
Experience Porting General-Purpose Applications to GPUs using CUDA
LAVA: Laboratory for Computer Architecture at Virginia

University of Virginia, Charlottesville, VA 22904

http://lava.cs.virginia.edu

Introduction

Graphics processors (GPUs) have become increasingly attractive for

general purpose computation as they provide massive parallelism,

high memory bandwidth, and general purpose instruction sets. They

often contain hundreds of cores and are the best commercially-

available example of “many core” processors today.

CUDA and GPUs allow study of massively parallel, shared memory

programs on commodity hardware. CUDA also offers a novel

programming model. Our group is studying scaling bottlenecks in

manycore architectures, and this poster summarizes our experiences

using CUDA for a variety of applications, as reported in [1]. Instead

of evaluating a single application, we explore a set of applications

with different parallelism and data-sharing characteristics.

Common Optimization Techniques

We use Berkeley’s “dwarf” taxonomy to select a representative range

of application behaviors. Each dwarf represents a set of algorithms with

similar computation and data movement patterns.

Application Domains

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Kevin Skadron

Communication patterns of different applications: (a) in SRAD and HotSpot, the value

of each point depends on its neighboring points; (b) DES involves many bit-level

permutations; (c) Back Propagation works on a layered neural network; (d) in SRAD

and Back Propagation, parallel reductions can be performed using multiple threads; (e)

the parallel Needleman–Wunsch algorithm processes the score matrix in diagonal strips
[1] S. Che, et al., A performance study of general-purpose applications on graphics

processors using CUDA, J. Parallel and Distributed Computing, Elsevier, 2008.

SRAD HotSpot DES

Back Propagation Kmeans Needleman-Wunsch

The GPU implementations are developed using CUDA and the multithreaded CPU

versions using OpenMP. We compare application performance between an NVIDIA

Geforce GTX 280 and an Intel Xeon CPU with two hyperthreaded dual-core processors

(3.2 GHz, 2 MB L2 and 4GB main memory). The power result is obtained by subtracting

the system power consumed when system is idling (213W) from the system power

consumed during execution, and uses an early engineering sample of a GTX 260.

Application Results

We are releasing our codes as the Rodinia benchmark suite for

research in heterogeneous computing, including OpenMP and some

FPGA implementations. Other codes and implementations will be

added as they are completed. http://lava.cs.virginia.edu/wiki/rodinia

Motivation

0

0.5

1

1.5

2

2.5

CPU Naïve

CUDA

Constant

Memory

Memory

Coalescing

Multiple

Frames

One-Pass

Variance

Texture

Memory

(Dilate)

GPU

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Cell Detection Ellipse Matching Dilation

Leukocyte Detection

This work is supported by a grant from NVIDIA Research and NSF grant nos. IIS-0612049 and CNS-0615277.

• Iterative solvers, such as our HotSpot thermal solver, benefit from

a pyramidal data structure, trading off redundant computation to

avoid the synchronization between thread blocks

• Lookup tables are useful for avoiding a large penalty due to branch
divergence within SIMT groups (e.g., in the irregular data

permutations of DES)

• Localizing data access patterns and inter-thread communication

within thread blocks takes advantage of the SM's per-block shared

memory (useful in most applications)

• Frequently accessed, read-only values shared across a warp should

be placed in cached constant memory (e.g., in Leukocyte).

• Large, read-only data structures with temporal and spatial locality

should be accessed as textures to exploit texture caching (e.g., in

Kmeans)

• Data access patterns should be organized so that warps access

contiguous blocks of memory (e.g., in Leukocyte).

For example, performance of Leukocyte Detection improves by about

30% with constant memory and Kmeans by about 70% with textures.

Leukocyte Detection

SRAD
HotSpot

Needleman-Wunsch

Applications with various sharing patterns Applications from different domains

Structured Grid – Leukocyte, SRAD and HotSpot

Combinational Logic – DES

Unstructured Grid – Back Propagation

Dynamic Programming – Needleman-Wunsch

Dense Linear Algebra – Kmeans

Power Consumption

0

10

20

30

40

50

60

70

80

90

SRAD HotSpot DES NW BP Kmeans

E
x
tr
a
 P
o
w
e
r
A
b
o
v
e
 I
d
le
 (
W
)

GPU

CPU - one thread

CPU - four threads

Rodinia Benchmark Suite

