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Abstract

This paper evaluates several mechanisms for repair-
ing the return-address stack after branch mispredictions.
The return-address stack is a small but important structure
for achieving better control-flow prediction accuracy and
therefore better performance. But wrong-path execution
after mispredictions frequently corrupts the return-address
stack, making repair mechanisms necessary. If the proces-
sor implements multipath execution—simultaneously exe-
cuting both sides of a branch—the contention among dif-
ferent paths makes the problem more severe.

For conventional, single-path processors, this paper pro-
poses saving both the top-of-stack pointer and the top-of-
stack contents for later restoration in case of a mispre-
diction. This simple technique achieves nearly 100% hit
rates and improves performance by up to 8.7% compared
to a stack with no repair mechanism. For multipath proces-
sors, providing each path with its own return-address stack
completely eliminates contention, improving performance
by over 25%.

1 Introduction

Control-flow mispredictions have become a serious bot-
tleneck to better processor performance. Each mispredic-
tion results in five, ten, or more cycles of wasted instruc-
tion fetch. Because mispredictions so strongly constrain
fetch bandwidth, improving downstream components—
instruction-window size, issue width, etc.—has limited
payoff. This paper examines procedure-call returns, one
important source of mispredictions.

Procedure returns present the same problem as other in-
direct branches: because a procedure might be called from
many different locations (consider printf()), the target
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of a particular return instruction varies. But extra informa-
tion is available: returns should pair up with correspond-
ing subroutine calls. Since the return address is known at
the time of the call (it is usually the next instruction after
the call), a return-address stack1 [20, 37] can match returns
with corresponding calls. Like other prediction techniques,
the stack’s prediction is only a hint: the return instruction
must still read the actual return-address register and com-
mit. If the predicted return address is wrong, the corre-
sponding mis-speculated computation must be squashed.

A simple stack, however, fails in the presence of spec-
ulative execution. The fetch engine predicts branch out-
comes and speculatively fetches subsequent instructions:
this may result in mis-speculated calls or returns that are
later squashed. Calls and returns, however, update the stack
in the fetch stage, while mispredictions are detected much
later, in the writeback stage. Calls and returns on a wrong
path therefore corrupt the stack. This becomes a substantial
problem in current, high-performance processors that spec-
ulate aggressively. Without some repair mechanism to undo
the effects of squashed instructions, the stack contents of-
ten do not correspond to the program’s current call-return
sequence, and return-address mispredictions result.

This paper examines the behavior and performance im-
pact of return-address stacks, concentrating on mechanisms
for repairing or preventing corruption. Cycle-level simu-
lation of the SPECint95 suite is used to evaluate several
mechanisms, and to gauge sensitivity to stack size. The
paper also considers how a new execution model, multi-
path execution [1, 21, 35, 36], affects the return address
stack. Multipath execution simultaneously executes down
both sides of one or more branches. If all the concurrent
paths modify one unified stack, corruption again becomes
so frequent—even with repair mechanisms that work well
for single-path execution—that performance is generally
better without a stack. We suggest two different mecha-
nisms for avoiding this corruption.

Related work. The literature discusses procedure returns
infrequently. The most relevant work, by Jourdan et al.

1This paper uses “stack” and “return-address stack” interchangeably,
and never speaks of the actual program stack in memory.
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[19], evaluates repair mechanisms for the return-address
stack as well as other branch-prediction structures. As we
do, they find stack repair to be necessary for effective re-
turn-address prediction. They evaluate a self-checkpointing
mechanism that saves popped entries to avoid overwriting
them with future mis-speculated pushes. Each stack entry,
in addition to saving a return address, also contains a pointer
to the next valid stack entry. Earlier work includes Kaeli
and Emma’s 1991 paper describing a two-stack return-ad-
dress predictor [20], and Webb’s 1988 paper [37].

Jacobsen, Rotenberg, and Smith discuss return-address
prediction in the context of a processor organized around
traces [18]. The trace mechanisms replace the return-ad-
dress stack. Returns that do not appear at the end of a
trace are followed in the same trace by instructions from
the return site. These return-site instructions may or may
not be correct, but replace the prediction that a return-ad-
dress stack would provide. Traces which end in a return can
be predicted using path-based next-trace prediction. This is
particularly easy if the call appears in the same trace as the
corresponding return. They also describe a return history
stack which is not used to predict returns, but instead to
cope with the loss of path history caused by subroutines.
They observe that branch behavior after a subroutine call
often correlates with behavior before the call. Unfortu-
nately, subroutines of any substantial length fill up path his-
tory needed for next-trace prediction, replacing information
about path history that precedes the subroutine call. The re-
turn history stack saves the pre-call history and restores it
after subroutine returns.

Hily and Seznec evaluate return-address-stack perfor-
mance in a simultaneously-multithreaded processor; be-
cause calls and returns from different threads can be inter-
leaved, they find per-thread stacks are a necessity [16].

Most work on control-flow prediction has focused on
predicting directions of conditional branches [2, 4, 11,
24, 25, 31, 38, 39]. Attention is however turning to-
ward other types of branches, as obtaining further im-
provements in conditional-branch accuracy becomes diffi-
cult. Researchers have recently begun focusing on gen-
eral indirect jumps. Examining C++ programs, Calder and
Grunwald observed that many indirect branches have a fa-
vored target. They proposed associating a two-bit counter
with branch target buffer (BTB) entries: two consecutive
instances of a particular target address must occur in order
to change an indirect branch’s target [5]. More recently,
Chang, Hao, and Patt have proposed augmenting a BTB
with branch history to select among various possible tar-
gets for a particular indirect branch. Instead of history bits
indicating branch directions, their proposed history con-
tains previous branch targets [7]. Driesen and Hölzle fur-
ther examined history mechanisms for indirect-branch pre-
diction [9]. Because returns are a special case of indirect

branch, history mechanisms like these can potentially cap-
ture caller history well enough to distinguish among pos-
sible return targets. These general mechanisms, however,
do not achieve the near-100% accuracies possible with a
return-address stack. Because return-address stacks are so
inexpensive and can be so effective, processors are likely to
retain the return-address stack for the foreseeable future.

Most current high-performance processors include a re-
turn-address stack, but precise details about their manage-
ment are rarely available. The DEC Alpha 21164 imple-
ments a 12-entry stack that can overflow and underflow [8].
The 21264 increases the size to 32 entries [15], and includes
a (proprietary) stack-repair mechanism [10]. The Pentium
MMX and Pentium II also implement a repair mechanism
which uses valid bits to detect corrupted entries [13]. Cyrix
recently patented a repair mechanism that preserves the top-
of-stack pointer [27], similar to one of the mechanisms de-
scribed here.

Contributions. This paper makes the following contribu-
tions:

• We closely examine the performance of return-address
stacks in a simulated model of a contemporary proces-
sor, and find that corruption caused by branch mispre-
dictions is an important source of wasted cycles.

• We show that a simple stack-repair mechanism can
remove essentially all speculatively-caused stack cor-
ruption, improving performance on the SPECint95
programs by up to 8.7%.

• We also show that performance of multipath execution
benefits substantially from per-thread return-address
stacks: performance improves by up to 26% compared
to a single, unified stack.

2 Design Issues

2.1 Basic stack operation

Figure 1 shows a simplified view of a modern fetch
stage. Calls—either jump-and-link or jump-and-link-
register instructions—push a return address onto the stack.
Returns, instead of reading the BTB, receive a prediction
by popping the stack. The most recent return jumps back to
the most recent call site, and so forth; so long as calls and
returns match up, returns are correctly predicted. The stack
can be managed in a variety of ways, but we model it as a
circular LIFO buffer, pushed and popped during fetch. The
stack can both overflow (overwriting the oldest entry) and
underflow (returning invalid data from an already-popped
entry). We briefly return to the subjects of overflow and
underflow in Section 4.3.
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BTB

push return link
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next PC
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to branch direction predictor,
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Figure 1. Basic operation of the return-ad-
dress stack.

Some architectures do not include specific return instruc-
tions, instead relying on an indirect-jump instruction. Re-
turns can still be easily distinguished if they use a specific
general register that other indirect jumps avoid, an easy task
for the compiler. Some legacy code, if built with an older
compiler that did not make such a distinction, might suffer
from poor return-address-stack behavior unless corrected
with a binary-rewriting tool.

In a processor with no speculation, only overflow and
unmatched call/return sequences corrupt the stack.2 If the
stack’s prediction is treated as a hint, the stack needs no
tags or valid bits. But a problem arises when speculative
execution is permitted. After a branch misprediction, some
number of cycles elapse before the branch condition re-
solves and the misprediction is detected. In the meantime,
the processor speculatively fetches and executes further in-
structions which will be squashed. If any of the fetched in-
structions are calls or returns, they push or pop the return-
address stack, because pushes and pops take place during
fetch. These mis-speculated calls/returns will eventually be
squashed, yet without additional state, the stack cannot be
repaired—the stack just contains return addresses, with no
way to determine which entries have been corrupted. A
sequence of more mis-speculated pops than pushes or vice-
versa throws the entire stack out of alignment, as Figure
2 illustrates. The while is incorrectly predicted to ter-
minate. Subsequent returns and calls are mis-speculated

2Such unmatched sequences might arise from events like
longjmp()/setjmp() or exception handling; context switches also
create the appearance of an unmatched sequence.

and will eventually be squashed, but their effects remain in
the stack even after the misprediction has been cleaned up.
Correct returns then continue to mispredict, because each
pop matches up with the wrong pushed value. If instead
a matched number of mis-speculated pops and pushes oc-
curs, the stack remains properly aligned, but with the wrong
value in some entries. Note that because it takes some time
for the branch predictor to be updated, the while might
be mispredicted several times in a row, in which case this
sequence of harmful effects happens each time.

The previous explanation assumed that pushes and pops
take place during fetch. Updating the stack in the commit
stage avoids corruption by mis-speculated instructions, but
creates a different set of problems. Returns can be mispre-
dicted even on a correct path, because an entire procedure
can be in flight before the call at the beginning of the pro-
cedure gets a chance to commit and push its return address
onto the stack. When the call has not yet pushed by the time
the corresponding return is fetched, that return instruction
reads a non-existent value from the stack. A further prob-
lem occurs when two or more returns occur in close succes-
sion. If the first one cannot pop the stack before the second
one looks in the stack, the second one reads from the wrong
location. The remaining discussion only considers repair
mechanisms for stacks that are updated in the fetch stage.

2.2 Mis-speculation repair mechanisms

This paper considers two simple repair mechanisms.
Simply saving the current top-of-stack pointer at the time
of each branch prediction is sufficient to avoid losing stack
alignment. It completely prevents corruption from a mis-
speculated sequence of pops only or pushes only.

Saving the TOS pointer is reasonably cheap. Each time
the processor speculates past a branch, it already saves
some shadow state, such as the register-rename map, in case
that branch is mispredicted. Saving the TOS pointer merely
adds several bits per branch to this shadow state. The size
of this shadow state is limited: in current processors, the
shadow storage can accommodate at most a few in-flight
branches—4 in the case of the MIPS R10000 [28], and 20
in the case of the 21264 [10].

Note that the shadow state may in fact be physically
distributed: the shadow register maps near the register-
mapping table, the shadow TOS pointers near the return-
address stack, and so forth.

After a misprediction, the TOS pointer can be restored
at the same time as the register map. No verification of in-
dividual stack entries is required. The stack itself remains
simple: it still contains only the raw return addresses, with-
out tags or valid bits.

A more aggressive scheme might also save the contents
of the top stack entry along with the TOS pointer, requir-
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Figure 2. A case in which mis-speculation corrupts the stack.
A misprediction of the while in memcpy() causes a premature return and pop, and subsequent mis-speculated calls to
fwrite() and flshfp(). Because the return-address stack is updated in fetch, these changes to the stack remain after
the misprediction is caught. The correct return from memcpy() then pops the wrong return address, as do later function
returns.
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Figure 3. A high-level schematic of a return-
address stack that restores both the TOS
pointer and the TOS contents after detecting
a misprediction.

ing one additional (and much larger: 18–30 bits instead of
just 3–5 bits) field in each shadow-state entry. After a mis-
prediction, the TOS pointer and then the TOS contents are
restored. Figure 3 shows a high-level schematic for this
technique. Now a mis-speculated sequence of at least two
pops followed by at least one push is necessary to corrupt
the stack.

One can, of course, save an arbitrary number of re-
turn-address-stack entries this way; the extreme would be
to checkpoint the entire return-address stack each time a
branch is predicted. Our results provide data for full-stack
checkpointing as an upper limit. The sophisticated scheme
proposed by Jourdan, et al. [19], can have the effect of
checkpointing the full stack, but requires a larger number
of stack entries than the methods proposed here because it
preserves popped entries. Each of these stack entries also
requires more space, because in addition to storing the re-
turn address, a stack entry in this scheme also contains a
pointer to the next entry that should be popped. On the
other hand, this approach stores only two small pointers in
the shadow state, the TOS pointer and the “NEXT” pointer

(which points to the next free stack entry).
The cost of the TOS-pointer and TOS-contents (“pointer

& data”) repair scheme can easily be compared to the Jour-
dan et al. self-checkpointing scheme. Suppose the stack
contains n entries of 30 bits each (the lowest-order 2 bits
can be discarded), and the shadow state supports up to m
in-flight branches. Note that the stack need not actually
hold full 30-bit return-addresses, since text sizes are rarely
so large.

If the stack does hold full 30-bit return addresses, the
pointer & data scheme requires 30n bits for the stack, and
(30 + logn)m for the return-address-stack shadow state.
The self-checkpointing scheme requires (30 + logn)n bits
for the stack and (2 logn)m bits for the shadow state.
With a 32-entry stack and 20-entry shadow state, like the
21264, the pointer & data scheme requires 960 + 700 =
1660 bits, compared to 1120 + 200 = 1320 bits for the
self-checkpointing scheme—both quite small. The pointer
& data approach also requires a wider bus between the
stack and its shadow state (but these may be located close
together): 30 + logn bits vs. 2 logn bits for the self-
checkpointing approach’s two pointers. Although this com-
parison has assumed the two approaches use the same size
stack, the self-checkpointing scheme works poorly with
very small stacks, because it does not have enough entries to
store new return addresses while checkpointing older ones.

These proposed TOS-fixup mechanisms are simpler than
tagging or using valid bits. Tagging must associate call and
return addresses (and procedures might have many return
instructions) and match tags on each access to determine
whether to use the stack’s prediction or the BTB’s. Valid
bits require identifiers for each in-flight branch; after a mis-
prediction, these tags permit the processor to identify which
stack entries have been corrupted.

3 Simulation Technique

3.1 Simulator

We use HydraScalar—an enhanced and multipath-
capable version of SimpleScalar’s [3] sim-outorder—for
our experiments. SimpleScalar provides a toolbox of sim-
ulation components—like a branch-predictor module, a
cache module, and a statistics-gathering module—as well
as several simulators built from these components. Each
simulator interprets executables compiled by gcc version
2.6.3, targeting a virtual instruction set that most closely re-
sembles MIPS IV [29]. The simulators instantiate a virtual
machine and can emulate the object program’s execution in
varying levels of detail.

HydraScalar simulates in detail an out-of-order execu-
tion, five-stage pipeline: fetch (including branch predic-
tion), decode (including register renaming), issue, write-
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Parameter Value Comments
Processor core

Instruction-window size 64 RUU
Instruction register size 8 instructions Buffer b/t fetch and decode
Decode/rename latency 4 cycles Min time b/t fetch and issue
Fetch width up to 4 instructions per cycle Must be in same cache block
Decode width up to 4 instructions per cycle In-order
Issue width up to 4 integer ops per cycle plus Out-of-order

2 FP ops per cycle
Commit width up to 4 instructions per cycle In-order
Functional units 4 ALU/logical (1), 2 branch/shift(1), Latency appears in paren-

1 integer multiply/divide (12/20), theses
1 FP add (4), 1 FP multiply (4),
1 FP divide/sqrt (16/33)

Memory ports any combination of 2 memory ops
Branch prediction

Branch predictor hybrid: 4 K 2-bit selector, 12-bit history
1 K 3-bit local pred, 10-bit history
4 K 2-bit global pred, 12-bit history

BTB (branch target buffer) 2048-entry, 2-way updated only if taken
Mispredict penalty 2 cycles for misfetch, 7 cycles otherwise

Memory hierarchy
L1 data-cache 64 K, 2-way (LRU), 32 B blocks,

8 MSHRs, 1-cycle latency
L1 instruction-cache 64 K, 2-way (LRU), 32 B blocks,

1 cycle latency
L2 unified, 8 M, 4-way (LRU), 32 B blocks,

4 MSHRs, 12-cycle latency
Memory 100 cycles
L1→L2 bus 1 transaction every 2 cycles
L2→mem bus 1 transaction every 8 cycles

Table 1. Baseline configuration simulated by HydraScalar.

back, and commit. An arbitrary number of stages can be
added between decode and issue to simulate time spent re-
naming and enqueuing instructions. Issue selects the oldest
ready instructions for execution.

Cycle-by-cycle simulators like HydraScalar that do their
own instruction fetching and functional simulation (as op-
posed to relying on direct execution to provide instructions
for simulation) can accurately model mis-speculated paths.
Like a real processor, HydraScalar checkpoints appropriate
state as it encounters branches, and then proceeds down the
predicted path, executing wrong-path instructions if appro-
priate. Upon detecting a mispredicted branch, wrong-path
instructions are squashed, and recovery from the check-
pointed state is straightforward. This modeling captures
mis-speculation consequences like prefetching, cache pol-
lution, and return-address-stack pollution, and is critical for
accurately simulating multipath execution.

Table 1 summarizes our baseline model, loosely
modeled after the reported configuration of an Alpha

21264 [15]. The conditional-branch direction-predictor is
a McFarling-style, two-component hybrid branch predic-
tor [26] that combines a 4K GAg (global-history) predictor
with a 1K× 10 PAg (local-history) predictor [38]. For each
prediction, a selector chooses the component most likely to
be correct by consulting its own 4K table of saturating 2-bit
counters, indexed by global history [6]. Since many entries
in the direction predictor correspond to not-taken branches
(or are simply idle), the BTB is decoupled [4], only allo-
cating entries for taken branches. This permits the BTB to
have fewer entries. The fetch engine fetches through not-
taken branches and stops at taken branches.

SimpleScalar updates the branch-prediction state during
the instruction-commit stage. This means there is a win-
dow of time, while a branch traverses the pipeline, during
which its outcome is not available and the branch predictor
uses slightly “stale” information. The prediction accuracies
reported here are therefore not as high as those reported in
trace-driven branch-prediction studies.
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Warmup Branches Branch
Insts per Instruction Accuracies

All Return Indir Cond All Return Indir Cond

go 926 M 0.144 0.011 0.002 0.111 0.758 0.432 0.629 0.754
m88ksim 26 M 0.212 0.018 0.003 0.162 0.931 0.704 0.251 0.954
gcc (cc1) 221 M 0.194 0.015 0.030 0.144 0.827 0.546 0.350 0.861
compress 2576 M 0.202 0.028 0.000 0.133 0.925 0.993 0.063 0.888
li (xlisp) 271 M 0.236 0.027 0.082 0.137 0.906 0.721 0.814 0.918
ijpeg 824 M 0.059 0.001 0.003 0.051 0.894 0.728 0.984 0.879
perl 601 M 0.193 0.019 0.077 0.129 0.893 0.664 0.332 0.937
vortex 2451 M 0.166 0.021 0.021 0.121 0.968 0.901 0.768 0.980

Table 2. Benchmark summary.
Statistics are taken only from the post-warmup, 50 M-committed-instruction simulation window, and use the baseline

configuration in Table 1. “All” refers to all branches, whether conditional, direct-jump, indirect-jump, or return. “Indirect
branches” here does not include returns. “Branch accuracy” refers to target-address prediction, except for the

conditional-branch column, which presents direction-prediction accuracies.

Conditional-branch direction-mispredictions suffer at
least a seven-cycle latency, because the branch condition
does not resolve until the writeback stage. Conditional
jumps for which the predicted direction is correct—and di-
rect jumps—can still miss in the BTB (a misfetch), but a
dedicated adder in the decode stage computes branch tar-
gets so that BTB misses can be detected early. A BTB miss
still redirects the fetch engine, but detecting the misfetch
in decode means the resulting bubble is only 2 cycles long.
This is then the only penalty that misfetched branches expe-
rience. Indirect jumps—even though known to be taken—
need to read the register file and these simulations assume
that cannot be done from decode. Indirect-jump targets
therefore cannot be computed by the dedicated adder in the
decode stage, so if the BTB mispredicts the target, the error
is only detected in the writeback stage.

HydraScalar simulates a 64-entry unified active list, is-
sue queue, and rename register file—a register update unit,
or RUU [32]. The architectural registers (32 each for inte-
ger and floating-point) are separate and updated on commit;
renaming determines whether operands reside in the RUU
or in architectural state. A 32-entry load-store queue (LSQ)
disambiguates memory references: stores may only pass
preceding memory references whose addresses are known
not to conflict. Otherwise, issue selects the oldest ready in-
structions.

Finally, the cache hierarchy is a conventional two-level,
non-blocking organization with separate first-level instruc-
tion and data caches. For these simulations, HydraScalar
models a pipelined bus with a fixed fetch spacing.

3.2 Benchmarks

The SPEC integer benchmarks [33] are summarized
in Table 2. Simulations use the provided reference in-

puts. All benchmarks are compiled using gcc -O3
-funroll-loops (-O3 includes inlining). Simulations
include all non-kernel behavior, such as library code. We
omit the floating-point suite because those programs have
excellent branch-prediction accuracies—stack corruption is
not a problem—and call-return frequencies at least an order
of magnitude lower than those found in SPECint programs.

Some benchmarks come with multiple reference inputs,
in which case one has generally been chosen. For go, we
chose a playing level of 50 and a 21x21 board with the
9stone21 input. For m88ksim, we used the dhrystone
input; for gcc, cccp.i; for ijpeg, vigo.ppm; and for
perl, we used the scrabble game. For xlisp, we ran the pro-
gram with all the supplied LISP files as arguments.

We perform full-detail simulation for a representative,
50-million-instruction segment of the program that avoids
the program’s initial phases and any warmup effects. For
each benchmark, we find the segment using a simple miss-
rate simulator that measures the cache miss rate and branch
misprediction rate for each 1-million-instruction interval,
independent of the previous interval. Testing this segment’s
representativeness by running a subset of our experiments
for 250 million instructions verifies that the chosen seg-
ments provide representative behavior in terms of return-ad-
dress-stack behavior as well as branch prediction accuracy,
cache performance, and overall IPC. A detailed examina-
tion of these time-series miss-rate results appears in [30],
which discusses the choice of a simulation sample in more
detail.

Cycle-level simulations are run in a fast mode to reach
the chosen simulation window. In this fast mode no mi-
croarchitectural simulation takes place; only the caches and
branch predictor are updated. Table 2 includes the length of
the fast-mode (“warmup”) phase for each benchmark, in-
cluding 1 million instructions in which simulation runs in
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Prediction Accuracy Speedup
no pointer pointer complete pointer pointer complete

fixup only & data fixup only & data fixup
go 0.432 0.737 0.994 1.000 1.034 1.065 1.065
m88ksim 0.704 0.898 1.000 1.000 1.046 1.076 1.076
gcc 0.546 0.876 0.984 1.000 1.057 1.076 1.079
compress 0.993 0.997 1.000 1.000 1.001 1.002 1.002
xlisp 0.721 0.877 0.982 0.997 1.058 1.087 1.096
ijpeg 0.728 0.989 0.995 1.000 1.003 1.004 1.003
perl 0.664 0.928 0.963 0.990 1.078 1.087 1.100
vortex 0.901 0.993 0.999 1.000 1.043 1.045 1.046

Table 3. Return-address-stack fixup: prediction accuracy and speedup with a 32-entry stack.
Speedups are normalized to the no-fixup case.

full detail to prime other structures.
Our results do not include the effects of context switches,

which leave a corrupted stack when the process resumes.
One way to avoid the resulting mispredictions is to save the
stack as part of the context, but this should be unnecessary.
Of chief importance in obtaining good return-address-stack
performance is avoiding frequent corruption near the top
of the stack, where most activity takes place. Since return
instructions are so frequent compared to context switches,
context switches should have negligible impact.

4 Evaluation in a Conventional CPU

4.1 Repair mechanisms

We first evaluate the repair mechanisms described ear-
lier: (i) no fixup, (ii) TOS-pointer-only fixup, (iii) pointer-
and-data fixup (restoring both the TOS pointer and the
TOS contents), and (iv) full stack checkpointing. All four
schemes update the return-address stack in the same way
during fetch; they differ only in their repair mechanism. Ta-
ble 3 compares the return-address-stack hit rates and speed-
ups for these mechanisms with a 32-entry stack.

Without repair, return-address-stack hit rates are mostly
in the 60–75% range, with an average of 71%. Aggres-
sive fixup—restoring both the TOS pointer and the TOS
contents—helps dramatically. It nearly eliminates return
mispredictions, with corresponding speedups of 4.5–8.7%
(average = 5.5%). Two benchmarks, compress and ijpeg,
are exceptions and do not benefit from fixup. Compress ex-
ecutes procedure calls about as often as other benchmarks
(see Table 2), and in fact has a fairly high conditional-
branch misprediction rate; its call/return sequences are nev-
ertheless well-behaved. Ijpeg has comparatively few calls
to begin with, so the hit rate of only 72.8% barely hurts
performance. For all these benchmarks, there is little need

for saving more than the top entry of the stack contents:
sequences of two or more pops followed by one or more
pushes are rare.

A significant fraction of the benefit from pointer & data
fixup can be obtained by restoring only the TOS pointer.
Pointer-only fixup brings most of the hit rates up to about
the 90% range (go is the exception), reducing mispredic-
tions by 50–93%. Except for compress and ijpeg, which do
not need any fixup, this yields speedups of 4.3–7.8%. The
success of simple, pointer-only fixup indicates that mispre-
dictions are often caught before a pop can be followed by a
push on a particular mis-speculated path. The gap between
pointer-only and pointer & data fixup then indicates the fre-
quency of pop-followed-by-push sequences, and the small
gap between pointer & data fixup and full stack checkpoint-
ing indicates the rarity of more complex sequences like two
pops followed by a push.

These data indicate little need for more sophisticated
mechanisms, like tagging, valid bits, or full-stack check-
pointing.

4.2 Size

The previous data assumed a fixed-size stack of 32 en-
tries; this section evaluates the contribution of return-ad-
dress-stack size. Because fixup can make such a substantial
difference, Tables 4 and 5 show stack hit rate and speedup
for a stack with pointer-and-data fixup, while Tables 6 and
7 show similar data, but for a stack using no fixup. The col-
umn for size 0 in Tables 4 and 6 show the prediction success
of the BTB: return addresses are found there just over half
the time, on average.

With pointer-and-data repair, performance increases
with stack size until about 4–8 entries. Gcc and xlisp benefit
marginally from a further increase to 16 entries. Some pro-
grams, notably go and compress, get a large boost in perfor-
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0 1 2 4 8 16 32 128
go 0.381 0.841 0.952 0.991 0.994 0.994 0.994 0.994
m88ksim 0.813 0.687 0.881 0.970 1.000 1.000 1.000 1.000
cc1 0.356 0.675 0.788 0.927 0.979 0.983 0.984 0.984
compress 0.510 0.976 1.000 1.000 1.000 1.000 1.000 1.000
xlisp 0.683 0.741 0.834 0.923 0.956 0.976 0.982 0.984
ijpeg 0.793 0.911 0.971 0.996 0.998 0.998 0.998 0.998
perl 0.579 0.509 0.709 0.903 0.959 0.963 0.963 0.963
vortex 0.475 0.431 0.700 0.896 0.994 0.999 0.999 0.999

Table 4. Return-address-stack prediction accuracy as a function of stack size.
With pointer-and-data fixup. For size 0, the BTB is the source of return-address predictions.

0 1 2 4 8 16 32 128
go 1.000 1.047 1.061 1.066 1.066 1.066 1.066 1.066
m88ksim 1.000 0.987 1.035 1.057 1.059 1.059 1.059 1.059
cc1 1.000 1.051 1.071 1.097 1.108 1.109 1.109 1.109
compress 1.000 1.145 1.154 1.154 1.154 1.154 1.154 1.154
xlisp 1.000 1.011 1.042 1.082 1.093 1.101 1.104 1.105
ijpeg 1.000 1.002 1.002 1.002 1.002 1.003 1.003 1.003
perl 1.000 0.979 1.038 1.097 1.117 1.120 1.120 1.120
vortex 1.000 0.986 1.073 1.155 1.212 1.214 1.214 1.214

Table 5. Speedup as a function of return-address-stack size.
With pointer-and-data fixup. Speedups are compared to having no stack, getting return addresses from the BTB.

0 1 2 4 8 16 32 128
go 0.381 0.597 0.494 0.444 0.434 0.433 0.432 0.433
m88ksim 0.813 0.607 0.695 0.703 0.702 0.703 0.704 0.703
cc1 0.356 0.556 0.570 0.551 0.546 0.545 0.546 0.545
compress 0.510 0.974 0.993 0.993 0.993 0.993 0.993 0.993
xlisp 0.683 0.635 0.688 0.726 0.719 0.693 0.721 0.711
ijpeg 0.793 0.874 0.767 0.751 0.743 0.742 0.728 0.700
perl 0.579 0.471 0.588 0.663 0.662 0.663 0.664 0.663
vortex 0.475 0.426 0.682 0.849 0.901 0.901 0.901 0.901

Table 6. Return-address-stack prediction accuracy as a function of stack size.
With no fixup. With size 0, the BTB is the source of return-address predictions.

0 1 2 4 8 16 32 128
go 1.000 1.018 1.008 1.003 1.002 1.002 1.002 1.002
m88ksim 1.000 0.966 0.983 0.985 0.985 0.985 0.985 0.985
cc1 1.000 1.031 1.034 1.031 1.031 1.031 1.031 1.031
compress 1.000 1.144 1.151 1.151 1.151 1.151 1.151 1.151
xlisp 1.000 0.984 1.002 1.017 1.015 1.003 1.015 1.011
ijpeg 1.000 1.001 1.000 0.999 1.000 1.000 0.999 0.999
perl 1.000 0.968 1.006 1.027 1.026 1.027 1.026 1.027
vortex 1.000 0.984 1.066 1.134 1.162 1.162 1.162 1.162

Table 7. Speedup as a function of return-address-stack size.
With no fixup. Speedups are compared to having no stack, getting return addresses from the BTB.
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mance from just a single stack entry. Others perform worse
with a 1-entry stack than with no stack, which results from
underflow: with a 1-entry stack, the stack only contains the
most recent return address. A sequence of 2 returns pops
an empty stack and almost certainly mispredicts the second
return.

The presence of some sort of stack is important: adding
a stack produces speedups of 6–15% (except for ijpeg,
which has too few returns to matter). But without some re-
pair mechanism, mis-speculation corrupts the stack so fre-
quently that most of this gain cannot be realized; Tables 6
and 7 show that without fixup, performance is insensitive
to the presence of a stack. Compared to a stack that omits
fixup, only compress and vortex would be significantly pe-
nalized by just using the BTB.

4.3 Stack overflow and underflow

Our simulations have permitted the return-address stack
to both over- and under-flow. Overflow occurs when a call
is executed and the stack is full, either because of stack
corruption or because there are more calls in progress than
stack entries. The stack “wraps around,” and as a result,
the push overwrites the oldest stack entry. If a sequence of
too many calls has caused overflow, a later return causes
underflow by popping an empty stack, and the return re-
ceives an invalid result. This may be harmless if most call-
return activity occurs near the top of the stack (for exam-
ple, the overwritten entry might just be the call to main()
fromcrt0.o). Underflow can also occur if mis-speculated
pops, context switches, and the like destroy some values on
the return-address stack and the stack later becomes prema-
turely empty.

An occupancy counter can detect instances of both over-
flow and underflow, but preventing overflow events is in fact
undesirable. It saves the return address of the oldest calls in
progress at the expense of newer information. Since the
damage caused by overflow does not appear until a later
underflow, the occupancy information can be used to detect
when the stack is empty and in these cases the BTB can try
to supply the return-address prediction. Unfortunately, in
order to be useful, the occupancy-counter must be check-
pointed with each branch prediction in the same manner as
the TOS pointer and the TOS contents. Since over- and un-
derflow are mainly a problem with small stacks, it may be
better to just make the stack deeper.

5 Evaluation in a Multipath Processor

Multipath execution [1, 21, 22, 35, 36], rather than pre-
dicting which direction a branch takes, forks and executes
speculatively down both paths. Once the branch resolves,
the incorrect path is squashed. Forked paths can in turn

fork, but path contexts and execution resources are limited,
so forking should be done selectively, on branches more
likely to mispredict. This choice of when to fork can be
made statically or dynamically [1, 17, 14, 35].

Although multipath execution requires substantial extra
hardware—per-path contexts, more fetch, rename, and is-
sue bandwidth, and a larger instruction window—this ex-
tra hardware overlaps substantially with other likely direc-
tions for future microprocessors. These include clustered
approaches [12], multithreaded processors [23], and partic-
ularly simultaneous multithreading (SMT) [34].

This paper mentions multipath execution because the de-
sign of the return-address stack proves critical to multi-
path performance. A single, unified stack does not function
properly in a multipath processor. With concurrent paths
simultaneously modifying the stack, corruption is almost
certain, even with full-stack checkpointing. Figure 4 shows
how this corruption might happen. For example, after a
fork, both paths might encounter the same return instruc-
tion. One of these is legitimate, while the other occurs on
a mis-speculated path, but both pop the stack. The second
pop results in a return to the wrong subroutine level, and
the stack has now been corrupted. In fact, the results pre-
sented in this section suggest that with multipath execution,
corruption is severe enough that simply omitting the return-
address stack and using the BTB leaves performance almost
unchanged for most programs.

The best solution we have found simply gives each path
a private copy of the return-address stack. Multipath exe-
cution already requires path contexts to record various state
about each path: PC, shadow register maps, etc. The return-
address stack merely adds an additional element in the path
context, and something that multithreading also requires
[16]. Copying the stack need not take place in a single cy-
cle. If the new stack only receives a correct TOS pointer
in the first cycle, it can already receive pushes from the
new path. Pops, although returning an invalid address, will
move the pointer correctly so that as stack entries are grad-
ually copied, later pops can return correct values. Copying
should of course start with the top of the stack.

An alternative approach uses a unified stack, but only al-
lows one path to access the stack. Any other active paths
must use the BTB. A variety of heuristics are possible for
choosing the privileged path. This work uses the predicted
path—the path that would have been followed if no fork-
ing occurred—as the one allowed to access the stack. This
is still the path most likely to be correct, but the draw-
back to this approach is that during a misprediction, the
wrong path has the privilege; after the misprediction re-
solves, the newly-recognized predicted path may find a cor-
rupted stack.

Tables 8 and 9 compare the performance of four configu-
rations: (i) no stack, (ii) a unified stack, (iii) a unified stack
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Figure 4. An example of how multipath execution can corrupt a unified return-address stack.

that only the predicted path can access, and (iv) per-path
stacks. In these results, the per-path stacks are copied in a
single cycle. Table 8 presents return-prediction accuracies;
note that for the no-stack case, this accuracy presents the
return-address hit-rate in the BTB. Performance is normal-
ized to the conventional, unified-stack case. In all config-
urations, the stacks implement “pointer & data” fixup after
mispredictions. We test both 2- and 4-path processors: the
2-path processor can fetch 8 instructions per cycle, and the
4-path processor can fetch 16 instructions per cycle. To ac-
commodate this greater bandwidth, the downstream band-
width has been increased correspondingly. The RUU has
also been enlarged to 256 entries3 the LSQ to 128 entries,
and the L1 caches to 256K.

A unified stack achieves poor return hit rates, despite
the use of pointer & data fixup. For half the benchmarks,
no stack is better than a unified stack, substantially so for
m88ksim and xlisp. Compress and vortex, on the other hand,
suffer badly if returns are only predicted from the BTB.
None of these choices has any impact on ijpeg, so we do

3Because wrong paths intermingle in the RUU with correct paths,
squashing must selectively invalidate RUU entries; see [1], and [21] for
the mechanism. The RUU is essentially a FIFO buffer, so these now-empty
entries must still propagate to the front and be “retired”.

not discuss it further.
Using per-path stacks provides substantial gains for all

the benchmarks. Hit rates return to near 100% levels (al-
ways reaching 100% with full-stack checkpointing, whose
numbers are not presented here), and speedups range from
7% with go to 26% with xlisp. Go’s speedup is low com-
pared to its large improvement in hit rate, but go has fewer
returns than most of the other programs, and time spent on
return-address misses is in any case dwarfed by its high
number of conditional-branch mispredictions.

A unified stack accessed only by the predicted path is a
clear improvement over a simple unified stack, but is sub-
stantially inferior to per-path stacks. With 2 paths, the im-
provement is on average half that seen with per-path stacks.
With 4 paths, hit rates decline compared to the 2-path case,
because the predicted path is less likely to be the correct
one; speedups are sometimes higher for 4 paths than for 2
paths, because hit rates in the conventional stack decline
too. Return mispredictions also tend to matter more in
the 4-path case, because 4-way multipath is more effective
at eliminating conditional-branch mispredictions. Another
disadvantage to this approach is that, as further research
leads to more selective forking, predicted-path schemes will
become less effective.
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No Stack Unified Stack Unified Stack Per-Path Stacks
(use BTB) Pred-Access Only

2 paths 4 paths 2 paths 4 paths 2 paths 4 paths 2 paths 4 paths
go 0.380 0.379 0.478 0.326 0.588 0.428 0.979 0.984
m88ksim 0.815 0.821 0.701 0.566 0.856 0.769 0.986 0.984
cc1 0.359 0.358 0.549 0.472 0.678 0.535 0.973 0.968
compress 0.511 0.533 0.884 0.788 0.972 0.901 1.000 1.000
xlisp 0.681 0.683 0.604 0.566 0.791 0.698 0.976 0.986
ijpeg 0.793 0.793 0.789 0.771 0.856 0.846 0.982 0.981
perl 0.579 0.579 0.525 0.495 0.806 0.712 0.958 0.950
vortex 0.475 0.475 0.827 0.807 0.895 0.898 0.998 0.998

Table 8. Return prediction accuracies for different stack organizations under multipath execution.
Accuracies are for the correct path (committed return instructions) only.

No Stack Unified Stack Unified Stack Per-Path Stacks
(use BTB) Pred-Access Only

2 paths 4 paths 2 paths 4 paths 2 paths 4 paths 2 paths 4 paths
go 1.003 1.022 1.000 1.000 1.013 1.013 1.057 1.069
m88ksim 1.051 1.124 1.000 1.000 1.068 1.093 1.131 1.214
cc1 0.959 0.973 1.000 1.000 1.030 1.015 1.110 1.142
compress 0.858 0.887 1.000 1.000 1.027 1.029 1.038 1.080
xlisp 1.039 1.054 1.000 1.000 1.096 1.062 1.205 1.263
ijpeg 1.000 1.001 1.000 1.000 1.001 1.002 1.004 1.005
perl 1.028 1.042 1.000 1.000 1.131 1.102 1.214 1.242
vortex 0.752 0.730 1.000 1.000 1.054 1.098 1.164 1.237

Table 9. Relative performance for different stack organizations under multipath execution.
2-path results are normalized to the 2-path, unified-stack case, and 4-path results to the 4-path, unified-stack case.

6 Conclusions

This paper evaluates return-address-stack design in light
of potential corruption by mis-speculated instructions, a
problem raised by Jourdan et al. [19]. Without a return-
address stack, return addresses are found in the BTB only a
little over half the time (Table 4). A well-designed stack can
eliminate most or all of these return mispredictions, produc-
ing speedups of up to 15% compared to using only a BTB.
But because modern processors speculate so aggressively,
an effective return-address stack must incorporate a repair
mechanism. Without such a mechanism, a stack provides
little benefit for most SPECint programs in our processor
model.

Instead of trying to efficiently checkpoint the entire re-
turn-address-stack when speculating past a branch, a simple
repair mechanism that restores the top-of-stack pointer and
just one entry from the top of the stack turns out to eliminate
almost all effects of stack corruption. Merely restoring the
pointer performs fairly well, too.

Corruption becomes an even bigger problem with mul-

tipath execution: even with the repair scheme we describe,
the competing paths so badly corrupt the stack that perfor-
mance can be worse than if the stack is omitted and return
predictions come from the BTB. The solution we suggest
is to give each path its own return-address stack, copying
the stack each time a new path is forked. This copy need
not happen in a single cycle. A set of per-path, 32-entry
return-address stacks improves performance in a multipath
processor by up to 26%.

We have only evaluated SPECint95 benchmarks, which
are written in C. C++ programs or functional-language pro-
grams (Scheme, ML, etc.) sometimes have many short
functions, in which case stack performance becomes even
more important. Call/return and indirect-jump prediction
for these environments are an important area of future work.
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