Power-Aware Branch Prediction:
Characterization and Design

Masters Project Report, Dept. of Computer Science, UVA, Dec. 2002

Dharmesh Parikh

Abstract

This paper explores the role of branch predictor organization in power/energy/performance tradeoffs
for processor design. We find that as a general rule, to reduce overall energy consumption in the processor
it is worthwhile to spend more power in the branch predictor if this results in more accurate predictions
that improve running time. Two techniques, however, provide substantial reductions in power dissipation
without harming accuracy. Banking reduces the portion of the branch predictor that is active at any one
time. And a new on-chip structure, the prediction probe detector (PPD), can use pre-decode bits to
entirely eliminate unnecessary predictor and branch target buffer (BTB) accesses. Despite the extra power
that must be spent accessing the PPD, it reduces local predictor power and energy dissipation by about
35% on average and overall processor power and energy dissipation by 3-5%. We also investigated the
role of a branch predictor in a Simultaneous Multithreaded Processor (SMT). Power dissipation in an
SMT processor was also explored. Finally we developed a tool for measuring leakage energy in cache-like

structures in a microprocessor.

I. INTRODUCTION

This paper explores tradeoffs between power and performance that stem from the choice
of branch-predictor organization, and proposes some new techniques that reduce the pre-
dictor’s power dissipation without harming performance. Branch prediction has long been
an important area of study for micro-architects, because prediction accuracy is such a
powerful lever over performance. Power-aware computing has also long been an important
area of study, but until recently was mainly of interest in the domain of mobile, wire-
less, and embedded devices. Today, however, power dissipation is of interest in even the
highest-performance processors. Laptop computers now use use high-performance proces-
sors but battery life remains a concern, and heat dissipation has become a design obstacle
as it is difficult to develop cost-effective packages that can safely dissipate the increasing
heat generated by high-performance processors.

While some recent work has explored the power-performance tradeoffs in the processor as

a whole and in the memory hierarchy, we are aware of no prior work that looks specifically
at issues involving branch prediction. Yet the branch predictor, including the BTB, is
the size of a small cache and dissipates a non-trivial amount of power—10% of the total
processor’s power dissipation—and its accuracy controls the amount of mis-speculated
execution and therefore has a substantial impact on energy. For this reason, it is important
to develop an understanding of the interactions and tradeoffs between branch predictor
organization, processor performance, power spent in the predictor, and power dissipation
in the processor as a whole. This paper only examines dynamic power; leakage in branch

predictors is discussed in [27] and [28].

Simply trying to reduce the power dissipated in the branch predictor can actually have
harmful overall effects. This paper shows that if reducing the power spent in the predictor
comes at the expense of predictor accuracy and hence program performance, this localized
reduction may actually increase the power (i.e., energy) dissipated by the processor by
making programs run longer. Fortunately, not all the techniques that reduce localized
power dissipation in the branch predictor suffer such problems. For example, breaking the
predictor into banks can reduce power by accessing only one bank per cycle and hence
reduce precharge costs, and banking need not have any effect on prediction accuracy.
Eliminating unnecessary branch-predictor accesses altogether is an even more powerful

way to reduce power.

Overall, there are four main levers for controlling the branch predictor’s power charac-

teristics:

1. Accuracy: For a given predictor size, better prediction accuracy will not change power
dissipation within the predictor, but will make the program run faster and hence reduce
total energy.

2. Configuration: Changing the table size(s) can reduce power within the predictor but
may affect accuracy.

3. Number of Lookups: Reducing the number of lookups into the predictor is an obvious
source of power savings.

4. Number of Updates: Reducing the number of predictor updates is another obvious

source, but is a less powerful lever because mis-speculated computation means that there

2

are more lookups than updates, and we do not further consider updates here.

A. Contributions

This work extends the Wattch 1.02 [8] power/performance simulator to more accurately

model branch-predictor behavior, and then uses the extended system to:

« Characterize the power/performance characteristics of different predictor organizations.
As a general rule, to reduce overall energy consumption it is worthwhile to spend more
power in the branch predictor if it permits a more accurate organization that improves
running time.

« Explore the best banked predictor organizations. Banking improves access time and cuts
power dissipation at no cost in predictor accuracy.

« Propose a new method to reduce lookups, the prediction probe detector (PPD). The PPD
can use compiler hints and pre-decode bits to recognize when lookups to the BTB and/or
direction-predictor can be avoided. Using a PPD cuts power dissipation in the branch

predictor by over 40%.

Although a wealth of dynamic branch predictors have been proposed, we focus our
analysis on a representative sample of the most widely used predictor types: bimodal [47],
GAs/gshare [36], [56], PAs [56], and hybrid [36]. We focus mostly on the branch direc-
tion predictor that predicts directions of conditional branches, and except for eliminating
unnecessary accesses using the PPD, do not explore power issues in BTB. The BTB has
a number of design choices orthogonal to choices for the direction predictor. Exploring
these is simply beyond the scope of this paper. Please note that data for the “predictor
power” includes power for both the direction predictor and the BTB, as techniques like

the PPD affect both.

Our goal is to understand how the different branch-prediction design options interact at
both the performance and power level, the different tradeoffs that are available, and how
these design options affect the overall processor’s power /performance characteristics. Our
hope is that these results will provide a road-map to help researchers and designers better

find branch predictor organizations that meet various power/performance design goals.

B. Related Work

Some prior research has characterized power in other parts of the processor. Pipeline gat-
ing was presented by Manne et al. [34] as an efficient technique to prevent mis-speculated
instructions from entering the pipeline and wasting energy while imposing only a negligible
performance loss. Albonesi [3] explored disabling a subset of the ways in a set associa-
tive cache during periods of modest cache activity to reduce cache energy dissipation. He
explores the performance and energy implications and shows that a small performance
degradation can produce significant reduction in cache energy dissipation. Ghose and
Kamble [21] look at sub-banking and other organizational techniques for reducing energy
dissipation in the cache. Zhu and Zhang [58] describe a low-power associative cache mode
that performs tag match and data access sequentially, and describe a way to predict when
to use the sequential and parallel modes. Our PPD performs a somewhat analogous pre-
dictive function for branch prediction, although the predictor is not associative and the
PPD controls whether the predictor is used at all. Kin et al. [32] and Tang et al. [50]
describe filter caches and predictive caches, which utilize a small “L0” cache to reduce
accesses and energy expenditures in subsequent levels. Our PPD performs a somewhat
analogous filtering function, although it is not itself a branch predictor. Ghiasi et al. [20]
reasoned that reducing power at the expense of performance is not always correct. They
propose that software, including a combination of the operating system and user appli-
cations, should use a performance mechanism to indicate a desired level of performance
and allow the micro-architecture to then choose between the extant methods that achieve
the specified performance while reducing power. Finally, Bahar and Manne [5] propose
an architectural solution to the power problem that retains performance while reducing
power. The technique, called pipeline balancing, dynamically tunes the resources of a gen-
eral purpose processor to the needs of the application by monitoring performance within

each application, but this work does not directly treat branch prediction.

The rest of this paper is organized as follows. The next section describes our simulation
technique and our extensions to the Wattch power model. Section III then explores trade-
offs between predictor accuracy and power/energy characteristics, and Section IV explores

changes to the branch predictor that save energy without affecting performance. Finally,

4

Section V summarizes the paper.

II. SIMULATION TECHNIQUE AND METRICS

Before delving into power/performance tradeoffs, we describe our simulation technique,
our benchmarks, the different types of branch predictors we studied and the ways in which

we improved Wattch’s power model for branch prediction.

A. Simulator

For the baseline simulation we use a slightly modified version of the Wattch [8] version
1.02 power-performance simulator. Wattch augments the SimpleScalar [9] cycle-accurate
simulator (sim-outorder) with cycle-by-cycle tracking of power dissipation by estimating
unit capacitances and activity factors. Because most processors today have pipelines
longer than five stages to account for renaming and en-queuing costs like those in the
Alpha 21264 [31], Wattch simulations extend the pipeline by adding three additional stages
between decode and issue. In addition to adding these extra stages to sim-outorder’s
timing model, we have made minor extensions to Wattch and sim-outorder by modeling
speculative update and repair for branch history and for the return-address stack [44], [45],
and by changing the fetch engine to recognize cache-line boundaries. A more important
change to the fetch engine is that we now charge a predictor and BTB lookup for each
cycle in which the fetch engine is active. This accounts for the fact that instructions
are fetched in blocks, and that—in order to make a prediction by the end of the fetch
stage—the branch predictor structures must be accessed before any information is available
about the contents of the fetched instructions. This is true because the instruction cache,
direction predictor, and BTB must typically all be accessed in parallel. Thus, even if the
I-cache contains pre-decode bits, their contents are typically not available in time. This is
the most straightforward fetch-engine arrangement; a variety of other more sophisticated
arrangements are possible, some of which we explore in Section IV.

Unless stated otherwise, this paper uses the baseline configuration as shown in Table I,
which resembles as much as possible the configuration of an Alpha 21264 [31]. The most
important difference for this paper is that in the 21264 there is no separate BTB, because

5

TABLE 1

SIMULATED PROCESSOR CONFIGURATION, WHICH MATCHES AN ALPHA 21264 AS MUCH AS POSSIBLE.

Processor Core

Instruction Window | RUU=80; LSQ=40

Issue width 6 instructions per cycle:

4 integer, 2 FP

Pipeline length 8 cycles
Fetch buffer 8 entries
Functional Units 4 Int ALU, 1 Int mult/div,

2 FP ALU, 1 FP mult/div,

2 memory ports

Memory Hierarchy

L1 D-cache Size 64KB, 2-way, 32B blocks, write-back
L1 I-cache Size 64KB, 2-way, 32B blocks, write-back
L1 latency 1 cycles
L2 Unified,2MB,4-way LRU
32B blocks,11-cycle latency, WB
Memory latency 100 cycles
TLB Size 128-entry, fully assoc., 30-cycle miss
penalty

Branch Predictor

Branch target buffer | 2048-entry, 2-way
Return-address-stack | 32-entry

the I-cache has an integrated next-line predictor [11]. As most processors currently do use
a separate BTB, our work models a separate, 2-way associative, 2 K-entry BTB that is

accessed in parallel with the I-cache and direction predictor.

To keep in line with contemporary processors, for Wattch technology parameters we use
the process parameters for a 0.18um process at Vg 2.0V and 1200 MHz. All the results
use Wattch’s non-ideal aggressive clock-gating style (“cc3”). In this clock-gating model,
power is scaled linearly with port or unit usage, and inactive units still dissipate 10% of

the maximum power.

B. Benchmarks

We evaluate the programs from the SPECcpu2000 [49] benchmark suite. Basic branch
characteristics are presented in Table II. Branch mispredictions also induce other negative
consequences, like cache misses due to mis-speculated instructions, but we do not treat
those second-order effects here. All benchmarks were compiled using the Compaq Alpha
compiler with the SPEC peak settings, and the statically-linked binaries include all library
code. Unless stated otherwise, we always use the provided reference inputs. We mainly
focus on the programs from the integer benchmark suite because the floating point bench-
marks have very good prediction accuracy and very few dynamic branches. We use Alpha
EIO traces and the EIO trace facility provided by SimpleScalar for all our experiments.
This ensures reproducible results for each benchmark across multiple simulations. 252.eon
and 181.mcf, from SPECint2000, and 178.galgel and 200.siztrack, from SPEC{p2000, were
not simulated due to problems with our EIO traces. All benchmarks were fast-forwarded
past the first 2 billion instructions and then full-detail simulation was performed for 200

million instructions.

C. Metrics

The following metrics are used to evaluate and understand the results.

o Average Instantaneous Power: The total power consumed on a per-cycle basis. This
metric is important as it directly translates into heat and also gives some indication of
current-delivery requirements.

o Energy: Energy is equal to the product of the average power dissipated by the processor
and the total execution time. This metric is important as it translates directly to battery
life.

« Energy-Delay Product: This metric [22] is equal to the product of energy and delay
(i.e., execution time). Its advantage is that it takes into account both the performance
and power dissipation of a microprocessor.

o Performance: We use the common metric of instructions per cycle (IPC).

TABLE II

BENCHMARK SUMMARY.

Dynamic Unconditional
Branch Frequency

(% of instructions)

Dynamic Conditional
Branch Frequency

(% of instructions)

Prediction Rate
w/ Bimod 16K

Prediction Rate
w/ Gshare 16K

gzip
vpr
gee
crafty
parser
perlbmk
gap
vortex
bzip2
twolf
wupwise
swim
mgrid
applu
mesa
art
equake
facerec
ammp
lucas
fma3d

apsi

3.05%
2.66%
0.77%
2.79%
4.78%
4.36%
1.41%
5.73%
1.69%
1.95%
2.02%
0.00%
0.00%
0.01%
2.91%
0.39%
6.51%
1.03%
2.69%
0.00%
4.25%
0.51%

6.73%
8.41%
4.29%
8.34%
10.64%
9.64%
5.41%
10.22%
11.41%
10.23%
7.87%
1.29%
0.28%
0.42%
5.83%
10.91%
10.66%
2.45%
19.51%
0.74%
13.09%
2.12%

85.87%
84.96%
92.03%
85.88%
85.37%
88.10%
86.59%
96.58%
91.81%
83.20%
90.38%
99.31%
94.62%
88.71%
90.68%
92.95%
96.98%
97.58%
97.67%
99.98%
92.00%
95.24%

91.06%
86.27%
93.51%
92.01%
91.92%
91.25%
94.18%
96.66%
92.22%
86.99%
96.62%
99.68%
97.00%
98.95%
93.31%
96.39%
98.16 %
98.70%
98.31%
99.98%
92.91%
98.78%

D. Branch Predictors Studied

The bimodal predictor [47] consists of a simple pattern history table (PHT) of saturating
two-bit counters, indexed by branch PC. This means that all dynamic executions of a
particular branch site (a “static” branch) will map to the same PHT entry. This paper
models 128-entry through 16 K-entry bimodal predictors. The 128-entry predictor is the
same size as that in the Motorola ColdFire v4 [52]; 4 K-entry is the same size as that in
the Alpha 21064 [16] and is at the point of diminishing returns for bimodal predictors,
although the 21164 used an 8 K-entry predictor [17]. The gshare predictor [36], shown
in Figure la, is a variation on the two-level GAg/GAs global-history predictor [38], [56].

8

The advantage of global history is that it can detect and predict sequences of correlated
branches. In a conventional global-history predictor (GAs), a history (the global branch
history register or GBHR) of the outcomes of the A most recent branches is concatenated
with some bits of the branch PC to index the PHT. Combining history and address bits
provides some degree of anti-aliasing to prevent destructive conflicts in the PHT. In gshare,
the history and the branch address are XOR’d. This permits the use of a longer history
string, since the two strings do not need to be concatenated and both fit into the desired
index width. This paper models a 4 K-entry GAs predictor with 5 bits of history [46]; a
16 K-entry gshare predictor in which 12 bits of history are XOR’d with 14 bits of branch
address (this is the configuration that appears in the Sun UltraSPARC-III [48] and the
shorter global history string gives good anti-aliasing); a 32 K-entry gshare predictor, also

with 12 bits of history; and a 32 K-entry GAs predictor with 8 bits of history [46].

component #1 —— component #2
(global) (local)
GBHR (12) >
BHT
(1K
x10)
PHT]|
branch address (S
branch address
O
L
BHT taken/not-taken
taken/not-taken
PHT
PHT]|
selector (4K)
(uses global hist) —
taken/not-taken
(@) (b) (c)

Fig. 1. (a) A gshare global-history branch predictor like that in the Sun UltraSPARC-IIL. (b) A PAs
local-history predictor. (c) A hybrid predictor like that in the Alpha 21264.

Instead of using global history, a two-level predictor can track history on a per-branch
basis. In this case, the first-level structure is a table of per-branch history registers—
the branch history table or BHT—rather than a single GBHR shared by all branches.
The history pattern is then combined with some number of bits from the branch PC to
form the index into the PHT. Figure 1b shows a PAs predictor. Local-history prediction
cannot detect correlation, because—except for unintentional aliasing—each branch maps

to a different entry in the BHT. Local history, however, is effective at exposing patterns in

9

the behavior of individual branches. The Intel P6 architecture is widely believed to use a
local-history predictor, although its exact configuration is unknown.This paper examines
two PAs configurations: the first one has a 1 K-entry, 4-bit wide BHT and a 2 K-entry
PHT; the second one has a 4 K-entry, 8-bit wide BHT and a 16 K-entry PHT. Both are
based on the configurations suggested by Skadron et al. in [46].

Because most programs have some branches that perform better with global history and
others that perform better with local history, a hybrid predictor [13], [36], combines the
two as shown in Figure 1c . It operates two independent branch predictor components
in parallel and uses a third predictor—the selector or chooser—to learn for each branch
which of the components is more accurate and chooses its prediction. Using a local-history
predictor and a global-history predictor as the components is particularly effective, because
it accommodates branches regardless of whether they prefer local or global history. This

paper models four hybrid configurations:

1. Hybrid_1: a hybrid predictor with a 4K-entry selector that only uses 12 bits of global
history to index its PHT; a global-history component predictor of the same configuration;
and a local history predictor with a 1 K-entry, 10-bit wide BHT and a 1 K-entry PHT. This
configuration appears in the Alpha 21264 [31] and is depicted in Figure lc. It contains
28 Kbits of information.

2. Hybrid_2: a hybrid predictor with a 1 K-entry selector that uses 3 bits of global history
to index its PHT; a global-history component predictor of 2K entries that uses 4 bits of
global history; and a local history predictor with a 512 entry, 2-bit wide BHT and a 512
entry PHT. It contains 8 Kbits.

3. Hybrid_3: a hybrid predictor with an 8 K-entry selector that uses 10 bits of global
history to index its PHT}; a global-history component predictor of 16K entries that uses 7
bits of global history; and a local history predictor with a 1 K-entry, 8-bit wide BHT and
a 4 K-entry PHT. It contains 64 Kbits.

4. Hybrid 4: a hybrid predictor with an 8 K-entry selector that uses 6 bits of global history
to index its PHT; a global-history component predictor of 16K entries that uses 7 bits of
global history; and a local history predictor with a 1K-entry, 8-bit wide BHT and a
4 K-entry PHT. It also contains 64 Kbits.

10

Hybrid 2, 3, and 4 are based on configurations found to perform well by Skadron et al.
in [46]. A brief summary of all the branch predictors studied is given in Table III

TABLE III

SUMMARY OF BRANCH PREDICTORS STUDIED .

No. of | No. of | No. of Metho- Size Size | Total

branch | global local dology of | of BHT | of PHT Size

bits | history | history | combining (bits) (bits) | (bits)

bits bits

Bim_128 7 X X X X 256 256
Bim_4K 12 X X X X 8K 8K
Bim 8K 13 X X X X 16K 16K
Bim_16K 14 X X X X 32K 32K
GAs_14K_5 5 X Concat X 8K 8K
GAs_1.32K_8 8 X Concat X 64K 64K
Gsh_1_16K_12 14 12 X XOR X 32K 32K
Gsh_1_32K_12 15 12 X XOR X 64K 64K
Hybrid_1 28K
Global X 12 X X X 8K 8K
Local X X 10 X 10K 2K 12K
Selector X 12 X X X 8K 8K
Hybrid 2 8K
Global 7 4 X Concat X 4K 4K
Local 7 X 2 Concat 1K 1K 2K
Selector 7 3 X Concat X 2K 2K
Hybrid_3 64K
Global 7 7 X Concat X 32K 32K
Local 4 X 8 Concat 8K 8K 16K
Selector 3 10 X Concat X 16K 16K
Hybrid_4 64K
Global 7 7 X Concat X 32K 32K
Local 4 X 8 Concat 8K 8K 16K
Selector 7 6 X Concat X 16K 16K
PAs 1K 2K 4 7 X 4 Concat 4K 4K 8K
PAs 4K_16K_8 6 X 8 Concat 32K 32K 64K

11

III. PERFORMANCE-POWER TRADEOFFS RELATED TO BRANCH PREDICTION

A. Base Simulations for Integer Benchmarks

We now examine the interaction between predictor configuration, performance, and
power/energy characteristics. In our discussion below, the term “average”, wherever it

occurs, means the arithmetic mean for that metric across all the benchmarks simulated.

Figure 2a presents the average branch predictor direction accuracy for integer bench-
marks, and Figure 2b presents the corresponding IPC. For each predictor type (bimodal,
GAs, gshare, hybrid, and PAs), the predictors are arranged in order of increasing size,
and the arithmetic mean is superimposed on each graph as a thicker and darker curve.
The trends are exactly as we would expect: larger predictors get better accuracy and
higher IPC, but eventually diminishing returns set in. This is most clear for the bimodal
predictor, for which there is little benefit to sizes above 4K entries. For the global-history
predictors, diminishing returns set in at 16K entries. Among different organizations, gshare
slightly outperforms GAs, and hybrid predictors are the most effective at a given size. For
example, compare the 32 K-entry global predictors, hybrid_3 and 4, and the second PAs
configuration: they all have 64 Kbits total area, but the hybrid configurations are slightly

better on average and also for almost every benchmark.

Figure 3 gives the energy and energy-delay characteristics. Together, Figure 3a and
Figure 3b show that processor-wide energy is primarily a function of predictor accuracy
and not of the energy expended in the predictor. For example, although the energy
spent locally in hybrid_3 and hybrid 4 is larger than for a gshare predictor of 16 K-entry,
the chip-wide energy is almost the same. And the small or otherwise poor predictors,
although consuming less energy locally in the predictor, actually cause substantially more
energy consumption chip-wide. The hybrid 4 predictor, for example, consumes about
7% less chip-wide energy than bimodal-4K despite consuming 9% more energy locally in
the predictor. This suggests that “low-power” processors (which despite their name are
often more interested in long battery life) might be better off to use large and aggressive
predictors if the die budget can afford it. The best predictor from an energy standpoint is
actually hybrid_1, the 21264’s predictor, which attains a slightly lower IPC but makes up

12

Direction Prediction Rate

Bpred Direction Rate IPC

1 24
0.95 1
0.9
0.85 { |4
0.8
0.75 4
0.7 T T T T T T T T T T T T T
® N ¥ & 9N e Y NS L
,\‘b B‘ ? \Q’ N 24 > '/‘ Y4 \b/ O D N 6{./
&7 Qf\‘e g\& & A/ b \# Q’i& & & & & q.(/b N
& LA VAV L S S P
» N XN sl 4
¢ F &P ¥
Predictors (Figure A) Predictors (Figure B)
——255.vortex = 164.gzip 175.vpr 300.twolf —+—255.vortex = 164.gzip 175.vpr 300.twolf
——253.perlbmk ——197.parser ——176.gcc ——254.gap ——253.perlbmk —=—197.parser ——176.gcc ——254.gap
186.crafty 256.bzip2 -=—Average 186.crafty 256.bzip2 —#—Average

Fig. 2. (a) Direction-prediction accuracy and (b) IPC for SPECint2000 for various predictor organizations.

For each predictor type, the predictors are arranged in order of increasing size along the X-axis. The

arithmetic mean is the dark curve in each of the graphs.

=
&

-
- 2
s &

Bpred Energy Overall Energy Overall Energy Delay

2

055
: ‘_A—\\—A e

N
1]
0
70 3 H
g 39 3
0 2
3 236 3
3025 PR » 3 34 3
: : 8y g
— . 035 i~y
KINEEN e 2 TN ———
= ~— ¥ .
v 2_8 S = . e
025 — ettt
015 — T T T T T T T T T T 26 — T T T T T T T T T T 02 e s e e e B S m
D & ¢ ¢ 4 2 0 0 PN S b KR S R A N 2O G R L R I S T A 2 2O I U .
G Y AN VAL AN voN e AN
N S W Yy N S W o Yy N oo N W o Y
& o o & LI AU A A N & o o & LI A AR A N Y LR O S S SN N
) z,;\/ a'/‘/ «> \? &y Ny e‘/‘w W ¢ 99 q>/ e’/" O \”’ Voo ,f/ W ¢ 79 g>/ 9:‘/ \> »\? S8y ;V N
o & 0"\\/ 0”\\/ ¥ sz,/ o & 0"\\/ (’é\/ & qvq/ o & (’é\/ (fy/ & q‘?"/
Predictors (Figure A) Predictors (Figure B) Predictors (Figure C)
—+-255.vortex —+-164.gzip 175.vpr 300.twolf ~+255.vortex -=-164.gzip 175.vpr 300.twolf ~+255.vortex -=-164.9zip 175.vpr 300.twolf
253 perlbmk —-197.parser —+176.gcc ~ —254.gap - 253 perlbmk -o-197.parser ——176.gcc ~ —254.9ap 253 perlbmk -o-197.parser ——176.gcc ~ —254.9ap
186.crafty 256.bzip2 === Average 186.crafty 256.bzip2 =-Average 186.crafty 256.zip2 =8-Average

Fig. 3. Energy expended in (a) the branch predictor and (b) the entire processor, and (c) energy-delay
for the entire processor for SPECint2000.

Power(Watts)

Bpred Power Overall Power
43
M / — ~— —
__ 391
Tal e e T
E_: 35 B A a—
3 334 — —
a
29
1.8 T T T T T T T T T T T T T 27 T T T T T T T T T T T T T
e')@ & o P S &/‘& & & ¥ g o O R
N N N/ L N2 N 7 N N N NS A © ¥© ¥© 7
A A W@’ o A/ N R R R i AR % o A R IR G R 9'/& Dl
& & & &
Predictors (Figure A) Predictors (Figure B)
—+—255.vortex = 164.9zip 175.vpr 300.twolf —+—255.vortex = 164.9zip 175.vpr 300.twolf
—«—253.perlbmk —e—197.parser ——176.gcc ——254.gap —x—253.perlbmk ——197.parser ——176.gcc ——254.gap
186.crafty 256.bzip2 -=—Average 186.crafty 256.bzip2 —=—Average

Fig. 4. Power dissipation in (a) the branch predictor and (b) the entire processor for SPECint2000.
13

Bpred Direction Rate IPC
1.01

2 0.99 —— =]

-] — S 2ﬁ/ N—r” 27

T 0.97 f//\ = —

c 4 R e . &~ W o

.2 0.95 4 / 7] /—'—"’

3 ﬁ/ / \—\./ 22

£ 0.3] / » o W

13 [

% 0.91 4 1.71]

© 0.89 4 "

3 0.87 1 1.2

8 0.85 .

0.83 T T T T T T T T T T T T T 0.7 T T T T T T T T T T T T T
A))) ® LY))) ?
'/\'13’ ‘&3"{. .é‘?{. »/\6{. b‘-‘f/’ %,v.‘/b G"'/& q\}_'/‘q' ‘\b{/b ‘\b/ {\b/ {\b/ ,”-/ \6(./ »/3?, 6\3“{. &?* »/3;{. b‘-"? o_,‘i‘.‘/b 6";& ‘13"/& ‘\b{/b {\b/ (\b/ (\b/ fi{'/ \64./
LR VNV S S S T TN ST
o o/ o o
6 0?. Oé(\/ Qé(\/ Q} Qvg/ 0 ev Gé(\/ 0%0/ Qv. Qv:,/
Predictors (Figure A) Predictors (Figure B)
—+—168.wupwise —=—173.applu 179.art —171.swim —+—168.wupwise —=173.applu 179.art ——171.swim
—e-177.mesa —+—183.equake — 189.lucas 300.apsi —o-177.mesa —+ 183.equake —189.lucas 300.apsi
172.mgrid 187.facerec 191.fma3d -==Average 172.mgrid 187.facerec 191.fma3d -==Average
Fig. 5. (a) Direction-prediction accuracy and (b) IPC for SPEC{p2000.
Bpred Energy Overall Energy Overall Energy Delay
045 1
0 ‘ § 509
* * @ e
— . X /| 45 508
20354 ¥ - N [g g
2 9 ;: 07
3 ot ~ " 3
LIS NN P | R L]
3025 31 %o.s
]])
i o2 oy T T~ .+ | S
W 5:; 03

015 251 w9 —

01 — T T T T T T T T T 2 — T L S e A E e 01 L e e E e e I A s m
I I R IR L AR B N I I A N AR I LK L I R IR 2T B I
A NN AR T e 7 I\ N X A NN O Y N

& & o &P & & o N & & DO VA VA S S S) S

FESETIIIESELS T ISy TSI ey TSI

o 9 9 9 9
& & L & & & & L
Predictors (Figure A) Predictors (Figure B) Predictors (Figure C)
—+168.wupwise —+173.applu 179.art —+171.swim —+-168.wupwise —+-173.applu 179.art —+171.swim ~+168.wupwise —+173.applu 179.art -+ 171.swim
-+-177mesa —183.equake — 189.lucas 300.apsi -»-177mesa —+183.equake —180.lucas 300.apsi -+-177mesa —+183equake — 189lucas 300.apsi
172.mgrid 187.facerec 191.fma3d -#=Average 172.mgrid 187 facerec 191fmadd -=~Average 172.mgrid 187 .facerec 191.fma3d 8- Average

Fig. 6. Energy expended in (a) the branch predictor and (b) the entire processor, and (c) the energy-delay
for the entire processor for SPEC{p2000.

Power(Watts)

Bpred Power

Overall Power

35 a
3.3 W
3.1)/o’/\ }
291 7 ¥ W
271 g M
iy g * /_._._/—.——L\/’-_-\/
234 o
211 29 a8 4+,
e e X
1.9 4 - - — W
1.7 T T T T T T T T T T T T T 24 T T T T T T T T T T T T T
P ST I P I ISP E P ST IR P TITI ISP
. PO O ¥ © W . P ¢ © ¢ W
¢ ¢ @ ARV S R ¢ ¢ RNV R R e
¢ & & & ¢ & & &
Predictors (Figure A) Predictors (Figure B)
—+—168.wupwise —=-173.applu 179.art —*=171.swim —+—168.wupwise —=-173.applu 179.art —*-171.swim
——177.mesa —+183.equake —189.lucas 300.apsi ——177.mesa —+183.equake —189.lucas 300.apsi
172.mgrid 187.facerec 191.fma3d === Average 172.mgrid 187.facerec 191.fma3d -==Average

Fig. 7. Power dissipated in (a) the predictor and (b) the entire processor for SPEC{p2000.

14

for the longer running time with a predictor of less than half the size. Although hybrid_1 is
superior from an energy standpoint, it shows less advantage on energy-delay; the 64 Kbit
hybrid predictors (hybrid_3 and hybrid_4) seem to offer the best balance of energy and

performance characteristics.

The power data in Figure 4 shows that power dissipation in the predictor itself is mostly
a function of predictor size, and that unlike energy, power in the processor as a whole tracks
predictor size, not predictor accuracy. This is because power is an instantaneous measure
and hence is unaffected by program running time. Average activity outside the branch
predictor is roughly the same regardless of predictor accuracy, so predictor size becomes
the primary lever on overall power. Figure 4 also shows that if power dissipation is more
important than energy, GAs_1_4K, gshare_16K, or one of the smaller hybrid predictors is

the best balance of power and performance.

Finally, Figures 2, 3 and 4 also show data for individual benchmarks. It is clear that
the group crafty, gzip, vortex, and gap, with high prediction rates, have high TPCs and
correspondingly low overall energy and energy-delay despite higher predictor and total
instantaneous power. The group parser, twolf, and vpr, at the other extreme, have the
exact opposite properties. This merely reinforces the point that almost always there would
be no rise (and in fact usually a decrease) in total energy if we use larger branch predictors

to obtain faster performance!

B. Base Stmulations for Floating Point Benchmarks

Figures 5-7 repeat these experiments for SPECfp2000. The trends are almost the same,
with two important differences. First, because floating-point programs tend to be domi-
nated by loops and because branch frequencies are lower, these programs are less sensitive
to branch predictor organization. Second, because they are less sensitive to predictor or-
ganization, the energy curves for the processor as a whole are almost flat. Indeed, the
mean across the benchmarks is almost entirely flat. This is because the performance and
hence energy gains from larger predictors are much smaller and are approximately offset

by the higher energy spent in the predictors.

15

C. Potential Gains from Improved Accuracy

Just to illustrate how much leverage branch-prediction accuracy has on both perfor-
mance and energy, Figure 8 shows the effect of using an idealized, omniscient direction
predictor and BTB that never mispredict. In the interests of space, we chose a random
sample of seven integer benchmarks. Because a comparison against a control of no pre-
diction would be meaningless, the comparison is done against a known good predictor, a
GAs predictor with 32 K-entries and 8 bits of global history. Perfect prediction improves
performance for the seven benchmarks by 20% and energy by 16% on average. Issue width
was held fixed here; since better prediction exposes more instruction-level parallelism, even
greater gains could be realized. These results further illustrate just how much leverage

prediction accuracy and its impact on execution time translate into energy savings.

Performance Impr Perfect Predicti Reduction in Overall Energy--Perfect Prediction

40 30

@
&

254

@
S
L

n

a
n
S

Percentage
»n
o
|
Percentage
&

o

=)
L
=)

o

A ERRRERINAEN

gap crafty gce gzip parser vortex vpr gap crafty gce gzip parser vortex vpr

Benchmarks (Figure B) Benchmarks (Figure B)

Fig. 8. (a) Performance improvement from perfect prediction and (b) Percentage reduction in overall

energy using perfect prediction compared to a 32k-entry global-history (GAs) predictor.

IV. REDUCING POWER THAT STEMS FROM BRANCH PREDICTION

The previous section showed that in the absence of other techniques, smaller predictors
that consume less power actually raise processor-wide energy because the resulting loss
in accuracy increases running time. This section explores three techniques for reducing
processor-wide energy expenditure without affecting predictor accuracy. All remaining
experiments use only the integer programs because they represent a wider mix of program

behaviors. We have chosen a subset of seven integer benchmarks: gzip, vpr, gcec, crafty,

16

parser, gap and vortex. These were chosen from our ten original integer benchmarks to
reduce overall simulation times but maintain a representative mix of branch-prediction

behavior.

A. Banking

As shown by Jiménez, Keckler, and Lin [29], slower wires and faster clock rates will
require multi-cycle access times to large on chip structures, such as branch predictors.
The most natural solution to that is banking. We again used help from the modified
Cacti [55] to determine the access times for a banked branch predictor. We assume that
for any given access only one bank is active at a time; therefore banking not only reduces
access times but also saves us power spent in the branch predictor, as shown in Figure 9.
We plot cycle times normalized with respect to the maximum value, because achievable
cycle times are extremely implementation-dependent and might vary significantly from the
absolute numbers reported by Cacti. Banking might come at the cost of extra area, (for
example due to extra decoders) but exploring area considerations is beyond the scope of
this paper. The number of banks range from 1 in case of smaller predictors of size 2 Kbits
or smaller to 4 in case of larger predictors of size 32 Kbits or 64 Kbits. The resulting

number of banks for different branch predictor sizes is given in Table IV.

Bpred Cycle Time

0.6

e
@
t t
e o =
o ©

e
3

I
IS
o
o
Normalized Cycle Time

o
o

ey
RS I

Power(Watts)
e
w

‘
—
o o
w B

e
)
.

e
o
t
o
[

L
+
=]
o

o
=)

256 1k 2k 4k 8k 16k 32k 64k
Bpred Size(PHT)

‘f Old Bpred Power —— Bpred Power ——Old Cycle Time —#- Banking Cycle Time

Fig. 9. Cycle time for a banked predictor.

Figures 10 and 11 show the difference between the base simulations and the banking

figures. It can be observed that the largest decrease in predictor power comes for larger

17

Percentage

TABLE IV

NUMBER OF BANKS.

No. of banks
128bits 1
4Kbits 2
8Kbits 2
16Kbits 4
32Kbits 4
64Kbits 4
Average Bpred Power Average Total Power
12 0.9
0.8
10
0.7 1
8 0.6
® @ — —
E E 0.5
T 6 €
] s
e £ 04
& 4
4 0.3 1
2 H
0.1
L BHHm [SN N o
N Nt Nl i o > & N7 N > > ™ k] 5 Nt 3 g “ N7 v > > L3 >
NG » N S o N N O D7 D D7 s & ¥ A 3 O 7 o N NS D D D Qb
&7 &7 SV &7 arr & &8 &8 &8 > Q &7 Q7 o S 7 aqrs & & $& S8 P o'
o I T 3 NT T T W AR R PRSI I SR R R i
o F & <Y Qv"/ o F &S <Y Q\P’

Predictors (Figure A)

Predictors (Figure B)

Fig. 10. Banking results: (a) Percentage reduction in branch-predictor energy (b) and overall power.

Average Bpred Energy Average Total Energy Average Energy Delay
12 09 09
08 — 08
10 —
07 07
8 06 06
1) o
o o
05 £05
6 || c c
o o
204 il 204 il
13 o
[[
4 03 03
02 0.2
2 H
il 1 o I |
o —H HLHHL A o —H H B H A o —HH A

U 0 W

® ¥ & 0 ? YN S x B L] P N 5 % b

U) A voON &

Al LRy, R YA YA VY A LYY O Y
i 0\6\/ Q)‘N i v '/;L & g *"o *“\ @‘ § ‘J ’,‘% i 0\@/ 0;‘&/ N VAR AT § @(*V\\ i“\ »&{?. $
) LS RVARVAR S S Q LV RVAR VI S S A S

¥ ¥ o s ev‘: 06\\/ (:?W ¥ el

Y
¢ & &

Predictors (Figure A) Predictors (Figure B)

Fig. 11.
(c) energy-delay.

O N & & 9 A L] » L)
AL)
A A Y

9 % 0 M
NN N R
VP SR AP VAR I A U
DN ANV
N &

Predictors (Figure C)

Banking Results: (a) Percentage reduction in branch-predictor energy, (b) overall energy, and

predictors. This is exactly as expected, since these predictors are broken into more banks.

The large hybrid predictors do not show much difference, however, because they are already

broken into three components of smaller sizes and banking cannot help much. Banking

results in modest power savings in the branch predictor, and only reduces overall power

18

Conditional Branch Distance Distance of Control FLow Instructions

@

Percentage of Branches
Percentage Of Branches
©

o | H ﬂﬂﬂ‘ﬂﬂﬁnﬂnnﬂ ol fannan nr[: : HHHHHHHHHHHHHHHnMHHan

o a
O N T O OO NT O PO NT L RN T QRN T QD O N T O WO AN T O ®ONT O DN T
————— ISR R TR TR S T T~ RS S FrEFrEsFffFfl8 IS 6

Distance In Instruction (Figure A) Distance In Instructions (Figure B)

46 =

36 =
0=

@ o= @
& g 3 L3

Fig. 12. (a) Average distance (in terms of instructions) between conditional branches. (b) Average

distance between control-flow instructions (conditional branches plus unconditional jumps).

Average Conditional Branch Distance Average Distance between Control Flow Instructions
25 20
18
20 16
@ 2 1a
2 S
S 151 S 12
k] @
= = 10
s B
5 10 i —i —i — H & 8T — — —i
£ g
H 3 64
5 4]
24
o o
164.gzip 175.vpr 176.gcc 186.crafty 197.parser 254.gap 255.vortex 164.gzip 175.vpr 176.gcc 186.crafty 197.parser 254.gap 255.vortex
Benchmarks (Figure A) Benchmarks (Figure B)

Fig. 13. (a) Average distance (in terms of instructions) between conditional branches for different bench-
marks. (b) Average distance between control-flow instructions (conditional branches plus unconditional

jumps) for different benchmarks.

and energy by about 1%.

B. Reducing Lookups Using a PPD

A substantial portion of power/energy in the predictor is consumed during lookups,
because lookups are performed every cycle in parallel with the I-cache access. This is
unfortunate, because we find that the average distance between control-flow instructions
(conditional branches, jumps, etc.) is 12 instructions. Figures 12 and 13 shows that 40%
of conditional branches have distance greater than 10 instructions, and 30% of control
flow instructions have distance greater than 10 instructions. Jiménez et al. report similar
data [29]. We also compared these results with gcc-compiled SimpleScalar PISA binaries.

The results were similar, so these long inter-branch distances are not due to nops or

19

predication. It could be that other programs outside the SPEC suite might have lower

distance between branches. In this case the PPD might not perform very well.

PC+4
::1}_’@ I-Cache

I B |

|

|

| |

| |I-Cache | |

| |
|

} lPPD__ |

‘ PPD | ‘

| = ﬂ :78187 —

|

| accessdirpred? J } | dir-pred __|

} } faccesBTe? }

| | |

| | |

| |

| BTB

| I |

| I I-Cache |

| I I R

! L__ |

} | |PPD__]

} 4»&-’ dir-pred **7 ,,JETE,,>
|

| } _ ldirpred

| ‘ }

| takennottaken ‘

taken—branch target
@) (b)

Fig. 14. (a) A schematic of the PPD in the fetch stage. (b) The two timing scenarios we evaluate.

The fact that many cache lines have no control flow instructions suggests that we should
identify dynamically when a cache line has no conditional branches so that we can avoid a
lookup in the direction predictor, and that we identify when a cache line has no control-flow
instructions at all, so that we can eliminate the BTB lookup as well.

If the I-cache, BTB, and direction predictor accesses are overlapped, it is not sufficient
to store pre-decode bits in the I-cache, because they only become available at the end
of the I-cache access, after the predictor accesses must begin. Instead, we propose to
store pre-decode bits (and possibly other information) in a structure called the prediction
probe detector (PPD). The PPD is a separate table with a number of entries exactly
corresponding to I-cache entries. The PPD entries themselves are two-bit values; one bit
controls the direction-predictor lookup, while the other controls the BTB lookup. This
makes the PPD 4 Kbits for our processor organization. The PPD is updated with new pre-
decode bits while the I-cache is refilled after a miss. The PPD is similar to the Instruction

Type Prediction Table (ITPT) proposed in [12]. The main difference is that ITPT only

20

relies on the program address and its prediction can be wrong. The notion that in a
superscalar fetch prediction, knowing what type of instructions are in a block/icache line
is the most critical piece of information was also pointed out in [54]. They use a Block
Instruction Table (BIT) to store information about each instruction in the cache line in
order to do multiple branch prediction. A schematic of the PPD’s role in the fetch stage is
shown in Figure 14a. There is a design issue with the PPD for set-associative instruction
caches. In traditional implementation of caches, one does not know which way of the set
is going to be selected until the I-cache access is complete. The only safe solution is to
make the PPD “conservative”. So the PPD bits of all the ways of the set are OR ’ed so as
to guarantee that if a branch is present in any way, then branch prediction is done. This
scheme is conservative because many times the way that matches and is fetched might not

have a branch.

Because the PPD is an array structure and takes some time to access, it only helps if the
control bits are available early enough to prevent lookups. A variety of timing assumptions
are possible. Exploring fetch-timing scenario is beyond the scope of this paper, so here we

explore two extremes, shown in Figure 14b.

o Scenario 1: The PPD is fast enough so that we can access the PPD and then the BTB
sequentially in one cycle. The BTB access must complete within one cycle; more flexibility
exists for the direction predictor. The direction predictor is also accessed sequentially after
the PPD; but either this access fits entirely within the same cycle, or as with the 21264,
overlaps into the second cycle. The former case is reasonable for smaller predictors; the
latter case applies to large predictors, as shown in both the 21264 and by Jiménez et al..
Due to the small size of PPD (4 Kbits) it can be seen from Figure 9 that the time to
access the PPD is less than a quarter of the time to access a predictor of size 64 K bits

o Scenario 2: We consider the other extreme also. Here the assumption is that the BTB
and the direction predictor need to be accessed every cycle and these accesses take too
long to place after the PPD access. Instead, we assume that the PPD access completes
in time to stop the BTB/direction-predictor accesses after the bitlines (before column
multiplexor). The savings here are clearly less, but the PPD is still able to save the power

in the multiplexor and the sense-amps.

21

Now, instead of accessing the BTB and direction predictor every cycle, we must access
the PPD every cycle. This means we must model the overhead in terms of extra power
required for the PPD. If the PPD does not prevent enough BTB /predictor lookups, then
introducing a PPD may actually increase power dissipation. Fortunately, there are indeed
a sufficient number of cache lines that need no BTB/predictor lookups that the PPD is
substantially effective. As explained earlier due to the “conservative” nature of the PPD,

our scheme works best in case of direct mapped caches.

A further consideration that must be taken into account is whether the predictor is
banked. If the predictor is banked, the PPD saves less power and energy (because some
banks are already not being accessed), but the combination of techniques still provides

significant savings.

Figures 15-16 show the effect of a PPD on a 32K-entry GAs predictor for a direct
mapped cache of the same size. We chose this configuration in order to be able to include
the effects of banking. Figure 15 shows the average reduction in power for the branch
predictor and in the overall processor power. We observe a similar trend in Figure 16 for
the energy metrics. The PPD is small enough and effective enough that spending this extra
power on the small PPD brings us larger benefits overall. Since the PPD simply permits
or prevents lookups, savings will be proportional for other predictor organizations. It can
also be observed that the greater the average distance between branches for a benchmark,
the more the savings we get from the PPD. For Scenario 2, the power savings are closely
tied to our timing assumptions, and further work is required to understand the potential
savings in other precharge and timing scenarios. Figure 17 shows the average percentage
reduction in power and energy for increasing associativity of I-cache (same size 64K). It
is clearly observed that the benefits of PPD decreases as the associativity increase. For

eight-way I-cache there is practically no benefit at all.

C. Highly Biased Branches

The PPD was also extended to recognize “unchanging” branches (which are always
taken or always not taken) [39]. We modified SimpleScalar’s sim-bpred to identify differ-

ent types of branches. Our analyzer goes through a program and stores a 2-tuple {branch

22

Percentage

Percenatge reduction in Bpred Power Percenatge Reduction in Total Power

60 5
4.5
50 a
40 4 35
s $ 3
k-] s
S 30 $ 25
e e
& 2 2
20
1.5
10 4 1
0.5
o 0 -
crafty gap gece gzip parser vortex vpr crafty gap gce gzip parser vortex vpr
Benchmarks (Figure A) Benchmarks (Figure B)
@ PPD Scenario 1 B PPD Scenarioz\ @O PPD Scenario 1 B PPD Scenario 2\

Fig. 15. Net savings with a PPD for a 32K-entry GAs predictor and direct mapped cache in terms of
(a) power in the branch predictor and (b) overall processor power with a PPD. Scenarios 1 and 2 refer to

two timing scenarios we model.

Percentage Decrease in Bpred Energy Percentage Reduction in Overall Energy Percentage Reduction in Overall Energy Delay

)) —‘) —‘
35 35

8
Percentage
= »

o=
o=

o

crafty gap gee gzip parser vortex vpr crafty gap gee ozip parser vortex vpr crafty gap gee gzip parser vortex vpr
Benchmarks (Figure A) Benchmarks (Figure B) Benchmarks (Figure C)

0 PPD Scenario 1 MPPD Scenario 2 EPPD Scenario 1 MPPD Scenario 2 @PPD Scenario 1 MPPD Scenario 2

Fig. 16. Net savings with a PPD for a 32K-entry GAs predictor and direct mapped cache in terms of
(a) energy expended in the branch predictor, (b) total energy, and (c) energy-delay.

address, branch type} value in a file. Then Wattch reads this profile and calculates power
for each type of branch. For “unchanging branches”, direction look-up is not done. For
correlation of power versus branch type, four integer benchmarks were characterized. For
this experiment, we used training inputs for the profiling and reference inputs for the ac-
tual power calculations. This implies that some of the highly biased branches identified
in the training input could change in the reference input. This is fine, as any incor-
rect hints will be detected in the later stages of pipeline. The plots presented take all
these effects into account. From Figure 18a it can be observed that the “unchanging”
branches category of branches make up more than half of all the static branches in the

binary. The energy consumed by these branches is not in the above proportion, as seen

23

Effect of Associativity

©
o

Percentage
=y Py N N w
o [3,] o (3] o
| ! | !

o
L

o

One_Way Two_Way Four_Way Eight_Way

Davg_bpred_power Bavg_bpred_energy Oavg_total_energy
DOavg_total_energy Mavg_total_energy

Fig. 17. Net savings with a PPD for different associativity for I-cache

in Figure 18b. The reason is that “changing” branches are executed more times than
“unchanging” branches. The percentage of energy consumed by unchanging branches can
range from trivial (164.gzip) to substantial (175.vpr). From the figures provided it can be
seen that unchanging branches consume from less than 1% up to 20% of energy. Please
note that this is the energy that can be saved on top of the savings provided by PPD. This
observation makes us conclude that if branch prediction hints were provided for unchang-
ing branches, by profiling or static analysis, then it would lead to a substantial reduction
in the power spent in the branch-prediction hardware. The assumption we make is that
the instructions can be annotated in the binary to specify that a particular instruction is

a highly biased branch.

V. SUMMARY AND FUTURE WORK

The branch predictor structures, which are the size of a small cache, dissipate a non-
trivial amount of power—about 10% of the total processor-wide power—and their accuracy
controls how long the program runs and therefore has a substantial impact on energy. This
paper explores the effects of branch predictor organization on power and energy expended
both locally within the branch predictor and globally in the chip as a whole.

5its power dissipation but does affect access time.

In Section III, we showed that for all the predictor organizations we studied, total energy

24

Fraction of Static Branches Bpred Energy

25

4
©

14
o
N
S

o
3

=4
o
o

S €
'S
=)

o
w

Fraction
o
o
Percentage Reduction in Energy

o
)
o

o

T T T T T T
164.9zip 175.vpr 186.crafty 254.gap 164.9zip 175.vpr 186.crafty 254.gap
Benchmarks (Figure A) Benchmarks (Figure B)

o
o

Fig. 18. (a) Static Profile (not dynamic execution) of branches and (b) Percentage of branch predictor

energy consumed by “unchanging” branches.

consumed by the chip is affected more strongly by predictor accuracy than by the local
energy consumed by the predictor, because more accurate predictors reduce the overall
running time. We found that for integer programs, large but accurate predictors actually
reduce total energy. For example, a large hybrid predictor uses 9% more energy than a
bimodal predictor but actually yields a 7% savings in total, chip-wide energy. For floating-
point programs, the energy curves are flat across the range of predictor organizations, but
this means that choosing a large predictor to help integer programs should not cause
harm when executing floating-point programs. This suggests that if the die budget can
afford it, processors for embedded systems that must conserve battery life might actually
be better off with large, aggressive branch predictors rather than lower-power but less
accurate predictors.

Section IV showed that there are some branch-prediction-related techniques that do save
energy without affecting performance. Banking both reduces access time and saves power
by accessing only a portion of the total predictor structure. A prediction probe detector
(PPD) uses pre-decode bits to prevent BTB and predictor lookups, saving as much as
30-50% in energy expended in the predictor and 3-5% of total energy.

Overall, we hope that the data presented here will serve as a useful guide to help
chip designers and other researchers better understand the interactions between branch

behavior and power and energy characteristics, and help identify the important issues in

25

balancing performance and energy when choosing a branch predictor design.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the National Science Foundation
under grants nos. CCR-0082671 and CCR-0105626, NSF CAREER MIP-9703440, a grant
from Intel MRL, and by an exploratory grant from the University of Virginia Fund for
Excellence in Science and Technology. We would also like to thank John Kalamatianos
for helpful discussions regarding branch-predictor design; Margaret Martonosi and David
Brooks for their assistance with Wattch and for helpful discussions on various power issues;

and Zhigang Hu for help with the EIO traces.

APPENDIX

I. SIMULTANEOUS MULTITHREADED PROCESSOR

A. SMT

Simultaneous Multi-threaded Processors (SMT) [51] is a processor that exploits both
thread-level parallelism and instruction level parallelism. SMT combines hardware features
of wide-issue superscalars and multi-threaded processors. From superscalars, it inherits
the ability to issue multiple instructions each cycle; and like multi-threaded processors it
contains hardware state for several programs (or threads). SMT adds minimal hardware
complexity to conventional superscalars. The result is a processor that can issue multiple
instructions from multiple threads each cycle, achieving better performance for a variety
of workloads. Single-threaded program that must execute alone will have all machine
resources available to it and will maintain roughly the same level of performance as when
executing on a single-threaded, wide issue processor.

The disadvantages are that there is a slight increase in the chip area, the pipeline length
increases (due to the increased access time to a very large register file), and resource
contention among shared hardware structures such as caches, TLBs, issue queues, and the
branch prediction tables might increase. Inter-thread contention on L1 caches can increase

by 68% and branch mispredictions by 50%, as the number of threads vary from one to

26

eight [18].

The fetch unit is one of the major bottlenecks in an SMT processor. The fetch unit can
fetch from multiple threads at once, increasing the utilization of the fetch bandwidth, and
it can be selective about which thread or threads to fetch from. Because not all paths
provide equally useful instructions in a particular cycle, an SMT processor can benefit by
fetching from thread(s) that will provide the best instructions.

Several Fetch Policies have been explored for an SMT processor. The most effective

fetch policies investigated are:

« ICOUNT [51]: Here highest priority is given to those threads that have the fewest
instructions in the decode stage, the rename stage, and the instruction queues.

« Fetch Prioritizing [33]: This policy sets up fetch priority for each thread based on the
number of unresolved low-confidence branches from the thread.

« Fetch Prioritizing with gating [33]: This includes the previous fetch policy and prevents
fetching from a thread once it has a stipulated number of outstanding low-confidence

branches.

B. Design of a Branch Predictor for SMT.

Not much work has been done explicitly in this area. Hily and Seznec [26] studied
branch prediction and multi-threading. Their study basically showed that the Return
Address Stack (RAS) should be per-thread and that the size of the branch prediction
tables should be in proportion to the number of threads. Gummaraju and Franklin [23]
investigated branch prediction in a Single-Program Multi-Threaded Processor(SPMT).

Their main points are:

o Private Predictors for each thread: In a Single Programmed Multiple Thread environ-
ment (SPMT) if the thread size is small, the performance is likely to be poor because
of insufficient history or discontinuous history. Generally if the thread size is larger than
per-thread predictor is better in terms of performance.But it will come at at an overhead
of chip area.

o Shared Predictor: Recorded history of Pas is affected only when there are multiple

instances of the same branches in multiple simultaneous active threads. Recorded history

27

of Gshare is affected whenever multiple branches are present in multiple simultaneously
active threads. It is better to bank a large global predictor like Gshare and let each thread
believe it has it own private predictor.
They then explore some way to increase the branch predictor accuracy in case of smaller
threads (when neither a per-thread predictor or a shared predictor are superior).

The current state of the art for branch predictors in an SMT processor is to have the
RAS duplicated. The global history register is also per-thread. The large global history
array are shared amongst the threads with entries that are tagged with a thread id [35].

II. SIMULTANEOUS MULTITHREADED PROCESSOR: A POWER PERSPECTIVE

A. SMT and Power

Power is becoming a major constraint in the design of microprocessors, as shown ear-
lier. SMT processors are attractive in the context of low-power for many of the same
reasons that make them high-throughput. First, it supplies extra parallelism via multiple
threads, allowing the processor to rely much less heavily on speculation; thus it wastes
fewer resources on speculation. Second, it provides more and even parallelism over time
running multiple threads, wastingless power on under-utilized execution resources. It was
shown by [42] that an SMT processor utilizes up to 22% less energy per instruction than
a single-threaded processor.

We improved upon an SMT simulator built upon Wattch. The SMT-Power simulator
infrastructure is in its initial stages and does need some more work. The results that
we got are more or less consistent with [42]. Figure 19 (A) shows how the energy per
useful executed instruction (EUI) goes down for a multi-threaded workload, while the
performance (IPC) goes up. The increase in power occurs because of the overall increase
in utilization and throughput of the processor. Here all results are normalized to a baseline
(the lowest single-thread value). Figure 19 (B) shows the results for a four-threaded
workload compared to individual runs of the workload in a single-threaded mode. The
length of the simulation for each benchmark is the same within the multi-threaded run
and the single-threaded run. The results here are not normalized.

It is thus obvious that SMT is an attractive architecture when energy and power are

28

Applu/Vortex/Apsi/Eon Apsi/Eon/Fma3d/Gee

IS

]

©

I
o

Ratio to Baseline Value
o N

14
@
© 4 N W & @ O N ® ©

b hid

il

o

IPC Average Power Energy EUI Apsi Eon Fma3d Gee ApsiEonFma3dGee
@1 thread W2 thread (04 thread \ @ Energy Delay BIPC O Energy

Fig. 19. Relative Performance, power and energy savings (a) As the number of threads vary. Here the
normalization is done with the lowest values of a single thread. Here EUI is Energy per Useful Instruction.

(b) For a multi-threaded run compared with the single-threaded run.

constraints. It can use significantly less energy per instruction while increasing the overall
performance. SMT does speed up the overall performance of a mutithreaded workload,

while some of the individual threads might be degraded in performance.

ITI. HOTLEAKAGE: AN ACCURATE, TEMPERATURE-AWARE, AND

COMPUTATIONALLY-EFFICIENT LEAKAGE MODEL FOR ARCHITECTS

A. HotLeakage

Power is rapidly become a design constraint not only in the domain of mobile devices
but also in high performance processors. Dynamic power is caused by switching activity
in CMOS circuits. It is the major source of total power dissipation in today’s process
generation. However static power, which is due to leakage current in the quiescent state
of circuits, is gaining more importance. Technology scaling is increasing both the absolute
and relative contribution of static power dissipation. Borkar [7] estimates that in the
next several processor generations, leakage may constitute as much as 50% of total power
dissipation (Figure 20 taken from [10]).

Recently, a great deal of research work in the architecture community has focused on re-
ducing leakage power in the caches [19], [24], [25], [30], [40], [53], [57], branch predictor [27],
register file [4], and issue queues [14], [15], [2], [1]. Leakage control at the architecture
level is attractive, because architectural techniques can control large groups of circuits

(e.g. cache lines, banks, or the entire cache) at once. Yet most of these studies use only

29

1 E+02 —
IE+O1 -
1 E-00 — &

1E-01

Power (W)

1E-02

1E-03 —

o Dyvnamic
O Static

1 F-04 —

1E-05 T T T T T T
1.0 -8 6 35 25 &

Channel length { ppm)

Fig. 20. Trends in dynamic and static power dissipation.

abstract models of leakage that do not fully account for all effects that may impact leakage,
like supply voltage and temperature. Unlike for dynamic power, where widely-available
simulators like Wattch [8] have enabled a widespread body of research, where is no widely
available model for leakage power. Although Butts and Sohi [10] propose a simple model
for use at the architecture-simulation level of abstraction, no corresponding software is
available. Most importantly, their model cannot easily model leakage when temperature,
supply voltage, or threshold voltage vary dynamically: a new “normalized leakage” and
Edesign must be calculated for every possible value. This is inconvenient although feasi-
ble for leakage-control schemes like drowsy [19] cache that uses two supply voltages, but
intractable for any leakage studies that account for dynamically varying temperature or

involve dynamic voltage scaling.

We developed a software model of leakage—based on BSIM3 [6] technology data—that
is already publicly available, computationally very simple, can easily be integrated into
popular power-performance simulators like Wattch, and can easily be extended to accom-
modate other technology models. It extends the Butts-Sohi model and corrects several
important sources of inaccuracy. We call our model HotLeakage, because it includes the
exponential effects of temperature on leakage. Temperature effects are important, because
leakage current depends exponentially on temperature, and future operating temperatures
may exceed 1000 C [43]. Currently the model is implemented on top of Wattch. The tool

is completely modular and easy to understand. All the architectural parameters can be

30

specified by the user. A user can easily add the model for a new structure into the tool.
It will have a complete user manual when publicly released.

HotLeakage has circuit-level accuracy because the parameters are derived from transistor-
level simulation (Cadence tools). Yet like the Butts and Sohi model, simplicity is main-
tained by deriving the necessary circuit-level model for individual cells, like memory cells
or decoder circuits, and then taking advantage of the regularity of major structures to de-
velop abstract models that can be expressed in simple formulas similar to the Butts-Sohi

model. All necessary components of this formula are encapsulated in lookup tables.

B. Leakage Reduction Techniques in Caches

We also demonstrate the importance of the increased accuracy that HotLeakage pro-
vides, by comparing several popular leakage-control techniques (fine-grained gated-V 4 [30],
dual-V; [41], drowsy cache [19], and reverse-body-bias [37]) and showing some non-obvious

tradeoffs. Recently two techniques have been suggested to reduce leakage in caches .

« GatedVss: The gated-Vdd structure was introduced in [40]. This technique reduces the
leakage power by using a high threshold transistor to turn off the power to the cell of a
cache when the cell is set to low-power mode. This high threshold transistor drastically
reduces the leakage of the circuit because of the exponential dependence of leakage on
the threshold voltages. While this technique is very efficient in saving leakage there is
the disadvantage that the cell looses its state (information). Thus this is a state loosing
technique. This means that there will be some performance penalty.This technique was
used in [30] to shut down lines in a cache to save leakage.

« Dynamic Vdd Scaling (DVS): It was proposed in [19] to use DVS to reduce the leakage
power of caches. By scaling the voltage of the cell to approximately 1.5 times the threshold
voltage the state of the cell can be maintained. Thus this is a state preserving technique.
Since both leakage current and the voltage is reduced there is a significant reduction in

leakage (though less than GatedVss).

Our model can be used to find the tradeoffs between such leakage saving techniques by
varying all the parameters. Figure 21 (A) shows the tradeoff of using the above mentioned

two techniques at a temperature of 110 Degree Fahrenheit.The cache that is controlled is

31

a level one data cache. The cache is two-way associative with 512 sets and block size of
64 bytes. The latency of the level two data cache is 11 cycles. Figure 21 (B) shows the
same tradeoffs at 85 Degree. These figures show that a designer can carry out a detailed
study using our model by varying different parameters and can choose a technique based

on his/her constraints.

Gcece- Drowsy Vs GatedVss Gce- Drowsy Vs GatedVss
0.9 0.8
0.8 - 0.7
@] 0.6 -
% o7 <3
£ £
2 061 5 051
5 !
g 05 T 049
3 S
o =
L 04 © 034
3 =
é 0.3 2 0.2 1
s
= £ 0.1+
202 b
o
0.1 Overhead Leakage Savings Net S:
.01
o
Overhead Leakage Savings Net Savings -0.2
[gatedVss, 16k B drowsy,dk [gatedVss,32k B drowsy_8k

Fig. 21. Tradeoffs in using Drowsy Vs. GatedVss to save leakage in caches (a) For 110 Degree and (b) for
85 Degree Fahrenheit. Here all the values are normalized against the overall leakage energy dissipated in
the cache for the whole length of the simulation. The best decay interval for both techniques are chosen

here.

We hope that this new leakage model, its public availability, and the results we get will
facilitate greater research on techniques for controlling leakage power at the architecture

level.

REFERENCES

[1] D. Brooks P. Bose P. W. Cook D. H. Albonesi A. Buyuktosunoglu, S. E. Schuster. An adaptive issue queue
for reduced power at high performance. In Workshop on Power-Aware Computer Systems, Nov. 2000.

[2] P.Bose P. W. Cook A. Buyuktosunoglu, D. H. Albonesi and S. E. Schuster. Tradeoffs in power-efficient issue
queue design. Aug. 2002.

[3] D. H. Albonesi. Selective cache ways: On-demand cache resource allocation. In Proceedings of the 32nd
Annual ACM/IEEE International Symposium on Microarchitecture, pages 248-59, Nov. 1999.

[4] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar. A low-leakage dynamic multi-ported
register file in 0.13um CMOS. In Proceedings of the 2001 International Symposium on Low Power Electronics
and Design, pages 68-71, Aug. 2001.

[6] R.I. Bahar and Srilatha Manne. Power and energy reduction via pipeline balancing. In Proceedings of the
28th Annual International Symposium on Computer Architecture, June 2001.

[6] U. C. Berkeley. BSIM3v3.1 SPICE MOS device models, 1997.
http://www-device .EECS.Berkeley.EDU/ bsim3/.

[7] S. Borkar. Design challenges of technology scaling. IEEE Micro, pages 23-29, Jul.—Aug. 1999.

32

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

21]

[22]

(23]

[24]

25]

[26]

27]

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th Annual International Symposium on Computer Architecture, pages
83-94, June 2000.

D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Computer Architecture News,
25(3):13-25, June 1997.

J. A. Butts and G. S. Sohi. A static power model for architects. In Proceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 191-201, Dec. 2000.

B. Calder and D. Grunwald. Next cache line and set prediction. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 287-96, June 1995.

Brad Calder and Dirk Grunwald. Fast & accurate instruction fetch and branch prediction. In Proceedings of
the 21st Annual International Symposium on Computer Architecture, pages 2—-11, April 1994.

P.-Y. Chang, E. Hao, and Y. N. Patt. Alternative implementations of hybrid branch predictors. In Proceedings
of the 28th Annual International Symposium on Microarchitecture, pages 252-57, Dec. 1995.

A. Gonzalez D. Folegnani. Energy-effective issue logic. June. 2001.

K. Ghose D. Ponomarev, G. Kucuk. Reducing power requirements of instruction scheduling through dynamic
allocation of multiple datapath resources. In Proceedings of the 34rth Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2001.

Digital Semiconductor. DECchip 21064/21064A Alpha AXP Microprocessors: Hardware Reference Manual,
June 1994.

Digital Semiconductor. Alpha 21164 Microprocessor: Hardware Reference Manual, Apr. 1995.

S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen. Simultaneous multithreading:
A platform for next-generation processors. IEEE Micro, pages 12-19, Sep. 1997.

K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches: Simple techniques for reducing
leakage power. In Proceedings of the 29th Annual International Symposium on Computer Architecture, pages
147-57, May 2002.

S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation in workload with externally specified rates to
reduce power consumption. In Proceedings of the Workshop on Complezity-Effective Design, June 2000.

K. Ghose and M. Kamble. Reducing power in superscalar processor caches using subbanking, multiple
line buffers and bit-line segmentation. In Proceedings of the 1999 International Symposium on Low Power
Electronics and Design, pages 70-75, Aug. 1999.

R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors. IEEE Journal of
Solid-State Circuits, 31(9), Sep. 1996.

J. Gummaraju and M. Franklin. Branch prediction in multi-threaded processors. In Proceedings of the 2000
International Conference on Parallel Architectures and Compilation Techniques, pages 179-89, Oct. 2000.
H. Hanson et al. Static energy reduction techniques for microprocessor caches. In Proceedings of the 2001
International Conference on Computer Design, pages 276-83, Sept. 2001.

S. Heo, K. Barr, M. Hampton, and K. Asanovi¢. Dynamic fine-grain leakage reduction using leakage-biased
bitlines. In Proceedings of the 29th Annual International Symposium on Computer Architecture, pages 137-47,
May 2002.

S. Hily and A. Seznec. Branch prediction and simultaneous multithreading. In Proceedings of the 1996
International Conference on Parallel Architectures and Compilation Techniques, pages 169-73, Oct. 1996.

Z. Hu, P. Juang, P. Diodato, S. Kaxiras, K. Skadron, M. Martonosi, and D. W. Clark. Managing leakage for

33

28]

[29]

(30]

(31]

32]

[33]

[34]

[35]

(36]
(37]

(38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

transient data: Decay and quasi-static memory cells. In Proceedings of the 2002 International Symposium on
Low Power Electronics and Design, Aug. 2002. To appear.

Z. Hu, K. Skadron, P. Juang, D. W. Clark, and M. Martonosi. Applying decay strategies to branch predictors
for leakage energy savings. Technical Report CS-2001-24, University of Virginia Department of Computer
Science, Oct. 2001.

D. A. Jiménez, S. W. Keckler, and C. Lin. The impact of delay on the design of branch predictors. In
Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, pages 67-77,
Dec. 2000.

S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting generational behavior to reduce cache leakage
power. In Proceedings of the 28th Annual International Symposium on Computer Architecture, July 2001.
R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 microprocessor architecture. In Proceedings
of the 1998 International Conference on Computer Design, pages 90-95, Oct. 1998.

J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache: An energy-efficient memory structure. In
Proceedings of the 30th Annual International Symposium on Microarchitecture, pages 184-93, Dec. 1997.

K. Luo, M. Franklin, S. Mukherjee, and A. Seznec. Boosting smt performance by speculation control. In
Proceedings of the 5th Annual International Parallel and Distributed Processing Symposium, March. 2001.

S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: speculation control for energy reduction. In
Proceedings of the 25th Annual International Symposium on Computer Architecture, pages 132-41, June
1998.

D. T. Marr, F. Binns, D. L. Hill, G. Hilton, D. A. Koufaty, J. A. Miller, and M. Upton. Hyper-threading
technology architecture and microarchitecture. Intel Technology Journal, pages 4-16, Feb. 14, 2002.

S. McFarling. Combining branch predictors. Tech. Note TN-36, DEC WRL, June 1993.

K. Nii et al. A low power SRAM using auto-backgate-controlled MT-CMOS. In Proceedings of the 1998
International Symposium on Low Power Electronics and Design, pages 293-98, Aug. 1998.

S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch prediction using branch
correlation. In Proceedings of the Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 76-84, Oct. 1992.

H. Patil and J. Emer. Combining static and dynamic branch prediction to reduce destructive aliasing. In
Proceedings of the Sizth International Symposium on High-Performance Computer Architecture, Jan. 2000.
M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-Vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. In Proceedings of the 2000 International Symposium on Low
Power Electronics and Design, pages 90-95, July 2000.

K. Roy. Leakage power reduction in low-voltage CMOS designs. In Proceedings of the International Conference
on Electronics, Circuits, and Systems, pages 167-73, 1998.

J. Seng, D. Tullsen, and G. Cai. Power-sensitive mutli-threaded architecture. In Proceedings of the 2000
International Conference on Computer Design, Sept. 2000.

SIA. International Technology Roadmap for Semiconductors, 2001.

K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Improving prediction for procedure returns
with return-address-stack repair mechanisms. In Proceedings of the 31st Annual ACM/IEEE International
Sympostum on Microarchitecture, pages 259-71, Dec. 1998.

K. Skadron, D. W. Clark, and M. Martonosi. Speculative updates of local and global branch history: A
quantitative analysis. Journal of Instruction-Level Parallelism, Jan. 2000. (http://www.jilp.org/vol2).

34

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

K. Skadron, M. Martonosi, and D. W. Clark. A taxonomy of branch mispredictions, and alloyed prediction
as a robust solution to wrong-history mispredictions. In Proceedings of the 2000 International Conference on
Parallel Architectures and Compilation Techniques, pages 199-206, Oct. 2000.

J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual International Symposium
on Computer Architecture, pages 135-48, May 1981.

P. Song. UltraSparc-3 aims at MP servers. Microprocessor Report, pages 29-34, Oct. 27 1997.

Standard Performance Evaluation Corporation. SPEC CPU2000 Benchmarks.
http://www.specbench.org/osg/cpu2000.

W. Tang, R. Gupta, and A. Nicolau. Design of a predictive filter cache for energy savings in high performance
processor architectures. In Proceedings of the 2001 International Conference on Computer Design, pages
68-73, Sept. 2001.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. levy, J. L. Lo, and R. L. Stamm. Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multithreading processor. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, May. 1996.

J. Turley. ColdFire doubles performance with v4. Microprocessor Report, Oct. 26 1998.

S. Velusamy, K. Sankaranarayanan, D. Parikh, T. Abdelzaher, and K. Skadron. Adaptive cache decay using
formal feedback control. In Proceedings of the 2002 Workshop on Memory Performance Issues, May 2002.
Steven Wallace and Nager Bagherzadeh. Multiple branch and block prediction. In Proceedings of the Third
International Symposium on High-Performance Computer Architecture, pages 94103, February 1997.

S. J. E. Wilton and N. P. Jouppi. Cacti: An enhanced cache access and cycle time model. IEEFE Journal of
Solid-State Circuits, 31(5):677-88, May. 1996.

T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In Proceedings of the 24th Annual
International Symposium on Microarchitecture, pages 51-61, November 1991.

H. Zhou, M. Toburen, E. Rotenberg, and T. Conte. Adaptive mode control: A static-power-efficient cache
design. In Proceedings of the 2001 International Conference on Parallel Architectures and Compilation Tech-
niques, Sept. 2001.

Z. Zhu and X. Zhang. Access-mode predictions for low-power cache design. IEEE Micro, 22(2):58-71, Mar.-
Apr. 2002.

35

