
Experience Porting MATLAB Systems Biology Applications to CUDA
LAVA: Laboratory for Computer Architecture at Virginia

University of Virginia, Charlottesville, VA 22904

http://lava.cs.virginia.edu

Introduction

Systems biology seeks to develop an understanding of the

myriad interacting components of biological systems. Various

modes of biomedical imaging provide a rich source of data for

building and testing models. However, accurate modeling

requires massive parameterization, which in turn requires image

extraction, tracking, and mining for relationships. GPU

computing and CUDA offer the potential for substantial speedups.

However, direct porting to CUDA is not always possible due to

the preference of many systems biologists to use MATLAB. We

are investigating how to best obtain the benefits of GPU

computing while allowing the biologist to continue using

MATLAB. There are usually two conflicting goals involved in

accelerating MATLAB applications with CUDA: convenience of

porting and performance.

Tradeoffs

A particularly challenging application we are working with

tracks the movement of the inner and outer walls of a mouse heart

over a sequence of 100 640x480 ultrasound images. First, the

program performs several image processing operations on the first

image to detect initial, partial shapes of heart walls. In order to

reconstruct approximated full shapes, the program generates ellipses

that best match the partially detected shapes. Ellipses are then

superimposed over the image and sampled to mark points on the

heart walls. Finally, the program tracks movement of the heart walls

by detecting the movement of image areas under sample points as

the shapes of the heart walls change throughout the sequence of

images.

Heart Wall Tracking 

An Example Application

Lukasz Szafaryn, Michael Boyer, Kevin Skadron

The Heart Wall Tracking application illustrates tradeoffs in

offloading computation to the GPU. Clearly, data parallelism and

sufficient work per kernel are pre-requisites. However, even when

the underlying algorithm is not limited by Amdahl’s Law, extracting

the parallelism from MATLAB may require restructuring and

sacrifices in the modularity of the offloaded CUDA computation.

Performance Results

This work is supported by a grant from NVIDIA Research and NSF grant no. CNS-0615277.

Restructuring and combining code

• writing code based on algorithm tasks rather 

than MATLAB statements

• overlap parallel (often unrelated) tasks by 

executing them in the same kernel call

Exposing specific aspects of GPU programming

• doing more work inside each GPU kernel call to 

fully exploit parallelism and avoid overhead

• performing I/O with GPU manually to eliminate 

redundant data transfers

Major 

Application Part

Parallelizable 

Part of Code [%]

Original

MATLAB

Run Time [s]

Convenience 

Porting,

Run Time [s] 

and Speedup [x]

Performance 

Porting, 

Run Time [s] and 

Speedup [x]

SRAD 89 8.71 1.26 / 6.92 1.17/ 7.42

Hough Search 87 15.87 2.97 / 5.34 2.57 / 6.17

Tracking 37 129.28 115.43 / 1.12 89.78 / 1.44

All 41 187.39 160.16 / 1.17 125.77 / 1.49

MATLAB

MEX C CUDA

MEX C
CUDA

CUDA

CUDA

Future Work

Interesting directions for future work include automated

compiler analysis within the MATLAB runtime to perform the

necessary restructuring transparently, automatic analysis of whether

to offload a CUDA kernel or run it locally on a CPU, and techniques

to cope with tightly coupled serial-parallel steps while preserving the

overall MATLAB programming “look and feel”.

Performance numbers were obtained by running application on NVIDIA GeForce 8800GTX.

Developing modular code 

• replacing each MATLAB function with 

equivalent parallelized GPU function

• common routines can be possibly reused in 

other applications

Hiding specific aspects of GPU programming 

inside each module

• each module sets up its own GPU execution 

parameters

• each module performs its own I/O with GPU 

transparently

Performance
Convenience

Structure of MATLAB application accelerated with CUDA: interpreted MATLAB 

code (a) offloads tasks to compiled C code (b) for faster execution, which is further 

accelerated by offloading parts of work to parallel GPU kernels (c).

a) b) c)

a) b) c)

Stages in Heart Wall Tracking application: heart wall shape detection (a), ellipse 

matching (b), heart wall shape tracking (c).


