
©
20

07
, K

ev
in

 S
ka

dr
on

Implications of the Power Wall
in a Manycore Era

Sustaining Growth in Computing Performance

Kevin Skadron
LAVA/HotSpot Lab, Dept. of Computer Science

University of Virginia

Visiting Professor
NVIDIA Research

2

©
20

07
, K

ev
in

 S
ka

dr
on

“Cooking-Aware” Computing?

3

©
20

07
, K

ev
in

 S
ka

dr
on

Outline 1
• Summary of barriers to performance growth

• Barriers, implications
• Driving applications

• Which aspects of system performance will
most be in demand?

• Main body of talk
• How can these needs be met?
• What are the models of computing in the future

likely to look like?
• Role of power

4

©
20

07
, K

ev
in

 S
ka

dr
on

Barriers to Performance Growth (1)

• Memory wall
• How to ramp up memory bandwidth as we ramp up #

cores
• Variability

• Within-die, core-to-core variations due to PVT
– DVS, RBB can’t completely eliminate
– Speed determined by worst core
– Or software must countenance variety of core speeds

• Reliability challenges
• Defects and errors of all types (including due to PVT

variations) more likely at smaller feature sizes
• Making good progress on this front, must keep up

research
– Modular designs for flexible redundancy, soft error

detection and correction, etc.
– Decades of research on this topic to draw on
– Research needs to track most likely future manycore

architectures
– Need to get down power, performance cost

5

©
20

07
, K

ev
in

 S
ka

dr
on

Barriers to Performance Growth (2)
• Power wall, ILP wall, and slow frequency growth

combine to force multicore
• Limited single-thread performance: slow growth but not

doubling every 18-24 mos.
• No longer cost effective to dedicate increasing transistor

count to ILP extraction for single-thread performance
• More aggressive ILP extraction techniques (kilo-

instruction, TRIPS, etc.) are promising but too late
– Too long, perhaps too risky to put into production
– Industry is already committed to multicore
– On-chip integration is a sweet spot

• Low intra-core communication is a paradigm shift for parallel
programming

• Power wall will eventually constrain multicore too
– If power per core doesn’t scale down as number cores

scales up
• Programmability: parallel programming is hard

• Major productivity concern

6

©
20

07
, K

ev
in

 S
ka

dr
on

Why Do We Care?
• Important, long-term social concerns exhibit staggering opportunities,

computational demands
• Rapid performance growth is now a fundamental growth driver

• for economic growth
• for standard of living

• Examples
• Medical discovery, diagnosis

– Example: cancer drug screening – maxed out multiple clusters across
UVA for months

– Example: leukocyte detection and tracking in video microscopy for
inflammation studies: minutes/frame
 no real-time feedback possible

• Scientific discovery—massive data processing, modeling, simulation
– Energy issues and basic science supporting medicine (e.g. protein

folding) are of particular economic significance
• Commercial: E-commerce, financial analysis,

communications/telepresence, multimedia, etc.
– Vitally important to the economy

• Security, privacy, sensor nets, etc.
• Lots of parallelizable, scalable, big-$$$ and national-interest

applications
• These will get us over the initial hump of developing a market and ethos for

parallel programming

7

©
20

07
, K

ev
in

 S
ka

dr
on

Where We are Today

Excess hardware in the core, e.g. ILP discovery,
very deep pipelining

Nasty side effects of scaling

Voltage-
based
techniques

8

©
20

07
, K

ev
in

 S
ka

dr
on

Big Picture
• Multicore is a one-off (fortunately, a big one)

• The power wall is still there
• Can’t keep packing more and more

conventional cores at current clock frequencies
• At the same time, normal mortals can’t

program massively parallel architectures
• How can application needs best be met?
• Must adopt new abstractions, supporting

architectures, new algorithms
• Shift to multicore + new abstractions create

a rare opportunity to transform hardware
and software

• Release hardware from the ISA death grip and
let it evolve with technology

9

©
20

07
, K

ev
in

 S
ka

dr
on

Outline 2 (Rest of the Talk)
• Technology trends (why multicore isn’t sufficient to

skirt the power wall)
• Implications of the power wall for core architecture

+ research challenges
• TDP-scalable macro-architectures

• Programmability challenges and implications
• Where do we go from here?

• Need to invest heavily in higher-level abstractions for
parallel programming

• Ensure that new programming models are compatible
with expected multiple scenarios for HW evolution

• Explore scalable architectures
• Keep attacking the memory wall, etc.

10

©
20

07
, K

ev
in

 S
ka

dr
on

The Power Wall

http://mraybould.wordpress.com/2007/05/28/if-you-are-mortar/

11

©
20

07
, K

ev
in

 S
ka

dr
on

Moore’s Law and Dennard Scaling
• Moore’s Law: transistor density doubles every N

years (currently N ~ 2)
• Dennard Scaling

• Shrink feature size by k (typ. 0.7), hold electric field
constant

• Area scales by k2 (1/2) , C, V, delay reduce by k
• P CV2f P goes down by k2

• We never saw this in practice
• Generally kept area constant, used doubled transistor

density to add more features, so C didn’t scale
• Aggressive pipelining, circuits, etc. to boost f beyond

“natural” rate
• Leakage
• Power and power density went up, not down

• “Natural” frequency growth may slow even further
due to increasing parasitics, parameter variations,
etc.

• Projections I’ve seen suggest frequency growth of 15-
20%/year, not clear if even this is sustainable

12

©
20

07
, K

ev
in

 S
ka

dr
on

Actual Power
M

ax
 P

ow
er

 (W
at

ts
)

i386 i386

i486 i486

Pentium®Pentium®

Pentium®
w/MMX tech.

Pentium®
w/MMX tech.

1

10

100

Pentium® Pro Pentium® Pro
Pentium® II Pentium® II

Pentium® 4PentiumPentium®® 44

Pentium® III Pentium® III

Source: Intel

Core 2 Duo

13

©
20

07
, K

ev
in

 S
ka

dr
on

Why Multicore
• Why multicore?

• Power wall + ILP wall = brick wall
• Continued scaling of feature sizes seems secure

for many generations
• Parallel programming more palatable on same

chip

• But the power wall is still there

14

©
20

07
, K

ev
in

 S
ka

dr
on

Vdd Wall
• Vdd will scale slowly, if at all

• 2008-2011: 1.0V (ITRS 2006, high-perf)
• 2012-2014: 0.9V
• ...2020: 0.7V
• This is about 2.5%/yr

• To maintain suff. drive current, Vdd must be suff.
larger than Vt

• Lowering Vt, combined with short-channel effects, makes
leakage grow exponentially

• Vdd floor isn’t scaling either
• ITRS allows only a 0.2-0.3V margin

• Doubtful that voltage domains solve this problem
• Fine-grained domains difficult to route in high-power

chips
• Doesn’t help power density in high-perf/high-power

domains anyway

15

©
20

07
, K

ev
in

 S
ka

dr
on

Power Wall Redux (fundamental limits)
• Even if we generously assume C scales and frequency is flat

• P CV2f 0.7 (0.9752) (1) = 0.66
• Power density goes up

• P/A = 0.66/0.5 = 1.33
• And this is very optimistic, because C probably doesn’t scale so

well, so a more likely number is 1.5-1.75X
• If we keep area dedicated to all the cores the same, total power

goes up by the same factor
• But cooling capabilities aren’t scaling so fast

• ITRS holds max power fixed at 198 W for high-performance,
310mm2 die for 2007-2020

– This is a cooling, not a power-delivery constraint
• 104-137W at 140mm2 for cost/performance (5% growth)
• Power density fixed at 0.64 W/mm2 (high-performance),

up to 0.98 W/mm2 for cost-performance
• We are near affordable air cooling limits

• Battery capacity isn’t scaling fast enough either
• Also limited by max amperage of a household wall outlet!

16

©
20

07
, K

ev
in

 S
ka

dr
on

Implications
• Single-core frequency scaling will be slow

• But beware Amdahl’s Law
• Multi-core scalability faces the power wall soon

• If multicore scaling slows down, the only way to improve
performance is with multiple chips/computers

– Multicore-driven adoption of parallel programming will
help in the multicomputer realm

– But long communication delays, memory-system
issues make these harder to program, harder to scale

• Scalable, single-chip performance is the sweet spot
– Need to squeeze as much out of the chip as possible

17

©
20

07
, K

ev
in

 S
ka

dr
on

• Need to minimize power per bit of I/O and on-
chip communication

• This is important because the core no longer
dominates power as much

• And because there are so darn many cores
• Maximize reuse

• Avoid repeated roundtrips to L2 or main memory
• Try to keep producer-consumer chains on same

core or between nearby cores
• Requires dynamic load balancing

– Multithreading helps
• Software ordering for locality helps

• Need TDP-scalable cores

What Power Efficiencies Need to Scale?

18

©
20

07
, K

ev
in

 S
ka

dr
on

Low-Fat Cores

PClaes Oldenburg, Apple Core – Autumn
http://www.greenwicharts.org/pastshows.asp

19

©
20

07
, K

ev
in

 S
ka

dr
on

Low-Fat Architecture (What power efficiencies need to scale?)

• Make ILP cores more power-efficient, more low-power modes
• Running out of steam

• Heterogeneous organization (same area): 1-2 ILP cores + scale up #simple cores
• Combines problems of high-power cores and multiplying number of cores (TDP +

hotspots) – esp. if we want the ILP core to be really fast, it is the thermal limiter
• Dynamic cores (composing powerful single-threaded cores out of “throughput

cores”) is a better way to support single-thread perf
• Heterogeneous organization (MCM)

• Let chip size scale down; achieve throughput scaling with multiple (possibly
heterogeneous) chips – tightly coupled

• Power costs for core-to-core communication, B/W limitations?
• Specialized coprocessors or functional units

• Special-purpose cores are way more energy efficient + spread activity out
• Only help for apps that can use them; dubious area efficiency
• Programmable coprocessors offer wider flexibility albeit lower efficiency

• Amortize hardware in time (ie, multithreading)
• Exploit memory parallelism -- great throughput/W benefit...up to a point (register file

becomes huge with multithreading)
• Can be 1) transparent using demand fetch (e.g. Niagara, GPUs), or 2) require

software-managed computation stages overlapped w/ DMA (e.g. Cell)
• But (1), thread count keeps growing, and

(2), dynamic memory-access patterns are challenging
• SIMD – amortize fetch/decode/etc. hardware in space

• Divergent code is a problem
• Only effective for limited application space???

– Maybe not, with proper abstraction layers and MIMD set of SIMD cores
• Long-term scalability??? Simpler ALUs?

= research priority
Sa

m
e

si
ng

le
-th

re
ad

ed
pe

rf
or

m
an

ce
Th

ro
ug

hp
ut

 fo
cu

s

=> retain homogeneous hardware

20

©
20

07
, K

ev
in

 S
ka

dr
on

Refining the previous argument
• Mark Horowitz summarized my argument as

follows
• Energy per op is a non-linear function
• We were spending lots of E for modest extra

performance (ILP, extra frequency)
• Right now we are scaling down E/op with

modest performance cost
–This lets us keep packing on more cores

within an acceptable power budget
• Once we hit the optimum E/op, further

reductions in E/op will have a high cost in
performance

• Not clear what to do next
–Are we stuck???

21

©
20

07
, K

ev
in

 S
ka

dr
on

Thermal Considerations
• Cooling is the main constraint

• Pick max Tj, typically 100-125C, based on reliability,
leakage tolerance, and ergonomics

• The most thermally efficient design maximizes TDP (and
hopefully throughput) under this constraint

– Hotspots hit Tj faster => thermal non-uniformity
represents a lost opportunity

• Seek thermally uniform macro-architectures
• Multicore layout and “spatial filtering” give you an

extra lever
• The smaller a power dissipator, the more effectively it

spreads its heat
• Ex: 2x2 grid vs. 21x21 grid: 188W TDP vs. 220 W (17%)

(very preliminary result)
Increase core density
Or raise Vdd, Vth, etc.

• Thinner dies, better packaging boost this effect
• Seek architectures that minimize area of high

power density, maximize area in between,
and can be easily partitioned

vs.

22

©
20

07
, K

ev
in

 S
ka

dr
on

TDP-Scalable Architectures
• Can we make conventional cores small enough?
• Which is better: more, specialized functional units,

more threads, VLIW, SIMD…?
• Example: SIMD

+ Amortizes fetch, decode, control, and register-access logic
+ Tends to better preserve memory-access locality
+ Space savings allow more ALUs or on-chip memory in

same area/total power
- Tends to have nasty crossbars
- Doesn’t deal well with threads that can’t stay in lockstep

• Multiple cores of limited SIMD width
• Work queues, conditional streams, etc. needed for

reconvergence
- How to support single-thread performance?

- Processor for a single “thread” is typically pretty wimpy
- Densely packed ALUs

• Can they be spread out?

23

©
20

07
, K

ev
in

 S
ka

dr
on

Outline
• Technology trends (why multicore isn’t

sufficient to skirt the power wall)
• Implications of the power wall for core

architecture
• Programmability challenges and

implications
• Where do we go from here?

• Need to invest heavily in higher-level
abstractions for parallel programming

• Ensure that new programming models are
compatible with expected multiple scenarios
for HW evolution

• Explore scalable architectures
• Keep attacking the memory wall, etc.

24

©
20

07
, K

ev
in

 S
ka

dr
on

If We Build It (multicore), Will They Come?
• Claim: programmers who can do low-level parallel

programming are an elite minority
• We will never train the “average programmer” to write

highly parallel programs in C, Java, X10, Chapel, CUDA,
etc.

• People need to think about things sequentially
– Requiring programmers to reason about too many

independent “things” won’t work
• Programmers are also put off by extensive setup, bookkeeping

– But it’s ok if the “things” are internally parallel
– Also a good model for dealing with heterogeneous

chips, networked ensembles, etc.
• Must develop APIs with higher-level abstractions

• We need this regardless of what the underlying
architecture is

• But it also buys us more flexibility in the architecture
• DirectX is a good case study
• Need more domain-specific languages/APIs

25

©
20

07
, K

ev
in

 S
ka

dr
on

DirectX
• High-level abstractions
• Serial ordering among primitives

= implicit synchronization
• No guarantees about ordering within primitives

= no fine-grained synchronization
• Domain-specific API is convenient for programmers and

provides lots of semantic information to middleware:
parallelism, load balancing, etc.

• Domain-specific API is convenient for hardware designers:
API has evolved while underlying architectures have been
radically different from generation to generation and company
to company

• Similar arguments apply to Matlab, SQL, Map-Reduce, etc.

 I’m not advocating any particular API, but these examples
show that high-level, domain-specific APIs are commercially
viable and effective in exposing parallelism

• Middleware (hopefully common) translates domain-specific
APIs to general-purpose architecture that supports many
different app. domains

26

©
20

07
, K

ev
in

 S
ka

dr
on

Where We are Today - Multicore

Von Neumann model?

Power wall

The one
language
that will
rule them
all

Programmability wall

http://interactive.usc.edu/classes/ctin542-designprod/archives/r2d2-01.jpg

27

©
20

07
, K

ev
in

 S
ka

dr
on

HW Implications of Abstractions
• If we are developing high-level abstractions and supporting

middleware, low-level macro-architecture is less important
• Look at the dramatic changes in GPU architecture under

DirectX
• If middleware understands triangles/matrices/graphs/etc., it can

translate them to SIMD or anything else
• HW design should focus on:

– Reliability
– Scalability (power, bandwidth, etc.)
– Efficient support for important parallel primitives

• Scan, sort, shuffle, etc.
• Memory model
• SIMD: divergent code – work queues, conditional streams, etc.
• Efficient producer-consumer communication
• (These primitives might turn into new coprocessors or functional units)

• Analogy to the RISC revolution
• The primitive ops are the new ISA, and current ISAs become the

new microcode/micro-ops
• “ISA” supports the compiler/middleware, not the programmer

• Need to support legacy code (MPI, OpenMP, pthreads)
• Low-level APIs should work with these codes
• This will also allow programmers to “drill down” if they need to

28

©
20

07
, K

ev
in

 S
ka

dr
on

Top Research Challenges
• Develop domain-specific APIs and portable, common

middleware
• Make sure these primitives and APIs are compatible with multiple

hardware evolution scenarios (heterogeneous cores, SIMD, etc.)
• Use existing low-level APIs for now (CUDA, TBB, CTM)
• Need ecosystem of portable profilers, debuggers, etc.

• Explore TDP-scalable manycore architectures, focus on
evolutionary strategies

• Can develop APIs and use them today!
– GPUs, Fusion, Larrabee, Cell, Niagara, etc.
– Radical architectures can teach us about limits, but unlikely to

gain market adoption due to engineering effort
• Need new research on how to simulate and evaluate these

architectures
• Need to understand which components in the core scale nicely in

power, which do not
• On-chip and off-chip communication bandwidth, latency, and

power remain key challenges
• Work with real programmers (not just real programs)

• Maximizes likelihood that outcome is practical
• Helps speed adoption
• Helps advance scientific discovery along the way

29

©
20

07
, K

ev
in

 S
ka

dr
on

Summary: Start Investing Now
• Both APIs and TDP-scalable architectures
• Can do a lot with existing platforms and

APIs
• GPUs are especially attractive today as

massively parallel chips with mass market
economics and useful low-level APIs

• Nice integration with visualization
 Invest now, before programming practice and

hardware architectures become locked in!
• Need scalable macroarchitecture to put off

power wall as long as possible

30

©
20

07
, K

ev
in

 S
ka

dr
on

Discussion
These are points that came up during Q&A
• Runtime variations are a serious programmability

challenge
• True today: thermal throttling
• Worse tomorrow: too hard to predict thermal interactions

• Real-time
• Need ways to predict performance on these multicore

systems
• Runtime variations, e.g. thermal throttling, make this

worse
– I don’t personally see an alternative to sacrificing

some peak perf
– But now we barely even have acceptable ways to

manage these runtime events deterministically in a
single core

• Dusty deck – presents huge problem

31

©
20

07
, K

ev
in

 S
ka

dr
on

Backup
• Thanks to David Tarjan (UVA PhD student),

who helped me with many aspects of this
presentation

• …and to the whole LAVA group, who served
as a sounding board for these ideas over
the last year

