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1. INTRODUCTION 
The recent, industry-wide shift to multicore chips has been driven 
by a combination of the ILP and power walls.  Individual cores 
struggle to improve single-thread throughput without 
unreasonable power dissipation.  The natural solution is to 
integrate more cores in each generation.  However, memory-
bandwidth requirements scale up accordingly and relative DRAM 
latency (in clock cycles) continues to rise.  

These trends require new architectures that maintain memory 
performance by maximizing efficient use of bandwidth and 
overlapping computation with memory access.  Software-managed 
memory hierarchies and streaming have been widely recognized 
as one way to accomplish this (e.g. [3]), but there is less 
recognition that hardware techniques can be equally effective.  In 
particular, deep multithreading with hardware stream aggregation 
and sorting (as used in graphics processors for example) 
accomplishes this.  These two approaches represent endpoints of a 
spectrum of architectures for bandwidth and latency management.  
The problem with these endpoints is that they are best suited to 
specific categories of applications. Future manycore architectures 
must flexibly support both paradigms.  

This paper briefly outlines the pros and cons of each approach and 
then advocates unification in the form of a multithreaded 
organization with fine-grained control over each processing 
element’s local store. 

2. Streaming 
Streaming as a memory performance paradigm is often confused 
with streams (typically FIFOs with optional peek) as a 
programming language construct.  The latter is useful for 
expressing data parallelism.  Streaming as a memory performance 

paradigm (which we will henceforth call memory staging) is quite 
different.  Although streams are a nice abstraction for 
programming memory-staging, they are not strictly required.  
Memory staging explicitly breaks programs into gather and 
compute phases (with an optional scatter phase).  The gather 
phase generates a list of memory addresses to be read and stores 
the list in on-chip memory.  This list may require an additional 
sorting stage to optimize DRAM locality, or this may be done 
directly by hardware.  Then, while this list is sent to the memory 
controller, other computation uses the processing elements (PEs).  
When the gathered data is ready, its compute phase begins.  
Output may require another sorting stage for DRAM locality, or 
may be chained to a subsequent kernel.  The memory staging 
paradigm is most effective with a scratchpad because this ensures 
that gathered data cannot accidentally be evicted due to cache 
conflicts.  On the other hand, memory staging requires at least 
double buffering (one region for data actively worked on by 
computation, at least one region for memory transfer).  With a 
scratchpad to stage data, memory staging does not need more than 
one thread context per PE, because data access latencies are 
deterministic. The addressing logic to access the scratchpad can 
also be much simpler, requiring none of the address translation 
and permission checking which is needed when accessing the 
address space of normal memory. Memory staging works well 
with a variety of architectures for the multiple processing 
elements, and the deterministic data access latencies makes SIMD 
execution especially efficient when data parallelism is present. 

Memory staging works well when data access patterns are regular 
and the live state associated with outstanding memory references 
is small. Memory staging loses efficiency when data access patters 
are irregular.  This either causes the gather kernel to load 
redundant data, or requires a cache implemented in software, with 
the associated software overhead [3].  Furthermore, when the 
amount of computation to be done on a block of data is not fixed 
(due to data dependent branching and looping for example), the 
programmer or compiler have a hard time trying to find the ideal 
block size to balance out memory transfer latency with the 
computation latency of any block. This can lead to underuse of 
the staging memories or stalling of the computation.  A further 
concern with staging paradigms is that either the programmer or 
the compiler must manage the staging.  This may limit purely 
hardware based on the staging paradigm to application domains 
with sufficiently regular data access patterns and large enough 
volumes to justify specialized hardware.  

Cell BE [5] is perhaps the most visible commercial product today 
following the memory staging paradigm.  In Cell BE, the staging 
area is the per-SPE local store, with the L2 used for inter-core 
communication and capturing temporal reuse. 

3. Multithreading 
A long-standing hardware technique to overlap computation with 
latency is to support multiple thread contexts per PE, with per-PE 

*This work was conducted while the authors were on 
sabbatical/internship with NVIDIA Research. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MSPC’08, March 2, 2008, Seattle, WA, USA. 
Copyright 2008 ACM 978-1-60558-049-4…$5.00. 



storage consisting of all threads’ register context plus any cache 
shared among the threads.  When one thread stalls on a memory 
reference, another thread runs.   Multithreading also allows 
simpler pipelines, since pipeline bubbles—for example, due to 
control hazards, for example, or multi-cycle access to the register 
file—can simply be covered by switching to another thread.  The 
chip may consist of many such multithreaded PEs.  When 
sufficient parallelism is present, caches are not needed to reduce 
average latency.  Instead, caches are used to multiply bandwidth.  
By exploiting temporal and spatial locality, caches reduce demand 
for precious pin bandwidth.  Multithreaded hardware can still sort 
and batch reference streams for DRAM locality using hardware 
tables; the multithreading covers the additional latency due to the 
batching. 

The Tera MTA [2] was an early example of this extreme 
approach, with 128 threads per PE and no caches whatsoever. 
Scientific workloads often exhibit sufficient parallelism to occupy 
128 threads. Graphics processors are another example, with a 
large number of threads per PE (24 in the GeForce™ 8800).  
Unlike the MTA, GPUs do use caches, but as bandwidth 
multipliers, not to reduce average latency that must be covered, 
and—in the case of the NVIDIA CUDA™ architecture and the 
GeForce 8800’s parallel data cache—for memory staging.  The 
Sun Niagara architecture is a third interesting example.  Here the 
degree of multithreading is only 4-8 [1, 4], presumably based on 
expected workloads with high degrees of temporal locality in the 
secondary cache and hence low average latency. 

Multithreading with caches works well in exactly the cases 
mentioned above where memory staging loses efficiency.  
Multithreading is also efficient when the live state associated with 
each data element is large, and when applications exhibit task 
instead of data parallelism; and the multithreaded paradigm may 
be a more natural target for porting legacy applications.  
Multithreading suffers from some inefficiencies, however: large 
register files (with one context per thread), live state in the register 
file and local store sitting idle while waiting for data from 
memory; and the risk that poor scheduling among threads may fail 
to capture available locality.  Another concern for multithreading 
is the possibility that more and more threads per PE will be 
needed to cover growing memory latencies (although this is less 
of a concern now that CPU frequencies are rising more slowly). 

4. Toward a Common Platform 
Some applications realize better memory performance with 
memory staging, others with multithreading [6].  Indeed some 
applications may go through phases where one or the other 
paradigm is preferred. Yet the need for economies of scale and 
standardization argues for a common hardware platform to 
support both memory staging and multithreading. 

Multithreaded hardware with local storage, such as GPUs, can 
fairly easily be repurposed for memory staging as needed.  Instead 
of running a single kernel at a time with integrated gather-
compute, these two phases can be separated and staged with 
software pipelining.  Gather and compute kernels run concurrently 
as separate threads on the same PE, with one set of threads 
gathering while another computes with previously gathered data.  
The programming model can by default assume multithreading 
with integrated gather-compute (e.g., NVIDIA’s CUDA 
programming environment), but allow programmers the option to 
specify separate gather and compute kernels.  The compiler or 

runtime would ideally spare the programmer from the need to 
select the optimal stagger of the gather and compute kernels 
needed for optimal staging. 

Availability of a local store with scratchpad semantics (e.g., the 
GeForce 8800 parallel data cache) helps, but caches with 
sufficient associativity can realize many of the same benefits.  The 
chief concern is for the local store to have enough capacity for the 
requisite double buffering. 

Starting from the opposite approach, subdividing the large local 
register file (LRF) of a core which implements memory staging 
would make it possible to have multiple thread contexts, each 
with their own private set of registers.  

Adding extra storage and logic to the scratchpad memory so that it 
could act as a cache would be more expensive, but would be a 
worthwhile investment for many workloads. 

Work by Erez et al. [3] shows that many memory staging 
applications end up replicating caches in software, where the 
caching scheme is particular to the application. Multithreaded 
applications that cannot be blocked into the cache may in turn 
lose temporal locality if interleaving of thread execution is non-
deterministic. Giving both approaches new primitives to better 
emulate or control caches (for example switching local stores 
from caching to scratchpad semantics, or giving fine-grained 
software control over replacement policies in caches) will help 
provide a single platform that achieves the best possible memory 
performance.   

Determining the exact semantics of when and how to switch 
between modes is an open question, as is if being able to use both 
modes simultaneously would be advantageous. 

Continued research is needed to understand how to size the 
various resources appropriately, and how best to provide 
appropriate mechanisms for control over on-chip storage. 
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