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Introduction

Graphics processors (GPUs) have become increasingly attractive for 

general purpose computation as they provide massive parallelism,

high memory bandwidth, and general purpose instruction sets. They 

often contain hundreds of cores and are the best commercially-

available example of “many core” processors today.

CUDA and GPUs allow study of massively parallel, shared memory 

programs on commodity hardware.  CUDA also offers a novel 

programming model.  Our group is studying scaling bottlenecks in

manycore architectures, and this poster summarizes our experiences  

using CUDA for a variety of applications, as reported in [1].  Instead 

of evaluating a single application, we explore a set of applications 

with different parallelism and data-sharing characteristics.

Common Optimization Techniques

We use Berkeley’s “dwarf” taxonomy to select a representative range 

of application behaviors.  Each dwarf represents a set of algorithms with 

similar computation and data movement patterns.  

Application Domains
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Communication patterns of different applications: (a) in SRAD and HotSpot, the value 

of each point depends on its neighboring points; (b) DES involves many bit-level 

permutations; (c) Back Propagation works on a layered neural network; (d) in SRAD 

and Back Propagation, parallel reductions can be performed using multiple threads; (e) 

the parallel Needleman–Wunsch algorithm processes the score matrix in diagonal strips
[1] S. Che, et al., A performance study of general-purpose applications on graphics 

processors using CUDA, J. Parallel and Distributed Computing, Elsevier, 2008.

SRAD HotSpot DES

Back Propagation Kmeans Needleman-Wunsch

The GPU  implementations are developed using CUDA and the multithreaded CPU 

versions using OpenMP. We compare application performance between an NVIDIA 

Geforce GTX 280 and an Intel Xeon CPU with two hyperthreaded dual-core processors 

(3.2 GHz, 2 MB L2 and 4GB main memory). The power result is obtained by subtracting 

the system power consumed when system is idling (213W) from the system power 

consumed during execution, and uses an early engineering sample of a GTX 260.

Application Results

We are releasing our codes as the Rodinia benchmark suite for 

research in heterogeneous computing, including OpenMP and some 

FPGA implementations.   Other codes and implementations will be 

added as they are completed.  http://lava.cs.virginia.edu/wiki/rodinia

Motivation
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• Iterative solvers, such as our HotSpot thermal solver, benefit from 

a pyramidal data structure, trading off redundant computation to

avoid the synchronization between thread blocks

• Lookup tables are useful for avoiding a large penalty due to branch 
divergence within SIMT groups (e.g., in the irregular data 

permutations of DES)

• Localizing data access patterns and inter-thread communication 

within thread blocks takes advantage of the SM's per-block shared 

memory (useful in most applications)

• Frequently accessed, read-only values shared across a warp should 

be placed in cached constant memory (e.g., in Leukocyte).

• Large, read-only data structures with temporal and spatial locality 

should be accessed as textures to exploit texture caching (e.g., in 

Kmeans)

• Data access patterns should be organized so that warps access 

contiguous blocks of memory (e.g., in Leukocyte).

For example, performance of Leukocyte Detection improves by about 

30% with constant memory and Kmeans by about 70% with textures.

Leukocyte Detection
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Applications with various sharing patterns Applications from different domains

Structured Grid – Leukocyte, SRAD and HotSpot

Combinational Logic     – DES

Unstructured Grid – Back Propagation

Dynamic Programming – Needleman-Wunsch

Dense Linear Algebra     – Kmeans

Power Consumption
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