

Evaluating Reconfigurable Texture Units

for Programmable Graphics Cards

A Thesis

in STS 402

Presented to

The Faculty of the

School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

by

Christopher Palmer

April 23, 2007

On my honor as a University student, on this assignment I have neither given

nor received unauthorized aid as defined by the Honor Guidelines

for papers in Science, Technology, and Society courses.

Approved

Prof. Kevin Skadron

(Technical Advisor)

Approved

Prof. Peter Norton

(Science, Technology, and

Society Advisor)

Table of Contents

Glossary.. i

Abstract ..iii

Chapter 1: Introduction ... 1

1.1 Ray Tracing ... 2

1.2 Optimizing the Process... 4

1.3 Social and Ethical Implications ... 6

Chapter 2: Literature Review .. 8

2.1 Rasterization... 8

2.2 Ray Tracing .. 9

2.3 Commodity Graphics Cards... 11

Chapter 3: Methods ... 14

Chapter 4: Results ... 18

4.1 Summary of Results .. 18

4.2 Discussion .. 22

4.3 The Next Step.. 24

References ... 26

Appendix A: Datapath Schematic ... 29

Appendix B: Bilinear Filtering Unit Schematic Symbol: ... 30

Appendix C: Linear Interpolation (LERP) Unit.. 30

Appendix D: Altered LERP Units... 31

Appendix E: ISA Modifications.. 33

Appendix F: GPU Ray Tracer Example.. 35

i

Glossary

Anisotropic

Filtering – A texture filtering function that uses two pre-scaled textures in the

horizontal and vertical direction to better display textured surfaces at

glancing angles with less aliasing

Bilinear

Filtering – A texture filtering function that interpolates between the four nearest

texels to give an approximate color for coordinates with non-discrete

values

Central Processing

Unit (CPU) – The general-purpose microprocessor in a computer that governs the

execution of a computer

Filtering

Functions – Functions that specify how texel data should be combined and

interpolated when a requested value lays between discrete texture

coordinates

Gather – An operation that gathers pixel data from surrounding pixels and is

combined to produce an output for another pixel

Graphics Processing

Unit (GPU) – A microprocessor optimized for graphics-related operations,

specifically parallel execution of floating point arithmetic

Instruction Set

Architecture (ISA) – A specification defining a set of commands and parameters that are

valid inputs for a given piece of hardware

Linear

Interpolation (LERP) - A function that combines two values (a and b) using a scaling

constant (alpha): c = (1 – alpha)*a + alpha*b

Mip maps – Pre-scaled array of textures created in texture memory to account for

depth and provide more sophisticated filtering

Nearest Filtering – Given a texture coordinate (u, v), find the texel at the nearest discrete

point by rounding down

Pixel – Colloquially defined as a single square of color that is one component

of a group of pixels composing a digital 2-D image

ii

Pre-rendered – Describes images rendered offline or not in real-time, generally of a

much higher quality than images rendered interactively

Rasterization – A rendering technique that operates on triangles one at a time without

regard to reflections or other complex light interactions

Ray Tracing – A rendering technique using simulated light rays to trace out a

camera’s viewpoint in a 3-D scene, can capture effects such as

caustics, shadows, reflection, and refraction

Render – A process that creates a 2-D image of a larger, usually 3-D, scene

incorporating effects such as lighting and shadows

Texel – Much like a pixel, but referring to a texture map

Texture Map – An image, consisting of texels, stored in memory on the graphics card

Trilinear

Filtering – A texture filtering function that takes a bilinear sample from two

adjacent mip maps and interpolates for the final color

iii

Abstract

Modern graphics cards have enormous arithmetic capabilities far exceeding those

of CPUs. The advent of vertex and pixel shaders allowed programmers to customize the

operation of GPUs and use them for applications other than graphics. Recently, however,

many scientific applications have been ported to GPUs, but cannot take full advantage of

the hardware due to architectural differences in memory accesses. Texture maps,

traditionally used for rasterization, are not optimized for the random access patterns used

in applications such as ray tracing. This inefficiency introduces delay, increased memory

bandwidth, and consequently increased power consumption. This thesis introduces an

alternative GPU texture unit design to optimize dependent texture accesses, operations

very common in scientific applications. The design attempts to maximize speedup while

not affecting the performance of normal texture accesses. The improvements described

serve as the foundation of a more formal proposal to graphics manufacturers to be

implemented in future hardware.

Chapter 1: Introduction

Computers can never do their work fast enough. The public wants their

computers to respond quickly, movies to have better special effects, and video games to

be more immersive. Scientists and researchers want simulations that take more variables

into account and visualizations that are more life-like, and they want extreme numerical

accuracy. One technology can address all these needs: the graphics card.

 Also known as a GPU, a graphics card is a printed circuit board the CPU uses to

off-load graphics-related calculations. Instead of performing all the computer’s work, the

CPU can give graphics operations to the GPU while it executes other tasks. This

separation of duties allows computers to perform graphics tasks much faster and more

efficiently. Since GPUs perform only these graphics-related operations, the chip inside

could be optimized for these very specific commands. With such optimizations, GPUs

can achieve enormous computing power, topping 278.6 billion operations per second

(Shrout, 2005). That is over 45 times more than an Intel Pentium 4 processor (Hinton,

2001).

 Scientists who use math-intensive simulations (for example, to detect white blood

cells in live video, to reconstruct CAT scan images, or to generate 3-D images) need such

processing speed. The problem is that graphics cards were designed from the beginning

to deal with graphics, not the general computing problems researchers want to use them

for. But researchers have found techniques that can use the GPU’s processing power for

non-graphics applications. Algorithms with operations that are very parallel in nature,

like ray tracing, are well suited for the GPU’s stream processing model.

2

1.1 Ray Tracing

 Ray tracing is a technique for generating a 2-D image from a description of a 3-D

world viewed from a virtual camera in the scene. The most widely recognized direct

application of ray tracing is in computer generated (CG) movies such as Pixar’s “Cars”

(Figure 1). Every frame in the movie was created by a computer, which rendered the

scene from a virtual camera placed inside a mathematical description of the world. The

results are very realistic. Ray tracing

can model many natural phenomena

such as reflection, refraction, and

depth of field.

Ray tracing uses the physics

of light as its foundation. Given a

camera in a 3-D scene with objects,

a grid of squares which correspond to pixels on the screen can be constructed. By

sending mathematical rays that go through these grid cells and tracing them into the

scene, we can determine which objects in the scene they intersect (Whitted, 1980). When

a ray intersects an object, the color of that object is recorded and becomes the color for

the corresponding pixel. Repeating this operation for every pixel in the final image

produces the completed picture (Figure 2). Ray tracing began with the work of Turner

Whitted (1980). The term Whitted ray tracing describes his technique of shooting rays in

a scene of geometry.

Figure 1 – Lightning McQueen from Pixar’s

“Cars” (Pixar)

3

Ray tracing, as a rendering

technique, has several key

advantages. First, it creates

incredibly realistic scenes. Because

the technique tries to emulate the

physics of light, it can capture effects

that traditional rendering techniques,

like rasterization, cannot. Effects

such as water caustics, light

magnification, and soft shadows (shadows without hard edges) are a few examples. Yet

ray tracing can be orders of magnitude slower than other rendering techniques for similar

scene complexity. Even though the resulting image is of much higher quality, the time

needed to produce even a single frame can limit ray tracing’s interactive applications. A

single frame from the movie “Cars” took upwards of 50 hours to render (Lasseter, 2007),

even with the help of thousands of computers working simultaneously.

 Recently, researchers have begun mapping ray tracing onto GPUs (Purcell, 2004);

(Foley, 2005). They are attempting to leverage the sheer computing power of the GPU to

solving ray tracing problems on commodity hardware instead of only with expensive

computing clusters. Success would make extremely realistic simulations of 3-D scenes

possible, including video games and scientific visualizations. Immersive worlds, like

those seen in today’s CG movies, may soon run in real-time on your personal computer.

The effect on scientific visualizations would be equally impressive. Everyone from

Eye
Pixel Grid

Light rays

Reflections

off objects

Figure 2 – The ray tracing process (author)

4

chemists to mechanical engineers would benefit greatly from increased detail and

complexity of their 3-D models.

1.2 Optimizing the Process

 This thesis describes a proposed hardware change to current GPUs that would let

them perform ray tracing much more efficiently. CPU programs ported to GPUs run into

many obstacles. Specifically, memory accesses are very different between the two types

of processors. Data structures that are efficient for CPU programs are very inefficient on

GPUs because of these differences. CPU memory can be thought of as a large room with

a huge row of adjacent cubby-holes (Figure 3). Data can be placed in any cubby-hole

you want and you can access any piece of data instantly if you know where is located.

GPU memory, conversely, is like walls of PO Boxes spread among many different post

offices. You can place data in any PO Box you want, but you first have to travel to the

appropriate post office. Once in a post office you can very quickly access all boxes in it,

. . . a)

b)

. . .

Figure 3 – (a) CPU memory like a row of adjacent bins to place information

(author) (b) GPU memory grouped in collections, located in different buildings

5

Your Program (Home)

Figure 4 – Dotted lines show an inefficient

access pattern, solid lines show the

proposed more efficient access (author).

but if you need data from a box at another post office, you have to drive home, drop off

the data you just got, and drive to the next one.

 It is the driving back and forth between home and the post offices that makes this

system of storage (GPU memory) slower if you access data from many different

locations. With cubby-holes, however, although the row of them is very long, you can

stay in the same building to access them all. This thesis was an attempt to speed up

accesses to memory (the PO Boxes) by an analogous modification (Figure 4). If you

know you want one item from Post Office 1, one from Office 2, and another from Office

3, why go home between trips? Why not consolidate your trips to memory and get all

your data before returning home?

Ray tracing (and other

scientific GPU applications) use

different sections of GPU memory to

store dependent pieces of information.

Information retrieval is then much like

a scavenger hunt. The data retrieved

from Post Office 1 tells you which box

to look in at Post Office 2. The data

there shows where to look in Post

Office 3, and so forth. By going

directly between post offices and returning home only with the final result, you save

driving time (speed), you save the amount of data you had to carry back and forth

(memory bandwidth), and you save gas (power).

6

1.3 Social and Ethical Implications

Every television advertisement with an animated logo, every special effect in

movies, and everything displayed on every computer monitor uses graphics card

functionality. Computer graphics imagery has permeated throughout modern life. We

can’t walk down the street without seeing a flyer with computer drawn artwork, or go to

class without a PowerPoint lecture. Computer graphics are most visible to the public in

the form of CG animated movies such as: “Toy Story,” “Finding Nemo,” and “Shrek.”

Video games (both computer games and console games) use 3-D images to create a story

and convey information.

The difference between movies and video games is interactivity. You can’t

manipulate an animated movie once it is completed. The camera can’t be shifted; you

can’t change the lighting, or affect the finished image in any way. These types of images

are said to be pre-rendered. This means that the frames used in the movie were created

and put together ahead of time. Video games, on the other hand, are interactive; you can

change the image in real-time. Better ray tracing performance would affect both the

films and games that use it.

This is not to say that these effects have never been achieved before. Pre-

rendered graphics have long been able to create highly realistic effects. Today, however,

these effects can be realized in real-time on consumer graphics hardware. A massive

array of expensive computers is no longer needed to achieve these effects. Slipped into a

computer, a card costing a couple hundred dollars can be slipped into your computer

7

delivers these amazing effects at home. High-quality rendering performance could reach

consumers at low cost.

Higher fidelity images might only further some disturbing trends in children’s

video games and television. Studies have shown that nearly 33 percent of children play

video games every day and almost 7 percent play for more than 30 hours per week (BBC,

2000). These figures would frighten some parents and increased graphical realism may

only raise them.

Realistic, violent games, such as “Grand Theft Auto,” are controversial for their

graphic depictions of violence. Some believe they promote criminal activity. Others

believe these are simply fantasy worlds and that playing similar games does not influence

players’ actions. Current research, however, offers some reassurance. Violent crime in

the United States has dropped 2.3 percent since 2003 (Game, 2005). Because this

decrease happened during the release of the Grand Theft Auto series, these games’ effect

on crime is open to question.

8

Chapter 2: Literature Review

2.1 Rasterization

 Ferdinand Braun introduced the first practical use for the CRT (cathode ray tube)

in 1897. Braun constructed an oscilloscope by attaching a screen covered in a layer of

phosphorous to the interior of the tube (Carlson, 2006). Electrons fired out of the cathode

and struck the screen, causing the deposits of phosphorous to glow. By controlling the

position and intensity of the electron beam, shapes could be “drawn” on the screen

(Figure 5). Philo Farnsworth took advantage of this property in 1927 with the

introduction of the image dissector (Carlson,

2006). The electron beam swept over the

entire screen in a series of horizontal lines,

called raster lines. Farnsworth’s 60-line

raster image began a revolution in display

technology leading to uses in early television.

 By 1967 raster lines were used to draw

polygons on computer monitors from mathematical representations. This is known as

rasterization. Wylie’s algorithm used the three vertices of a triangle to select on-screen

pixels to be colored to fill the outline of the triangle (Wylie, 1967). This technique was

paired with previous work to draw 3-D worlds on computer monitors very quickly.

Gouraud (1971) added to the realism of these scenes with the introduction of a coloring

algorithm, creating color gradients across triangles instead of a single color. Phong

(1975) built on this scheme by including support for effects such as specular highlighting.

Figure 5 – Raster lines on a CRT

(Carlson, 2006)

9

This effect reproduces the sheen seen on some objects when viewed at a glancing angle

from a single light source. Yet neither Gouraud nor Phong shading are accurate physical

simulations of light. Both are empirical algorithms that approximate the proper effect.

 Catmull (1974) advanced the technology of rendering these shaded triangles. He

used texture maps in conjunction with rasterization to color rendered triangles with pixel

data from textures. Instead of just applying a color to a pixel, users could lookup a color

value in a texture and use that as the pixel’s color. For example, a texture image of bricks

could be applied to a square consisting of two triangles to create a brick wall. Soon after,

new uses for texture maps as lookup tables made new special effects possible. Blinn

(1976) introduced specular mapping that was variable throughout a surface instead of

interpolated between vertices. Combined with bump mapping techniques (Blinn, 1978),

this created very complex looking scenes for very little cost in terms of computation time.

Both techniques create the illusion of a very high polygon count without increasing the

number of actual polygons drawn.

2.2 Ray Tracing

 For close to 25 years, rasterization was the main way to create realistic computer-

drawn scenes, until Whitted ray tracing was introduced in 1980. In a groundbreaking

paper, Turner Whitted introduced a new technique for rendering 3-D scenes (Whitted,

1980). His method of modeling light rays extending from a virtual camera could render

scenes unthinkable using traditional rasterization. For example, curved surfaces were

supported, which under rasterization required the approximation of the surface using

countless triangles. Whitted ray tracing also implicitly supported shadows, unlike

10

rasterization which required a complex collection of multiple textures (Cook, 1984) to

achieve the same effect.

 The increase in scene complexity that ray tracing supported required acceleration

structures to speed up the algorithm. It originally worked by testing each ray against

every object in the scene for intersection. This functioned for small scenes, but the

execution time for larger scenes grows exponentially with the number of objects

(Szirmay-Kalos, 2002). One such acceleration structure used a uniform 3-D grid to

organize objects so rays only had to be tested against objects located in specific grid cells

(Fujimoto, 1986). This technique works well on scenes with uniform distribution of

objects, but becomes inefficient for non-uniform, densely populated regions of the grid.

Oct-trees generalize the cells of uniform grid by allowing them to subdivide into smaller

cells for denser areas of the scene, while staying large in empty areas. Glassner

characterizes this approach as a way to reduce rendering times. Less time is then spent

testing for ray intersection because grid cells adapt to the structure of each scene

(Glassner, 1984).

 The success of oct-trees in reducing render time was expanded by Hook (1995).

He used a spatial partitioning structure known as a kd-tree to trace a ray through a scene.

Kd-trees are a generalization of oct-trees and allow very efficient ray traversals and

object intersections. In 2002, a survey of all major ray tracing acceleration structures

found that kd-trees were the most efficient (Szirmay-Kalos, 2002). Since then, some new

optimizations attempt to speed up the operation of kd-trees. Most recent attempts aim at

speeding up the construction of these trees, which can be time-consuming, by creating

trees which can be updated in real-time instead of offline (as was previously done)

11

(Gunther, 2006). With Gunther’s process, a scene’s tree can be updated dynamically

provided all possible objects that could be in a scene are known ahead of time.

2.3 Commodity Graphics Cards

 For many years these rendering methods, especially ray tracing, were available

only to scientists with access either to large supercomputers or extremely expensive

graphics workstations. The introduction of the commodity consumer graphics card

changed the public’s access to this technology. One of the first large-selling consumer

graphics cards, “Voodoo,” was released in 1996 by 3dfx (Hachman, 1996). For the first

time, advanced graphics were available on home computers. However, these were

rasterized graphics, not ray traced. Ray tracing was still too slow to allow interactive

applications.

 In 2001, nVidia released its GeForce3 graphics card. It was one of the first cards

to support vertex and pixel shaders in hardware (nVidia, 2007). Support for shaders

meant that developers could customize how vertices, colors, and textures were combined

to create the resulting image. This customizable hardware supported techniques like

shadows (McCool, 2001) in real-time which were previously achievable only with ray

tracing. Other ray tracing effects were implemented on these programmable GPUs, but

Purcell (2004) decided to move the entire process of ray tracing onto GPUs. Purcell’s

PhD thesis in 2004 described a very novel way to implement a fully functioning ray

tracer on standard graphics cards. His technique took advantage of the fact that using

pixel shaders, and careful use of texture memory, any operation performed on a CPU

could also be mapped onto the GPU (Purcell, 2004). This made the rasterization-based

12

GPU effectively equivalent in functionality to a general-purpose CPU, with performance

and speed as the trade-off.

 The GPU, a commodity piece of already in most computers, could now be used to

provide professional-quality ray traced images. The problem was that ray tracing on the

GPU was much slower than rasterization, which the GPU was designed for. Many

attempts were made by Christen (Christen, 2005) and Buck (Buck, 2004) to speed up

GPU ray tracing, but speeding up hardware designed for one purpose to perform another

proved very difficult. Purcell’s own implementation made heavy use of dependent

texture fetches (Purcell, 2004), as do many other GPU acceleration structures. These

types of texture lookups use the result of one lookup to perform another in series, and are

critical to GPGPU applications like ray tracing. This access pattern is poorly optimized

on current GPUs because this is not a feature traditionally used in raster graphics.

 A current solution proposed by Woop (2005) does not try to improve these

computations on the GPU, but rather offload them from the GPU all together. Creating a

custom piece of hardware, Woop described a specialized circuit designed to help the

GPU perform tasks like kd-tree traversals. While this solution does work, integrating

such a circuit into current graphics card designs will not be easy. The cards already have

very little room to place large new components, and the circuit is not very general. It

solves only the kd-tree traversal problem.

McCool (1999) proposed an alternative solution to this problem; adding another

fully programmable shader to the texture unit, much like existing vertex and fragment

shaders (McCool, 1999). This would allow for generality in operation, but would cost a

lot in terms of chip area and operating speed.

13

Here we propose an alternative to McCool’s design by adding texture unit

programmability only for indirect texture lookups. Because it is not a general solution it

takes less space and optimizes one of the main bottlenecks. Indirect lookups are used in

almost all GPGPU applications (Buck, 2004) and the cost in terms of chip area would not

be large because existing texture unit components can be leveraged to support these

optimized accesses.

14

Chapter 3: Methods

 To design the customized texture unit, I needed a schematic of the current texture

unit. However, because card architecture details are proprietary, designing hardware

components to integrate with current graphics hardware is difficult. For competitive

reasons card manufacturers like ATI and nVidia do not release details of their cards’

implementations. I therefore created a model based on empirical observations of the

card’s functionality. This model would then be used as the base to build a unit capable of

performing custom filtering functions in the texture unit.

 Graphics card texture units have several different modes that affect how texture

memory is accessed. With these access modes, called filtering functions, the card can

change how texture memory is processed before it returns to the fragment shader. The

four filtering functions are nearest, bilinear, trilinear, and anisotropic filtering. Since the

texture unit can perform all four of these functions, there must already be hardware in

place to switch between these operations. To do this the card must already have a certain

degree of flexibility and reconfigurability. My approach was to leverage this existing

mechanism for customization and add support for indirect texture filtering.

 To design the initial model I started with the nearest filter. This is the simplest

filtering option and consists of a multiplication and an addition step followed by a

memory lookup. Bilinear filtering takes four samples from the texture and bilinearly

interpolates between the values. In determining a probable design for this filter I

discovered that the circuitry for the nearest filter is merely a subset of the bilinear filter

(Figure 6). The bilinear filter performs four nearest filters followed by the interpolation

step. If correct, this design would explain why bilinear filtering is proportionally slower

15

than nearest filtering on a 3-D scene. Four nearest texture accesses could be performed in

the same time as one bilinear access. Because the two filtering schematics overlap, they

would scale easily to larger filtering units.

Trilinear filtering also fits easily into the model because it is two bilinear samples

followed by interpolation. The hardware could use two of the bilinear filtering blocks to

perform a single trilinear filter. This design would also be very easy to scale and make

very efficient use of the existing resources. Anisotropic filtering fits into the schematic in

much the same way. The final design breaks the texture unit into anisotropic filtering

blocks which can be used differently depending on the situation. The same block could

be used to perform one anisotropic sample, two trilinear samples, four bilinear samples,

or 16 nearest samples. This design accounts for the proportional performance delay

N
earest

N
earest

N
earest

N
earest

LERP

Bilinear Unit

LERP

Bilinear Bilinear

Trilinear Unit
LERP

Trilinear Trilinear

Anisotropic Unit

Figure 6 – Hierarchy of texture filtering operations (author)

16

between different filtering methods. The block also shows the high degree of circuit

reuse production card manufacturers want, and is highly scalable.

 Once the base hardware model was in place, I analyzed the design, modifying it to

and add the custom functionality. Since indirect texture lookups very often use nearest

filtering to retrieve discrete texture values, I used that as the starting point to optimize the

architecture. An indirect texture lookup uses the value stored in one texture as the

coordinates to lookup another value in another texture (Figure 7). In this example the red

and green components in the primary texture specify the row and column to lookup in the

secondary texture. In a ray

tracing application, the three

values in the primary texture

might represent the three vertices

of a triangle and the secondary

texture contains the actual (x, y,

z, w) coordinates of those

vertices.

The model showed that a

large amount of multipliers and adders, which would be used for the LERP operations,

are free when doing nearest filtering (see Appendix C). The result of texture lookups

could also be fed back into the filtering unit allowing indirect accesses without the

roundtrip to the shader program.

 Several factors guided the additions to the base texture unit model. The most

important was speed. Texture accesses take a large amount of time during normal shader

Figure 7 – Indirect Texture Lookup (author)

17

execution time so any changes should increase this delay as little as possible. I examined

the various paths through the circuit, selecting those which were unused. Those

components were reused in different ways instead of adding many more arithmetic units

into the design. Reutilizing existing parts of the circuit would decrease design time, keep

area to a minimum, and save power. Second most important was area on the chip. I

needed to be sure that any extra components did not add excessively to the circuit’s real

estate requirements on-chip since space is already very limited. Multipliers and adders

take the most space of any logic element, so I opted to reuse as many existing

components as possible before adding new ones.

The third design constraint was power consumption. The improved texture unit

uses less power because of fewer roundtrips between the texture unit and the shader

program are required. This power savings should not be lost by adding additional paths

into the texture unit. I therefore reused circuitry that was already there, but idle during

nearest filtering. That hardware can be put to other uses during the time it would take to

do one nearest filtering operation. Using these criteria an indirect texture lookup

component was implemented on top of the existing texture unit model.

18

Chapter 4: Results

4.1 Summary of Results

The final texture unit design successfully supports indirect texture lookups as well

as all original texture filters. These additions, however, have a minimal effect on the

original functions’ operating speed. By changing the control unit to handle texture

indirection separately, control paths for normal nearest and bilinear filtering operations

are not affected. With the control unit, the texture unit can indirectly lookup a maximum

of four indirect values in one pass. These values can then be returned individually to the

shader, or can be combined to form their sum, product, or average. These additional

operations are controlled by the control signals listed in Table 1. Since the texture unit

can tell in advance whether it will have to perform an indirect lookup, these control

signals need only be sent when one is performing.

Table 1 – Indirect Lookup Control Signals

19

These input control signals come from the shader program. Three additional

instructions added to the ISA allow these parameters to be sent (see Appendix E). The

control unit uses these signals to correctly animate the datapath to perform the correct

operation. Outputs from the datapath are then fed back into the control unit for

processing. Those outputs would normally flow back to the shaders. In the case of an

indirect lookup, however, those values are given back to the datapath to perform the

second dependent texture lookup. The high-level view of this process shows how the

control unit and datapath are linked (Figure 8).

 The control unit has to be changed to

allow for the new signals outlined in Table

1 and to perform new logic to handle

indirect lookups (Figure 9). After

receiving an indirect lookup request, the

state machine transitions from its initial

“Wait” state to “Indirect Calc.” This state

computes all the texture values for the primary texture in parallel. These include the

original texture coordinates (u, v) as well as all additional values computed through

multiples of the offset control signal: (u + ou, v + ov), (u + 2ou, v + 2ov), and (u + 3ou, v +

3ov). The iterations control signal sets the exact number of coordinates that will be used.

Figure 7 in the previous chapter was an example where iterations = 2, and the coordinate

offsets are ou = 1 and ov = 0.

Figure 8: Filtering unit data flow (author)

20

 The control unit then moves to the “Direct Lookup” state where the coordinates

are passed to the datapath. Output pixel values from the primary texture are sent back to

the control unit. Control then moves to the “Indirect Lookup” state. The values just

calculated are treated as the texture coordinates that are sent back into the datapath. The

next output values from the datapath are the indirectly accessed values we wanted. In the

case of an aggregate operation (sum, product, or average), the values are combined before

being sent to the control unit. Then, if the operation control signal is an average, control

passes to the “Average” state, otherwise control moves to “Return Results.” The average

state immediately transfers to the results state after dividing the intermediate sum by the

number of elements. The results state sends back the final results to the shader that

originally requested the texture lookup. This could either be a single value in the case of

a sum, product or average operation, or each individual value. Finally, control moves

back to “Wait” to await the next filtering operation.

Figure 9: Bilinear unit control unit state machine, changes in yellow (author)

21

Changes to the datapath’s main components are minimal. The goal was to reuse

as many components as possible so as not to increase the area requirements of the texture

unit. The three LERP blocks at the bottom of the datapath (see Appendix A) were reused

because they contain two adders and two multipliers apiece. These LERP blocks (Figure

10) are not used during nearest filtering operations, which means all six adders and six

multipliers can be reused for other purposes. The figure below shows the addition of

several multiplexers to allow the LERP blocks to perform the calculations in the “Indirect

Calc” stage discussed above. By

altering these LERP blocks, the

only additional datapath

components added were three

adders used for the texture

coordinate calculation step, and

one multiplier used for computing

the aggregate average (see

Appendix D). These four new

components take up less space

than a single LERP block, which is

proportionally very small compared to the size of the bilinear block. The appendix

contains full diagrams of all components and altered LERP blocks.

Figure 10: LERP with changes to also allow

computation of coordinate offsets (author)

22

4.2 Discussion

 These results show that texture units used for multiple indirect accesses can be

optimized with few modifications. Execution time for various applications of indirect

lookups show a large performance increase (Figure 11). Using indirect texture accesses

would operate with three times fewer trips as compared to the unmodified layout. Each

saved trip results in less memory bandwidth used and a speed increase since the texture

unit does not have to wait for the texture unit to perform the next access. Normal texture

accesses will not be slowed because the indirection circuitry is simply bypassed when not

in use.

Extra control data (Table 1) must be sent with each texture access, however,

specifying whether an optimized indirection should happen and what its parameters are.

Yet these additional pieces of data are worth the savings in memory bandwidth and

power consumption. Just one saved roundtrip to the texture unit saves at least 28 bytes of

bandwidth. The original unit, in this example, would consume around 168 bytes of

Figure 11 - Indirect Triangle Vertex Lookup Comparison (author)

Shows 33% Reduction

23

memory bandwidth. The new unit use only 52 bytes. That is a bandwidth savings of 31

percent, which also translates into a proportional power savings.

 Ray tracing performance on such a design benefits greatly. Appendix F shows a

triangle intersection fragment shader from an open source ray tracer (Christen, 2005).

When run, the shader will execute approximately 49 total instructions. Nine of those

instructions, 18%, are texture fetches. The function intersect_check tests the possible

intersection of a ray and a triangle by first retrieving the triangle’s three vertices through

a series of dependent, indirect texture lookups. The result of the first lookup is treated as

a coordinate with an offset and used in three secondary texture fetches. These four

texture operations can be reduced to just one using the techniques introduced previously.

In this particular code sample, changing those lines to use the functions described in

Appendix E, would allow for many of the arithmetic calculations done in that section to

be performed beforehand and simply baked into the lookup texture. These optimizations

approximately decrease the instruction count by ten, a 20% decrease. The total number

of texture operations would also drop by almost 33%, from nine to six.

 Other applications besides ray tracing will benefit greatly from the ability to sum,

multiply, or average across accessed pixels. This is a very common operation known as

gather and is used by many image-processing algorithms and scientific applications.

Performing gather in hardware instead of the shader will save on bandwidth, because the

pixels are combined inside the texture unit, and the results sent to the shader only when

completed. With this parallelism, the shader is free to possibly execute other instructions

while waiting for the results, thus increasing efficiency. While not directly helpful in ray

24

tracing, this aggregating ability would be useful in many scientific applications, in

computer vision and graphics in general.

4.3 The Next Step

 To implement the design improvements discussed previously, researchers should

refine these results and eventually presenting them to graphics card manufacturers such

as nVidia and ATI. Card makers are always looking for ways to speed execution and

enhance the features their cards can offer. These companies also have the infrastructure

in place to manufacture this design.

 My design tried to reuse components that were already on-chip, but a much more

extensive redesign may give better performance metrics. Integrating components such as

morphable-multipliers into the LERP design of bilinear blocks would be an interesting

extension. These morphable blocks are capable of performing either addition or

multiplication and are 17 percent smaller than implementing each unit separately (Dale,

et al, 2006). Even more advanced filtering functions would be possible with these more

customizable building blocks. With the correct components, aggregate functions such as

min and max would be possible.

 The results of this thesis should also be integrated with the recent introduction of

CUDA, a new programming interface developed by nVidia. With CUDA, graphics

programmers can treat the GPU as a CPU by writing code in C instead of shader

languages. They can thereby make nVidia cards perform scientific applications. CUDA

allows programmers to treat memory linearly or as texture maps. Data for GPGPU

applications would no longer need to be stored and processed into a texture, since CUDA

25

would abstract that away. Obviously the data must still be stored in textures because

normal texture accesses are still allowed; the difference is that this is now abstracted from

the programmer. If this technology becomes the future of graphics cards, their modified

texture unit would be architecturally different than the one developed here. Researchers

would therefore have to look further into how CUDA enabled texture units work to adapt

the techniques discussed here to this new architecture.

26

References

BBC News. (2000). “Video Games: Cause for Concern?”. BBC News, World Edition.

Nov. 26, 2000. <http://news.bbc.co.uk/2/hi/uk_news/1036088.stm>

Blinn, J., Newell, M., (1976). ‘‘Texture and Reflection in Computer Generated Images’’,

CACM, (19):10, Oct. 1976, pp. 542-547.

Blinn, J., (1978). ‘‘Computer Display of Curved Surfaces’’, PhD thesis, CS Dept.,

University of Utah.

Buck, I., Purcell, T., (2004). “A Toolkit for Computation on GPUs.” GPU Gems. Ed.

Randima Fernando. Boston, MA: Addison-Wesley, 2004, pp. 621-636.

Carlson, W. (2006). “History of Computer Graphics and Animation”, Winter, 2006.

<http://accad.osu.edu/~waynec/history/>

Catmull, E., (1974). “A Subdivision Algorithm for Computer Display of Curved

Surfaces”, PhD thesis, Dept. of CS, U. of Utah, Dec. 1974.

Christen, Martin. (2005). Ray Tracing on GPU. University of Applied Sciences Basel

(FHBB), Diploma Thesis. January 19, 2005.

<http://olivier.nocent.free.fr/papers/christen05.pdf>

Cook, R., (1984). ‘‘Shade Trees’’, Computer Graphics, (SIGGRAPH ’84 Proceedings),

18(3): July 1984, pp. 223-231.

Dale, K., Sheaffer, J., Vijay Kumar, V., Luebke, D., Humphreys, G., Skadron, K.. (2006)

"Applications of Small-Scale Reconfigurability to Graphics Processors." In

Proceedings of the International Workshop on Applied Reconfigurable

Computing (ARC2006), Springer-Verlag LNCS, Mar. 2006.

Foley, T., Sugerman, J. (2005). KD-tree acceleration structures for a GPU ray tracer.

SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware.

<http://portal.acm.org/ft_gateway.cfm?id=1071869&type=pdf&coll=GUIDE&dl

=GUIDE&CFID=3598999&CFTOKEN=78745218>

Fujimoto, A., Takayuki, T., Kansei, I.. (1986). “Arts: Accelerated ray-tracing system”,

IEEE Computer Graphics and Applications, 6(4): pp. 16–26.

Game Revolution. (2005). “The Truth About Violence Youth and Video Games.”

October 15, 2005.

<http://www.gamerevolution.com/oldsite/articles/violence/violence.htm>

27

Glassner, A., (1984). “Space subdivision for fast ray tracing”, IEEE Computer Graphics

and Applications, 4(10): pp. 15–22.

Gouraud, H. (1971). “Continuous shading of curved surfaces”, IEEE Transactions on

Computation. C-206, June 1971, pp. 623–629.

Gunther, J., Friedrich, H., Wald, I., Seidel, H., Slusallek, P. (2006). “Ray tracing

animated scenes using motion decomposition”, Proceedings of Eurographics,

Computer Graphics Forum, 25(3): September 2006.

Hachman, M., (1996). “Powerful Voodoo from 3dfx”, Electronic Buyer’s News, No.

1034, Nov. 25, 1996.

Hinton, G., Upton, M., et al. (2001). “A 0.18-um CMOS IA-32 Processor With a 4-GHz

Integer Execution Unit.” IEEE Journal of Solid-State Circuits, 36(11):1617-1627.

Hook, D., (1995). “Using kd-trees to guide bounding volume hierarchies for ray tracing”,

Australian Computer Journal, 27(3): Aug. 1995, pp. 103-108.

Lasseter, J. (2007). “The Cars Interview.” FutureMovies Interview.

<http://www.futuremovies.co.uk/filmmaking.asp?ID=182>

McCool, M., (1999). “Texture Shaders”, Proceedings of EUROGRAPHICS/SIGGRAPH

Workshop on Graphics Hardware, 1999, pp.117-126.

McCool, M. (2001). “Shadow Volume Reconstruction from Depth Maps”, ACM

Transactions on Graphics, January 2001, pp. 1-25.

Montrym, J., Moreton, H. (2005). “The GeForce 6800”, Micro, IEEE. (25): pp. 41-51.

nVidia. (2007). “GeForce3”. nVidia Graphics Products,

<http://www.nvidia.com/page/geforce3.html>

Phong, B., (1975). “Illumination for computer generated pictures”, Communications of

the ACM, 18(6): June 1975, pp. 311–317.

Pixar. (2006). Lightning McQueen.

<http:/adisney.go.com/disneyvideos/animatedfilms/cars/main.html?sec=1&car=>

Purcell, T., (2004). “Ray Tracing on a Stream Processor”, Ph.D. dissertation, Stanford

University. March 2004.

Shrout, Ryan. (2005). “nVidia GeForce 7800 GTX GPU Review.” PC Perspective.

June 22, 2005. <http://www.pcper.com/article.php?aid=150&type=expert>

28

Szirmay-Kalos, L., Havran, V., Balazs, B., Szecsi, L., (2002). “On the Efficiency of Ray-

Shooting Acceleration Structures”, Proceedings of the ACM SIGGRAPH

Conference on Computer Graphics, Spring 2002, pp. 97-106.

Whitted, T. (1980). “An Improved Illumination Model for Shaded Display.

Communications of the ACM, 23(6): pp. 343-349.

Woop, S., Schmittler, J., Slusallek, P. (2005). “RPU: A Programmable Ray Processing

Unit for Realtime Ray Tracing”, SIGGRAPH 2005.

Wylie, C., Romney, G., Evans, D., and Erdahl, A., (1967) "Halftone Perspective

Drawings by Computer," Proc. AFIPS FJCC, 1967, 31(49).

29

Appendix A: Datapath Schematic

30

Appendix B: Bilinear Filtering Unit Schematic Symbol:

Appendix C: Linear Interpolation (LERP) Unit

31

Appendix D: Altered LERP Units

The following three schematics are the altered LERP units that would be inserted

into the datapath shown in Appendix A, and also the three additional adders required.

Calculates (u + 2*offset_u):

Calculates (v + 2*offset_v):

32

Calculates (u + 3*offset_u):

The three additional adders needed to calculate all the primary texture coordinates:

33

Appendix E: ISA Modifications

Three instructions, similar to the following, would need to be added to the shader ISA to

pass all required parameters for indirect lookups. These functions are not written for a

specific shading language, but should be adaptable to Cg, HLSL, or any other. One

possible optimization is to make texSetupIndirect a function called only once by the

graphics API prior to loading the fragment shader. This way, the setup information will

only be transferred once and can be used by all subsequent executing shader units.

Function Name: texSetupIndirect

Return Type: void

Prototype: void texSetupIndirect(int operator, int iterations, int2 offset, int

swizzle)

int operator

Enumeration determining which aggregate

operation to perform:

 0 – None (all secondary values will be returned)

 1 – Sum (only the sum returned)

 2 – Product (only the product returned)

 3 – Average (only the average returned)

int iterations Number of primary texture values to read by

applying the offset to the base primary texture

coordinates, range: 1-4

int2 offset Vector of two numbers holding the offset of u

and v, respectively, which will be added to the

base texture coordinates iterations times

Arguments:

int swizzle Enumeration specifying how retrieved primary

texture values should be interpreted as secondary

coordinates:

 RR, RG, RB, RA

 GR, GG, GB, GA

 BR, BG, BB, BA

 AR, AG, AB, AA

Ex: If the primary texture value retrieved is

(3, 7, 1, 2) and swizzle = AG, then the coordinate

34

 looked up in the secondary texture will be

(u,v) = (2, 7)

Description: This function should be called first before any indirect texture

lookups are performed. This sets up the require state for

subsequent indirect lookups.

Function Name: texIndirect

Return Type: float4 Returns the result of the indirect lookup, if

multiple values are expected this is the first of

those values

Prototype: float4 texIndirect(texID primaryTexID, int2 coord, texID

secondaryTexID)

texID

primaryTexID

Identifier specifying the primary texture used in

the lookup

int2 coord A vector of two numbers storing the (u, v)

coordinates corresponding the primary texture

used, this is the base point from which all offset

calculations will be started

Arguments:

texID

secondaryTexID

Identifier specifying the secondary texture used

in the lookup

Description: This function actually performs the indirect lookup. If an aggregate

operation was specified in texSetupIndirect then this will return the

first value. Use texIndirectValue the retrieve subsequent data

values

Function Name: texIndirectValue

Return Type: float4 Returns the next indirect value calculated by a

previous call to texIndirect

Prototype: float4 texIndirectValue()

Arguments: none Identifier specifying the primary texture used in

the lookup

Description: Returns the next value in the list of values calculated by texIndirect.

This should be called (iterations – 1) times after the initial call to

texIndirect to retrieve all calculated values.

35

Example: Retrieve all three vertices of a triangle where vertex indices are in adjacent

columns starting at (10, 0) in the R and G positions of the color in texture1.

Vertices are located in texture2.

// Setup called from the graphics API (OpenGL, etc.)
int2 vertexOffset = (1, 0)
texSetupIndirect(NONE, 3, vertexOffset, RG)

// Inside the shader program
int2 primaryCoord = (10, 0)

float4 vertex1 = texIndirect(tex1, primaryCoord, tex2)
float4 vertex2 = texIndirectValue()
float4 vertex3 = texIndirectValue()

Appendix F: GPU Ray Tracer Example

Below is an excerpt from the ray intersection fragment shader from an open

source ray tracer (Christen, 2005). This shader is run when calculating ray intersections

between triangles in a uniform grid accelerated scene. The indirect lookups occur in the

intersect_check function in the first seven lines.

//---
// Kernel 03: Ray Intersect
// Version 1.0 - GLSL
// Author: Martin Christen, christen@clockworkcoders.com
//---
// Input Arrays: Texture0: Rays
// Texture1: Position
// Texture2: Voxel + Voxel-Number
// Input Data: Voxel Index
// Grid Element
// Element Data
// Output Arrays: Texture1: Raypos
// Texture2: Voxel
// Texture4: uvt
// Entry Condition: emtpyflag >= 0 [=triangle number]
// Discard Condition: emptyflag < -0.5
//---

36

#define TRIANGLE_ELEMENTS 2 // Wert muss vom C++ Programm übernommen
werden.
#define inbox(v, b1, b2) ((v.x>=b1.x) && (v.y>=b1.y) && (v.z>=b1.z) &&
(v.x<=b2.x) && (v.y<=b2.y) && (v.z<=b2.z))
#define INTEGER(x) (x-fract(x))
#define _EPSILON_ 1e-15
#define _INF_ 1e20

#define TextureDef samplerRECT
#define TexLookup texRECT

uniform vec3 g1; // Grid Grösse (min max Vektoren der Bounding Box)
uniform vec3 _len; // Länge der Zelle (x-,y- und z-Richtung)
uniform float GEsize; // Grösse der Grid-Element-Textur
uniform float EDsize; // Grösse der Element-Daten-Textur

uniform TextureDef tex2;
uniform TextureDef tex3;
uniform TextureDef tex4;
uniform TextureDef tex1;
uniform TextureDef GE;
uniform TextureDef ED;
uniform TextureDef tex0;

struct Ray
{
 vec3 startpoint;
 vec3 direction;
};

struct Triangle
{
 vec3 A;
 vec3 B;
 vec3 C;
};

//---
//Triangle Intersection
//
// return value
// ret.x --> barycentric u
// ret.y --> barycentric v
// ret.z --> Hitpoint t (ray)
// ret.w --> reserved for triangle num
float intersect(inout Ray r, inout Triangle tri, inout vec4 ret)
{
 vec3 edge1, edge2, tvec, pvec, qvec;
 float det;
 float res = -1.0;
 ret = vec4(0.0,0.0,0.0,0.0);
 qvec = vec3(0.0,0.0,0.0);

 edge1 = tri.B-tri.A;
 edge2 = tri.C-tri.A;

 pvec = cross(r.direction, edge2);
 det = dot(edge1, pvec);

 if (det > _EPSILON_)
 {
 res = 1.0;

37

 tvec = r.startpoint - tri.A;
 ret.x = dot(tvec, pvec);
 if (ret.x < 0.0 || ret.x > det) res = -1.0;
 if (res > 0.0)
 {
 qvec = cross(tvec, edge1);
 ret.y = dot(r.direction, qvec);
 if ((ret.y < 0.0) || ((ret.x + ret.y) > det)) res = -1.0;
 }
 }

 if (det < -_EPSILON_)
 {
 res = 1.0;
 tvec = r.startpoint - tri.A;
 ret.x = dot(tvec, pvec);
 if (ret.x > 0.0 || ret.x < det) res = -1.0;
 if (res > 0.0)
 {
 qvec = cross(tvec, edge1);
 ret.y = dot(r.direction, qvec);
 if ((ret.y > 0.0) || ((ret.x + ret.y) < det)) res = -1.0;
 }
 }

 if (res > 0.0)
 {
 ret.z = dot(edge2, qvec);
 ret /= det;
 }

 if (ret.z<_EPSILON_) res = -1.0;

 return res;
}

vec3 voxel2world(vec3 xyz) { return xyz * _len + g1;}

void voxelbounds(vec3 ijk, out vec3 v1, out vec3 v2)
{
 v1 = voxel2world(ijk);
 v2 = v1 + _len;
}
vec2 Coord2D(float listnumber, float texturesize)
{
vec2 res;
 res.y = listnumber/texturesize;
 res.y = INTEGER(res.y);
 res.x = listnumber-texturesize*res.y;
 return res; //texturesize;
}

vec2 ElementCoord2D(float listnumber, float texturesize, float align)
{
vec2 res;
 //for non-normalized texture coordinates:
 //--
 float a = texturesize / align;
 res.y = listnumber / a;
 res.y = INTEGER(res.y);
 res.x = listnumber - a*res.y;
 res.x *= align;
 return res;

38

 //
 //for normalized texture coordinates:
 //------------------------------------
 /* float align_size = texturesize / align;
 res.y = listnumber/align_size;
 res.y = INTEGER(res.y);
 res.x = listnumber-align_size*res.y;
 res.x /= align_size; // auf [0,1] skalieren
 res.y /= texturesize; // auf [0,1] skalieren
 return res;
 */
}

void intersect_check(inout Ray r, inout Triangle tri, inout vec4 raydir, inout
vec4 raypos, inout vec4 voxel, inout vec4 uvt)
{
 vec2 GEcoord = Coord2D(voxel.w, GEsize); // Koordinaten für Grid Element
List
 float elementnum = TexLookup(GE, GEcoord).x; // Element-Nummer für EDlist.

 bool c0=false, c1=false, c2=false, c3=false, c4=false;
 vec4 intersect_result = vec4(0,0,0,0);

 vec2 EDcoord = ElementCoord2D(elementnum, EDsize, (TRIANGLE_ELEMENTS*4.0));

 tri.A = vec3(TexLookup(ED, EDcoord));
 tri.B = vec3(TexLookup(ED, vec2(EDcoord.x+2.0,EDcoord.y)));
 tri.C = vec3(TexLookup(ED, vec2(EDcoord.x+4.0,EDcoord.y)));

 bool p0 = bool(elementnum == -1.0);
 bool p1 = bool(uvt.w == -1.0);
 bool p2 = bool(uvt.w >= 0.0);

 if (p0 && p1) // FAIL -> Traversierung fortsetzen
 {
 voxel.w = -10.0;
 uvt.xyz = vec3(0.0,0.0,_INF_);
 }
 else if (p0 && p2) // DONE -> ein Schnitt wurde gefunden
 {
 voxel.w = -20.0;
 }

 if (elementnum >=0.0)
 {
 voxel.w = voxel.w + 1.0; // nächstes Element (für nächsten Durchgang)

 float intersecttest = intersect(r,tri, intersect_result);

 // calculate voxel bounds
 vec3 vb1 = voxel.xyz * _len + g1; //voxelbounds(voxel.xyz, v1, v2);
 vec3 vb2 = vb1 + _len;

 vec3 hitpoint = raypos.xyz + raydir.xyz*intersect_result.z;

 c0 = inbox(hitpoint, vb1,vb2);
 c1 = bool(uvt.z >= intersect_result.z);
 c2 = bool(intersecttest == 1.0);
 c3 = bool(elementnum != raypos.w); // gleiches Element darf nicht 2x
getestet werden.
 c4 = bool(c0 && c1 && c2 && c3);
 }

39

 if (c4)
 {
 uvt.xyz = intersect_result.xyz;
 uvt.w = elementnum;
 raypos.w = elementnum;
 }

}

void main(void)
{
 vec4 voxel = TexLookup(tex2,gl_TexCoord[0].xy);
 vec4 tMax = TexLookup(tex3,gl_TexCoord[0].xy);
 vec4 uvt = TexLookup(tex4,gl_TexCoord[0].xy);
 vec4 raypos = TexLookup(tex1,gl_TexCoord[0].xy);
 vec4 raydir = TexLookup(tex0,gl_TexCoord[0].xy);

 Triangle tri;
 Ray r;
 r.startpoint = raypos.xyz;
 r.direction = raydir.xyz;

 tri.A = vec3(0,0,0);
 tri.B = vec3(0,0,0);
 tri.C = vec3(0,0,0);

 if (voxel.w < 0) // Voxel nicht in {wait} Zustand
 {
 discard;
 }

 intersect_check(r, tri, raydir, raypos, voxel, uvt);
 //if (voxel.w >=0) intersect_check(r, tri, raydir, raypos, voxel, uvt);
 //if (voxel.w >=0) intersect_check(r, tri, raydir, raypos, voxel, uvt);
 //if (voxel.w >=0) intersect_check(r, tri, raydir, raypos, voxel, uvt);

 gl_FragData[0] = voxel;
 gl_FragData[1] = tMax;
 gl_FragData[2] = uvt;
 gl_FragData[3] = raypos;

}

