be relaxed for a more realistic situation. We also consid-
ered a DPM technique in which one frame is decoded with
full speed in each display period , and the decoder will stop
until the next period arrives. However, since its energy con-
sumption is usually 3-4 times that of other schemes, we do
not present its results in this paper.

Figure 2. Energy consumption comparison
with different DVS schemes. All of the energy
is normalized by the energy consumption of the Panic
factor scheme with accurate worst-case information.

Figure 2 compares the energy consumption under these
schemes for different MPEG clips. All energy consumption
is normalized by that of Panic factor scheme. As one may
expect, Optimum consumes the least energy because it uses
an optimally feasible scheduling method. Another obser-
vation is that scaling methods with frame buffering are al-
most always much better than the scaling scheme for a sys-
tem decoding one frame per period, because Ideal Period
forms the lower bound for energy saving in such sys-
tems, e.g., [1, 2]. One exception occurs in the MPEG clip
test nomotion flatbkd, which can be explained by its small
timing variation shown in Table 1. When we compare the
feedback control algorithm with the panic factor scaling
method, our control algorithm always achieves better power
savings. Furthermore, our later experiments show that the
difference between these two schemes will be enlarged in a

more realistic situation, where accurate worst-case decode-
timing information is not available. Among all the meth-
ods examined, our dead-zone based control algorithm is the
closest to the optimal scaling, which gives the lower bound
for energy consumption with hard real-time guarantees.

Table 2. Maximum buffer occupancy during
the decoding process after the initial frames
are drained from the buffer

MPEG clips Optimum
Panic
factor

scaling

Feedback
control

vid small 28 7 11
vid large 13 3 8
psycho 18 2 9
dg 2 24 5 12

test motion 15 2 10
test nomotion busybkd 5 2 9
test nomotion flatbkd 5 2 6

Another interesting comparison comes from looking at
the buffer occupancy for the scaling methods with frame
buffering. Table 2 provides the maximum display-buffer
occupancy under the three scaling methods during the de-
coding process for each MPEG clip. Optimum consumes
the largest buffer size because it always tries to accumu-
late as much slack time as possible from the frames with
shorter decoding times for the frames with longer decod-
ing times. The maximum buffer occupancy for the feed-
back control scheme is very close to the specified higher
threshold (eight), which proves the effectiveness of our PI
controller. The panic factor scheduling method always tries
to use up the accumulated slack times, thus the number of
frames in the buffer is always small.

5.3. Scaling without accurate worst-case timing in-
formation

In the various DVS schemes detailed above, exact or
worst-case timing information is used to provide real-time
guarantees. However, this information is often unavailable.
Moreover, the worst-case decoding time varies significantly
among different MPEG clips, as shown in Table 1. Using
a uniform worst-case decoding time will be very inefficient
in terms of energy savings [2]. A reasonable approach is
to predict the worst-case timing information. As an alterna-
tive, we can sacrifice the real-time guarantee, which is often
acceptable for multimedia applications. However, we will
show in the following discussion that our feedback control
algorithm provides very robust performance in that it is in-
sensitive to the worst-case decoding time prediction.

Lacking accurate information for an MPEG stream to be
displayed, we propose a heuristic technique to estimate the
worst-case decoding time. This method is borrowed from
the decoding time prediction scheme introduced in [5]. We



use the product of the maximum decoding time currently
seen and a prediction factor as the worst-case decoding time
estimation. The initial value of the prediction factor is set
to 1.1. If the next frame does not miss the deadline, the pre-
diction factor will be reduced by 0.25% until the prediction
factor reaches 1.0 or a deadline is missed. If the latter hap-
pens, the prediction factor will be reset to its initial value.

Figure 3 illustrates the energy consumption for our con-
trol algorithm and for the panic factor method, with ac-
curate/estimated worst-case decoding time. For all the
MPEG clips we tested, our control algorithm has almost the
same energy consumption regardless of whether the accu-
rate worst-case timing information is used or not. On the
other hand, the panic factor scaling method using worst-
case prediction consumes more energy than its counterparts
with accurate worst-case information for those MPEG clips
with large timing variation such as vid small and vid large.

Figure 3. Energy consumption comparison
for the panic factor scaling method and the
feedback control approach with/without ac-
curate worst-case decoding time information.
All of the energy is normalized by that of the Panic
factor scheme with accurate worst-case information.

As mentioned above, when worst-case estimation is
used, hard deadline guarantees cannot be made in theory.
Table 3 lists the number of frames missing their deadlines
for both methods, as well as the energy consumption. While
the panic factor scaling always produces missed deadlines
due to the inaccurate worst-case information, our control
algorithm still provides strong real-time performance. Ex-
cept for one clip (vid small), our feedback control approach
consumes no more than 3% more energy than optimal scal-
ing, while it consumes up to 20% less energy than the panic
factor scaling method.

As an example, the frequency scaling process for one
clip (dg 2) is shown in Figure 4 including three different
scaling approaches: optimum, feedback control, and panic

Table 3. Performance comparison between
panic factor scaling and our feedback control
approach without accurate worst-case infor-
mation

MPEG clips
Panic
factor

scaling

Feedback
control

Energy
saving by
feedback
control

over
panic
factor

Frames
missing
deadline

Energy
more

than Op-
timum

Frames
missing
deadline

Energy
more

than Op-
timum

vid small 5 46.5% 0 16.7% 20%
vid large 6 10.7% 0 1.8% 8%
psycho 1 3.9% 0 1.5% 2.3%
dg 2 4 8.8% 0 2.8% 5.5%

test motion 4 2.0% 0 0.6% 1.4%
test nomotion busybkd 4 5.4% 0 0.7% 4.4%
test nomotion flatbkd 3 1.1% 0 0.5% 0.6%

factor scaling. In the optimum method, the scaling curve is
extremely smooth, as we can expect from the energy equa-
tion (3). At the other extreme, the panic factor method pro-
duces a very noisy scaling factor, due to its rather ad hoc na-
ture. Our feedback control method produces a scaling curve
in between, suggesting possible energy saving compared
with the panic factor scaling method. Also seen from Fig-
ure 4(b) is that our controller is very effective to pull back
the system into the specified “dead-zone”. When the sys-
tem is within the “dead-zone”, the scaling factor is mainly
determined by re (see equation (4)), which is rather smooth
(e.g., the scaling segment after the 500th frame). Whenever
the frame number in the buffer is outside the “dead-zone”,
the controller is engaged, and, as an adjustment to re, the
controller output rc is changed rapidly in the opposite di-
rection of the change in the frame number until the system
returns to the “dead zone” again. For example, the scaling
segment before the 1500th frame illustrates such a returning
process. The two spikes shown in the scaling curve are due
to our conserving real-time guarantee scheme as discussed
in Section 4.3.

6. Conclusions and future work

This paper introduced a control feedback approach to
DVS for reducing power consumption in multimedia de-
coders. A PI controller is used to keep the decoder rate
as close as possible to the display rate without any prior
knowledge of the multimedia stream or individual frames.
When compared to other DVS approaches, the control feed-
back technique enables the power consumption to approach
that of the optimal scaling method, while providing strong
real-time guarantees even without worst-case decode infor-
mation.

Future work will include investigating the power con-
sumption of the display buffer, although the maximum
buffer size required for the control feedback approach is



0 500 1000 1500 2000 2500
0.2

0.4

0.6

0.8

1

S
ca

lin
g 

F
ac

to
r

0 500 1000 1500 2000 2500
0

5

10

15

20

25

N
o.

 o
f f

ra
m

es
 in

 b
uf

fe
r

Frame Number

0 500 1000 1500 2000 2500
0.2

0.4

0.6

0.8

1

S
ca

lin
g 

F
ac

to
r

0 500 1000 1500 2000 2500
0

5

10

15

20

25

N
o.

 o
f f

ra
m

es
 in

 b
uf

fe
r

Frame Number

0 500 1000 1500 2000 2500
0.2

0.4

0.6

0.8

1

S
ca

lin
g 

F
ac

to
r

0 500 1000 1500 2000 2500
0

5

10

15

20

25

N
o.

 o
f f

ra
m

es
 in

 b
uf

fe
r

Frame Number

(a) (b) (c)

Figure 4. Scaling process for 3 different DVS schemes. (a) Optimal scaling. (b) Feedback control algorithm.
(c) Panic factor method. The number of decoded frames in the buffer is also shown along the decoding process for each
DVS scheme.

minimal. In addition, we will explore algorithms that
can handle non-continuous input streams (e.g., networked
streams), in which a frame may not always be available for
decoding. We will also extend our research to systems with
multiple real-time tasks. Finally, this technique will be im-
plemented in a real system for measured experiments.

7. Acknowledgments

This work is supported in part by the National Sci-
ence Foundation under grant Nos. CCR-0105626, CCR-
0133634, and a grant from Intel MRL. We would also like to
thank the anonymous reviewers for their helpful comments.

References

[1] K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-based
dynamic voltage and frequency scaling for a MPEG decoder.
In Proceedings of International Conference on Computer
Aided Design, pages 732–37, November 2002.

[2] E. Chung, L. Benini, and G. D. Micheli. Contents provider-
assisted dynamic voltage scaling for low energy multime-
dia applications. In International Symposium on Low Power
Electronics and Design, pages 42–47, August 2002.

[3] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital
Control of Dynamic Systems. Addison-Wesley, third edition,
1998.

[4] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. A control
theoretic analysis of RED. In Proceedings of IEEE INFO-
COM, April 2001.

[5] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving energy
with architectural and frequency adaptations for multimedia
applications. In Proceedings of the 34th Annual Interna-
tional Symposium on Microarchitecture, December 2001.

[6] C. Im, H. Kim, and S. Ha. Dynamic voltage scheduling tech-
nique for low-power multimedia applications using buffers.
In International Symposium on Low Power Electronics and
Design, pages 34–39, August 2001.

[7] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A
feedback control approach for guaranteeing relative delays
in web servers. In Proceedings of the IEEE Real-Time Tech-
nology and Applications Symposium, June 2001.

[8] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online data
migration with performance guarantees. In Proceedings of
the USENIX Conference on File and Storage Technologies,
pages 219–230, January 2002.

[9] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback
control real-time scheduling: Framework, modeling, and al-
gorithms. Real-Time Systems Journal, 23:85–126, 2002.

[10] Y. Lu, L. Benini, and G. D. Micheli. Dynamic frequency
scaling with buffer insertion for mixed workloads. IEEE
Transactions on computer-aided design of integrated cir-
cuits and systems, 21(11):1284–1305, November 2002.

[11] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated
caching services: a control-theoretical approach. In Pro-
ceedings of the International Conference on Distributed
Computing Systems, April 2001.

[12] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and
K. Skadron. Control-theoretic dynamic frequency and volt-
age scaling for multimedia workloads. In Proceedings of
the 2002 International Conferences on Compilers, Architec-
ture, and Synthesis for Embedded Systems, pages 156–163,
October 2002.

[13] L. A. Rowe, K. Patel, and B. C. Smith. Performance of
a software MPEG video decoder. In Proceedings of ACM
Multimedia, August 1993.

[14] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Al-
bonesi, S. Dwarkadas, and M. L. Scott. Energy-efficient pro-
cessor design using multiple clock domains with dynamic
voltage and frequency scaling. In Proceedings of 8th Inter-
national Symposium on High-Performance Computer Archi-
tecture (HPCA’02), February 2002.

[15] A. Sinha and A. P. Chandrakasan. Energy efficient real-time
scheduling. In Proceedings of the International Conference
on Computer Aided Design (ICCAD), November 2001.

[16] D. C. Steere, A. Goel, J. Gruenburg, D. McNamee, C. Pu,
and J. Walpole. A feedback-driven proportion allocator
for real-rate scheduling. In Proceedings of the Third Sym-
posium on Operating System Design and Implementation,
pages 145–158, February 1999.


