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Abstract—This paper presents and characterizes Rodinia, a
benchmark suite for heterogeneous computing. To help architects
study emerging platforms such as GPUs (Graphics Processing
Units), Rodinia includes applications and kernels which target
multi-core CPU and GPU platforms. The choice of applications
is inspired by Berkeley’s dwarf taxonomy. Our characterization
shows that the Rodinia benchmarks cover a wide range of
parallel communication patterns, synchronization techniques and
power consumption, and has led to some important architectural
insight, such as the growing importance of memory-bandwidth
limitations and the consequent importance of data layout.

I. INTRODUCTION

With the microprocessor industry’s shift to multicore archi-

tectures, research in parallel computing is essential to ensure

future progress in mainstream computer systems. This in turn

requires standard benchmark programs that researchers can use

to compare platforms, identify performance bottlenecks, and

evaluate potential solutions. Several current benchmark suites

provide parallel programs, but only for conventional, general-

purpose CPU architectures.

However, various accelerators, such as GPUs and FPGAs,

are increasingly popular because they are becoming easier

to program and offer dramatically better performance for

many applications. These accelerators differ significantly from

CPUs in architecture, middleware and programming models.

GPUs also offer parallelism at scales not currently available

with other microprocessors. Existing benchmark suites neither

support these accelerators’ APIs nor represent the kinds of ap-

plications and parallelism that are likely to drive development

of such accelerators. Understanding accelerators’ architectural

strengths and weaknesses is important for computer systems

researchers as well as for programmers, who will gain insight

into the most effective data structures and algorithms for each

platform. Hardware and compiler innovation for accelerators

and for heterogeneous system design may be just as com-

mercially and socially beneficial as for conventional CPUs.

Inhibiting such innovation, however, is the lack of a benchmark

suite providing a diverse set of applications for heterogeneous

systems.

In this paper, we extend and characterize the Rodinia

benchmark suite [4], a set of applications developed to address

these concerns. These applications have been implemented for

both GPUs and multicore CPUs using CUDA and OpenMP.

The suite is structured to span a range of parallelism and data-

sharing characteristics. Each application or kernel is carefully

chosen to represent different types of behavior according

to the Berkeley dwarves [1]. The suite now covers diverse

dwarves and application domains and currently includes nine

applications or kernels. We characterize the suite to ensure

that it covers a diverse range of behaviors and to illustrate

interesting differences between CPUs and GPUs.

In our CPU vs. GPU comparisons using Rodinia, we

have also discovered that the major architectural differences

between CPUs and GPUs have important implications for

software. For instance, the GPU offers a very low ratio of on-

chip storage to number of threads, but also offers specialized

memory spaces that can mitigate these costs: the per-block

shared memory (PBSM), constant, and texture memories. Each

is suited to different data-use patterns. The GPU’s lack of

persistent state in the PBSM results in less efficient commu-

nication among producer and consumer kernels. GPUs do not

easily allow runtime load balancing of work among threads

within a kernel, and thread resources can be wasted as a

result. Finally, discrete GPUs have high kernel-call and data-

transfer costs. Although we used some optimization techniques

to alleviate these issues, they remain a bottleneck for some

applications.

The benchmarks have been evaluated on an NVIDIA

GeForce GTX 280 GPU with a 1.3 GHz shader clock and a 3.2

GHz Quad-core Intel Core 2 Extreme CPU. The applications

exhibit diverse behavior, with speedups ranging from 5.5 to

80.8 over single-threaded CPU programs and from 1.6 to

26.3 over four-threaded CPU programs, varying CPU-GPU

communication overheads (2%-76%, excluding I/O and initial

setup), and varying GPU power consumption overheads (38W-

83W).

The contributions of this paper are as follows:

• We illustrate the need for a new benchmark suite for het-

erogeneous computing, with GPUs and multicore CPUs

used as a case study.

• We characterize the diversity of the Rodinia benchmarks

to show that each benchmark represents unique behavior.

• We use the benchmarks to illustrate some important

architectural differences between CPUs and GPUs.

II. MOTIVATION

The basic requirements of a benchmark suite for general

purpose computing include supporting diverse applications

with various computation patterns, employing state-of-the-art

algorithms, and providing input sets for testing different situ-

ations. Driven by the fast development of multicore/manycore

CPUs, power limits, and increasing popularity of various

accelerators (e.g., GPUs, FPGAs, and the STI Cell [16]),
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the performance of applications on future architectures is

expected to require taking advantage of multithreading, large

number of cores, and specialized hardware. Most of the

previous benchmark suites focused on providing serial and

parallel applications for conventional, general-purpose CPU

architectures rather than heterogeneous architectures contain-

ing accelerators.

A. General Purpose CPU Benchmarks

SPEC CPU [31] and EEMBC [6] are two widely used

benchmark suites for evaluating general purpose CPUs

and embedded processors, respectively. For instance, SPEC

CPU2006, dedicated to compute-intensive workloads, repre-

sents a snapshot of scientific and engineering applications.

But both suites are primarily serial in nature. OMP2001 from

SPEC and MultiBench 1.0 from EEMBC have been released

to partially address this problem. Neither, however, provides

implementations that can run on GPUs or other accelerators.

SPLASH-2 [34] is an early parallel application suite com-

posed of multithreaded applications from scientific and graph-

ics domains. However, the algorithms are no longer state-of-

the-art, data sets are too small, and some forms of paral-

lelization are not represented (e.g. software pipelining) [2].

Parsec [2] addresses some limitations of previous bench-

mark suites. It provides workloads in the RMS (Recognition,

Mining and Synthesis) [18] and system application domains

and represents a wider range of parallelization techniques.

Neither SPLASH nor Parsec, however, support GPUs or other

accelerators. Many Parsec applications are also optimized for

multicore processors assuming a modest number of cores,

making them difficult to port to manycore organizations such

as GPUs. We are exploring parts of Parsec applications to

GPUs (e.g. Stream Cluster), but finding that those relying

on task pipelining do not port well unless each stage is also

heavily parallelizable.

B. Specialized and GPU Benchmark Suites

Other parallel benchmark suites include MineBench [28]

for data mining applications, MediaBench [20] and ALP-

Bench [17] for multimedia applications, and BioParallel [14]

for biomedical applications. The motivation for developing

these benchmark suites was to provide a suite of applications

which are representative of those application domains, but not

necessarily to provide a diverse range of behaviors. None of

these suites support GPUs or other accelerators.

The Parboil benchmark suite [33] is an effort to benchmark

GPUs, but its application set is narrower than Rodinia’s and

no diversity characterization has been published. Most of the

benchmarks only consist of single kernels.

C. Benchmarking Heterogeneous Systems

Prior to Rodinia, there has been no well-designed bench-

mark suite specifically for research in heterogeneous com-

puting. In addition to ensuring diversity of the applications,

an essential feature of such a suite must be implementations

for both multicore CPUs and the accelerators (only GPUs, so

far). A diverse, multi-platform benchmark suite helps software,

middleware, and hardware researchers in a variety of ways:

• Accelerators offer significant performance and efficiency

benefits compared to CPUs for many applications. A

benchmark suite with implementations for both CPUs and

GPUs allows researchers to compare the two architectures

and identify the inherent architectural advantages and

needs of each platform and design accordingly.

• Fused CPU-GPU processors and other heterogeneous

multiprocessor SoCs are likely to become common in

PCs, servers and HPC environments. Architects need a

set of diverse applications to help decide what hardware

features should be included in the limited area budgets

to best support common computation patterns shared by

various applications.

• Implementations for both multicore-CPU and GPU

can help compiler efforts to port existing CPU lan-

guages/APIs to the GPU by providing reference imple-

mentations.

• Diverse implementations for both multicore-CPU and

GPU can help software developers by provide exemplars

for different types of applications, assisting in the porting

new applications.

III. THE RODINIA BENCHMARK SUITE

Rodinia so far targets GPUs and multicore CPUs as a

starting point in developing a broader treatment of het-

erogeneous computing. Rodinia is maintained online at

http://lava.cs.virginia.edu/wiki/rodinia. In order to cover di-

verse behaviors, the Berkeley Dwarves [1] are used as guide-

lines for selecting benchmarks. Even though programs repre-

senting a particular dwarf may have varying characteristics,

they share strong underlying patterns [1]. The dwarves are

defined at a high level of abstraction to allow reasoning about

the program behaviors.

The Rodinia suite has the following features:

• The suite consists of four applications and five kernels.

They have been parallelized with OpenMP for multicore

CPUs and with the CUDA API for GPUs. The Similarity

Score kernel is programmed using Mars’ MapReduce API

framework [10]. We use various optimization techniques

in the applications and take advantage of various on-chip

compute resources.

• The workloads exhibit various types of parallelism, data-

access patterns, and data-sharing characteristics. So far

we have only implemented a subset of the dwarves,

including Structured Grid, Unstructured Grid, Dynamic

Programming, Dense Linear Algebra, MapReduce, and

Graph Traversal. We plan to expand Rodinia in the

future to cover the remaining dwarves. Previous work

has shown the applicability of GPUs to applications from

other dwarves such as Combinational Logic [4], Fast

Fourier Transform (FFT) [23], N-Body [25], and Monte

Carlo [24].

• The Rodinia applications cover a diverse range of ap-

plication domains. In Table I we show the applications
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along with their corresponding dwarves and domains.

Each application represents a representative application

from its respective domain. Users are given the flexibility

to specify different input sizes for various uses.

• Even applications within the same dwarf show different

features. For instance, the Structured Grid applications

are at the core of scientific computing, but the reason

that we chose three Structured Grid applications is not

random. SRAD represents a regular application in this

domain. We use HotSpot to demonstrate the impact of

inter-multiprocessor synchronization on application per-

formance. Leukocyte Tracking utilizes diversified paral-

lelization and optimization techniques. We classify K-

means and Stream Cluster as Dense Linear Algebra

applications because their characteristics are closest to

the description of this dwarf since each operates on

strips of rows and columns. Although we believe that the

dwarf taxonomy is fairly comprehensive, there are some

important categories of applications that still need to be

added (e.g., sorting).

Although the dwarves are a useful guiding principle, as

mentioned above, our work with different instances of the

same dwarf suggests that the dwarf taxonomy alone may

not be sufficient to ensure adequate diversity and that some

important behaviors may not be captured. This is an interesting

area for future research.

TABLE I
RODINIA APPLICATIONS AND KERNELS (*DENOTES KERNEL).

Application / Kernel Dwarf Domain

K-means Dense Linear Algebra Data Mining

Needleman-Wunsch Dynamic Programming Bioinformatics

HotSpot* Structured Grid Physics Simulation

Back Propagation* Unstructured Grid Pattern Recognition

SRAD Structured Grid Image Processing

Leukocyte Tracking Structured Grid Medical Imaging

Breadth-First Search* Graph Traversal Graph Algorithms

Stream Cluster* Dense Linear Algebra Data Mining

Similarity Scores* MapReduce Web Mining

A. Workloads

Leukocyte Tracking (LC) detects and tracks rolling leuko-

cytes (white blood cells) in video microscopy of blood ves-

sels [3]. In the application, cells are detected in the first

video frame and then tracked through subsequent frames.

The major processes include computing for each pixel the

maximal Gradient Inverse Coefficient of Variation (GICOV)

score across a range of possible ellipses and computing, in

the area surrounding each cell, a Motion Gradient Vector Flow

(MGVF) matrix.

Speckle Reducing Anisotropic Diffusion (SRAD) is a

diffusion algorithm based on partial differential equations and

used for removing the speckles in an image without sacrificing

important image features. SRAD is widely used in ultrasonic

and radar imaging applications. The inputs to the program

are ultrasound images and the value of each point in the

computation domain depends on its four neighbors.

HotSpot (HS) is a thermal simulation tool [13] used for

estimating processor temperature based on an architectural

floor plan and simulated power measurements. Our benchmark

includes the 2D transient thermal simulation kernel of HotSpot,

which iteratively solves a series of differential equations for

block temperatures. The inputs to the program are power and

initial temperatures. Each output cell in the grid represents

the average temperature value of the corresponding area of

the chip.

Back Propagation (BP) is a machine-learning algorithm

that trains the weights of connecting nodes on a layered neural

network. The application is comprised of two phases: the

Forward Phase, in which the activations are propagated from

the input to the output layer, and the Backward Phase, in which

the error between the observed and requested values in the

output layer is propagated backwards to adjust the weights

and bias values. Our parallelized versions are based on a CMU

implementation [7].

Needleman-Wunsch (NW) is a global optimization method

for DNA sequence alignment. The potential pairs of sequences

are organized in a 2-D matrix. The algorithm fills the matrix

with scores, which represent the value of the maximum

weighted path ending at that cell. A trace-back process is used

to search the optimal alignment. A parallel Needleman-Wunsch

algorithm processes the score matrix in diagonal strips from

top-left to bottom-right.

K-means (KM) is a clustering algorithm used extensively

in data mining. This identifies related points by associating

each data point with its nearest cluster, computing new cluster

centroids, and iterating until convergence. Our OpenMP im-

plementation is based on the Northwestern MineBench [28]

implementation.

Stream Cluster (SC) solves the online clustering problem.

For a stream of input points, it finds a pre-determined number

of medians so that each point is assigned to its nearest

center [2]. The quality of the clustering is measured by the

sum of squared distances (SSQ) metric. The original code

is from the Parsec Benchmark suite developed by Princeton

University [2]. We ported the Parsec implementation to CUDA

and OpenMP.

Breadth-First Search (BFS) traverses all the connected

components in a graph. Large graphs involving millions of

vertices are common in scientific and engineering applications.

The CUDA version of BFS was contributed by IIIT [9].

Similarity Score (SS) is used in web document clustering

to compute the pair-wise similarity between pairs of web

documents. The source code is from the Mars project [10] at

The Hong Kong University of Science and Technology. Mars

hides the programming complexity of the GPU behind the

simple and familiar MapReduce interface.

B. NVIDIA CUDA

For GPU implementations, the Rodinia suite uses

CUDA [22], an extension to C for GPUs. CUDA represents

the GPU as a co-processor that can run a large number of

threads. The threads are managed by representing parallel
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tasks as kernels mapped over a domain. Kernels are scalar

and represent the work to be done by a single thread. A

kernel is invoked as a thread at every point in the domain.

Thread creation is managed in hardware, allowing fast thread

creation. The parallel threads share memory and synchronize

using barriers.

An important feature of CUDA is that the threads are time-

sliced in SIMD groups of 32 called warps. Each warp of 32

threads operates in lockstep. Divergent threads are handled

using hardware masking until they reconverge. Different warps

in a thread block need not operate in lockstep, but if threads

within a warp follow divergent paths, only threads on the same

path can be executed simultaneously. In the worst case, all 32

threads in a warp following different paths would result in

sequential execution of the threads across the warp.

CUDA is currently supported only on NVIDIA GPUs, but

recent work has shown that CUDA programs can be compiled

to execute efficiently on multi-core CPUs [32].

The NVIDIA GTX 280 GPU used in this study has 30

streaming multiprocessors (SMs). Each SM has 8 streaming

processors (SPs) for a total of 240 SPs. Each group of 8 SPs

shares one 16 kB of fast per-block shared memory (similar to

scratchpad memory). Each group of three SMs (i.e., 24 SPs)

shares a texture unit. An SP contains a scalar floating point

ALU that can also perform integer operations. Instructions

are executed in a SIMD fashion across all SPs in a given

multiprocessor. The GTX 280 has 1 GB of device memory.

C. CUDA vs. OpenMP Implementations

One challenge of designing the Rodinia suite is that there

is no single language for programming the platforms we

target, which forced us to choose two different languages

at the current stage. More general languages or APIs that

seek to provide a universal programming standard, such as

OpenCL [26], may address this problem. However, since

OpenCL tools were not available at the time of this writing,

this is left for future work.

Our decision to choose CUDA and OpenMP actually pro-

vides a real benefit. Because they lie at the extremes of data-

parallel programming models (fine-grained vs. coarse-grained,

explicit vs implicit), comparing the two implementations of a

program provides insight into pros and cons of different ways

of specifying and optimizing parallelism and data manage-

ment.

Even though CUDA programmers must specify the tasks

of threads and thread blocks in a more fine-grained way

than in OpenMP, the basic parallel decompositions in most

CUDA and OpenMP applications are not fundamentally dif-

ferent. Aside from dealing with other offloading issues, in

a straightforward data-parallel application programmers can

relatively easily convert the OpenMP loop body into a CUDA

kernel body by replacing the for-loop indices with thread

indices over an appropriate domain (e.g., in Breadth-First

Search). Reductions, however, must be implemented manually

in CUDA (although CUDA libraries [30] make the reduction

easier), while in OpenMP this is handled by the compiler (e.g.,

in Back Propagation and SRAD).

Further optimizations, however, expose significant architec-

tural differences. Examples include taking advantage of data-

locality using specialized memories in CUDA, as opposed

to relying on large caches on the CPU, and reducing SIMD

divergence (as discussed in Section VI-B).

IV. METHODOLOGY AND EXPERIMENT SETUP

In this section, we explain the dimensions along which we

characterize the Rodinia benchmarks:

Diversity Analysis Characterization of diversity of the

benchmarks is necessary to identify whether the suite provides

sufficient coverage.

Parallelization and Speedup The Rodinia applications are

parallelized in various ways and a variety of optimizations

have been applied to obtain satisfactory performance. We

examine how well each applications maps to the two target

platforms.

Computation vs. Communication Many accelerators such

as GPUs use a co-processor model in which computationally-

intensive portions of an application are offloaded to the ac-

celerator by the host processor. The communication overhead

between GPUs and CPUs often becomes a major performance

consideration.

Synchronization Synchronization overhead can be a barrier

to achieving good performance for applications utilizing fine-

grained synchronization. We analyze synchronization primi-

tives and strategies and their impact on application perfor-

mance.

Power Consumption An advantage of accelerator-based

computing is its potential to achieve better power-efficiency

than CPU-based computing. We show the diversity of the

Rodinia benchmarks in terms of power consumption.

All of our measurement results are obtained by running

the applications on real hardware. The benchmarks have been

evaluated on an NVIDIA GeForce GTX 280 GPU with 1.3

GHz shader clock and a 3.2 GHz Quad-core Intel Core 2

Extreme CPU. The system contains an NVIDIA nForce 790i-

based motherboard and the GPU is connected using PCI/e 2.0.

We use NVIDIA driver version 177.11 and CUDA version 2.2,

except for the Similarity Score application, whose Mars [10]

infrastructure only supports CUDA versions up to 1.1.

V. DIVERSITY ANALYSIS

We use the Microarchitecture-Independent Workload Char-

acterization (MICA) framework developed by Hoste and Eeck-

hout [11] to evaluate the application diversity of the Rodinia

benchmark suite. MICA provides a Pin [19] toolkit to collect

metrics such as instruction mix, instruction-level parallelism,

register traffic, working set, data-stream size and branch-

predictability. Each metric also includes several sub-metrics

with total of 47 program characteristics. The MICA method-

ology uses a Genetic Algorithm to minimize the number of

inherent program characteristics that need to be measured

by exploiting correlation between characteristics. It reduces

4



Fig. 1. Kiviat diagrams representing the eight microarchitecture-independent
characteristics of each benchmark.

the 47-dimensional application characteristic space to an 8-

dimensional space without compromising the methodology’s

ability to compare benchmarks [11].

The metrics used in MICA are microarchitecture indepen-

dent but not independent of the instruction set architecture

(ISA) and the compiler. Despite this limitation, Hoste and

Eeckhout [12] show that these metrics can provide a fairly

accurate characterization, even across different platforms.

We measure the single-core, CPU version of the applications

from the Rodinia benchmark suite with the MICA tool as

described by Hoste and Eeckhout [11], except that we calculate

the percentage of all arithmetic operations instead of the

percentage of only multiply operations. Our rationale for

performing the analysis using the single-threaded CPU version

of each benchmark is that the underlying set of computations

to be performed is the same as in the parallelized or GPU

version, but this is another question for future work. We use

Kiviat plots to visualize each benchmark’s inherent behavior,

with each axis representing one of the eight microarchitecture-

independent characteristics. The data was normalized to have

a zero mean and a unit standard deviation. Figure 1 shows

the Kiviat plots for the Rodinia programs, demonstrating that

each application exhibits diverse behavior.

Fig. 2. The speedup of the GPU implementations over the equivalent single-
and four-threaded CPU implementations. The execution time for calculating
the speedup is measured on the CPU and GPU for the core part of the
computation, excluding the I/O and initial setup. Figure 4 gives a detailed
breakdown of each CUDA implementation’s runtime.

VI. PARALLELIZATION AND OPTIMIZATION

A. Performance

Figure 2 shows the speedup of each benchmark’s CUDA

implementation running on a GPU relative to OpenMP im-

plementations running on a multicore CPU. The speedups

range from 5.5 to 80.8 over the single-threaded CPU im-

plementations and from 1.6 to 26.3 over the four-threaded

CPU implementations. Although we have not spent equal

effort optimizing all Rodinia applications, we believe that

the majority of the performance diversity results from the

diverse application characteristics inherent in the bench-

marks. SRAD, HotSpot, and Leukocyte are relatively compute-

intensive, while Needleman-Wunsch, Breadth-First Search, K-

means, and Stream Cluster are limited by the GPU’s off-

chip memory bandwidth. The application performance is also

determined by overheads involved in offloading (e.g., CPU-

GPU memory transfer overhead and kernel call overhead),

which we discuss further in the following sections.

The performance of the CPU implementations also depends

on the compiler’s ability to generate efficient code to better

utilize the CPU hardware (e.g. SSE units). We compared the

performance of some Rodinia benchmarks when compiled

with gcc 4.2.4, the compiler used in this study, and icc 10.1.

The SSE capabilities of icc were enabled by default in our 64-

bit environment. For the single-threaded CPU implementation,

for instance, Needleman-Wunsch compiled with icc is 3%

faster than when compiled with gcc, and SRAD compiled with

icc is 23% slower than when compiled with gcc. For the four-

threaded CPU implementations, Needleman-Wunsch compiled

with icc is 124% faster than when compiled with gcc, and

SRAD compiled with icc is 20% slower than when compiled

with gcc. Given such performance differences due to using

different compilers, for a fair comparison with the GPU, it

would be desirable to hand-code the critical loops of some

CPU implementations in assembly with SSE instructions.

However, this would require low-level programming that is

significantly more complex than CUDA programming, which

is beyond the scope of this paper.
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Among the Rodinia applications, SRAD, Stream Cluster,

and K-means present simple mappings of their data structures

to CUDA’s domain-based model and expose massive data-

parallelism, which allows the use of a large number of threads

to hide memory latency. The speedup of Needleman-Wunsch is

limited by the fact that only 16 threads are launched for each

block to maximize the occupancy of each SM. The significant

speedup achieved by the Leukocyte application is due to the

minimal kernel call and memory copying overhead, thanks

to the persistent thread-block technique which allows all of

the computations to be done on the GPU with minimal CPU

interaction [3]. In K-means, we exploit the specialized GPU

memories, constant and texture memory, and improve memory

performance by coalescing memory accesses.

For the OpenMP implementations, we handled parallelism

and synchronization using directives and clauses that are

directly applied to for loops. We tuned the applications to

achieve satisfactory performance by choosing the appropriate

scheduling policies and optimizing data layout to take advan-

tage of locality in the caches.

B. GPU Optimizations

Due to the unique architecture of GPUs, some optimization

techniques are not intuitive. Some common optimization tech-

niques are discussed in prior work [3], [29]. Table II shows the

optimization techniques we applied to each Rodinia applica-

tion. The most important optimizations are to reduce CPU-

GPU communication and to maximize locality of memory

accesses within each warp (ideally allowing a single, coalesced

memory transaction to fulfill an entire warp’s loads). Where

possible, neighboring threads in a warp should access adjacent

locations in memory, which means individual threads should

not traverse arrays in row-major order—an important differ-

ence with CPUs. Other typical techniques include localizing

data access patterns and inter-thread communication within

thread blocks to take advantage of the SM’s per-block shared

memory. For instance, most of the applications use shared

memory to maximize the per-block data reuse, except for

applications such as Breadth-First Search. In this application,

it is difficult to determine the neighboring nodes to load into

the per-block shared memory because there is limited temporal

locality.

For frequently accessed, read-only values shared across a

warp, cached constant memory is a good choice. For large,

read-only data structures, binding them to constant or texture

memory to exploit the benefits of caching can provide a

significant performance improvement. For example, the perfor-

mance of Leukocyte improves about 30% after we use constant

memory and the performance of K-means improves about 70%

after using textures.

In general, if sufficient parallelism is available, optimizing

to maximize efficient use of memory bandwidth will provide

greater benefits than reducing latency of memory accesses,

because the GPU’s deep multithreading can hide considerable

latency.

Fig. 3. Incremental performance improvement from adding optimizations

Some applications require reorganization of the data struc-

tures or parallelism. HotSpot, an iterative solver, uses a

ghost zone of redundant data around each tile to reduce

the frequency of expensive data exchanges with neighboring

tiles [21]. This reduces expensive global synchronizations

(requiring new kernel calls) at the expense of some redun-

dant computation in the ghost zones. Leukocyte rearranges

computations to use persistent thread blocks in the tracking

stage, confining operations on each feature to a single SM

and avoiding repeated kernel calls at each step. Similarity

Score uses some optimization techniques of the MapReduce

framework such as coalesced access, hashing, and built-in

vector types [10].

Figure 3 illustrates two examples of incremental perfor-

mance improvements as we add optimizations to the Leuko-

cyte and Needleman-Wunsch CUDA implementations1. For

instance, in the “naive” version of Needleman-Wunsch, we

used a single persistent thread block to traverse the main

array, avoiding global synchronizations which would incur

many kernel calls. But this version is not sufficient to make

the CUDA implementation faster than the single-threaded

CPU implementation. In a second optimized version, we

launched a grid of thread blocks to process the main array

in a diagonal-strip manner and achieved a 3.1× speedup over

the single-threaded CPU implementation. To further reduce

global memory access and kernel call overhead, we introduced

another thread-block level of parallelism and took advantage of

program locality using shared memory [4]. This final version

achieved an 8.0× speedup. For Leukocyte, a more detailed

picture of the step-by-step optimizations is presented by Boyer

et al. [3].

An interesting phenomenon to notice is that the persistent-

thread-block technique achieves the best performance for

Leukocyte but the worst performance for Needleman-Wunsch.

Also, the kernel call overhead is less of a dominating factor

for performance in Needleman-Wunsch than in Leukocyte.

Programmers must understand both the algorithm and the

underlying architecture well in order to apply algorithmic

1Note that Leukocyte is composed of two phases, detection and tracking,
and the results shown in this Figure are only for the tracking phase.
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TABLE II
APPLICATION INFORMATION. KN = KERNEL N; C = CONSTANT MEMORY; CA = COALESCED MEMORY ACCESSES; T = TEXTURE MEMORY;

S = SHARED MEMORY.

KM NW HS BP SRAD LC BFS SC SS

K1:14 K1,4,6,7,9-14:6

Registers K1:5 K1:21 K1:25 K1:8 K1:10 K2:12 K1:7 K1:7 K2:5 K3:10

Per Thread K2:12 K2:21 K2:12 K2:12 K3:51 K2:4 K5:13 K8:7

K1:60 K2-4:48

Shared K1:12 K1:2228 K1:2216 K1:6196 K1:32 K1:44 K5,8:40 K9:12

Memory K2:2096 K2:2228 K1:4872 K2:48 K2:5176 K2:40 K2:36 K1:80 K6,7,10,11:32

K3:14636 K12-14:36

Threads Per Block 128/256 16 256 512 256 128/256 512 512 128

Kernels 2 2 1 2 2 3 2 1 14

Barriers 6 70 3 5 9 7 0 1 15

Lines of Code2 1100 430 340 960 310 4300 290 1300 100

Optimizations C/CA/S/T S S/Pyramid S S C/CA/T S S/CA

819200 points 2048×2048 500×500 65536 2048×2048 219×640 106 65536 points 256 points

Problem Size 34 features data points data points input nodes data points pixels/frame nodes 256 dimensions 128 features

CPU Execution Time3 20.9 s 395.1 ms 3.6 s 84.2 ms 40.4 s 122.4 s 3.7 s 171.0 s 33.9 ms

L2 Miss Rate (%) 27.4 41.2 7.0 7.8 1.8 0.06 21.0 8.4 11.7

Parallel Overhead (%) 14.8 32.4 35.7 33.8 4.1 2.2 29.8 2.6 27.7

optimizations, because the benefits achieved depend on the

application’s intrinsic characteristics such as data structures

and computation and sharing patterns as well as efficient

mapping to the GPU. Each new optimization can also be

difficult to add to the previous versions, requiring significant

rearrangement of the algorithm. Thus which optimization to

apply as well as the order to apply optimizations is not always

intuitive. On the other hand, applying certain hardware-level

optimizations (e.g. using texture and constant caches to reduce

read latency) is somewhat independent of optimization order,

if the target data structure remains unchanged while adding

incremental optimizations.

C. GPU Computing Resources

The limit on registers and shared memory available per

SM can constrain the number of active threads, sometimes

exposing memory latency [29]. The GTX 280 has 16 kB of

shared memory and 8,192 registers per SM. Due to these

resource limitations, a large kernel sometimes must be divided

into smaller ones (e.g., in DES [4]). However, because the data

in shared memory is not persistent across different kernels,

dividing the kernel results in the extra overhead of flushing

data to global memory in one kernel and reading the data into

shared memory again in the subsequent kernel.

Table II shows the register and shared memory usage for

each kernel, which vary greatly among kernels. For example,

the first kernel of SRAD consumes 6,196 bytes of shared mem-

ory while the second kernel consumes 5,176 bytes. Breadth-

First Search, the first kernel of K-means, and the second kernel

of Back Propagation do not explicitly use shared memory, so

their non-zero shared memory usage is due to storing the value

of kernel call arguments. We also choose different number of

threads per thread block for different applications; generally

block sizes are chosen to maximize thread occupancy, although

in some cases smaller thread blocks and reduced occupancy

provide improved performance. Needleman-Wunsch uses 16

threads per block as discussed earlier, and Leukocyte uses

different thread block sizes (128 and 256) for its two kernels

because it operates on different working sets in the detection

and tracking phases.

D. Problem Size and CPU Locality

For multicore CPUs, the efficiency of the on-chip caches

is important because a miss requires an access to off-chip

memory. The Rodinia applications have a large range of

problem sizes. The L2 miss rate (defined as the number of

L2 misses divided by the number of L2 accesses) of the 4-

threaded CPU implementation of each benchmark using its

largest dataset is shown in Table II. The miss rates were

measured on a 1.6 GHz Quad-core Intel Xeon processor with a

4 MB L2 cache, using perfex [27] to read the CPU’s hardware

performance counters.

As expected, programs with the largest problem sizes ex-

hibit the highest miss rates. Needleman-Wunsch exhibits an

L2 miss rate of 41.2% due to its unconventional memory

access patterns (diagonal strips) which are poorly handled

by prefetching. K-means (27.4%) and Breadth-First Search

(21.0%), which exhibit streaming behavior, present miss rates

that are lower but still high enough to be of interest. The miss

rates of other applications range from 1.8% to 11.7%, with

the exception of Leukocyte, which has a very low miss rate

of 0.06%, because the major part of the application, the cell

tracking, works on small 41x81 fragments of a video frame.

VII. COMPUTATION AND COMMUNICATION

The theoretical upper-bound on the performance that an

application can achieve via parallelization is governed by the

proportion of its runtime dominated by serial execution, as

stated by Amdahl’s law. In practice, however, the perfor-

mance is significantly lower than the theoretical maximum

2The Lines of Code of Similarity Score does not count the source code of
the MapReduce library.

3HotSpot and SRAD were run with 360 and 100 iterations respectively. The
execution time of Leukocyte was obtained by processing 25 video frames.
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Fig. 4. The fraction of each GPU implementation’s runtime due to the core
part of computation (GPU execution, CPU-GPU communication and CPU
execution) and I/O and initial setup. Sequential parameter setup and input
array randomization are included in “I/O and initial setup”.

due to various parallelization overheads. In GPU computing,

one inefficiency is caused by the disjoint address spaces of

the CPU and GPU and the need to explicitly transfer data

between their two memories. These transfers often occur when

switching between parallel phases executing on the GPU and

serial phases executing on the CPU.

For large transfers, the overhead is determined by the

bandwidth of the PCI/e bus which connects the CPU and GPU

via the Northbridge hub. For small transfers, the overhead is

mostly determined by the cost of invoking the GPU driver’s

software stack and the latency of interacting with the GPU’s

front end. Figure 4 provides a breakdown of each CUDA

implementation’s runtime. For example, there are serial CPU

phases between the parallel GPU kernels in SRAD and Back

Propagation that require significant CPU-GPU communica-

tion.

Note that moving work to the GPU may prove beneficial

even if the computation itself would be more efficiently

executed on the CPU, if this avoids significant CPU-GPU

communication (e.g., in Leukocyte [3]). In Needleman Wunsch

and HotSpot, all of the computation is done on the GPU

after performing an initial memory transfer from the CPU

and the results are transferred back only after all GPU work

has completed. In these applications, the memory transfer

overhead has been minimized and cannot be further reduced.

VIII. SYNCHRONIZATION

CUDA’s runtime library provides programmers with a bar-

rier statement, syncthreads(), which synchronizes all threads

within a thread block. To achieve global barrier functionality,

the programmer must generally allow the current kernel to

complete and start a new kernel, which involves significant

overhead. Additionally, CUDA supports atomic integer op-

erations, but their bandwidth is currently poor. Thus, good

algorithms keep communication and synchronization localized

within thread blocks as much as possible.

Table II shows the number of syncthreads() barriers, ranging

from 0 to 70, and the number of kernels, ranging from 1 to 14,

Fig. 5. Extra power dissipation of each benchmark implementation in
comparison to the system’s idle power (186 W).

for the Rodinia applications.4 In OpenMP, parallel constructs

have implicit barriers, but programmers also have access to a

rich set of synchronization features, such as ATOMIC and

FLUSH directives.

In Table II, we show the proportion of the program overhead

for four-thread CPU implementations. We define the parallel

overhead to be (Tp − Ts/p), with Tp the execution time on p
processors and Ts the execution time of the sequential version.

Applications such as SRAD and Leukocyte exhibit relatively

low overhead because the majority of their computations are

independent. The relatively large overhead Back Propagation

is due to a greater fraction of their execution spent on

reductions. Needleman Wunsch presents limited parallelism

within each diagonal strip, thus benefiting little from the

parallelization.

IX. POWER CONSUMPTION

There are growing numbers of commercial high-

performance computing solutions using various accelerators.

Therefore, power consumption has increasingly become a

concern, and a better understanding of the performance and

power tradeoffs of heterogeneous architectures is needed to

guide usage in server clusters and data centers.

We measure the power consumed by running each of the

Rodinia benchmarks on a GTX 280 GPU, a single CPU

core, and four CPU cores. The extra power dissipated by

each implementation is computing by subtracting the total

system power consumed when the system is idling (186 W)

from the total system power consumed while running that

implementation. This methodology is limited by inefficiencies

in the power supply and by idle power in the GPU, both

of which contribute to the idle power. However, because the

system will not boot without a GPU, this idle power does

represent an accurate baseline for a system that uses a discrete

GPU.

4Note that these are the number of syncthreads() statements and kernel
functions in the source code, not the number of syncthreads() statements and
kernel functions invoked during the execution of the benchmark. Clearly the
latter may be, and often are, much larger than the former.
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As Figure 5 illustrates, the GPU always consumes more

power than one CPU core. For SRAD, Stream Cluster, Leuko-

cyte, Breadth-First Search, and HotSpot, the GPU consumes

more power than the four CPU cores. For Back Propagation,

Similarity Score, and K-means, however, the GPU consumes

less power than the four CPU cores. For Needleman-Wunsch,

the CPU and the GPU consume similar amounts of power.

In addition, according to our measurements, the

power/performance efficiency, or the speedup per watt,

almost always favors the GPU. For example, SRAD dissipates

24% more power on the GPU than on the four-core CPU, but

the speedup of SRAD on the GPU over the multicore CPU is

5.0. The only exception is Needleman-Wunsch application, on

which the GPU and the multicore CPU versions have similar

power/performance efficiency.

X. DISCUSSION

A. CUDA

While developing and characterizing these benchmarks, we

have experienced first-hand the following challenges of the

GPU platform:

Data Structure Mapping: Programmers must find efficient

mappings of their applications’ data structures to CUDA’s

hierarchical (grid of thread blocks) domain model. This is

straightforward for applications which initially use matrix-

like structures (e.g., HotSpot, SRAD and Leukocyte). But for

applications such as Breadth-First Search, the mapping is not

so trivial. In this particular application, the tree-based graph

needs to be reorganized as an array-like data structure. Back

Propagation presents a simple mapping of an unstructured grid

translated from a three-layer neural network.

Global Memory Fence: CUDA’s relaxed memory consis-

tency model requires a memory fence every time values are

communicated outside thread blocks. At the time the Rodinia

benchmarks were developed, CUDA lacked an inter-thread-

block global memory fence, which forces the programmer to

divide a logical function into separate kernel calls, incurring

the costly overhead of launching a new kernel and reloading

data into shared memory. All of current released Rodinia appli-

cations achieve global synchronization among thread blocks by

terminating a kernel call. Examples are Breadth-First Search

and SRAD, where each step or iteration requires a new kernel

call, or Leukocyte and HotSpot, which require a non-intuitive

implementation strategy to reduce the number of kernel calls.

The latest CUDA version (2.2) provides a primitive for an

on-chip global memory fence. We plan to use this feature in

our applications in future work. Unfortunately, this requires

significant restructuring of applications so that the number of

thread blocks does not exceed the co-resident capacity of the

hardware, because thread blocks must be “persistent” during

the kernel execution.

Memory Hierarchy and Accesses: Understanding an ap-

plication’s memory access patterns on the GPU is crucial

to achieving good performance. This requires arranging the

memory accesses or data structures in appropriate ways (as in

K-means and Leukocyte). For example, if neighboring threads

access neighboring rows in an array, allocating the array in

column-major order will allow threads within the same warp

to access contiguous elements (“SIMD-major order”), taking

advantage of the GPU’s ability to coalesce multiple contiguous

memory accesses into one larger memory access [3]. In K-

means, we reorganize the main data structure of the inner

distance computation loop from an array of structures into a

structure of arrays so that the threads in a warp access adjacent

data elements and thus make efficient use of the bandwidth.

Che et al. [4] also showed the importance of using the cached,

read-only constant and texture memory spaces when possible

and the PBSM for frequently reused data within a thread

block. These approaches are especially helpful in reducing the

bandwidth required to the GPU’s off-chip memory.

Memory Transfer: The disjoint memory spaces of the CPU

and the GPU fundamentally complicate programming for the

GPU. This issue can be tackled by algorithmic innovations

or further architectural enhancements, e.g., coherence mech-

anisms. However, CUDA provides users with the streaming

interface option, enabling programmers to batch kernels that

run back to back, increasing efficiency by overlapping com-

putations with memory transfers. This feature works only in

the case that there is no CPU code between GPU kernel calls,

and there are multiple independent streams of work.

Offloading Decision: The CUDA model allows a program-

mer to offload data-parallel and compute-intensive parts of a

program in order to take advantage of the throughput-oriented

cores on the GPU. However, the decision about which parts

to offload is entirely the programmer’s responsibility, and

each kernel call incurs high performance and programming

overhead due to the CPU-GPU communication (as in Back

Propagation and SRAD). Making a correct offload decision

is non-intuitive. Boyer et al. [3] argue that this issue can be

partially alleviated by adding a control processor and global

memory fence to the GPU, enhancing its single-thread perfor-

mance. GPU single-thread performance is orders of magnitude

worse than on the CPU, even though peak throughput is much

greater. This means that performing serial steps may still be

better on the CPU despite the high cost of transferring control.

Resource Considerations: GPUs exhibit much stricter re-

source constraints than CPUs. Per-thread storage is tiny in the

register file, texture cache, and PBSM. Furthermore, because

the total register file size is fixed, rather than the register

allocation per thread, a kernel requiring too many registers

per thread may fill up the register file with too few threads to

achieve full parallelism. Other constraints include the fact that

threads cannot fork new threads, the architecture presents a

32-wide SIMD organization, and the fact that only one kernel

can run at a time.

B. OpenMP

In terms of OpenMP applications, the combination of

compiler directives, library routines, etc., provides scalable

benefits from parallelism, with minimal code modifications.

Programmers must still explicitly identify parallel regions and

avoid data races. Most of the mechanisms for thread manage-
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ment and synchronization are hidden from the programmers’

perspective.

C. OpenCL

We believe the results and conclusions we show in this

paper have strong implications for heterogeneous computing

in general. OpenCL has been released as a unified framework

designed for GPUs and other processors. We compared it

with CUDA, and found that the CUDA and OpenCL models

have much similarity in the virtual machines they define.

Most techniques we applied to Rodinia applications in CUDA

can be translated easily into those in OpenCL. The OpenCL

platform model is based on compute devices that consist of

compute units with processing elements, which are equivalent

to CUDA’s SM and SP units. In OpenCL, a host program

launches a kernel with work-items over an index space,

and work-items are further grouped into work-groups (thread

blocks in CUDA). Also, the OpenCL memory model has

a similar hierarchy as CUDA, such as the global memory

space shared by all work-groups, the per-work-group local

memory space, the per-work-item private memory space, etc.

The global and constant data cache can be used for data which

take advantage of the read-only texture and constant cache

in CUDA. Finally, OpenCL adopts a “relaxed consistency”

memory model similar to CUDA. Local memory consistency

is ensured across work-items within a work-group at a barrier

but not guaranteed across different work-groups. Therefore, if

the Rodinia applications were implemented in OpenCL, they

could leverage the same optimizations used in CUDA.

D. PGI Generated GPU Code

The Portland Group’s PGI Fortran/C accelerator com-

piler [8] provides users with the auto-parallelizing capabilities

to use directives to specify regions of code that can be

offloaded from a CPU to an accelerator in a similar fashion

as OpenMP.

We applied acc region pragmas (similar to parallel for

pragmas in OpenMP) and basic data handling pragmas to the

for loops in our single-threaded CPU implementations of the

benchmarks and compiled the programs using version 8.0.5

and 9.0.3 of the PGI compiler. We use the PGI directives

at the same regions where we use the OpenMP directives.

The compiler was able to automatically parallelize two of

the Rodinia applications, HotSpot and SRAD, after we made

minimal modifications to the code. The PGI-generated SRAD

code achieves a 24% speedup over the original CPU code with

8.0.5, but the same SRAD code encounters compile problems

with 9.0.3, while HotSpot slows down by 37% with 9.0.3.

Based on our test, we encountered several limitations of

the current PGI compiler when used to generate GPU code.

For instance, nonlinear array references are poorly supported

(e.g., a[b[i]]). This happens, for instance, when the indices of

the graph nodes in Breadth-First Search are further used to

locate their neighboring nodes. Similar non-linear references

also occur in K-means and Stream Cluster. Additionally,

the compiler is unable to deal with parallel reductions (e.g.

in K-means, Similarity Score), such as summing all of the

elements in a linear array. For instance, in Back Propagation,

to calculate the value of each node in the output layer, we

must compute the sum of all of the values of the input nodes

multiplied by the corresponding weights connecting to the

output node.

We must hasten to point out that the releases we are using

are first-generation products and our results should in no way

imply that PGI’s approach will not succeed. But it does imply

that for benchmarking purposes, separate implementations for

CPUs and GPUs are currently needed.

XI. CONCLUSIONS AND FUTURE WORK

The Rodinia benchmark suite is designed to provide parallel

programs for the study of heterogeneous systems. It provides

publicly available implementations of each application for both

GPUs and multi-core CPUs, including data sets. This paper

characterized the applications in terms of inherent architectural

characteristics, parallelization, synchronization, communica-

tion overhead, and power consumption, and showed that

each application exhibits unique characteristics. Directions for

future work include:

• Adding new applications to cover further dwarves, such

as sparse matrix, sorting, etc. New applications that span

multiple dwarves are also of interest. We will also include

more inputs for our current applications, representing di-

versity of execution time as well as diversity of behavior.

• We will include some applications for which GPUs are

less efficient and achieve poorer performance than CPUs.

Having such applications in Rodinia will make it more

useful in terms of driving the evolution of the GPU

architecture.

• We plan to provide different download versions of ap-

plications for steps where we add major incremental

optimizations.

• We plan to extend the Rodinia benchmarks to support

more platforms, such as FPGAs, STI Cell, etc. Che et

al. [5] already have FPGA implementations for several

applications.

• We will explore the ability of a single language to

compile efficiently to each platform, using our direct

implementations as references.

• We plan to extend our diversity analysis by using the

clustering analysis performed by Joshi et al. [15], which

requires a principal components analysis (PCA) that we

have left to future work.

• CPUs and accelerators differ greatly in their architecture.

More work is needed to quantify the extent to which

the same algorithm exhibits different properties when

implemented on such different architectures, or when

entirely different algorithms are needed. We will develop

a set of architecture-independent metrics and tools to help

identify such differences, to help select benchmarks, and

to assist in fair comparisons among different platforms.
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