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ABSTRACT 

 
 

As the ability to increase commodity microprocessor performance via increased 

clock frequency becomes severely limited by physical constraints, new techniques 

become necessary to continue to improve performance. One such technique is to place 

more than one execution core on a processor chip, thus creating multicore processors. 

Making efficient use of multicore hardware is a difficult task, as not all computer 

algorithms can effectively be split up to take advantage of the number of available 

processing cores. Several designs have been released in recent years, but it remains to be 

proven that these multicore processors can handle a wide range of computationally-

intensive real-world applications.  

This paper describes the undertaking of a project to test one such processor, the 

Nvidia GeForce 8800 GTX, by measuring how quickly and efficiently it can run a 

selected portion of a program to model synaptic filtering in large neural networks. The 

impacts of this technology on society, as well as any ethical issues that may arise as a 

result, are also examined. After writing a portion of the neural simulation to run on the 

graphics card, its speed was compared to the speed of performing the same task on the 

CPU for different input array sizes. While the CPU finished in shorter time for every 

input array size, the GPU was in fact far faster at doing the calculations but was 

hampered by a severe penalty for moving the input arrays to and from the GPU card. 

Recommendations for future research were made based on this result, main among which 

was to explore ways to improve the latency and transfer speed of the GPU card. 
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CHAPTER 1: DIMINISHING RETURNS IN PROCESSOR IMPROVEMENTS 

 

The field of microprocessor design is approaching a branching point: the 

traditional techniques for increasing the performance of microprocessors are beginning to 

reach severe physical limitations. For example, further increasing processor frequency 

now generates so much heat that it is quickly becoming an unviable option for continuing 

the current rate of microprocessor performance increases. If we are to continue to enjoy 

the benefits of ever more powerful processors, including increasingly detailed 

simulations to increase scientific and medical understanding, then new approaches to 

processor design will be needed. One promising technique is to increase the number of 

cores, or execution entities, on a microprocessor. This project aims to steer such 

multicore processors towards a more generalized form to be better suited for executing 

computationally intensive real-world programs. To test the effectiveness of a processor 

developed using this design technique, an attempt was made to speed-up a complex 

synaptic-modeling simulation by offloading a computationally-intensive section of the 

simulation code to an Nvidia™ general-purpose graphics processing unit (GPGPU). 

The underlying concept to this “multiple cores” approach is simply that if a 

processor cannot be made to perform more operations per second, then more than one of 

them can be run in parallel to increase overall data throughput. This method allows 

multiple tasks, or “threads”, to be executed simultaneously. However, making effective 

use of multiple cores is a complex task because programs have to be structured so as to 

effectively split, or “parallelize”, the program into multiple threads that can run 

concurrently. Different algorithms parallelize with differing levels of effectiveness, and 



there is a lack of information as to what a useful, general-purpose multicore processor 

architecture would look like.  

The goal, then, is to try to develop this “generalized” multicore processor that can 

efficiently support the widest range of applications. The first step towards such a 

processor is to test how well different computationally-intensive real-world applications 

can be made to perform on current multicore processor offerings. The next step is to 

analyze performance results to see what, if any, architectural changes need to be made. 

This information can then be used to design increasingly useful multicore processors. 

This project will perform such an analysis by means of a program called “NeuroJet” that 

models synaptic filtering behavior in large neural networks. The analysis will be 

performed by re-writing some of the most computationally-intensive portions of NeuroJet 

to take advantage of the parallel-processing capabilities of an Nvidia multicore processor 

(in this case, the g80 GPGPU), running the newly re-written code, and identifying any 

performance bottlenecks so as to allow for necessary improvements to be made on future 

multicore designs. Results show how much of a performance increase was gained, as well 

as what changes to the GPGPU hardware or software implementations would allow even 

greater performance increases in the future. 

The Nvidia g80 GPGPU was chosen as the target processor due primarily to the 

relative ease of programming for it. The recently-released programming interface 

developed for it, called the Compute Unified Driver Architecture (CUDA), adds several 

GPGPU-specific extensions to the C programming language. This allows the GPGPU to 

be programmed using language very close to C, which saves the programmer from many 

difficult details of GPGPU interaction. Given the already great complexity of the synaptic 
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simulation program, it was deemed prudent to use the multicore device that had the 

simplest interface available.  

Before going further into the details of the project and its methodology, it would 

be useful to give a review of related advances to elucidate the current state of multicore 

processor development and how this project will relate and build on past work. 

 
 

MULTICORE BACKGROUND OVERVIEW 
 
 

The rapidly evolving field of multicore processor design contains many areas of 

research that have until very recently remained virtually uncharted. This project aims to 

steer future multicore hardware processor development towards a more generalized form 

to be more suitable for executing computationally intensive real-world programs. Aside 

from the hardware aspects, the techniques for writing software to most efficiently utilize 

the power of multicore processors are still under development.  

It is an interesting time for the type of multicore processor being used in this 

project. graphics processing units, or GPU’s, contain multiple processing elements that 

operate simultaneously on streams of data, traditionally graphics-related computation for 

entertainment and 3D visualization. Graphics processing units have recently become an 

attractive choice of processor for performing many kinds of heavy-workload 

computations, not just those related to 3D imaging. This is due to two main reasons. The 

first reason is that they offer theoretical peak performance that can already surpass that of 

CPU’s, and they are improving at a rate exceeding that of CPU’s as well. The second 

reason is that their programming interfaces are becoming more and more generalized, 
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which frees developers from having to structure their programs as graphics computations. 

One such interface is the “CUDA” application programming interface (API), developed 

by Nvidia corporation and being utilized in this project. CUDA stands for Compute 

Unified Device Architecture, and has been released by Nvidia for use with the 8-series 

GeForce (G8X) family of GPU’s being also used in this project.  Since CUDA allows 

GPGPU-controlling code to be written by the developer in a modified version of C, 

existing applications can be ported over to the GPU and new ones can be written by 

programmers with knowledge of C. This new type of card, which can essentially be 

programmed in a mainstream language, is referred to as a general-purpose GPU 

(GPGPU).  

As a side benefit of this increase in accessibility, researchers with limited 

knowledge of the details of GPU hardware are becoming able to turn this processing 

power towards furthering scientific endeavors. To find an example of where such a 

crossover might occur one needs look no further than the synaptic-modeling research 

program this project uses as a case study.  

The research effort deals with the hippocampus, a part of the brain located inside 

the temporal lobe. Inside lie many millions of neurons and even more junctions, or 

“synapses,” that act as interconnects between those neurons. As the hippocampus is 

involved in illnesses including epileptic seizures and Alzheimer’s, neuroscientists hope 

that an increased understanding of the functioning of these neural networks will lead to 

cures for these diseases. To that end, work has been done on simulating networks of 

neurons and their synaptic junctions. This early work attempted to form computer models 

that could accurately predict many facets of synaptic behavior and resulting neural 

 4



excitation, an endeavor to be furthered as a result of this research. The importance of 

hippocampal research increased as a theory was proposed that attempted to accurately 

define the role of the hippocampus in the association and disassociation of memories.   

The equations currently available to govern synaptic behavior are difficult to 

work with since they contain large numbers of variables. This made it necessary to study 

ways to create models which could be more easily simulated yet retain their accuracy. 

The software model being used as a baseline for this project is the product of one such 

attempt at creating more simulation-friendly models of synaptic behavior in neural 

networks.  

NeuroJet currently takes 64 minutes to run a sample script containing 8000 

neurons. Accelerating the simulation on the GPGPU would permit the number of 

neurons, duration of simulation, and other variables to be increased and thus allow new 

types of experiments to be performed. This additional research motivation provides an 

example of the kind of impact that GPU development can have.  

LOOKING FORWARD 

 
 

This research project is but one example of computing technology progressing to 

meet the social demand for ever more powerful processing capability. The next section, 

Chapter 2, will be devoted to a more in-depth analysis of the social and ethical 

ramifications of contributing to the processing race. Chapter 3 will review the literature in 

related fields, Chapter 4 will discuss the project methodology, and Chapter 5 includes 

results and conclusions. The thesis will end with recommendations for furthering this 

research. 
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CHAPTER 2: SOCIAL IMPACTS OF ADVANCING MULTICORE  

PROCESSOR TECHNOLOGY 

 

This project will expand the knowledge base regarding the viability of one type of 

multicore processor, the General Purpose Graphics Programming Unit (GPGPU). As a 

result of this line of research, GPGPU’s will likely become more usable and widely 

adopted by organizations doing computationally-intensive research, a change already 

taking place. The most direct and early consequences of this shift in the computational 

paradigm appear near unanimously beneficial to both the environment and research as a 

whole. Other issues arise when the GPGPU developments are put in the broader context 

of society’s continual push towards ever greater and faster information processing, and 

for completeness some issues corresponding to this generic digital advance will also be 

examined. Lastly, since this project draws on neuroscience modeling as a potential 

application on which to employ GPGPU technology, it will also be necessary to discuss 

the implications of furthering this research into the workings of the brain.  

 As general-purpose Graphics Processing Units have increased in both processing 

power and ease of programmability, companies and research organizations are able to 

replace entire supercomputers with single GPGPU’s capable of performing the same 

workload for a fraction of the cost. In 2003, $400 could by a graphics card with 

processing power comparable to that of an image generator costing hundreds of 

thousands of dollars in 1999 (Macedonia, 2003, p. 1).  With innovations being subsidized 

by the multi-billion dollar gaming industry, prices are kept relatively low and progress is 

constant (Macedonia, 2003, p. 1). One company, Acceleware, has made a business out of 
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selling machines that use Nvidia brand GPU hardware to accelerate electromagnetic 

simulations and seismic data processing for customers (Acceleware, 2007) at a cost far 

lower than purchasing a supercomputer. This could mean some loss of business for the 

supercomputer divisions of companies such as IBM, with an increase in demand for 

GPU’s benefiting the likes of Nvidia and AMD/ATI. In addition, power consumption 

would likely drop as supercomputer clusters are replaced with single machines running 

GPU hardware, benefiting the environment. 

Looking at the context in which GPGPU advances have been made raises deeper 

social issues. It is one thing to know that advancing graphics processing unit technology 

now benefits research as well as entertainment. But the driving force is that of a 

perceived need for ever faster and more powerful computers. This perceived need for 

greater convenience and more immersive entertainment is accelerating the development 

of ever more powerful computers whose repercussions cannot be fully known until after 

the hardware is available. Just as GPGPU’s were the result of applying entertainment-

oriented technology to research, it is difficult to foretell what other fields this massive 

information processing capability will find its use in. 

In a famous Wired magazine article, Bill Joy describes how the advanced 

computers and robotics of the future will concentrate power in the hands of the few (Joy, 

2000). As Joy foresaw, the social asymmetry in control over information technology 

already prevalent today will be exacerbated by an increased reliance on computers in the 

future. It is possible, Joy predicts, that the majority of humans will be effectively 

removed from the decision making process either by a ruling elite of humans or 

something more than human: Artificial Intelligence. 
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As noted by Fogel & Fogel (1995), the ultimate goal of artificial intelligence is to 

find “a theory of intelligence that accounts for the behavior of naturally occurring 

intelligent entities and can be used to guide the creation of artificial entities that are 

capable of intelligent behavior” (p. 3). Research is already underway to “use genetic 

techniques to grow silicon brains trillions of times as complex as human ones” 

(Port,1995, abstract). Creating more and more powerful computers may facilitate the 

eventual overlapping of neuroscience, A.I. theory, and information processing necessary 

to give rise to thinking machines that will dramatically alter the fabric of society. 

While these issues affect society in general, certain aspects of advancing 

neuroscience specifically affect parents. As noted by Bruer (1998),  

a flood of policy reports, conference proceedings, and professional and popular 

articles have proclaimed that "new" discoveries in brain science will revolutionize 

how we think about children, parenting, and early education. We have at our 

disposal, enthusiasts claim, a neuroscientific basis for an action and policy agenda 

on behalf of young children (p. 1). 

This demonstrates a trend towards citing neuroscience as a basis for child care 

techniques. Should improvements in GPU technology allow more advanced neuroscience 

modeling in the future, they could possibly contribute to this trend for better or worse. 

There could be other unforeseen consequences as simulations are applied to other social 

sciences. 

By contributing to the development of increasingly powerful computer processors 

as well as indirectly furthering the study of neural networks and neuroscience in general, 

this project may decrease the various entry costs to performing intense computations, 
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provide parents and educators with more informed child development knowledge and 

techniques, and help lead to cures for neurological damage. The broader push towards 

ever-greater computational ability that this research is but a part of has deeper potential 

long-term consequences, such as the theoretical risk that advancing information 

processing and related fields will concentrate power in the hands of a ruling technocratic 

elite - or maybe not even in people’s hands at all. More directly, it is impossible to prove 

at this early stage that GPGPU technology will not find a use in some malicious field at 

some point in the future. In the final analysis issues like these are far-fetched social 

concerns far beyond the scope of this paper, and the proven, concrete benefits of GPGPU 

development should not be foregone on their behalf. 
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CHAPTER 3: PROJECT BACKGROUND IN COMPUTER ARCHITECTURE 

AND RELATED FIELDS 

 
The rise of multicore processor architectures has been remarkably similar to the 

process of evolution. Multicore processors are the like the newest species trying to thrive 

(gain market share) by overcoming new survival threats to older processor designs (for 

instance, massive heat buildup). Like with mammals and dinosaurs, changes in the 

environment provided the opportunity for these less-common but well-adapted types of 

processors to gain dominance while other designs went extinct. The first step in 

understanding this evolutionary development will be a more detailed look at the technical 

problems in the microprocessor industry that multicore architectures were so well-suited 

to solve. A brief chronology of multicore development will then provide insight into the 

different evolutionary paths these processors are taking.  

To understand the importance behind the branch that this project is testing, the 

general-purpose graphics processing unit (GPGPU), a general background on them will 

also be supplied. While this approach will introduce the important aspects of the problem 

in a logical order, it does so without answering the all-important question of how these 

newer, better processors will benefit society. To this end, background on the 

neuroscience aspects of the simulation software being used will also be given. Speeding 

up the simulation code is an example of a technical problem this research is trying to 

address, as neuroscience is an example of a field that stands to benefit greatly from 

successfully advancing multicore processors.  
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Something needed to be done to address the physical limitations impeding the 

drive towards faster single-core processors, a struggle that an Intel white paper summed 

up well: “The difficulty is that researchers now are coming up against the physical limits 

of atomic structure for scaling transistors while still managing power and thermals” 

(Ramanathan, 2006, p. 9). Managing heat generation and power consumption while still 

increasing the amount of work done in a given time period is the main motivation behind 

the ongoing mainstream push towards multicore processors. The following example was 

given in a speech by Intel CTO Justin Rattner explaining how adding more processor 

cores can reach this goal. For an example processor, a 20% increase in frequency will 

correspond to a 73% increase in power consumption for a 13% increase in total 

performance. Turning the frequency down by 20% yields a performance hit of 13% for a 

power consumption drop of near 50%. With the power saved, another processor could be 

added. The end result is that the power consumption is the same as in the beginning, but 

the two processors working simultaneously could theoretically provide a 73% increase in 

total performance (Rattner, 2006, p. 11). While these numbers are merely examples, they 

illustrate how the various parameters scale and how powerful the multicore approach is. 

The industry-wide consensus on the strength of this underlying theory gave birth to many 

different types of multicore implementations in recent years.  

Like the history of evolution, the differentiation between processor “species” is 

not entirely clear, and classification is difficult. Tracking the chronology of multicore 

processor development is made difficult by the disagreement over what qualifies as a true 

“multicore” processor. For example, the Pentium D contains two Pentium 4 chips left 

connected on one end, with all of the connections between them made externally    
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(Stokes, 2006). Since the connections between the two Pentium 4 cores are not 

technically on the same piece of silicon, it is arguable as to whether or not it should be 

called a multicore processor in the strictest sense (Stokes, 2006). One proposed definition 

is that the processor cores must all be general-purpose, and by this definition the first 

multicore processor was the IBM Power4 dual-core CPU in the year 2000 (Gardner, 

2006).  Changing the definition to include any types of cores connected on-chip, and the 

likely candidate becomes the 1995 TMS320C80, a 4-core video processor CPU from 

Texas Instruments (Gardner, 2006). To call a GPU a multicore processor, as is done in 

this paper, is stretching the definition of “core” to include the individual data pipelines 

that compose the GPU. 

An early work in the field of multicore processor compiler theory stated that  

“the future direction of parallel computing is not clearly defined, in part because of our 

lack of understanding of what constitutes effective machine organization and good 

programming methodology” (Banerjee, Eigenmann, Nicolau, & Padua, 1993, p. 1). 

Fourteen years later these problems are still not fully understood: in a  February 2007 

interview, Intel executive Pat Gelsinger acknowledged in an interview that the debate 

between heterogeneous vs. homogenous multicore processor architectures within his own 

company would likely not be resolved before 2020 (Goodwins, 2007). Today the industry 

abounds with competing multicore processor approaches, such as Nvidia’s general-

purpose graphical programming units and Sony’s Cell processor. Each approach, 

however, currently has weaknesses. Examples are that the GPGPU experiences 

slowdown with Discrete Event Simulation (Perumalla, 2006), and the Cell processor’s 

double-precision arithmetic throughput could stand to be further improved by 
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architectural modifications (Williams et al., 2006). There is, then, still much room for 

testing and improvement. Aside from the hardware aspects, the techniques for writing 

software to most efficiently utilize multicore processors are still under development, 

though several new approaches have recently been proposed (Eichenberger et al., 2005).  

As relates specifically to GPGPU’s, they are becoming an attractive option for 

handling heavy computation loads due to two main reasons. First, they offer performance 

that can already surpass that of CPU’s, and they are improving at a rate exceeding that of 

CPU’s as well (2x / year for GPU’s compared to 1.5x / year for CPU’s)  (Luebke, Harris, 

Kruger et Al., 2004). The following figure demonstrates the growth of the computational 

ability of Nvidia GPU’s versus CPUs from 2003 onward. In early 2003, GPU potential 

throughput exceeded that of high-end CPUs (Green, Simon and Mark Harris, 2006).  

 

Figure 1: Comparison of GPU to CPU GFLOPS (giga floating point operations per second) from Jan 
2003 to Mar 2006.  Modified by Steven Cook from (Green, Simon and Mark Harris, 2006, slide 6). 
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Their power has grown so much that they are now used for applications besides 

graphics even within computer games, such as motion planning, AI, and physics 

(Macedonia, 2003, p. 2).  

The second reason that GPGPU’s are becoming more attractive is that their 

programming interfaces are becoming more and more general, permitting a broader range 

of applications to be employed (Luebke, Harris, Kruger et Al., 2004). A prime example 

of this is the “CUDA” application programming interface being utilized in this project. 

CUDA stands for Compute Unified Device Architecture, and has been released by Nvidia 

for use with the 8-series GeForce (G8X) GPU family being used in this project.  Since 

CUDA allows GPGPU-controlling code to be written by the developer in a modified 

version of C, existing applications can be ported over to the GPGPU and new ones can be 

written by programmers with knowledge of C. Since CUDA was only released publicly 

on February 15, 2007, this thesis will be able to benefit the current literature by providing 

a real-world experience with CUDA development.  

As a side benefit of this increase in accessibility, researchers with limited 

knowledge of the details of GPU hardware are able to turn this processing power towards 

furthering scientific endeavors. To find an example of where such a crossover might 

occur one need look no further than the synaptic-modeling research program this project 

uses as a case study. The research effort deals with the hippocampus, a part of the brain 

located inside the temporal lobe. Inside lie many millions of neurons and even more 

junctions, or “synapses,” that act as interconnects between those neurons. As the 

hippocampus is involved in illnesses including epileptic seizures and Alzheimer’s, 

neuroscientists hope that an increased understanding of the functioning of these neural 
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networks will lead to cures for these diseases. To that end, work has been done on 

simulating networks of neurons and their synaptic junctions as far back as 1988 (Traub, 

Miles, & Wong, 1988). This early work attempted to form computer models that could 

accurately predict many facets of synaptic behavior and resulting neural excitation, an 

endeavor to be furthered as a result of this research. The importance of hippocampal 

research increased as a theory was proposed that attempted to accurately define the role 

of the hippocampus in the association and disassociation of memories (Tsukada, 1993).  

The equations currently available to govern synaptic behavior are difficult to work with 

because they contain large numbers of variables, and as a result it became necessary to 

study ways to create models which could be more easily simulated yet retain their 

accuracy (Izhikevich, 1999). These equations are the subject of frequent re-workings; 

only two years ago a model of hippocampal function was proposed that included a special 

role for randomization (Levy, Hocking, & Wu, 2005). The software model being used as 

a baseline for this project is the product of one such attempt at creating more simulation-

friendly models of synaptic behavior i
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of whether these landmarks have been moved (Denham & McCabe, 1998). Applicat

of this model of learning to a mobile robot placed in an artificial environment has 

resulted in a machine able to successfully navigate back to a specified location (Burgess, 

Donnet, & O’Keefe, 1998). These two papers are examples of how research into the 

human brain has resulted in progress in artificial intelligence, an example of a potent

important link for research into advancing simulations.  

The ra

ion 

ially 

pidly evolving field of multicore processor design contains many new 

develop

its own 

s 

ments that have yet to be fully explored and tested. Of the many different 

branches, the GPGPU family of multicore processors has just started to come into 

as a mainstream tool capable of handling massive calculations through use of parallel 

data pipelines. If it can be shown that computationally-intensive real-world simulation

like the one used in this project for modeling synaptic filtering can in fact be sped up by 

using a GPGPU like the Nvidia G8X series, then GPGPU’s could gain in prominence in 

neuroscience and other research fields. By contributing to the evaluation of GPGPU 

technology, this project shall help determine the future direction of GPGPU and, by 

extension, multicore processor adoption and development. 
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CHAPTER 4: PROCESSOR COMPARISON METHODOLOGY 

 

The project can be thought of as composing three phases: code analysis, 

prototyping, re-writing, and comparing the CPU and GPU implementations. In the first 

phase, the NeuroJet program was studied to determine which functions took the most 

execution time – these would be the ideal candidates to speed up on a GPGPU.  In the 

second phase, a prototype program was written that would allow me to gain experience 

with the CUDA programming interface as well as provide insight into how to parallelize 

loops onto the GPGPU. In the third phase, a replacement for the identified section of 

code was written to port the identified function’s work over to the GPGPU to reduce the 

total run-time. 

 

CODE ANALYSIS 

  

To determine which functions in the large NeuroJet program would be ideal re-

write candidates, it was necessary to know what portion of the total running time they 

each took. The size and complexity of NeuroJet made it difficult to analyze by hand; 

therefore, the decision was made to use a profiling tool instead. The GNU Profiler, or 

gprof, was used to gather statistics during program run-time that include the percentage 

of total run-time a function’s execution occupies. Analyzing the output identified the 

most time-intensive functions, as shown by the following section of the gprof output: 
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CalcDendriticToSomaInput(xInput const&, bool) : 38.07% :  1468.88 secs  : 297500 runs 
 
NeuronType::forceExt()  : 16.96% : 654.61 secs : 2380000000 runs 
 
CalcSynapticActivation()  : 13.43% : 518.30 secs : 297500 runs 
 
CalcDendriticExcitation()  : 11.97% : 462.01  secs : 297500 runs 
 
 
 This output lists the function name, followed by its total run time (percentage of 

total and in seconds), and finally how many times it was run. The code of these functions 

was then analyzed to determine how viable it would be to re-write them to be run on the 

graphics card under CUDA.  

Each of these functions was then evaluated for their independence of other 

functions. This was deemed desirable since once the function was running on the GPU, it 

wouldn’t be able to easily interact with the rest of the program. Due to the time cost of 

reading to and writing from the GPU, it was deemed unwise to offload any function that 

took very little time per run but ran billions of times, ruling out NeuronType::forceExt() 

as a viable option. Of these four functions, CalcDendriticExcitation() was chosen due to 

the fact that it had a computationally-intensive inner loop which did not interact with 

other functions. Its original code can be found in Appendix B, page 43. This inner loop 

was the portion re-written to run on the GeForce 8800 under CUDA.  

The loop’s task is to check all the elements in one float array, called sumwz[], to 

see if their absolute value is greater than a cutoff value. If an element is above the cutoff 

value, its value is written into the corresponding index in another array, dendExc[]. 

Loading this function onto the GeForce 8800 would test for an important bottleneck in 

the form of the delay in moving the two float arrays over to the graphics card, then 
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reading them back. Even if the GeForce GPU proved to be faster at completing the loop, 

it could still be slower overall if the transfer latency was too high. 

 

PROTOTYPING 

 
 When the project was begun, Nvidia’s CUDA API was a new development that 

was still under a Non-Disclosure Agreement. Neither I nor my thesis advisor had any 

previous experience with it, and despite its touted ease of use a steep learning curve was 

anticipated. A common programming practice in situations which require learning a new 

interface or model is to write a throw-away prototype program that addresses as many 

risk areas as possible in a simple, straightforward manner. I decided to write one such 

prototype program to help gain familiarity with the CUDA model.  

 Since the main feature of the portion of NeuroJet I was re-writing was a loop, I 

decided that it would be best to make my prototype also implement a loop. The example I 

settled on was a simple series summation, and successful implementation of this would 

allow me to gain an idea of how to make a programming loop work on the GPGPU. The 

example I settled on was a series summation, where all the values from 1 to a user-

supplied number under 512 would be added together. The CUDA launch configuration 

was set up to launch a single block of 512 threads, and each thread would calculate based 

on its thread ID number. These values were summed into a “result” integer loaded to the 

card, and then read back to get the final answer. A code listing can be found in Appendix 

C, page 44. 
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RE-WRITING 

 With the prototype functioning successfully and basic concepts learned, it was 

time to expand the prototype into an implementation of the inner loop of the 

CalcDendriticExcitation() function. This required loading the two previously mentioned 

float arrays to the card, and reading one back when the card had finished calculating. The 

most significant difficulty of this step, and also the most important, was to modify the 

function run on the GPGPU so that it could support an arbitrary array size. 

The GeForce 8800 is programmed under CUDA by writing a single function that 

every thread executes. Different threads are assigned to different data regions by means 

of their thread ID and their block ID. While there can be only up to 512 threads in a 

single block, many thousands of blocks created to allow for an extremely large number of 

threads to be dispatched. The task, then, was to launch a total number of threads as close 

as possible to the number of elements to be analyzed in the float array sumwz[]. I 

accomplished this by dividing the array size by 512, rounding up, and launching that 

many blocks with 512 threads each.  

While this launch configuration always ensured that there were enough threads, it 

almost always results in having “leftover” threads. For instance, if there are 1000 

elements in the array, 2 blocks of 512 threads each would be launched for a total of 1024 

threads. If the last 24 threads naively tried to access their corresponding location in the 

array, this would cause an index-out-of-bounds error. To correct for this problem, a series 

of case statements was added to the code that would run on the GPGPU, and a “cutoff” 

thread value was passed so that the threads over the remainder would not perform any 

harmful action. The following pseudo code describes the checking algorithm used: 
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If(not last block) 

 Execute code normally 

Else ( in last block) 

 If (thread ID < cutoff) 

  Execute code normally 

 Else ( thread ID >= cutoff) 

  Do nothing 

 This algorithm was successful in computing all necessary values without 

exceeding the bounds of the index. After sample values were passed, the new code was 

found to be operating correctly in CPU emulation mode. Windows was the only 

environment available with a working GeForce 8800 card, so the code had to be ported 

over to a Microsoft Visual Studio 2005 project. The code was run on Windows under the 

Cygwin Linux emulation tool and found to execute properly on the actual GeForce 8800 

card. This implementation was then deemed successful. A final code listing can be found 

in Appendix D, page 46. 

 

COMPARISONS 

 
Since Windows was the only environment available with a working GeForce 

8800 card, and NeuroJet was written to be compiled under Linux, it was impossible to 

compare the program’s runtime with and without using the GPU without making 

extensive changes to the NeuroJet simulation program. To provide a clear comparison, a 

simple CPU implementation of the inner loop of CalcDendriticExcitation() was written to 
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compare to the GPU implementation. After some false starts when using the Cygwin 

“time” function to measure execution time, CUDA’s own timing functionality was 

decided upon. Timers would be created before the actual calculations were performed on 

the CPU and GPU, and stopped immediately upon completion. For details on timing 

implementation, refer to the final code listing in Appendix E, page 50. To measure for 

bottlenecks, the total GPU time was measured along with the setup time to load and read 

the float arrays from memory. The test was run for different sumwz[] loop sizes, with the 

loop always containing an alternating pattern of values above and below the cutoff 

threshold to ensure that both branches got equal coverage. Since it was mentioned that 

the array would always be at least 10,000 elements long, and longer in the future, the 

comparison was run over different array sizes. The sizes chosen were 10,000, 100,000, 

1,000,000, 10,000,000, and 25,000,000. The results of the experiment are listed in the 

following section.   
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CHAPTER 5: COMPARISON OF GPU AND CPU CALCULATION SPEEDS 

 

The first question to be answered in the comparison between CPU and GPU 

implementations of part of the NeuroJet synaptic simulation was simply which one could 

do the work in the shortest amount of time, for each array size. The following graph 

compares the total time of the GPU versus the CPU for the different array sizes tested, 

with lower times being preferable: 

 
Figure 3: The GPU is never able to beat the CPU time. (Source: Steven Cook) 

 

For all array sizes tested, the CPU finishes before the GPU does. The percentage 

difference starts out great at a size 10,000 array with the GPU being roughly 200% 

slower, but narrows over time until there is roughly a 10% speed difference at array size 

25 million. Attempts to go far beyond 25 million resulted in the GPU crashing, 

presumably due to the array size exceeding the available memory. 
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These results tell that for this specific application, there is no compelling reason to 

employ the GeForce 8800 GPU as it will only slow the simulation down with the current 

on-card implementation I wrote. This is not entirely unexpected given the volume of data 

that had to be stored to and loaded from the GPU. The next step was to attempt to 

determine exactly how much loss was incurred as a result of moving the data. 

 Comparing the time to load and calculate on the GPU to the time to simply load 

the GPU was astonishing. The difference between the two values, the actual calculation 

time, was miniscule. A calculation that took an Intel Core 2 Duo processor 46 

milliseconds could be completed on the GeForce 8800 GPU in only 2.3 milliseconds. 

Here is the same graph from above, with the GPU calculation-only time added: 

 
Figure 4: GPU computation-only time far faster than that of CPU (Source: Steven Cook) 

 

Comparing the calculation-only GPU time to the CPU time shows that while they 

start nearly even, with the CPU slightly faster, the difference grows dramatically as array 
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size increases. Clearly, if more work was needed to be done on the data in the loop, the 

GPU would likely prove superior. As a simple test of this, I modified the program to run 

the calculation 100 times instead of once for an array size of 1,000,000. The CPU took 

458.5 milliseconds, while the GPU’s total time, including loading and reading, was 22.5 

milliseconds. This extremely telling result indicates the potential of the GPGPU as well 

as opens up many further fields of study. Result data is listed in Appendix E, page 50. 

 

GPU VS CPU: CONCLUSIONS 

 

 The project’s goal of furthering multicore development by identifying bottlenecks 

was a success. For applications light in calculation but heavy in data transfer, such as this 

one, the GPU is badly limited by the memory transfer rate and should thus be avoided. 

Improving the latency and throughput of this connection in future designs will make the 

GPU more viable for these types of simulations as a whole, and NeuroJet in particular.  

 The results obtained are considered accurate due to the simplicity and accuracy of 

the timing methodology employed. Nonetheless, they only represent one program on one 

computer for a potentially nonoptimal GPU-side implementation. Varying these 

parameters over a very large number of repetitions would greatly strengthen and hone 

results concerning GPU viability for this particular program.  

Many interesting areas of further research are suggested by the results obtained. 

First, the implementation I used to calculate the loop on the GPU might be able to be 

improved. It contained a number of conditional branches, which could prove expensive 

under further analysis. Additionally, the launch configuration might also be reconfigured 
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for greater speed, perhaps by setting 256 threads in a block instead of 512 and increasing 

the number of blocks. Studying how to achieve efficiency in loop computations under 

CUDA would benefit this and other applications. 

Having only tested one function to see if an improvement might be brought about, 

the GPGPU could also prove useful in accelerating the other functions identified when 

analyzing NeuroJet. Passing the code I wrote to NeuroJet’s author will give him an 

example to work from should he want to try to optimize NeuroJet or its successors for the 

GPGPU. The CUDA code I wrote has yet to be integrated into the actual NeuroJet 

program, and when resources allow, this would permit further studies done with actual 

program data instead of the simulated data used here. 

 

LESSONS LEARNED FOR CUDA PROGRAMMING 

 
 For the GPGPU to be useful to a program such as NeuroJet, it will be necessary to 

make changes to the programming model. As testing has indicated, the GPU can only 

outperform the CPU when the calculation load is heavy enough – more precisely, when 

there is enough of a workload for the GPU’s calculation speed advantage to eclipse the 

GPU’s data transfer costs. Therefore, if NeuroJet could be restructured to decrease the 

size and frequency of data transfers with the GPU, it could be possible to match or even 

beat the CPU calculation times. One possible approach to minimize the data transfer 

delays would be to do more of the work on the data sets transferred to the card. This 

project only moved one loop over to the GPU; moving a greater portion of the 

calculations, including parent loops, would both increase the amount of data to be fed to 
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the GPU and decrease the total number of data transfers that needed to occur. These same 

lessons can be applied to other attempts to write (or re-write) programs for CUDA.  

The first step for a CUDA programmer is to answer the question of whether the 

workload required is of a sufficient size and parallelizable structure so as to warrant the 

use of the GPU. Answering this question requires knowledge of both the volume of data 

employed in the calculation and the specific algorithm(s) to be used. The goal of the 

CUDA programmer here is to devise a program structure such that the number and size 

of data transfers to and from the GPU is kept to a minimum, which can be accomplished 

through doing as much of the calculation work as possible on the GPU while keeping the 

data resident on the GPU for as long as possible. Certain types of applications may not be 

suited to running in parallel, and may thus be unsuitable for CUDA implementation. 

Once the most CUDA-friendly program structure possible has been defined, it 

needs to be seen whether it will run faster (or if necessary, significantly faster) on the 

GPU. To help determine if the GPU time will be less than the CPU time, the following 

formula must be true: 

 

# of transfers * time cost per transfer + volume of computation / GPU speed  

 < volume of computation / CPU speed 

 

Here the GPU time is the left half of the inequality, and the CPU time is on the 

right. An example from this project would be a test run on an array size of 1 million 

floats, looping 100 times. There is only one complete transfer to-and-from the card, with 

a time cost of 5.17ms. The time to do one computation was .47ms, so to do the 

computation 100 times would likely be no more than 100*.47ms, or 47ms. Adding these 
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together gives a predicted time of 52.17ms for the GPU. On the CPU side of the 

inequality, it took 4.6ms to do one calculation. Therefore, we would expect 100 

calculations to take roughly 100*4.6ms = 460 ms. This is ten times as long as the 

predicted GPU time. If a CUDA programmer knew this information, he would be able to 

see that if a calculation needed to be done 100 times it would be far more efficient on the 

GPU, and the programmer could expect a break-even point between CPU and GPU 

around 10 calculations. As a final note, when this 100-loop experiment was actually run, 

the GPU time was 27.6ms while the CPU time was 458.5ms. The CPU time scaled very 

linearly, while the GPU time was only a fraction of what was predicted. This further 

illustrates the need for GPU testing, as its performance does not necessarily scale as 

predictably as the CPU’s. 

Depending on the application, calculating this formula may be straightforward or 

highly complex. Nevertheless, the programmer should keep the basic idea of this formula 

in mind if for no other reason than to be able to tell if modifications to the program will 

dramatically affect GPU performance.  

 A final word of advice to CUDA or any GPGPU programmers is to experiment on 

the card early and often. This will help tremendously in both debugging and gaining an 

idea of the timings involved. Early measurements of transfer times can help spot 

intractable speed issues and save time, and calculation time measurements can show what 

the GPGPU is best at and by how much. From my experience on this project I 

recommend that GPGPU programming be done in iterative cycles, with new code being 

tested out on the GPGPU on a regular basis. 
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THE FUTURE OF GPGPU’S 

Looking to the future, there are signs to be watched for to ensure that this 

technology is moving in a socially beneficial direction. As GPGPU’s like the Nvidia 

GeForce 8800 make their way into the mainstream, it will be possible for end users to 

turn their computational power towards their own devices. I am concerned that this may 

give hackers an extremely powerful tool with which they could use to brute-force 

passwords and other security protocols. It would be worthwhile for experiments to be 

done to determine just how much trouble and end user could cause with a few of these 

cards, and if necessary whether encryption routines need to be strengthened as a result. 

At the same time, I feel that these GPGPU’s represent a potentially historic 

milestone. As long as they cost in the hundreds of dollars and the API, CUDA, is publicly 

available, it will be possible for anyone to purchase one of these cards and effectively 

have a supercomputer at their disposal. This may one day be looked upon as a 

development similar to the printing press and personal computer in the way they enable 

people to process information in new and innovative ways. To fully reap the potential 

benefits of having millions of users doing research on their own, it is imperative that 

GPGPU’s both remain affordable and retain publicly available programming tools. 

In conclusion, I deem this project a success due to the extremely interesting GPU 

behaviors that were uncovered. While it was not possible to accelerate the neural 

simulation using the graphics card at this time, a path has been laid out for future research 

to allow this and other similar simulations to benefit from GPGPU development in the 

future.  
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APPENDIX A: TEST MACHINE SPECS 

 
Generated by running “dxdiag” in Windows, relevant output displayed: 

 ------------------ 
System Information 
------------------ 
Time of this report: 3/24/2007, 17:23:40 
       Machine name: SKADRONDELL4 
   Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 2 
(2600.xpsp.061012-0254) 
           Language: English (Regional Setting: English) 
System Manufacturer: Dell Inc.                 
       System Model: Dell DXG061                   
               BIOS: Phoenix ROM BIOS PLUS Version 1.10 1.1.3  
          Processor: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz (2 CPUs) 
             Memory: 1022MB RAM 
          Page File: 440MB used, 2019MB available 
        Windows Dir: C:\WINDOWS 
    DirectX Version: DirectX 9.0c (4.09.0000.0904) 
DX Setup Parameters: Not found 
     DxDiag Version: 5.03.2600.2180 32bit Unicode 
 

--------------- 
Display Devices 
--------------- 
        Card name: NVIDIA GeForce 8800 GTX 
     Manufacturer: NVIDIA 
        Chip type: GeForce 8800 GTX 
         DAC type: Integrated RAMDAC 
       Device Key: Enum\PCI\VEN_10DE&DEV_0191&SUBSYS_039C10DE&REV_A2 
   Display Memory: 768.0 MB 
     Current Mode: 1280 x 1024 (32 bit) (75Hz) 
          Monitor: Plug and Play Monitor 
  Monitor Max Res: 1600,1200 
      Driver Name: nv4_disp.dll 
   Driver Version: 6.14.0010.9773 (English) 
      DDI Version: 9 (or higher) 
Driver Attributes: Final Retail 
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APPENDIX B: SELECTED NEUROJET FUNCTION CODE 
 
 
 
“Inner loop” portion to be re-written is in green surrounded by /* and */. The section 
 
if (useDendInh) 
               dendExc[i] /= (dMult * numerator + BaseInhib); 
 
was ommitted from the re-write as its useDendInh was not turned on in the NeuroJet 
version being used. 
 
 
 
 
 
void CalcDendriticExcitation() { 
   const float dMult = SystemVar::GetFloatVar("DenomMult"); 
   dendExc = DataList(ni, 0.0L); 
   for (PopulationCIt PCIt = Population::Member.begin(); 
        PCIt != Population::Member.end(); ++PCIt) { 
      const double FeedBackExcToInternrn = PCIt-
>getFeedbackInhibition(); 
      const double FeedFwdExcToInternrn = PCIt-
>getFeedforwardInhibition(); 
      const float BaseInhib = (KFBDend * FeedBackExcToInternrn) + 
                              (KFFDend * FeedFwdExcToInternrn) + 
K0Dend; 
   /*   for (unsigned int i = PCIt->getFirstNeuron(); i <= PCIt-
>getLastNeuron(); ++i) { 
         const float numerator = sumwz[i]; 
         if (abs(numerator) > verySmallFloat) { 
            dendExc[i] = numerator; 
            if (useDendInh) 
               dendExc[i] /= (dMult * numerator + BaseInhib); 
         } 
      }*/ 
 
   } 
   enqueueDendriticResponse(dendExc, sumwz_inhdiv, sumwz_inhsub); 
} 
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APPENDIX C: PROTOTYPE SOURCE CODE 
 

/********************************************************* 
main.cpp: goal of this program is to demonstrate ability 
to offload a simple series sum calculation to GPU and perform 
calculation there 
 
Steve Cook 
*********************************************************/ 
 
#include <stdio.h> 
#include <iostream.h>  
 
// includes, project 
#include <cutil.h> 
 
// includes, kernels 
//#include "main_kernel.cu" 
using namespace std; 
extern "C" void factorial_add_local(int j, int *result); 
extern "C" int factorial_add_CUDA(int j, int* result); 
extern int numArray[1000]; 
 
int main() 
{ 
 int x = 0; 
 int CPU_res = 0; 
 int CUDA_res = 0; 
 int *CPU_result_ptr = &CPU_res; 
 int *CUDA_result_ptr = &CUDA_res; 
 
 
 std::cout << "Program Initialized.\n"; 
 std::cout << "enter a number X less than 1000 "; 
 std::cin >> x; 
 // check bounds 
 if((x >= 1000) || (x < 0)){ 
  std::cout << "x out of range, program exiting."; 
  return 1; 
 } 
 
 std::cout << "calculating sum from 1 to " << x << ": "; 
 
 // initialize numArray 
 for(int k = 0; k < 1000; k++){ 
  numArray[k] = k; 
 } 
 // calculate result on CPU 
 factorial_add_local(x, CPU_result_ptr); 
 // calculate result on GPU 
 factorial_add_CUDA(x, CUDA_result_ptr); 
  
 std::cout << "\nResult from CPU: " << CPU_res; 
 std::cout << "\nResult from GPU: " << CUDA_res; 
 return 0; 
} 
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#ifndef _MAIN_KERNEL_H_ 
#define _MAIN_KERNEL_H_ 
#include <cutil.h> 
#include <stdio.h> 
 
int numArray[1000]; 
 
__global__ void CUDA_func(int* arrayOnDevice, int* answerOnDevice){ 
 
  // want to get the value in the array at position x. Is this how 
we do that? 
          
  *answerOnDevice += arrayOnDevice[threadIdx.x+1]; 
//       *answerOnDevice = 1000; 
   __syncthreads(); 
} 
// indexing method? 
extern "C" int factorial_add_CUDA(int j, int *result){ 
 int BSIZE = j; 
 
 // Load numArray onto CUDA 
 int arraySize = 1000 * sizeof(int); 
 int* arrayOnDevice; 
 cudaMalloc((void**)&arrayOnDevice, arraySize); 
 cudaMemcpy(arrayOnDevice, numArray, arraySize, 
cudaMemcpyHostToDevice); 
 
 // allocate space for result 
 
 int* answerOnDevice; 
 int answerSize = sizeof(int); 
 cudaMalloc((void**)&answerOnDevice,answerSize); 
 
 dim3 dimBlock(BSIZE, 1,1);  
 
 // QUESTION 
 // do we want to do something about j divided by 768? 
 dim3 dimGrid(1,1); // temporary fix only! 
 
 CUDA_func<<<dimGrid, dimBlock>>>(arrayOnDevice, answerOnDevice); 
  
 // copy computed answer back to host 
 cudaMemcpy(result, answerOnDevice, answerSize, 
cudaMemcpyDeviceToHost); 
       printf("%d\n",*result); 
 return 0; 
} 
 
 
extern "C" void factorial_add_local(int j, int* result){ 
 for(int x = 0; x <= j; x++){ 
  *result += numArray[x]; 
 } 
// return result; 
} 
 
#endif // #ifndef _TEMPLATE_KERNEL_H_ 
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APPENDIX D: FINAL IMPLEMENTATION SOURCE CODE 
 

 
/********************************************************* 
thesis.cu 
 
Steve Cook 
*********************************************************/ 
 
#include <stdio.h> 
#include <cutil.h> 
//#include <stdlib.h> 
#include <math.h> 
 
#include <thesis_kernel.cu> //remove for linux? 
  
extern "C" float CalcDendritic_CUDA(int firstNeuron, int lastNeuron, 
int sumwzSize, float* sumwzPtr, float verySmallFloat, int dendExcSize, 
float *dendExcPtr, int overhead_mode); 
//extern "C" void CalcDendritic_CPU(int firstNeuron, int lastNeuron, 
float* sumwzPtr, float verySmallFloat, float dendExcPtr); 
 
const int loopSize = 1000000; // change this to vary num of parameters 
used 
float sumwzArray[loopSize]; 
float dendExcArray[loopSize]; 
 
int main(/*int argc, char *argv[]*/) 
{ 
    float verySmallFloat = .00000001f; 
 int firstNeuron = 0; 
 int lastNeuron  = loopSize; 
 //float[] sumwzArray; 
 float *sumwzPtr  = sumwzArray;   // do I want the & there? 
 float *dendExcPtr = dendExcArray; 
 
 // initialize numArray 
 for(int k = 0; k < loopSize; k++){ 
  sumwzArray[k] = 1 * (k % 2); // alternate 0/1 
  dendExcArray[k] = 0; 
 } 
 
 // work section 
 // calculate result on CPU 
 unsigned int timer = 0; 
    CUT_SAFE_CALL(cutCreateTimer(&timer)); 
    CUT_SAFE_CALL(cutStartTimer(timer)); 
 
 for(int x = 0; x < 100; x++){ 
   for(int i = firstNeuron; i <= lastNeuron; i++){ 
   const float numerator = sumwzArray[i]; 
   if(fabs(numerator) > verySmallFloat) { 
    dendExcArray[i] = numerator; 
   } 
  } 
 } 
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  CUT_SAFE_CALL(cutStopTimer(timer)); 
  float CPU_time = cutGetTimerValue(timer); 

printf("on CPU: Processing time: %f (ms)\n", 
cutGetTimerValue(timer)); 

  CUT_SAFE_CALL(cutDeleteTimer(timer)); 
   
  // calculate result on GPU 
  float fullTime = CalcDendritic_CUDA(firstNeuron, 
lastNeuron, loopSize, sumwzPtr, verySmallFloat,loopSize , dendExcPtr, 
0); 
  float overheadTime = CalcDendritic_CUDA(firstNeuron, 
lastNeuron, loopSize, sumwzPtr, verySmallFloat,loopSize , dendExcPtr, 
1); 
  
  printf("GPU card time(diff): %f (ms)\n", fullTime-
overheadTime); 
  printf("GPU-CPU card time(diff): %f (ms)\n", fullTime-
overheadTime-CPU_time); 
 //debugging output 
/* for(int k = loopSize - 1000; k < loopSize; k++){ 
     printf("%f ", dendExcArray[k]); 
 }*/ 
 
 return 0; 
} 
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#ifndef _thesis_kernel_H_ 
#define _thesis_kernel_H_ 
#include <cutil.h> 
#include <stdio.h> 
 
// extern const int loopSize; 
extern float sumwzArray[]; 
extern float dendExcArray[]; 
 
 
__global__ void CUDA_func(float* sumwzOnDevice, float* dendExcOnDevice, 
float verySmallFloat, int lastBlock, int lastThread){ 
 
 if(blockIdx.x < lastBlock - 1){ 
  __device__ __local__ float LocalVar = 
sumwzOnDevice[(blockIdx.x * 512) + threadIdx.x]; 
   if(abs(LocalVar) > verySmallFloat){ 
   dendExcOnDevice[(blockIdx.x * 512) + threadIdx.x] = 
LocalVar; 
          } 
 } 
 else { // in last block 
  if(threadIdx.x < lastThread){ 
   __device__ __local__ float LocalVar = 
sumwzOnDevice[(blockIdx.x * 512) + threadIdx.x]; 
    if(abs(LocalVar) > verySmallFloat){ 
    dendExcOnDevice[(blockIdx.x * 512) + 
threadIdx.x] = LocalVar; 
           } 
  } 
 } 
  
} 
 
extern "C" float CalcDendritic_CUDA(int firstNeuron, int lastNeuron, 
int sumwzSize, float* sumwzPtr, float verySmallFloat, int dendExcSize, 
float *dendExcPtr, int overhead_mode){ 
  
 // find launch configuration 
 int numRuns = lastNeuron - firstNeuron; 
 int BSIZE = 512; // most efficient block size? 
 double b = 512; 
 double n = lastNeuron - firstNeuron; 
 double gs2 = ceil(n / b); 
 int test = (int)gs2; 
   
 int gridSize = /*ceil(double(numRuns / BSIZE))*/ test; 
 int final_thread_num = numRuns % BSIZE; 
 
 if(final_thread_num == 0) final_thread_num = 512; // do all 
threads in end block if true 
 dim3 dimGrid(gridSize,1); 
   
 // Load array onto CUDA 
 
 int sumwzMemSize = sumwzSize * sizeof(float); 
 float* sumwzOnDevice; 
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 cudaMalloc((void**)&sumwzOnDevice, sumwzMemSize); 
 cudaMemcpy(sumwzOnDevice, sumwzPtr, sumwzMemSize, 
cudaMemcpyHostToDevice); 
 
 
 // allocate space for result 
 
 int dendExcMemSize = dendExcSize * sizeof(float); 
 float* dendExcOnDevice; 
  
  
 cudaMalloc((void**)&dendExcOnDevice,dendExcMemSize); 
 
    unsigned int timer = 0; 
    CUT_SAFE_CALL(cutCreateTimer(&timer)); 
    CUT_SAFE_CALL(cutStartTimer(timer)); 
 
 //for(int k=0;k<100;k++) 
 cudaMemcpy(dendExcOnDevice, dendExcPtr, dendExcMemSize, 
cudaMemcpyHostToDevice); 
 
 dim3 dimBlock(BSIZE, 1,1); // need math to calc right block size 
 
 if(!overhead_mode){ 
  for (int x = 0; x < 100; x++) 
 CUDA_func<<<dimGrid, dimBlock>>>(sumwzOnDevice, dendExcOnDevice, 
verySmallFloat, gridSize, final_thread_num); 
  
 } 
   
 // copy computed answer back to host 
 cudaMemcpy(dendExcPtr, dendExcOnDevice, dendExcMemSize, 
cudaMemcpyDeviceToHost); 
 CUT_SAFE_CALL(cutStopTimer(timer)); 
 float time_elapsed = cutGetTimerValue(timer); 
 if(overhead_mode){ 
  printf("Processing time on GPU (overhead only): %f (ms)\n", 
cutGetTimerValue(timer)); 
 } 
 else{ 
  printf("Procesing time on GPU: %f (ms)\n", 
cutGetTimerValue(timer)); 
 } 
    CUT_SAFE_CALL(cutDeleteTimer(timer)); 
 return time_elapsed; // what goes here? 
} 
 
#endif // #ifndef _thesis_kernel_H_ 
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APPENDIX E: TABLE OF RESULTS 
 
 

• All times are in milliseconds (ms) 
 
Array 
Size 

CPU Total 
Time 

GPU Total 
Time 

GPU Calculation-only 
Time 

GPU Time Percent 
Overhead 

10,000 0.044871 0.134632 0.049875 62.95 
100,000 0.444841 0.627043 0.062051 90.10 
1,000,000 4.623071 5.645345 0.468405 91.70 
10,000,00
0 

45.92886
4

53.579575 2.316719 95.68 

25,000,00
0 

123.3821
26

136.620880 6.907059 94.95 
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