In SELSE 2014

Resilience and Real-Time Constrained Energy Optimization in Embedded
Processor Systems

Liang Wang* T, Jude A. Rivers*, Meeta S. Gupta*, Augusto J. Vega®, Alper Buyuktosunoglu*, Pradip Bose*, and Kevin Skadron'
*IBM T. J. Watson Research Center and TUniversity of Virginia

Abstract—Low-power embedded processing relies on dy-
namic voltage-frequency scaling (DVFS) in order to optimize
energy usage and therefore battery life. DVFS allows the
processor to continuously adapt voltage and frequency to the
minimum that still meets a program’s current performance
requirements. However, low-voltage operation exacerbates the
incidence of soft errors. Similarly, high-voltage operation (to
meet real-time deadlines) is constrained by power dissipation
(and associated thermal) maxima - as dictated by aging limits.
In this paper, we introduce a novel modeling framework called
PEARL to examine a class of embedded system applications
relevant to mobile, airborne vehicles. Using PEARL, we in-
vestigate the problem of assigning optimal voltage-frequency
settings to individual segments within example workflows. The
goal of this study is to understand the limits of achievable
energy efficiency (performance per watt) under varying levels
of system-resilience targets. The analysis results show that: (a)
the resilience constraints limit achievable efficiency; and (b)
higher variability in power dissipation across workflow seg-
ments provides more opportunities to boost efficiency, despite
stringent resilience constraints.

Keywords-low power, embedded systems, soft error resilience,
real-time constraints

I. INTRODUCTION

A popular optimization used in power management of
embedded processor systems is dynamic voltage-frequency
scaling (DVFS). However, soft error rates (SER) are known
to increase sharply as the supply voltage is scaled downward.
Hence, in order to preserve system resilience levels, it is
important to apply voltage scaling rather carefully, keeping
in mind the varying levels of vulnerability to SER within
an application’s execution profile. On the other hand, over-
clocking or turbo-boosting (with higher voltages applied
if/as necessary) to meet real-time deadlines comes at the
cost of higher power density and temperature, which results
in higher fail rates due to hardware aging.

In this paper, we consider a class of embedded systems'
that require high levels of power or energy efficiency while
meeting mission-critical reliability specifications and real-
time performance targets. Such systems require an energy
optimization protocol that is cognizant of the variable re-
siliency needs and properties of the executed application.
This paper consists of the following three contributions:

o We first describe PEARL, a novel software modeling

framework that enables users to: (a) statically prepare

'In particular, we refer to systems targeted by the ongoing DARPA
MTO sponsored PERFECT (Power Efficiency Revolution for Embedded
Computing Technologies) program.

application workflows for energy-optimized resilience;
and (b) explore run-time deployment options in targeted
embedded systems. The overall goal is to maximize per-
formance per watt, while meeting real-time deadlines
and resilience-related constraints (dictated by effective
SER and maximum power dissipation). PEARL stands
for Power Efficient And Resilient embedded processing
with real-time constraints.

« We then describe an efficient technique (AFI) to eval-
uate the application-level derating (AD) [1] of SER.
The application-level fault injection (AFI) facility is
a resilience characterization tool within PEARL. We
present results to show the wide range of SER vulner-
ability (2% to 55%) across the set of PERFECT suite
applications that have been analyzed so far in this work.

« Finally, we provide illustrative experimental analysis of
potential optimizations using PEARL. Our key conclu-
sions are: (a) for workflows that exhibit little variation
in power consumption across component application
segments, the resilience-related constraints leave little
room (5% at best) in improving energy efficiency over a
simple baseline; (b) if the maximum-power constraints
are relaxed, there is a significant opportunity (17%)
in optimizing the efficiency, despite stringent SER
related constraints; (c) if the inter-application power
variation across the workflow is large, then the potential
improvement opportunity increases dramatically (40%)

II. PEARL: A USER PERSPECTIVE

We consider a scenario (see Figure 1) in which one or
more unmanned airborne vehicles (UAVs) are engaged in
remote sensing of ground images, for the purposes of recog-
nizing specific targets of interest (and then actuating tactical
response mechanisms, if applicable) in national defense and
homeland security applications. The UAVs carry embedded
processor systems and are wirelessly interconnected with
each other, while being supported by a secure ground-based
(cloud) server.

As indicated in Figure 1, the dynamic computing environ-
ment can be rather harsh, with many run-time parameters
that are hard to anticipate during ground-based applica-
tion development. Although the basic compute kernels are
known, the dynamic uncertainties can be encountered and
dealt with only at run-time. The boxed inset at the bottom
right-hand side of Figure 1 depicts the layered hardware-
software embedded system that is actually modeled in

skadron
Typewritten Text

skadron
Typewritten Text
In SELSE 2014

MD‘I:‘LES1 W

Mob_ESn

Harsh
computing ,\‘1‘}((

environment

ﬁreme
— temp

gradients

Appin & System SW Layers

Layered Compute Stack (H/W)

Gnd_ES1

* Cooperative, secure, networked computing

* Image processing, recognition, control actuation
* Error-tolerant image construction and diagnostics
* Ultra-reliable actuation, in-course correction

Figure 1. Cloud-backed airborne embedded system network, which
operates under harsh conditions

PEARL.

Figure 2 depicts the high-level view of the PEARL mod-
eling framework. The R-API smart graphical user interface
(GU) is the portal through which the user interacts with
the rest of the software infrastructure. There are two modes
in which R-API is invoked by the user/developer of the
embedded system application. The first mode is that of
application preparation: a static, offline step in which the
applications in the workflow are characterized in terms of
power, performance and SER resilience, and the workflow
is annotated accordingly. In the second mode, the user is
able to simulate the dynamic deployment of the workflow
by factoring in run-time uncertainties associated with the
environment depicted in Figure 1.

Statically determined

voltage/frequency | - Run-time Voltagg
settings “ adaptive — sen§|t|y[ty/
\ power-resilience |f®— variability
N manager models
Instrumented | v GUI for
applications [cmd/config Error Sensitivity
entry and output < AF1/
visualization SFI
A
R
Application p-arch
of interest —~ s . Target applications model
/s B ', | (R-APIcompatible internal format) Performance,
//) power tradeoffs

* Compiler with

PERFECT Suite range of opt fags

and/or other apps

Figure 2. PEARL Framework with Resilience-Aware Application Pro-
graming Interface (R-API): High-Level Overview

A. Voltage Sensitivity Models

In Figure 2, a key input to the R-API GUI is the
box marked “voltage sensitivity” model. This captures em-
pirically derived sensitivity of per-device SER to voltage
changes. In PEARL, we use IBM-published voltage sensitiv-
ity gradients [2] to model the change in raw SER (unmasked)
caused by the scaling of operating supply voltage in a DVFS

setting:
SERMW — ea-Vdd-‘rﬁ

where o, are fitting parameters derived from the empirical
data shown by Cannon [2].

B. Fault Injection Facility

As indicated in Figure 2, the user of PEARL can invoke
fault injection facilities (labeled as AFI/SFI) to profile a
given application component in terms of its inherent re-
silience to application state bit corruptions. The AFI facility
internals are described in more detail in section IV.

C. Static Optimizer Module

After power-performance and resilience characterization
of component application segments, the static optimizer
module can be invoked by the user to set optimal DVFS
settings to each segment within a given workflow of inter-
est. Details of how this optimization algorithm works are
described in section V.

D. Cross-Layer Dynamic Optimizer

The R-API smart GUI is architected to invoke dynamic
resource and resilience managers to provide an emulation
facility for run-time deployment of statically-prepared ap-
plication workflows. These modules are still under devel-
opment, but an example dynamic optimization analysis is
provided in section VI.

III. PEARL-BASED ANALYSIS METHODOLOGY
A. Applications

Six representative applications were selected from the
benchmark suite announced for targeted research in the
DARPA PERFECT project: 2dconv, dwt53, hist, oprod,
syssol, and iprod. These particular applications were selected
with care as representative components from which to syn-
thesize composite workflows in our experiments (see section
V). dwt53 represents a well-known image compression
algorithm; and the histogram-equalization (hist) code is an
integral part of many sort routines. 2D-Convolution (2dconv)
is another frequently used image-processing kernel. Outer
Product (oprod), Inner Product (iprod) and SystemSolver
(syssol) are well known matrix-oriented data processing
algorithms that are used in both embedded computing and
high performance scientific computing domains.

/7/32‘ Sysso/
| 68 [11]2] 14 [7] 24 |
a0 g8

09‘06 '\O‘Od

Figure 3. Workflow constructed by stitching together six applications
selected from the PERFECT suite. Numbers in the block indicate execution
times of each application. The execution times are measured based on
single-core, single-threaded measured runs on a POWER7+ machine at a
nominal operation point of 4.1 GHz

In the section V and VI, we consider a stitched kernel
workflow, composed of six separate kernels within the
PERFECT suite as depicted in Figure 3.

We stipulate that the primary power-performance-
resilience control knob in our optimization process is dy-
namic voltage and frequency scaling (DVFS). For this initial
experimental analysis, in order to develop basic understand-
ing, we focus only on a single-core, single-thread execution
mode.

The experimental system has two IBM POWER7+ pro-
cessors [3] running at 4.1 GHz (nominal).The performance
metrics are accessed via the performance monitoring unit
(PMU) facilities within the processor. The power metrics
are measured via the AMESTER framework([4], which is
a specially developed firmware that is capable of mon-
itoring the power and temperature measurements tracked
by the EnergyScale micro-controller [5]. We choose the
DVES settings with frequency from 4.3 GHz through 2.4
GHz with a step size of 0.1 GHz. Based on the machine
measurements, we further extrapolate the characterizations
to 1 GHz assuming power scales as the k-th power of supply
voltage (V): P oc V*. In this study, we varied the value
of k from 2.5 to 4 across all applications. As shown in
Figure 9 section V, we obtain the best energy improvement
with & = 2.5. Therefore we use k& = 2.5 for the rest of
our analysis. This is purely for the purposes of illustrating
the optimization capabilities of PEARL. The real value of
k is usually larger, depending on the particular system and
the executing application. Further, we assume that voltage
and frequency are linearly co-related and performance scales
linearly with frequency. The resilience of an application is
the inverse of the effective failure rate, measured in failure in
one billion hours (FITs). For the purposes of this paper, we
model the FIT of an application as SER,y * SDC_rate. The
SDC_rate is obtained by applying AFI on the application
running on the same POWER7+ platform. (See also the next
section for details on AFI).

The efficiency metric of optimization in this paper is
performance per watt, where performance is measured as
giga-operations per second (GOPS).

IV. APPLICATION-LEVEL RESILIENCE
CHARACTERIZATION

To accurately predict system FIT values for a specific
application workload (or workflow) in a pre-silicon setting,
the associated microarchitectural and application derating
(i.e. masking) factors (MD and AD) [1], [6] must be
estimated. Pre-silicon system-level methods for estimating
the MD factor are found in prior works describing techniques
such as AVF [7] and Phaser [8]. The Application Fault
Injection (AFI) tool (with a built-in programmable statistical
fault injection routine, SFI) that we describe in this section
provides an estimate for the application-level derating (AD).
The application-specific sensitivity of MD is known to be
small when it comes to net SDC FITs estimation [1], [6]; in

this paper, we focus on the AD factor, combined with basic
SER sensitivity to voltage described in section II.

AFI makes use of the ptrace debugging facility in Unix to
create a framework in which any target application can be
compiled and run, under user-controllable fault injection di-
rectives. The resulting AFI facility provides a mechanism by
which a parent process can observe and control the execution
of another process by examining or changing the architected
register and memory state of the monitored process. Since
AFI runs natively on actual hardware, the speed of fault
injection is orders of magnitude faster than conventional full-
system, simulator-driven fault injection studies.

A statistically saturating total (in this case, 1000) of
single-bit, pseudo-random fault injections are made into the
architected register space in each controlled experiment?.
Each such injection leads to one of the following outcomes

o The injected bit-flip has no effect on the program
execution profile, including the final program output
or final data memory state. These fault injections are
categorized as being fully masked.

o The injected bit-flip results in an SDC (silent data
corruption) in the final program output state, when
compared to the fault-free, golden run of the program.

o The injected bit-flip results in a program crash, where
the operating system terminates the program due to a
detected runtime error (e.g. divide-by-zero exception,
segmentation fault, illegal memory reference, etc.)

o The injected bit-flip results in a hung state, where there
is no forward progress of the program execution; in
practice such a situation would require a user-initiated
program termination or even a machine reboot.

100 nce Characterization

40

Event Frequency (%)

0 — — —
2dconv dwt53 histo oprod syssolve iprod
Benchmarks

Figure 4. AFI-deduced fault distribution GPR injections across selected
PERFECT applications.

Figure 4 shows the distribution of faults across the six
applications chosen from the announced PERFECT suite.
Here we only show the effect of faults injected into the
general purpose architected registers (GPR). The observed
SER (especially SDC) sensitivity for floating point register
(FPR) injections was much smaller, hence we omit that here.

2We studied the masking saturation rate of the PERFECT suite work-
loads. 1000 injections indicated statistical sufficiency for our experiments.

We see significant difference in SDC vulnerability across
the various applications (ranging from 2% to as much as
55%). The SDC sensitivity in the AD component of SER
is largest in the inner product kernel (iprod) because of
the large number of general-purpose registers used with the
unrolling optimization applied by the compiler in this case.

It is important to note that Figure 4 deals only with the
AD component of SER masking. The net SER FITs, cap-
turing both MD and AD, would show different vulnerability
percentages than shown in Figure 4. Yet, in the PEARL-
based analysis reported in this paper (see section V), our
primary focus is on SDC; and, when it comes to SDC FITs
evaluation, our prior experience [1], [6] dictates that we need
to focus mainly on the AD masking component.

No SDCs during the early phase

100 T

80

60

40

Percentage (%)

20

B masked

mmm crash

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Injection start time (interval is 0.2s)

Figure 5. SER resilience (AD factor) as a function of execution time (i.e.
interval of 0.2s) for one of the FFT routines analyzed.

The dynamic resilience profile for a particular FFT routine
(Figure 5) shows that the SDC related vulnerability is near-
zero in the initial phases, where data is being read or
initialized from protected memory or storage space; but it
increases and stabilizes to around 30% as the kernel enters
the actual iterative data computational phase. This is because
the fault injection is limited to GPRs, which are hardly used
during the initialization phase.

V. STATIC COMPILE-TIME OPTIMIZATION

We now formulate the following static real-time-
constrained DVFS-mode allocation problem in our PEARL
framework. The basic goal is to maximize delivered perfor-
mance per watt, subject to minimum resilience and maxi-
mum power constraints.

Given:

e A workflow composed of N applications, W =

{Al, AQ, ey AN};

o A list of M possible processor DVFS settings (or
modes), F' = {f1, f2,..., fm}, each associated with
M corresponding DVFS settings;

o The power, execution time and resilience characteristics
of each application under all available DVFS settings,
Pli] = {pi1,pi2,-- - vime}> T3] = {tir, tiz, .. tins }
R[’L] :{Ti17ri27.. TzM}’ 1= 1 2 N,

o Constraints on maximum power (Cp), maximum exe-
cution time (Cy), and minimum resilience (C}.). C,. is

defined as the maximum failure rate (also referred to
here as inverse resilience, measured in units of FITs). In
this paper, we use SDC-vulnerability at the application
level as a proxy for failure rate, and the time-weighted
FIT rates of all applications as the resilience of a

workflow: Z FIT, « T,

X T
where F'IT; and T; are the FITs and run time of the
ith application.

Minimize: Total energy of execution by picking the “best”
combination of DVFS settings indicated by frequencies
(f1, f2,---, fn) across the N applications while adhering to
workflow execution time, power, and resilience constraints.

We first demonstrate a simple optimization algorithm
(SimpleOpt) as the baseline, then we map the above problem
to an integer linear programming problem and solve it with
a standard algorithm (LinOpt).

<C

A. SimpleOpt

The low-power literature has established that, in order to
achieve the best GOPs/Watt for any given application, it
is generally necessary to operates at the lowest supported
DVES level. So, for the segmented workflow, SimpleOpt
tries to choose the lowest feasible single DVFES level that
meets all constraints for the workflow. These constraints are
that the real-time execution deadline must be met and the
power and SER resilience targets must also be obeyed. The
algorithm proceeds as follows:

1) Start by picking the lowest DVFS level that meets the
run-time constraint of the workflow.

2) If the current DVFS setting does not meet the re-
silience constraint, raise the DVFES level from the one
picked in the last step, until the resilience constraint
is met.

3) Check whether the selected DVFS level from the last
step violates the power constraint. If yes, then there
is no feasible solution from the SimpleOpt, otherwise
the selected DVFS level is the solution.

This algorithm is sub-optimal, because per-application
DVEFS operating points are not explored in achieving a
globally optimal solution.

B. LinOpt

We now describe an improved heuristic called LinOpt that
is an option within PEARL. LinOpt is formulated as a static,
real-time-constrained DVFS mode allocation problem, and
solved by a linear programming algorithm. To formulate it as
an integer linear programming problem, for each application
A;, we define a frequency mask bit-vector (F'M) of length
M. Only one bit j within the F'M; bit-vector is set to 1,
indicating a particular DVFS mode setting. This is illustrated
in Figure 6.

A;’s power, performance and resilience can be expressed
as the dot product of the characteristics and the associated
frequency mask F'M;:

A1 N A2 N IA3

1 1
BERBHARARHARAN

4

Frequency Domains

(G [; I ; Y |
\ ;
\ /
I I

3 2 4

Frequency Masks

Applications running at the
selected frequency level

Figure 6. Using frequency masks to denote the selected frequency of each
application.

o Power = P[i] - F'M;

o (Inverse) Resilience = R[i] - F'M;

« Execution time = T[i] - F M;

Constraints can be expressed as:

o Power: P[i]- FM; < C, for each application A;

o (Inverse) Resilience: (> R[i]- FM;)/Cy < C, for

each application A;

« Execution time: > T[i] - FM; < C;

The goal of the original problem is equivalent to mini-
mizing the total energy of execution by finding the “best”
combination of F'M bit-vectors (F My, FMs,...,FMy)
across the N applications, while adhering to workflow
execution time, power, and resilience constraints. It is an
integer linear programming problem. We use a standard
branch-and-cut algorithm [9] to solve the problem.

C. LinOpt vs. SimpleOpt

Figure 7 shows the improvement offered by LinOpt over
the baseline SimpleOpt heuristic, as a function of the oper-
ating frequency across the various constraints. Various con-
straint scenarios (SC, URC, UPC and UPRC), as explained
in the figure legend, are shown.

In the case of the strict constraint (SC), the best benefit
we observe is only about 5%. The reason is that the power
variations across the six application segments within the
workflow were minimal. Therefore, LinOpt was not able to
exploit the variable DVFS settings across the workflow. In
order to demonstrate the benefit of LinOpt, therefore, one
needs to relax the power constraint (e.g. UPC or UPRC).

12

-#-SC —+-UPC
URC =—&—UPRC

115

11

1.05

o [NV

fahdtd R R AR ;.‘L.“..‘“""
1 b Rkl 5

GOPS/W relative to SimpeOpt

0.95
SN IR X T O ST S D T I

Operating frequency (GHz)

Figure 7. LinOpt improvement in performance per watt (GOPS/W) over
SimpleOpt, across a range of modeled DVFS levels. The legend SC refers
to a strict constraint, where stipulated power, resilience and execution time
constraints must all be met. This case is almost completely overlapped with
the URC case, in which the SER resilience constraint is removed; UPC
removes just the power constraint; and UPRC removes both the power and
SER resilience constraints.

Synthetic workflow: [2dconv-Ip 2dconv-hp

14
135

=
w

125

115

Relative GOPS/W
[=
- N

-=-SC
1.05 URC =& UPRC

== UPC

1

RTINS AR S S N K K JIN,

Operating frequency (GHz)

Figure 8. LinOpt benefit over SimpleOpt for a synthetic workflow.

We see that LinOpt achieves the maximum benefit (17%
better GOPS/W than SimpleOpt) at around the mid-point
(2.5 GHz) of the covered DVFS settings. This can be
explained by noting the fact that at this mid-point, the LinOpt
optimizer has the maximum opportunity of adjusting DVFS
settings (up or down) across the workflow segments relative
to the nominal point.

We examine the SC case in more detail by experimenting
with workflows in which the power variation is a lot greater
than the case we have studied above. For example, if we
consider a two-segment workflow, consisting of 2dconv-hp
(a synthetically augmented 2dconv in which the power is 2x
of the nominal) and 2dconv-lp (a synthetically augmented
2dconv in which the power is 0.1x of the nominal), the
LinOpt benefit over SimpleOpt is as large as 40%, as shown
in Figure 8.

12

—-k=2.5 ——k=3

115

11

1.05

1

0.95

DAY RO R0 Y X 42 2 0® oY X 00 02 (O

Operating frequency (GHz)

GOPS/W relative to SimpleOpt

Figure 9. Sensitivity study on k in the power scaling mechanism of
P o V*. We only show the unlimited power and resilience constraints
(UPRC) here.

VI. DYNAMIC, RUN-TIME EFFICIENCY OPTIMIZATION

In this section, we present a view of run-time DVFS
control options to provide a more robust system that can
override statically-set options (if/as needed). We show an
illustrative analysis of dynamic (run-time) optimization per-
formed using PEARL for the particular 6-segment applica-
tion workflow that was considered before for the static op-
timization experiments. The dynamic experiment starts with
statically allocated DVFS settings, derived using LinOpt.
These settings are used to start up the dynamic emulation
run of the workflow. Once started, each experiment works
as follows where we start with 7 = 1:

1) A random slack (positive and negative) is added to the
nominal execution time of the A; within the workflow
(see Figure 3).

2) At the end of A;, the elapsed execution time is com-
pared with the statically measured nominal execution
time. Then, the remaining segments constituting the
residual workflow are re-optimized using LinOpt to
deduce new DVFS settings.

3) We go back to step 1) and iterate until the workflow
is fully processed.

4) If it is feasible to finish the workflow by the stipulated
deadline, then the experiment is marked as being a
feasible run; else, it is marked as an infeasible trial
run.

Such an experiment is repeated 1,000 times to compute the
average GOPS/W achieved by the feasible trials. The whole
exercise is then repeated by making the LinOpt optimizer’s
deadline constraints stricter by 5%, 10%, 15% and 20%.
Figure 10 summarizes the results of the above experiments.

g
=
©

1

=)
])
N [=)
= 108 09 &
:
g 1.07 08 g
5 aQ
%)
> 1.06 0.7 ©
% =
)
o 1.05 0.6 S
g == Average GOPS/W 2
© 1.04 == Feasible percentage 0.5 ij
[
>
< 1.03 0.4
0% 5% 10% 15% 20%

Deadline constraint adder

Figure 10. The left Y-axis plots GOPS/W boost from dynamic optimization
in cases where real-time deadline could be met, normalized to static LinOpt
measured at 2.5 GHz. While the right Y-axis shows the percentage of
feasible runs (i.e. those that meet the stipulated real-time deadline) in the
dynamic experiments, as a function of the percentage slack added to the
original deadline.

The left axis of Figure 10 shows the measured GOPS/W
boost over the best case of LinOpt (i.e. at 2.5 GHz as
shown in Figure 7). The benefit is plotted as a function
of progressively stricter deadline constraint presented to
the optimizer. Only the feasible trials within the dynamic
experiments are used to calculate the GOPS/W boost. The
benefit decreases with stricter deadline constraint, because a
stricter deadline generally imposes higher DVFES points. As
such, the efficiency decreases.

The right axis of Figure 10 reports the percentage of fea-
sible dynamic experimental runs. As we make the deadline
constraint stricter, the infeasible trials dwindle to zero. This
is because setting a conservative deadline target leaves more
slack even in the presence of large timing variations.

The possible range of practical run-time heuristics to
dynamically adjust DVFS settings is obviously quite large,
and we address this whole topic area in a separate paper
in submission to a subsequent conference. Here, we only
provide an illustrative example of the run-time optimization
capability in PEARL.

VII. RELATED WORK

Dynamic voltage and frequency scaling (DVFS) has been
widely used in the system architecture area for managing
workload-driven power in a processor or system context.
For example, Isci et al. [10] propose multi-core DVFS
algorithms with the objective of maximizing chip throughput
performance for a given power budget. In the real-time
embedded systems domain, early work by Pillai et al. [11]
and more recent work by Devadas et al. [12] and Qi et al.
[13] are but a few representatives from a large body of work.
These works all utilize DVS (or DVFES) in order to meet low
power constraints, while meeting execution time deadlines.

Combining reliability considerations with energy savings
in a unified dynamic resource management framework is a
topic area that has not been explored as widely as dynamic
power management alone. Zhang et al. [14] address a
reliability-aware power management problem, but in this
case the reliability focus is on checkpoint-restart based
systems only. Zhao et al. [15] address the mutually opposing
issues of energy efficiency and transient error probability in
the context of applying DVS or DVFS control. However,
Zhao et al. use a set voltage dependence equation to model
system resilience, without factoring in the application-level
masking effects (as in our work). Perhaps the work that
is closest to ours is the one by Shafik et al. [16]. As
in our static optimization work, the authors of [16] pro-
pose a similar linear optimization based approach, while
emphasizing the impact of application level correctness to
the system resilience. However, in their work, the method
of characterizing the application level resilience is SoC-
specific, and does not apply to general-purpose processors,
as studied in our work. Furthermore, in our work, the
emphasis is on developing a pre-deployment application
preparation and dynamic emulation framework (PEARL),
driven by an interactive user interface (R-API). This frame-
work is targeted for use in the specific context of airborne
embedded systems, in which targeted applications of interest
in the DARPA PERFECT program are used.

PEARL emphasizes an application-centric treatment of
the energy-efficient resilience problem in a real-time em-
bedded systems context. As such, application-level masking
effects in response to single-event upsets at the physical
level are considered in determining the regions within an
application workflow that are most vulnerable to soft errors.
We believe this approach enables the use of more realistic
constraints in the resilience dimension of this real-time
optimization problem.

VIII. CONCLUSIONS

Future ultra-efficient embedded systems with mission-
critical resilience requirements in the deep-submicron design
era will require careful balance in static preparation and
run-time deployment of applications. In this paper, we first
provide a vision of an interactive facility (PEARL) for
application preparation and runtime steering in the context
of a class of embedded systems that is relevant to the

domain of interest in the R&D effort launched under the
DARPA PERFECT program. The basic trade-offs across
the energy, performance and resilience dimensions as de-
picted in this paper are of course a strong function of the
particular applications chosen for the workflow. The goal
of the experimental analysis for the particular application
sequence is to demonstrate the function and capabilities
of our PEARL emulation framework, driven by the R-API
smart user interface.

Our key conclusions are: (a) under tight power con-
straints, for workflows that exhibit little variation in power
consumption across component application segments, the
resilience-related constraints leave little room (5% at best)
in improving energy efficiency over a simplistic baseline;
(b) if the max-power constraints are relaxed, there is a
significant opportunity (17%) in optimizing the efficiency,
despite stringent SER related constraints; (c) if the inter-
application power variation across the workflow is large,
then the potential improvement opportunity can be large
(40%).

IX. ACKNOWLEDGEMENT

This work is sponsored by Defense Advanced Research
Projects Agency, Microsystems Technology Office (MTO),
under contract no. HR0O011-13-C-0022. The views expressed
are those of the authors and do not reflect the official
policy or position of the Department of Defense or the
U.S. Government. This document is: Approved for Public
Release, Distribution Unlimited.

REFERENCES

[1] P. N. Sanda er al., “Soft-error resilience of the IBM POWER6
processor.” IBM Jour. Res. and Dev., vol. 52, no. 3, pp. 275—
284, 2008.

[2] E. Cannon, “SER Evaluation and Modeling,”
http://www.sematech.org/meetings/archives/reliability/
20041025/SER/03SER_Cannon_TRC2004.pdf, Oct 2004.

3

—

S. Taylor, “POWER7+: IBM’s Next Generation POWER
Microprocessor,” in Proc. of Hot Chips 24, 2012.

[4

—_

C. Lefurgy et al., “Server-Level Power Control,” in Proc. of
Autonomic Computing, 2007.

[5S] M. Floyd et al., “Introducing the Adaptive Energy Manage-
ment Features of the Power7 Chip,” IEEE Micro, vol. 31,
no. 2, pp. 60-75, March 2011.

(6]

(71

(8]

91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Kudva et al., “Fault Injection Verification of IBM POWER6
Soft Error Resilience,” in Proc. of the Workshop on Architec-
tural Support for Gigascale Integration, 2007.

S. S. Mukherjee et al., “A Systematic Methodology to
Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor,” in Proc. of Int‘l Symp. on
Microarchitecture, 2003.

J. A. Rivers et al., “Phaser: Phased methodology for modeling
the system-level effects of soft errors,” IBM Jour. Res. and
Dev., vol. 52, no. 3, pp. 293-306, 2008.

J. E. Mitchell, “Branch-and-cut algorithms for combinatonial
optimization problems,” Handbook of Applied Optimization,
pp. 65-77, 2002.

C. Isci et al., “An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for a
Given Power Budget,” in Proc. of Int‘l Symp. on Microarchi-
tecture, 2006.

P. Pillai et al., “Real-time Dynamic Voltage Scaling for Low-
power Embedded Operating Systems,” in Proc. of Symp. on
Operating Systems Principles, 2001.

V. Devadas et al., “Real-Time Dynamic Power Management
Through Device Forbidden Regions,” in Proc. of IEEE Real-
Time and Embedded Technology and Applications Symp.,
2008.

X. Qi et al., “Power Management for Real-Time Embedded
Systems on Block-Partitioned Multicore Platforms,” in Proc.
of Int‘l Conf. on Embedded Software and Systems, 2008.

Y. Zhang et al., “A Unied Approach for Fault Tolerance and
Dynamic Power Management in Fixed-Priority Real-Time
Embedded Systems,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 1, pp. 111-
125, 2006.

B. Zhao et al., “Reliability-aware Dynamic Voltage Scaling
for Energy-constrained Real-time Embedded Systems,” in
Proc. of Int‘l Conf. on Computer Design, 2008.

R. A. Shafik et al, “Soft Error-Aware Voltage Scaling
Technique for Power Minimization in Application-Specific
Multiprocessor System-on-Chip,” Journal of Low Power Elec-
tronics, vol. 5, no. 2, pp. 145-156, 2009.

