
Multithreading vs. Streaming
David Tarjan*

Univ. of Virginia, Dept. of Computer Science
Charlottesville, VA 22904

dtarjan@cs.virginia.edu

Kevin Skadron*
Univ. of Virginia, Dept. of Computer Science

Charlottesville, VA 22904

skadron@cs.virginia.edu

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]

General Terms
Performance, Design

Keywords
Multithreading, memory staging, multicore, manycore,
programming, streaming

1. INTRODUCTION
The recent, industry-wide shift to multicore chips has been driven
by a combination of the ILP and power walls. Individual cores
struggle to improve single-thread throughput without
unreasonable power dissipation. The natural solution is to
integrate more cores in each generation. However, memory-
bandwidth requirements scale up accordingly and relative DRAM
latency (in clock cycles) continues to rise.

These trends require new architectures that maintain memory
performance by maximizing efficient use of bandwidth and
overlapping computation with memory access. Software-managed
memory hierarchies and streaming have been widely recognized
as one way to accomplish this (e.g. [3]), but there is less
recognition that hardware techniques can be equally effective. In
particular, deep multithreading with hardware stream aggregation
and sorting (as used in graphics processors for example)
accomplishes this. These two approaches represent endpoints of a
spectrum of architectures for bandwidth and latency management.
The problem with these endpoints is that they are best suited to
specific categories of applications. Future manycore architectures
must flexibly support both paradigms.

This paper briefly outlines the pros and cons of each approach and
then advocates unification in the form of a multithreaded
organization with fine-grained control over each processing
element’s local store.

2. Streaming
Streaming as a memory performance paradigm is often confused
with streams (typically FIFOs with optional peek) as a
programming language construct. The latter is useful for
expressing data parallelism. Streaming as a memory performance

paradigm (which we will henceforth call memory staging) is quite
different. Although streams are a nice abstraction for
programming memory-staging, they are not strictly required.
Memory staging explicitly breaks programs into gather and
compute phases (with an optional scatter phase). The gather
phase generates a list of memory addresses to be read and stores
the list in on-chip memory. This list may require an additional
sorting stage to optimize DRAM locality, or this may be done
directly by hardware. Then, while this list is sent to the memory
controller, other computation uses the processing elements (PEs).
When the gathered data is ready, its compute phase begins.
Output may require another sorting stage for DRAM locality, or
may be chained to a subsequent kernel. The memory staging
paradigm is most effective with a scratchpad because this ensures
that gathered data cannot accidentally be evicted due to cache
conflicts. On the other hand, memory staging requires at least
double buffering (one region for data actively worked on by
computation, at least one region for memory transfer). With a
scratchpad to stage data, memory staging does not need more than
one thread context per PE, because data access latencies are
deterministic. The addressing logic to access the scratchpad can
also be much simpler, requiring none of the address translation
and permission checking which is needed when accessing the
address space of normal memory. Memory staging works well
with a variety of architectures for the multiple processing
elements, and the deterministic data access latencies makes SIMD
execution especially efficient when data parallelism is present.

Memory staging works well when data access patterns are regular
and the live state associated with outstanding memory references
is small. Memory staging loses efficiency when data access patters
are irregular. This either causes the gather kernel to load
redundant data, or requires a cache implemented in software, with
the associated software overhead [3]. Furthermore, when the
amount of computation to be done on a block of data is not fixed
(due to data dependent branching and looping for example), the
programmer or compiler have a hard time trying to find the ideal
block size to balance out memory transfer latency with the
computation latency of any block. This can lead to underuse of
the staging memories or stalling of the computation. A further
concern with staging paradigms is that either the programmer or
the compiler must manage the staging. This may limit purely
hardware based on the staging paradigm to application domains
with sufficiently regular data access patterns and large enough
volumes to justify specialized hardware.

Cell BE [5] is perhaps the most visible commercial product today
following the memory staging paradigm. In Cell BE, the staging
area is the per-SPE local store, with the L2 used for inter-core
communication and capturing temporal reuse.

3. Multithreading
A long-standing hardware technique to overlap computation with
latency is to support multiple thread contexts per PE, with per-PE

*This work was conducted while the authors were on
sabbatical/internship with NVIDIA Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSPC’08, March 2, 2008, Seattle, WA, USA.
Copyright 2008 ACM 978-1-60558-049-4…$5.00.

storage consisting of all threads’ register context plus any cache
shared among the threads. When one thread stalls on a memory
reference, another thread runs. Multithreading also allows
simpler pipelines, since pipeline bubbles—for example, due to
control hazards, for example, or multi-cycle access to the register
file—can simply be covered by switching to another thread. The
chip may consist of many such multithreaded PEs. When
sufficient parallelism is present, caches are not needed to reduce
average latency. Instead, caches are used to multiply bandwidth.
By exploiting temporal and spatial locality, caches reduce demand
for precious pin bandwidth. Multithreaded hardware can still sort
and batch reference streams for DRAM locality using hardware
tables; the multithreading covers the additional latency due to the
batching.

The Tera MTA [2] was an early example of this extreme
approach, with 128 threads per PE and no caches whatsoever.
Scientific workloads often exhibit sufficient parallelism to occupy
128 threads. Graphics processors are another example, with a
large number of threads per PE (24 in the GeForce™ 8800).
Unlike the MTA, GPUs do use caches, but as bandwidth
multipliers, not to reduce average latency that must be covered,
and—in the case of the NVIDIA CUDA™ architecture and the
GeForce 8800’s parallel data cache—for memory staging. The
Sun Niagara architecture is a third interesting example. Here the
degree of multithreading is only 4-8 [1, 4], presumably based on
expected workloads with high degrees of temporal locality in the
secondary cache and hence low average latency.

Multithreading with caches works well in exactly the cases
mentioned above where memory staging loses efficiency.
Multithreading is also efficient when the live state associated with
each data element is large, and when applications exhibit task
instead of data parallelism; and the multithreaded paradigm may
be a more natural target for porting legacy applications.
Multithreading suffers from some inefficiencies, however: large
register files (with one context per thread), live state in the register
file and local store sitting idle while waiting for data from
memory; and the risk that poor scheduling among threads may fail
to capture available locality. Another concern for multithreading
is the possibility that more and more threads per PE will be
needed to cover growing memory latencies (although this is less
of a concern now that CPU frequencies are rising more slowly).

4. Toward a Common Platform
Some applications realize better memory performance with
memory staging, others with multithreading [6]. Indeed some
applications may go through phases where one or the other
paradigm is preferred. Yet the need for economies of scale and
standardization argues for a common hardware platform to
support both memory staging and multithreading.

Multithreaded hardware with local storage, such as GPUs, can
fairly easily be repurposed for memory staging as needed. Instead
of running a single kernel at a time with integrated gather-
compute, these two phases can be separated and staged with
software pipelining. Gather and compute kernels run concurrently
as separate threads on the same PE, with one set of threads
gathering while another computes with previously gathered data.
The programming model can by default assume multithreading
with integrated gather-compute (e.g., NVIDIA’s CUDA
programming environment), but allow programmers the option to
specify separate gather and compute kernels. The compiler or

runtime would ideally spare the programmer from the need to
select the optimal stagger of the gather and compute kernels
needed for optimal staging.

Availability of a local store with scratchpad semantics (e.g., the
GeForce 8800 parallel data cache) helps, but caches with
sufficient associativity can realize many of the same benefits. The
chief concern is for the local store to have enough capacity for the
requisite double buffering.

Starting from the opposite approach, subdividing the large local
register file (LRF) of a core which implements memory staging
would make it possible to have multiple thread contexts, each
with their own private set of registers.

Adding extra storage and logic to the scratchpad memory so that it
could act as a cache would be more expensive, but would be a
worthwhile investment for many workloads.

Work by Erez et al. [3] shows that many memory staging
applications end up replicating caches in software, where the
caching scheme is particular to the application. Multithreaded
applications that cannot be blocked into the cache may in turn
lose temporal locality if interleaving of thread execution is non-
deterministic. Giving both approaches new primitives to better
emulate or control caches (for example switching local stores
from caching to scratchpad semantics, or giving fine-grained
software control over replacement policies in caches) will help
provide a single platform that achieves the best possible memory
performance.

Determining the exact semantics of when and how to switch
between modes is an open question, as is if being able to use both
modes simultaneously would be advantageous.

Continued research is needed to understand how to size the
various resources appropriately, and how best to provide
appropriate mechanisms for control over on-chip storage.

5. ACKNOWLEDGMENTS
We would like to thank Mattan Erez and Bill Dally for interesting
discussions on the topic of memory staging and Doug Voorhies
for feedback which improved the quality of the paper. We also
thank the anonymous reviewers for their helpful comments.

6. REFERENCES
[1] K. Aingaran, P. Kongetira and K. Olukotun. Niagara: a 32-

way Multithreaded Sparc Processor. IEEE Micro, 25(2),
Mar.-Apr. 2005.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.
Porterfield, and B. Smith. The Tera Computer System.
Proc. ICS, 1990.

[3] M. Erez, J. H. Ahn, J. Gummaraju, M. Rosenblum, and W. J.
Dally. Executing Irregular Scientific Applications on Stream
Architectures. Proc. ICS, 2007.

[4] T. Johnson and U. Nawathe. An 8-core, 64-thread, 64-bit
Power Efficient Sparc SoC. Proc. ISSCC, 2007.

[5] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, Introduction to the Cell
Multiprocessor. IBM J. Res. & Dev. 49(4/5), 2005.

[6] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis. Comparing Memory
Systems for Chip Multiprocessors. Proc. ISCA, 2007

