
Memory Reference Reuse Latency:
Accelerated Warmup for Sampled Microarchitecture

Simulation
John W. Haskins, Jr.

Center for Computing Sciences
Bowie, MD 20715
predator@super.org

Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

skadron@cs.virginia.edu

Copyright c
�

2003 IEEE. Published in the Proceedings of the 2003 International Symposium on Performance Analysis of Systems and Software (ISPASS), March 2003, Austin, Texas. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Abstract— This paper proposes to speedup sampled micropro-
cessor simulations by reducing warmup times without sacrificing
simulation accuracy. It exploiting the observation that of the
memory references that precede a sample cluster, references that
occur nearest to the cluster are more likely to be germane to the
execution of the cluster itself. Hence, while modeling all cache and
branch predictor interactions that precede a sample cluster would
reliably establish their state, this is overkill and leads to long-
running simulations. Instead, accurately establishing simulated
cache and branch predictor state can be accomplished quickly
by only modeling a subset of the memory references and control-
flow instructions immediately preceding a sample cluster.

Our technique measures memory reference reuse latencies
(MRRLs)—the number of completed instructions between con-
secutive references to each unique memory location—and uses
these data to choose a point prior to each cluster to engage cache
hierarchy and branch predictor modeling. By starting cache and
branch predictor modeling late in the pre-cluster instruction
stream, we were able to reduce overall simulation running times
by an average of 90.62% of the maximum potential speedup
(accomplished by performing no pre-cluster warmup at all), while
generating an average error in IPC of less than 1%, both relative
to the IPC generated by warming up all pre-cluster cache and
branch predictor interactions.

I. Introduction
This paper explores a technique for accelerating sampled
microarchitecture simulations by reducing the amount of cache
and branch predictor warmup prior to each sample cluster
where cycle-accurate simulation data are gathered. By warmup
we refer to the practice of modeling cache and branch predictor
interactions for a specified interval prior to actual data gath-
ering, in an effort to establish the simulated cache and branch
predictor state precisely as they would have appeared had the
entire simulation been conducted in cycle-accurate detail.

Unfortunately, highly detailed software simulation of a
microprocessor is prohibitively slow. Even on the fastest
hardware, slowdowns of several orders of magnitude (relative
to native execution) are common. For example, KleinOsowski
et al. [9] show that cycle-accurate modeling of many SPEC
CPU2000 [11] benchmarks on reference inputs can take
many weeks. Still, software simulation is fundamental to all
computer architecture research. To make simulation-driven

research tractable, many studies employ sampling: taking mea-
surements of a small, representative subset of the instructions
that are executed over the lifetime of the benchmark. Since
it is precisely the software simulation of the cycle-by-cycle
progression of individual instructions through the pipeline that
produces the overwhelming slowdowns, in sampled simulation
only the subset of instructions which constitute the sample
are modeled in cycle-accurate detail. Fortunately, measuring
the instruction throughput (i.e., instructions per cycle, IPC) of
only a subset of the instructions can—for a properly chosen
subset—yield information about the instruction throughput of
a benchmark’s entire end-to-end execution. Conte et al. [3],
and Sherwood et al. [15], [16] propose strategies for choosing
representative samples that yield very good approximations to
true end-to-end IPC; both will be discussed in the Section II.

To preserve the integrity of sampled measurements, the
simulated processor state must be accurately established prior
to the cycle-accurate simulation of each cluster. In other words,
accuracy is predicated upon successfully defeating the so-
called cold-start bias; because cache and branch predictor
performance are critical to microprocessor performance, if
the state of the cache (at all levels of the hierarchy) and
branch predictor do not appear at least approximately as they
would have had the entire simulation been performed in cycle-
accurate detail at the leading edge of a cluster, the simulation
results may be inaccurate.

One straight-forward technique to guarantee the accuracy
of pre-cluster cache and branch predictor state is to model the
interaction of each memory reference—instructions and data—
with the cache hierarchy and every control-flow instruction
with the branch predictor while the simulator is executing pre-
cluster instructions. (All cache and branch predictor interac-
tions are already modeled within the cycle-accurate clusters.)
In this way, the cache and branch predictor will always contain
exactly the same state as if cycle-accurate simulation had been
employed throughout the simulation. Though its accuracy is
unimpeachable in terms of cache and branch predictor state,
this fullwarmup method is heavy-handed. While not as expen-
sive (in terms of running time) as cycle-accurate simulation,
modeling all cache and branch predictor interactions is still

costly.
One method for further accelerating sampled simulations

is to avoid fullwarmup by only modeling those interactions
that occur within a given number of instructions prior to the
cluster [3], [5], [8], [12]. Our technique makes the determina-
tion of when to engage cache and branch predictor warmup
by exploiting memory reference reuse latencies (MRRL)—a
measurement of the number of instructions that elapse between
successive references to the same address. We have developed
software that facilitates MRRL measurements and determines
the pre-sample warmup interval independently for the instruc-
tion stream, data stream, and control-flow instruction stream.

The rest of this paper is organized as follows. We discuss
related work in Section II. Section III explains Memory
Reference Reuse Latency, its measurement and its significance.
Section IV applies MRRL to sampled simulation. We explain
our experimental methodology in Section V, present our
results in Section VI and finally conclude in Section VII.

II. Related Work
Several studies examine ways to reduce overall simulation run-
ning times by executing only a small subset of the benchmark
in cycle-accurate detail. Skadron et al. [17] identify short,
representative simulation windows of 50 million instructions
for the SPECInt95 benchmarks. The key insight which guides
their approach is to exclude the benchmarks’ unrepresentative
start-up behavior (e.g., data structure setup and initialization).

Conte et al. [3] take a different approach and instead simu-
late multiple randomly-chosen, fixed-sized clusters of contigu-
ous instructions from the complete dynamic instruction stream.
By choosing clusters randomly (i.e., such that all parts of the
dynamic instruction stream have equal probability of being
selected), random cluster sampling is amenable to statistical
analysis, and allows the determination of a confidence interval
within which the true IPC resides. Their work demonstrates
the applicability of random cluster sampling to microprocessor
simulation and focuses on the problem of warming up the
branch prediction structures (assuming a perfect cache). They
furthermore show that using stale predictor state from the
previous cluster plus a short warmup interval of at least 7,000
instructions [10] prior to each cluster is sufficient to minimize
cold-start bias and achieve very small errors of a few percent
in the mean observed IPC. In the experiments conducted for
this research we use random cluster sampling, prefixing a
warmup interval determined by MRRL before each cluster and
preserving stale cache and branch predictor state.

Sherwood et al. [15] propose Basic Block Distribution
Analysis (BBDA). Their technique profiles the execution fre-
quency of a benchmark’s basic blocks in order to isolate a
contiguous subset of the dynamic instruction stream whose
execution characteristics closely mimic the complete, end-
to-end execution of the benchmark. BBDA’s key insight is
that periodic basic block execution frequency behavior reflects
the periodicity of various architectural metrics such as IPC,
cache miss rate, and branch predictor accuracy in cycle-
accurate simulation. In [16], Sherwood et al. build upon

the BBDA concept to create a technique that automatically
isolates multiple contiguous subsets of the dynamic instruction
stream since some benchmarks’ behavior is too complex to
be characterized by a single instruction stream slice. In both
cases their aim is to reduce simulation running times by only
executing in cycle-accurate detail, a small representative slice
of the dynamic instruction stream.

Other heuristics for reducing cold-start bias are studied by
Kessler et al. [8]. They consider using half of a sample’s
references for warmup purposes; tracking only entries that are
known to contain good state; recycling stale state; and flushing
state but estimating how much error this introduces.

The warmup acceleration methods proposed by [3], [8],
however, may compromise the accuracy of the pre-sample
state initialization if used to warmup cache state. Nguyen et
al. [12] on the other hand, approach the problem of warmup
analytically as a part of the trace-driven PARSIM parallel
microprocessor simulation system. Their formula calculates a
function of the cache block width, associativity, the average
population density of memory references within the instruction
stream, and the average steady-state cache miss ratio. This so-
lution is a substantial improvement over previous techniques;
by approaching the problem analytically, their technique is
able to achieve rapid warmup without compromising accuracy.

Haskins and Skadron [5] propose a warmup acceleration
technique called Minimal Subset Evaluation (MSE). The MSE
technique uses formulas derived from combinatorics and prob-
ability theory to calculate for some user-chosen probability � ,
the number of memory references prior to each cluster that
must be modeled in order to achieve accurate cache state;
thus with probability � , cache state will appear exactly as it
would had fullwarmup been used. As with PARSIM, MSE’s
mathematical underpinnings improve upon prior efforts by
maintaining accuracy while reducing warmup times. Unlike
PARSIM, MSE requires neither a priori knowledge of the
steady-state cache miss ratio nor an instruction trace of the
benchmark to be modeled (from which to derive the proportion
of the instruction stream populated by memory references).
The work in [5], however, only treats warmup acceleration of
pre-cluster memory reference interactions with the first-level
data- and instruction-cache; it is not obvious that MSE extends
to (sometimes unified) secondary caches or branch predictors.

Karlsson et al, [6] develop an analytical model for char-
acterizing working-set size as a function of database size in
decision-support systems (DSSs). They perform an insightful
investigation of temporal locality in DSSs and construct a
model for identifying potentially reusable query components.
Phalke and Gopinath [13] model inter-reference gaps (which
are equivalent to memory reference reuse latencies) as � -
th order Markov chains. By modeling per-address temporal
locality in this way, they were able to develop improved
algorithms for page replacement, dynamic memory manage-
ment and trace compression. Thiébaut [19] draws an analogy
between memory access patterns and fractal random walks
on the one-dimensional lattice (where the countably infinite
lattice is mimicked by a large memory address space). From

1

pre−cluster cluster

cold
phase

1 2 3 n−2 n−1 n

hot
phase

warm
phase

Lss − w
N

w
N

Fig. 1. Pre-cluster–cluster pair as the discrete interval � ������� partitioned into � mutually-exclusive buckets to form the 	�
����� histogram; here �������

bucket � , therefore warmup begins ��� instructions prior to instruction which borders the cluster.

this framework, Thiébaut describes a method for accurately
predicting the miss ratio of fully associative caches. While
these works do not treat warmup in execution-driven simu-
lation, they were instructive in their analytical assessment of
temporal locality in memory reference streams.

Wood et al. [21] establish the concept of cache generations.
Each cache generation begins immediately after a new line
is brought into the cache and ends when the line is evicted
and replaced. Their notion of cache generations establishes a
framework for analytically estimating the unknown or cold-
start reference miss ratio, � . They further establish that �
is substantially higher than the miss ratio of references cho-
sen at random. Armed with reliable �� —estimated unknown
reference miss ratio—they were able to accurately estimate
cache miss ratios in sampled trace-driven simulations. This
research however, does not address the issue of accurately
establishing simulated cache hierarchy or branch predictor
state for execution-driven simulations.

In their Cache Decay research, Kaxiras et al. [7] propose
a technique of cutting power to (heuristically presumed) dead
cache lines, thereby reducing leakage power. For the SPEC
CPU2000 benchmarks, their measurements show that for a
32KB L1 data-cache, a cache line’s dead time can range from
45% to as much as 99% of the total time since being loaded.
Their work shows that most cache lines’ active lifetime is
significantly longer than their useful lifetime, which confirms
our hypothesis that references occurring many instructions
before a cluster are unlikely to have any relevance within the
cluster and can therefore be safely omitted from warmup.

As in prior research, we achieve efficient execution by
breaking the simulation into three separate phases. The first,
aggressive fast-forward phase can be considered the “cold”
phase; this is followed by the “warm” phase, where cache and
branch predictor interactions are modeled; and concluded by
the “hot” phase where cycle-accurate simulation of the proces-
sor pipeline takes place. The hot phase contains sample cluster
instructions and preceding cold and warm phases contain the
pre-cluster instructions. Hence, for each pre-cluster–cluster
pair, the aim of our research is to preserve simulation accuracy

as we increase the duration of the cold phase while reducing
the duration of the warm phase, always leaving the hot phase
unchanged. Ad-hoc warmup methods that guess a warmup
amount (e.g., � % of all pre-cluster instructions) may still
yield inaccurate results (if warming up only � % of pre-cluster
instructions is too few) or fall short of the potential speedup (if
warming up fewer than � % of pre-cluster instructions would
have still yielded accurate results). By measuring the reuse
latency of individual memory addresses, we were able to forge
an alternative warmup acceleration technique that preserves
accuracy by determining which references are likely to be
germane to each cycle-accurate cluster.

III. Memory Reference Reuse Latency
Memory reference reuse latency (MRRL) refers to the elapsed
time between a reference to some memory address M[�]
and the next reference to M[�]. For our purposes “time”
is measured in the number of completed instructions. To
facilitate a rigorous discussion of MRRL, we must establish a
relationship between the � instructions in a single pre-cluster–
cluster pair and the elements of the discrete interval � �"!#�%$; let
instruction &(')+* , for *-,/.0�"!21�!43 3�3 !#�65 , as pictured in Figure 1.
Imagine further, that �7�0!��%$ is partitioned into 8:9;� mutually-
exclusive buckets whose union is exactly �7�0!��%$.

We measured MRRLs for each benchmark using custom-
made MRRL profiling software. As the profiler simulates
each pre-cluster–cluster pair, the profiling software maintains
several associative arrays of memory reference addresses,
M[�]—one for the instruction stream, one for the data stream,
and one for the stream of branch instructions. Each element
of the array is logically timestamped with the number of
instructions executed as of the currently simulating memory
or branch instruction; if a previously-encountered address is
re-accessed, the difference of the previous timestamp and the
current number of executed instructions is temporarily stored
as <=*>8@?48 . These <=*�8@?48 are used to concurrently build a reuse
latency histogram by incrementing the count of the bucket that
contains <=*>8@?A8 . When a pre-cluster–cluster section concludes,
the profiler outputs its <=*>8@?48 histogram. These histograms
contain the complete memory reference reuse latency profile

for each pre-cluster–cluster pair.
A pre-cluster–cluster histogram counts the number of ref-

erences whose reuse latencies fall within 8 disjoint length
intervals. Formally, each histogram gives the count of refer-
ences for which the number of elapsed instructions between
successive accesses to the same address lies within the interval
subset bucket � , where � , . �"!#1 !A3�3 3�!�8 5 for all 8 buckets. Not
surprisingly, the histograms invariably tell the same story when
plotted: A far greater number of references are revisited a
small number of instructions after their most recent access
(i.e., the histogram bucket with the largest population was
always bucket �). Thus, the more instructions that elapse after
an access to M[�], the less likely M[�] is to be accessed again
during the current pre-cluster–cluster pair. This is exactly as
we had expected, in light of concepts pioneered in [21] and
subsequent work in [7].

From the histograms we can calculate the reuse dis-
tance corresponding to any desired percentile � , i.e., the
bucket � for which at least ��� of references are contained in� � �	� � bucket

�
. Let
�� ') bucket � mean that the � th bucket

of the � �"!#�%$ interval is upper-bounded at ���
�� instructions
into the pre-cluster–cluster pair (i.e., bucket � : � �-!#���
�� $��
�7�0!��%$). In other words, of all the references in the current pre-
cluster–cluster pair, ��� have reuse latencies of less than
��
instructions.

By engaging warmup
 � instructions prior to the current
pre-cluster–cluster boundary for large enough1 � , we know
that the overwhelming majority of addresses that will be ac-
cessed during the simulation cluster will have been initialized.
We argue that if ��� of references require only
�� instruc-
tions between successive accesses, then it is pointless to model
the few (� ������������) pre-cluster cache and branch predictor
interactions that occur more than
 � instructions before the
cluster, since these references will probably not be relevant
to the cluster’s precision and require disproportionately long
to warmup. This strategy of delaying pre-cluster cache and
branch predictor modeling will be explained in more detail in
the next section.

IV. Accelerating Warmup
The steps of the MRRL warmup acceleration technique are
enumerated below:

1) First, the user selects the locations of the cycle-accurate
clusters within the benchmark; by corollary non-cluster
regions are selected simultaneously. Each cluster is
paired with its own preceding non-cluster (i.e., pre-
cluster) region.

2) The user next profiles the benchmark to characterize,
for each pre-cluster–cluster pair, the reuse latencies of
all references that occur. As this profile data is valid for
any cache and branch predictor configuration, this is a
one-time cost for each benchmark sample.

3) Simulations can then be run in an aggressive fast-
forward mode, updating only architected state. At
 �

1A discussion of “large enough” � appears in Section VI.

Pipeline
Issue Width 8 instructions/cycle
Decode Width 8 instructions/cycle
Register Update Unit 128 entries
Load–Store Queue 32 entries
Commit Width 8 instructions/cycle

Cache Hierarchy
L1 Data 16KB; 4-way assoc., 32B lines, 2-cycle hit
L1 Instruction 8KB; 2-way assoc., 32B lines, 2-cycle hit
L2 Unified 1MB; 4-way assoc., 64B lines, 20-cycle hit
Memory Access Latency 151 cycles

Combined Branch Predictor
Bimodal 8192 entries
PAg 8192 entries
Return Address Stack 64 entries
Branch Target Buffer 2048 entries; 4-way assoc.
Mispredict Latency 14 cycles

TABLE I

CONFIGURATION OF SIMULATED CACHE AND BRANCH PREDICTOR.

instructions prior to the cluster, the simulator shifts
into warmup mode where cache hierarchy and branch
predictor interactions are modeled. Once the cluster is
reached, the cache(s) and branch predictor will contain
accurate state, and cycle-accurate, simulation begins.
This last step repeats for each pre-cluster–cluster pair.

Contrast this approach to the more conservative technique
of modeling all pre-cluster cache and branch predictor inter-
actions, i.e., fullwarmup. Obviously, modeling all pre-cluster
cache and branch predictor interactions will maintain perfect
state throughout all levels of the cache hierarchy and in the
branch predictor, rendering the simulation data impervious
to inaccuracies that arise from cold-start bias; only sampling
error remains. Reciprocally, stale-state or nowarmup—as the
latter name implies—does not model any pre-cluster cache
or branch predictor interactions, but merely recycles state
as it appeared at the conclusion of the previous cluster. By
not modeling cache and branch predictor state prior to each
cluster, nowarmup is very susceptible to cold-start bias, as will
be shown in the next Section. In our discussion of MRRL’s
accuracy, we refer not only to whether the true end-to-end
cycle-accurate IPC is contained within a statistical confidence
interval, but also to the deviation between the IPC yielded
by MRRL-driven warmup, and—for the same sample—by
fullwarmup. We measure this deviation by calculating the
relative error thus: �������! #"%$'&)(+*�*�,.-)"%$'&0/214353 68729;:'1�<"%$'&0/214353 68729;:'1�< . In our
discussion of MRRL’s speedup capability, we refer to the
amount of potential speedup over fullwarmup which (as shall
be shown in the next section) is the running time of nowarmup.

V. Methodology
The data discussed in this section were gathered using random
cluster sampling as described by Conte et al. [3]. Random
cluster sampling is attractive because its results are amenable
to rigorous statistical analysis. In our experiments, 50 clusters
containing 1 million instructions apiece were chosen at random
from the end-to-end dynamic instruction stream. To select
the clusters, benchmarks were first executed by sim-fast—the

benchmark IPC ������� IPC ����	
	����������� IPC ����������� ��� � IPC !#"�����������
applu 0.831 -7.12% 0.00% -0.69%
apsi 1.008 3.12% -0.01% -2.23%
art 110 0.598 -0.57% 0.00% 0.34%
crafty 0.569 -3.64% -0.02% -0.80%
equake 0.310 0.42% 0.00% 2.22%
facerec 1.446 -4.87% 0.18% -10.46%
fma3d 0.535 -0.37% 3.90% 1.57%
galgel 1.334 -6.66% -0.02% -14.99%
gap 0.750 -9.61% 0.01% -1.05%
gzip graphic 1.365 -3.28% -0.09% -0.52%
lucas 0.774 2.25% -0.04% 0.23%
mcf 0.092 3.04% 0.00% 0.84%
mgrid 0.987 4.72% -0.01% -1.87%
swim 0.694 3.21% 0.00% -0.68%
twolf 0.636 -1.08% 0.13% -1.76%
vortex lendian2 1.057 -3.18% 0.06% -0.63%
vpr route 1.023 0.18% 0.00% -1.16%
MEAN 3.37% 0.26% 2.47%

TABLE II

IPC %-ERROR RELATIVE TO FULLWARMUP (
$�%'& (+*�*�, ��� � � �)($�%'& /214353 68729;:'1�<$�%*& /214353 68729;:'1�<). MEAN CALCULATIONS BASED ON THE ABSOLUTE VALUE OF ERRORS.

rapid instruction-level simulator from the SimpleScalar [1],
[2] toolset—to obtain the dynamic instruction count. Next, a
simple Perl script was used to select 50 1-million-instruction
clusters at random2 from the discrete interval � �"!#�%$, where �
is the dynamic instruction count. The location (in the number
of instructions relative to the start of execution) of the 50
clusters selected were then saved to a file, and subsequently
used to drive the multiple cluster profiling and simulation steps
enumerated in Section IV.

For the MRRL simulations, the warm phase was engaged

 � instructions prior to each cluster for �,+ ��3 -.-#- . Re-
call from Section III that MRRL initiates cache and branch
predictor warmup according to the maximum length of reuse
latencies that compose the � -th percentile of all reuse latency
measurements. We chose to study �/+ � 3 -#-#- (i.e., the 99.9-th
percentile) and find that it performs well in terms of absolute
deviations in IPC, statistical analysis of the deviations, and
speedup. Analysis of other � to find a minimum percentile
is beyond the scope of this work, and is an area of future
research.

All benchmarks come from the SPEC CPU2000 suite [11];
the binaries were compiled into the Alpha AXP instruction set
and statically linked so that the simulations see all user-space
program behavior, including library routines. The MRRL
profiler and the multiple cluster simulator were adapted from
sim-safe and sim-outorder, respectively, from SimpleScalar.
To measure simulation time data as accurately as possible,
sim-outorder was further modified to use the UNIX system
call 021�354)6 ?�7.081�� � to monitor the CPU time of each simulation

2By “at random,” we mean such that all regions of the discrete interval
� ��� � � have equal probability of being selected.

regardless of other activity on the host system. (All the scripts
and software developed for this research are available for
download from http://lava.cs.virginia.edu/.) Table I gives a
brief description of the cache hierarchy and branch predictor
configuration.

Once each benchmark’s 50-cluster sample was selected,
the next step was to profile to gather MRRL data for each
benchmark. A Perl script was then used to extract
 � for
each benchmark’s pre-cluster–cluster pairs. When fed to the
multiple cluster simulator, these data were used to demarcate
the cold phase from the warm phase. The previously chosen
hot phases (clusters) remained fixed just as they were during
the profile.

The three metrics we use to measure MRRL’s merit are
percent-error IPC deviation from fullwarmup, accuracy with
respect to the true IPC, and running time as a percentage of
fullwarmup. For completeness and as a basis for discussing
simulation acceleration, in addition to demonstrating the va-
lidity of MRRL as a tool for rapid, accurate simulation, we also
show data arising from nowarmup for each of the three metrics
aforementioned. (Recall that nowarmup merely recycles state
from one cluster to the next, and models caching and branch
prediction solely during the clusters.)

For each benchmark, Table II shows the true end-to-
end IPC3 (i.e., IPC �������) generated by simulating in cycle-
accurate detail for the entire dynamic instruction stream, full-
warmup IPC (i.e., IPC ����	
	���������9�) percent-error deviation rel-

3Most of these IPCs come from the SimPoint [14] Web site. They were
generated for a specific configuration of sim-outorder (linked to from the site).
MRRL, fullwarmup, and nowarmup experiments compared against these IPCs
use the same sim-outorder configuration and the same benchmark binaries.

benchmark IPC ������� IPC ����	
	���������9� IPC ����������� ��� � IPC !#"�����������
applu 0.831 0.772 � 0.151 0.772 � 0.151 0.767 � 0.158
apsi 1.008 1.039 � 0.063 1.039 � 0.064 1.039 � 0.064
art 110 0.597 0.595 � 0.029 0.595 � 0.029 0.597 � 0.029
crafty 0.569 0.548 � 0.014 0.548 � 0.014 0.544 � 0.014
equake 0.310 0.311 � 0.104 0.311 � 0.104 0.318 � 0.110
facerec 1.446 1.376 � 0.460 1.378 � 0.460 1.232 � 0.135
fma3d 0.535 0.533 � 0.061 0.554 � 0.058 0.542 � 0.055
galgel 1.334 1.245 � 0.339 1.245 � 0.339 1.059 � 0.327
gap 0.750 0.678 � 0.085 0.678 � 0.085 0.671 � 0.081
gzip graphic 1.365 1.320 � 0.094 1.319 � 0.094 1.313 � 0.094
lucas 0.774 0.791 � 0.157 0.791 � 0.157 0.793 � 0.144
mcf 0.092 0.095 � 0.052 0.095 � 0.052 0.096 � 0.050
mgrid 0.987 1.034 � 0.106 1.034 � 0.106 1.014 � 0.080
swim 0.694 0.716 � 0.090 0.716 � 0.090 0.711 � 0.086
twolf 0.636 0.629 � 0.004 0.630 � 0.004 0.618 � 0.009
vortex lendian2 1.057 1.023 � 0.040 1.024 � 0.040 1.017 � 0.040
vpr route 1.023 1.025 � 0.038 1.025 � 0.038 1.013 � 0.036

TABLE III

IPC 95% CONFIDENCE INTERVALS CENTERED AROUND ����� (THE OVERALL SAMPLE IPC), FOR fullwarmup, MRRL ��� 	
	
	 , AND nowarmup. SUCCESSFUL

SIMULATIONS CONTAIN IPC ������ WITHIN THEIR CONFIDENCE INTERVAL.

ative to IPC ������� , and MRRL ��� ����� IPC (i.e., IPC ����������� ��� �) and
nowarmup IPC (i.e., IPC !#"������� �9�) percent-error deviation
relative to IPC ����	
	���������9� . In other words, Table II compares
the sample means for IPC ������� ��� ��� � and IPC !#"����������� to the
sample mean for IPC ����	
	����������� , which is in turn compared
to the end-to-end IPC �����)� .
VI. Evaluation
A. IPC Accuracy: MRRL versus fullwarmup
For most benchmarks, Table II shows that fullwarmup’s
percent-error deviation from IPC ������� (i.e., the sampling error)
is small, less than 5%. While applu, galgel, and especially gap
buck this trend, this is not a failure of random cluster sampling,
but a failure to draw a suitably large sample of clusters from
the dynamic instruction stream. A larger sample (of more
than 50 clusters) would have reduced the sampling error by
more accurately representing all aspects of these benchmarks’
behavior. Conte et al. [3], for example, achieve relative errors
in IPC of less than 3% through sampling. Of paramount impor-
tance to our research however, is that in general, MRRL ��� �����
does not introduce statistically significant additional nonsam-
pling error, which arises chiefly from cold-start bias [3]. In
other words, our primary objective is to develop a warmup
technique such that IPC � �����'� � � ��� strays very little from
IPC ����	
	���������9� , and on that count we claim victory. For all
benchmarks except fma3d, the percent difference deviation
from fullwarmup is less than 0.50%. fma3d’s seemingly drastic
deviation is due to the small numbers involved in the percent-
error calculation; IPC ����	
	���������9� + � 3������ , IPC ������� � � � ��� +
� 3������ . The relative error, ������� � ��� !�!#" - ��� !�$�$��� !�$�$ % +&��3 -8� makes
the deviation look much worse than it really is when one
considers that the absolute error, � 3������ ��3 ����� + ��3 � 1�� is

so small. nowarmup on the other hand, yields percent-error
deviations from fullwarmup of less than 1�� in general, but
substantially larger relative errors for facerec and galgel. In
Section VI-B, we show why these much larger errors make
nowarmup an untrustworthy warmup strategy.

B. IPC Accuracy: MRRL versus IPC ')(+*�,
While MRRL ��� ����� is apparently a sound warmup strategy,
and nowarmup apparently unsound, we will now rigorously
demonstrate these hypotheses. As mentioned before, a sig-
nificant advantage of random cluster sampling is that results
obtained from this style of simulation can be statistically
analyzed. Sampling produces error because only a subset of
the population is measured rather than the entire population.
Random sampling allows us to rigorously gauge the amount of
error and the probability that the amount is significant, based
upon the assumption that all members of the population had
uniform probability of being included in the sample.

For each benchmark, the mean instruction throughput was
measured by counting the number of cycles consumed by all
50 clusters. Dividing the total number of executed instructions
(50 million) by this amount yielded the overall sample IPC.
For a well-chosen sample, this sample IPC will be a good
estimate of the end-to-end IPC. The standard error is a useful
tool to analyze the goodness of a sample estimate [4], [18].
The standard error is computed as the quotient of the per-
cluster sample standard deviation in IPC and the square root
of the number of clusters:

? "%$'& + -. /10
	���2 � � �

benchmark 3�����	
	���������9� % 3 !#"������� �9� % 3������������ ��� � %-MPS � �����'� � � ���
applu 78105 sec. 59.04% 60.87% 96.90%
apsi 120925 sec. 58.11% 59.56% 97.51%
art 110 19613 sec. 35.52% 36.94% 96.00%
crafty 78906 sec. 46.52% 48.20% 96.41%
equake 54675 sec. 55.49% 57.11% 97.07%
facerec 70587 sec. 47.88% 51.98% 91.44%
fma3d 96462 sec. 59.84% 61.38% 97.43%
galgel 157325 sec. 51.63% 53.10% 97.15%
gap 82896 sec. 51.66% 53.10% 97.22%
gzip graphic 26643 sec. 32.31% 34.58% 92.98%
lucas 46730 sec. 48.55% 50.67% 95.65%
mcf 36014 sec. 44.55% 46.45% 95.74%
mgrid 142334 sec. 58.57% 60.50% 96.71%
swim 80946 sec. 53.06% 54.81% 96.72%
twolf 133069 sec. 42.36% 44.04% 96.04%
vortex lendian2 64839 sec. 36.71% 38.06% 96.32%
vpr route 28358 sec. 35.66% 39.75% 88.55%
MEAN 48.09% 50.06% 90.26%

TABLE IV

MAXIMUM POTENTIAL RUNNING TIME REDUCTION (i.e., % '�������� �	� ��
� � ������� ����� 68729;:'1�<� / 14353 6�7 9 : 1�<) AND ACTUAL REDUCTION (i.e.,

% '�������� ��� � � � �/� ������� � (*�*�, � � � ���� /214353 68729;:'1�<), BOTH RELATIVE TO '�� �! " ��� �	� ��
 , AND PERCENTAGE OF MAXIMUM POTENTIAL SPEEDUP ACHIEVED (i.e.,

%-MPS � � �������!# �%$ � (+*�*�, ��� � � � (� ��� 68729;:'1�<����� 6�7 9;:'1�< &
).

We assume (as in [3]) that error is normally distributed4;
hence, the 95% confidence interval is ')(+* �:�"3 --,0? "%$'& , where
')(+* is the sample IPC. In other words, for a well-chosen
sample, we can assume IPC ������� ,/. '0(+* ? "%$'& ! '0(+*21
? "%$'&

3
with 95% certainty.

Let 1 + IPC ������� ')(+* ; if � IPC ������� 1 ! IPC ������� 1 14$��
� '0(+* �"3 --, ? "%$'& ! ')(+*41 �03 -),0? "%$'& $, then the relative error
between IPC ������� and ')(+* is accurately predicted by the 95%
confidence interval. The relative error between IPC ������� � � � ���
and IPC ������� was predicted by every benchmark’s respective
95% confidence intervals (given in Table III) except for
crafty, gap, twolf, and vortex lendian2. However, the 95%
confidence interval failed to predict the relative error between
IPC ����	
	���������9� and IPC ������� for these same four benchmarks!
Since fullwarmup perfectly models all inter-cluster cache
and branch predictor interactions (making it impervious to
nonsampling error), this failure is attributable to sampling
error. Perfectly mimicking fullwarmup in this way is further
evidence that MRRL at the 99.9-th percentile does well at
approximating fullwarmup. In other words, MRRL ��� ����� does
well at eliminating nonsampling error.

In contrast, consider the IPC !."���������9� sample means of
facerec and galgel. While the 95% confidence interval of
fullwarmup and MRRL ��� ����� successfully predict their relative
error deviation from IPC ������� , nowarmup does not. This evi-

4The assumption of normality is safe since the samples contain 50 clusters
apiece. Samples that draw 30 or fewer elements from a population would use
the Student’s-t distribution [18] with 576 ��!8 �� � $ � degrees of freedom.

dence confirms our hypothesis that their respective -10.46%
and -14.99% percent-error deviations from the IPC ����	
	���������9�
sample means are significant.

C. Acceleration: MRRL versus fullwarmup
Before discussing MRRL’s acceleration capability, it is im-
portant to discuss the optimality of nowarmup’s runtime.
Since nowarmup does not model any pre-cluster cache or
branch predictor interactions, nowarmup simulations have no
warm phase, only cold and hot. Because the cold phase
models a proper subset of the activity modeled in the warm
phase, eliminating the warm phase reduces execution time to
its absolute minimum under the three-phase cold–warm–hot
simulation strategy described in Section III.

Since nowarmup simulation time is the minimum possible
simulation time it also represents the per-benchmark maximum
potential speedup from warmup. Table IV shows that these
potential speedups ranged from 32.31% for gzip graphic to
59.84% for fma3d, of each benchmark’s fullwarmup run-
ning time: � � �8� � ��� 68729;:'1�<� /214353 68729;:'1�< . Both the MRRL ��� ����� simu-
lation time reductions relative to fullwarmup, and as a per-
centage of the maximum potential speedup (������� � ��� (+*�*�, � � � ��� - � ��� 68729;:'1�<� ��� 68729;:'1�< �) are given in Table IV. In other words,
Table IV shows not only the MRRL ��� ����� ’s reduction relative
to fullwarmup, but also how close to the maximum possible
speedup each MRRL ��� ����� simulation was able to come (the
higher the percentage the better).

MRRL ��� ����� ’s achieved potential speedup for all benchmarks
is respectable, averaging 90.62% of the maximum, and ranging

from 88.55% for vpr route to 97.51% for apsi. These translate
into running times of only 39.75% and 59.56%, respectively
of the time taken to simulate via fullwarmup.

VII. Conclusions and Future Work
Memory reference reuse latency analysis is a useful technique
that can be used to reduce the running times of sampled
simulations by reducing the amount of time spent warming
up simulated cache and branch predictor state during the sim-
ulation phase preceding each sample cluster. By measuring the
reuse latency (in number of instructions) between consecutive
accesses to each memory address, we can discover the mem-
ory reference reuse latency that corresponds to an arbitrary
percentile: MRRL � . This MRRL � is used to determine the
amount of warmup to perform during inter-cluster regions.
To make simulation as rapid as possible, cold mode uses
aggressive low-detail simulation, updating only architected
state; in warm mode, memory reference interactions within
the cache hierarchy and branch instruction interactions with
the branch predictor are also modeled. At the conclusion of
the warm mode, cache and branch predictor state will be
accurately established, allowing the subsequent hot mode to
simulate in cycle-accurate detail without imprecision arising
from cold-start bias, which can reduce accuracy.

Our results show that, used in conjunction with random clus-
ter sampling, MRRL does not compromise accuracy. For the
SPEC CPU2000 benchmarks tested, the percent-error between
IPC ����	
	���������9� and IPC ������� � � � ��� averaged less than 1%, and
was shown to be statistically insignificant for MRRL ��� ����� in
that all but four of the benchmarks’ 95% confidence intervals
predicted the observed error from IPC ������� . Additionally, the
fullwarmup simulations of the same four benchmarks also
failed to predict the observed error. Since fullwarmup is
impervious to nonsampling error due to cold-start bias, this
implies that the failure of both MRRL ��� ����� and fullwarmup
to predict the observed error is attributable to sampling error
and that MRRL ��� ����� accomplishes our objective of reducing
nonsampling error. Thus, we conclude that MRRL at the 99.9-
th percentile mimicks fullwarmup well. MRRL ��� ����� accom-
plishes our second objective as well, cutting simulation times
by 50.06% on average, which is 90.62% of the maximum
potential speedup.

Since MRRL works by accurately establishing cache and
branch predictor state, an interesting avenue for future research
would be to analyze whether MRRL accurately estimates
the cache miss rate and branch misprediction rate from the
sample clusters. Currently under investigation is the use of
hypothesis testing to demonstrate that the difference between
IPC ����	
	���������9� and IPC � ������� is statistically insignificant for
some MRRL percentile � . In particular, we will implement
a matched-pairs 3 -test, pitting the per-cluster IPCs of each
benchmark against each other for fullwarmup simulations and
MRRL � simulations. In preliminary experiments we com-
puted from the matched pairs, a set of differences which were
then used to calculate a 3 -score based on the difference of
the means, the standard error of the means, and their Pearson

product-moment correlation coefficient [20], thus:

3 + ��� ����
-��� 1 -��� 1�4	�
� - � - �

where ��� ��� is the difference of the fullwarmup and
MRRL � means, - � and - � are the standard errors among
the fullwarmup and MRRL � cluster IPCs5, and 4��
� is the
Pearson product-moment correlation coefficient between the
fullwarmup and MRRL � cluster IPCs. (This is necessary be-
cause we are measuring the effects of tested warmup strategies
as different “treatments” of the same sample population [20].)
This is then repeated for fullwarmup and nowarmup.

At the 5% level of significance, for instance, the critical
value6 for our 50-cluster-sample experiments is 2.0096. Table
V lists the 3 -scores of the benchmarks calculated by pairing the
cluster IPCs from fullwarmup and MRRL ��� ����� , and by pairing
the cluster IPCs from fullwarmup and nowarmup. These early
results are very promising and quantitatively insightful. Recall
from Section VI-A, the relatively large 3.9% error between
IPC ��������� � � ��� and IPC ��� 	�	������� �9� for fma3d. We qualitatively
concluded that since the absolute error was very small (0.021),
that the percent-error was insignificant. Table V quantitatively
confirms this since the fma3d 3 -score is less than the critical
value aforementioned; thus, for fma3d, the difference between
IPC ��������� � � ��� and IPC ��� 	�	������� �9� is statistically insignificant
at the 5% level.

At � + ��3 -.-#- only two benchmarks—twolf and vor-
tex lendian2—fail for MRRL ��� ����� at the 5% level of signifi-
cance. (Contrast this to nowarmup, for which eleven bench-
marks fail.) We point out however, that while the MRRL ��� �����
3 -scores for twolf and vortex lendian2 imply that the deviation
from IPC ����	
	���������9� is statistically significant, the absolute
difference of both (IPC ����	
	���������9�8 IPC ��������� � � ���) is only
0.001. It remains an open question, what threshold value of
� (e.g., �/+ � 3 -#-#-.- , �/+ ��3 -.-#-#-.- , ...) is large enough to be
statistically insignificant in general, and how this will affect
speedup.

The MRRL profiler software and modified version of sim-
outorder are available at the Laboratory for Computer Archi-
tecture at Virginia Web site at http://lava.cs.virginia.edu/.

Acknowledgments
This material is based upon work supported in part by the
National Science Foundation under grant no. CCR-0082671.
The authors would like to thank Prof. Tom Conte, Prof. Mircea
Stan, Prof. Bradley Calder, and the anonymous reviewers for
their valuable feedback and insights.

References
[1] T. M. Austin. SimpleScalar home page. http://www.simplescalar.com/.

5For the matched pairs ' -test, �� and ��� are computed differently from
the sample IPC (�����) mentioned in Section VI; rather, they are computed
as the mean of per-cluster IPCs. � and � � are computed using � and� � , respectively, and are therefore also different from the standard error
calculations of Section VI.

6According to the Student’s-t distribution for 49 degrees of freedom.

benchmark ' -score � ����� ��� ��� � ' -score ������� �	� ��

applu 0.5988 0.2417
apsi 0.9056 2.8466
art 110 1.0474 4.1805
crafty 1.3793 4.5735
equake 1.5955 1.3638
facerec 1.3834 4.0786
fma3d 1.2416 0.7473
galgel 0.7446 2.8972
gap 0.7395 4.5349
gzip graphic 1.9597 2.0718
lucas 1.1194 0.6455
mcf 0.5961 1.4620
mgrid 1.3420 1.7249
swim 1.2727 4.5022
twolf 4.3945 2.1865
vortex lendian2 8.4219 3.3422
vpr route 0.9410 9.1317

TABLE V

MATCHED-PAIRS ' -TEST ' -SCORES MEASURING THE STATISTICAL

SIGNIFICANCE OF CLUSTER DIFFERENCES BETWEEN fullwarmup AND

MRRL ��� 	
	
	 , AND fullwarmup AND nowarmup. CRITICAL ' -SCORE FOR

50-CLUSTER SAMPLES IS 2.0096.

[2] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Computer Architecture News, 25(3):13–25, June 1997.

[3] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing State Loss
for Effective Trace Sampling of Superscalar Processors. In Proceedings
of the International Conference on Computer Deisgn, Oct. 1996.

[4] J. E. Freund. Mathematical Statistics. Prentice-Hall, Inc., 1971.
[5] J. W. Haskins, Jr. and K. Skadron. Minimal Subset Evaluation:

Rapid Warm-up for Simulated Hardware State. In Proceedings of the
International Conference on Computer Design, Sept. 2001.

[6] M. Karlsson, F. Dahlgren, and P. Stenström. An analytical model of
the Working-Set sizes in decision support systems. In Proceedings of
SIGMETRICS 2000, Jun. 2000.

[7] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting
generational behavior to reduce cache leakage power. In Proceedings
of the 28th International Symposium on Computer Architecture, June
2001.

[8] R. E. Kessler, M. D. Hill, and D. A. Wood. A Comparison of Trace-
Sampling Techniques for Multi-Megabyte Caches. Technical Report
1048, Univ. of Wisconsin-Madison Computer Sciences Dept., September
1991.

[9] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja. Adapting the
SPEC 2000 Benchmark Suite for Simulation-Based Computer Architec-
ture Research. In Proceedings of the Third IEEE Annual Workshop on
Workload Characterization, pages 73–82, Sep. 2000.

[10] S. Laha, J. H. Patel, and R. K. Iyer. Accurate Low-Cost Methods
for Performance Evaluation of Cache Memory Systems. IEEE Trans.
Computers, 37(11):1325–1336, November 1988.

[11] Standard Performance Evaluation Corporation. SPEC CPU2000 Bench-
marks. WWW site: http://www.specbench.org/osg/cpu2000, Dec. 1999.

[12] A. Nguyen, J. Wellman, and P. Bose. PARSIM: a parallel trace-
driven simulation facility for fast and accurate performance analysis
studies. In Proceedings of the International Performance Computing,
and Communications Conference, Apr. 1997.

[13] V. Phalke and B. Gopinath. An Inter-Reference gap model for temporal
locality in program behavior. In Proceedings of SIGMETRICS 1995,
Jun. 1995.

[14] T. Sherwood, B. Calder, E. Perelman, and G. Hamerly. SimPoint home
page. http://www-cse.ucsd.edu/ calder/simpoint/.

[15] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques, Sept. 2001.

[16] T. Sherwood, E. Perelman, and B. Calder. Automatically characterizing
large scale program behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[17] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch pre-
diction, instruction-window size, and cache size: Performance tradeoffs
and simulation techniques. IEEE Trans. Computers, 48(11):1260–81,
Nov. 1999.

[18] M. Sternstein. Statistics. Barron’s Educational Series, Inc., 1996.
[19] D. Thiébaut. On the fractal dimension of computer programs and its

application to the prediction of the cache miss ratio. IEEE Trans.
Computers, 8(7):1012–1026, Jul. 1989.

[20] B. Underwood, C. Duncan, J. Taylor, and J. Cotton. Elementary
Statistics. Appleton-Century-Crofts, 1954.

[21] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for estimating trace-
sample miss ratios. In Proc. ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems, pages 79–89, June 1991.

