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GLOSSARY OF TERMS

associativity
Associativity refers to the number of waysin an nway set asociative ache. For
example, afour-way set asociative ache has an asociativity of four [7].

benchmark
Computer architeds use benchmarks to measure various aspeds of system performance

[7].

cache missrate
This performance metric is defined as the number of cache misses divided by the total
number of cache aceses[7].

direct-mapped caching
Direda-mapped cacdhing all ows a particular memory block to be placed in only one place
inthe cate[7].

energy-delay product (EDP)
The energy-delay product (EDP) is ametric for comparing processor performancein
regards to speed and energy consumption[11].

integrated circuit (1C)
A complex circuit that combines many comporents onto ore physicd device Modern
microprocesors are integrated circuits that contain milli ons of comporents[7].

memory hierarchy
A memory hierarchy combines afast, small memory that operates at the processor’s
spead with ore or more slower, larger memories[7].

n-way set asociative @aches
A cade organization that al ows n blocks from a given groupin main memory to accupy
the same set in the cadhe. [7]

SPEC CPU2000Benchmarks

The Standard Performance Evaluation Corporation (SFEC) assembles a set of benchmark
applicaions that test the performance of microprocessors. These benchmarks are dso
used to test smulated processors. The CPU2000Benchmark suite is the most recent. [15]

SRAM

Static RAM (SRAM) cdlsretain values gored in them aslong as power is applied to the
RAM. A single RAM cell can store one bit on binary data—either a1 or 0. Thesescdls
are the buil ding blocks for cache structures[7,11].

tour nament caching

Thisthesis projed developed and simulated tournament caching. Tournament caching
shuts down perts of the cache based oncompetiti ons between dfferent cade
organizations.
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ABSTRACT

Astransistor sizes deaease, the demand for high performance low power
computers will continue to grow. Cadhes in modern microprocesors occupy up to fifty
percent of the total areg therefore, energy savings in cache design trandlate into more
energy-efficient processors. Thistednical report describes a new cadiing technique
cdled tournament cadiing, which dynamicadly aters the size of a cache based onthe
outcome of competiti ons between two cache sizes. Implementing this technique requires
minimal changes to conventional cache designs. Tournament cadiing shuts down
portions of the cade to save power withou significantly degrading performance
Simulation showed that tournament cading in the level 1 instruction cache reduced
energy consumption by 8.2% on average, whil e degrading performance by 0.25% on
average. Even intheworst case, tournament caching decreased energy consumption by
2.6%. These significant results suggest that tournament caching could replace
conventional caching in procesors that need high performance and low power

consumption. (153words)
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1. INTRODUCTION

Our society relies more heavily on computers and microprocessors with each
passng year. Building a microprocessor requires organizing alarge number of
transistors onto a cmplex integrated circuit (IC). Currently, the high transistor density
on modern microprocessors forces computer architeds to consider both pover
consumptionand performance. Shutting down parts of the microprocesor serves as the
easiest, most eff ective medhanism to conserve power. Many general-purpose processors
utili zethistechnique[7, 1. Becausethe cating structures on microprocesors use a
large percentage of the transistors, shutting down parts of the cache would save a
considerable anount of power. However, the size of the cate grealy affeds
performance, or the time needed to exeaute programs. The optimal high-performance,
low power cache will minimize energy consumption, a the product of power and
exeautiontime. Thisthesis projed describes and evaluates a new cading technique that
dynamically shuts down part of a procesor’s cachein arder to reduce overall energy
consumption. On average, the new technique deaeased energy consumption by 8.2%
whileincreasing delay by 0.25%.

For the past 37 years, Moore' s law has accurately predicted that the number of
transistorsonasingle IC will doude every 18 months [8]. Increased transistor density
has increased operating speeds at the same rate, but also caused more power consumption
[3, 9. Thisincreased powver consumption generates undesired heat, which paentially
degrades performance, destroysthe IC, or injuresthe user. Historicadly, computer
architeds have designed processors either for high performanceor for low power
depending onthe gplication. For example, a cdl phore needs low power consumption

so that it will not burn the user’ s hand; however, a gaming console needs maximum
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performanceto provide realistic 3-D graphicsto the user. Astransistor density increases,
the demand for procesors that deliver high performance and conserve power will
increase [3]. Thisthesis projed describes a caching technique that aims to conserve
power whil e maintaining high performance

1.1. BRIEF HISTORY OF CACHES

Many modern microprocessors use aVon Neumann architedure, in which the
procesor fetches instructions and data from a shared memory [7]. Over the yeas, the
size of memory has gredly increased due to new techndogies, bu memory speed has
only increased by 10% per year [7]. Because microprocesor performance hasimproved
and memory size hasincreased, the relative delay between the processor and memory has
steadily increased [7]. Computer architeds invented the memory hierarchy to mask the
eff ects of the memory delay [7]. This hierarchy includes caches, which serve & buffers
between the memory and the processor. Cadhes dore asubset of the data and instructions
stored in main memory. The processor can accessa cadhe more quickly than it can
aacessmain memory. Figure 1 ill ustrates the communication channels for computer

architeaures with asimple memory hierarchy. In this example, the processor can

Processor |‘_> Cache <) mzimnory

Figure 1: Communication Channelsfor the Memory Hierarchy
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communicae only with the cache. If the cache does nat have the data, the catie must
request the data from main memory. The processor can na diredly request data from
main memory. This configuration existsin numnerous architedures because the cate and
procesor often reside on the same integrated circuit [2, 14.

The basic principles that drive cache design have nat changed in the 15to 20year
history of cadiing [7]. The main goals of cachesinclude the foll owing: store as much
data and as many instructions as physicdly possble, provide fast accessfor the
procesor, and kegp orly the data and instructions that the processor will need in the
future[1, 7. Inrecent years, caches have dramaticdly increased in size to provide fast
aacessto more data. In many processors, the caches occupy more than 50% of the
procesor'sareal2, 1(J. In Figure 2, the sections labeled L2, DCU, and IFU designate
cade structures onthe Intel® Pentium Il processor. Because of the massve size of
cades and the increased concern for conserving power, many reseachers have begun

propasing techniques to reduce anergy consumptionin caches|[1, 5, 6, 9, 11, 12, 13, 16

Figure 2: Intel® Pentium Il with On-board L2 Cache[2]
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The inflexibili ty of present cache designs poses anather problem. Currently,
cade designers chocse acache size and aganization at design timein arder to ogtimize
the average case rather than particular cases. Often, asmall er cache muld perform just as
well asalarger cache[1, 17. Inthese cases, existing designs smply waste power by not
shutting down inadive portions of the large catie. Many researchers have begunto
study this problem, and they have propased afew medhanisms to shut down parts of the
cade|[5, 6, 11,16]. Chapter 2 discusses these medchanismsin more detail .

Over the past two years, researchers at MIT, NC State, and the University of
Rochester have studied reconfigurable caching techniques[1, 5, 6, 12, 1316]. The
groupfrom MIT attempts to partition the cache into columns and mask some of the
columns during exeaution [5, 6. This approach requires considerable software overheal,
and it does not consider power savings as adriving force. The groupfrom NC State
developed anovel medhanism to monitor and shut down parts of the cache & avery fine-
grained level [16]. David Albonresi, from the University of Rochester, has reseached
different techniquesin reconfigurable caching. Hisresearch has shown that shutting
down unreeded parts of the cade can creae overall power savings[1]. Building onthe
work of these researchers, this thesis projed developed a tournament scheme for
deteding when to reconfigure the cache and for determining the new cache configuration.

1.2. BASIC DESIGN OF TOURNAMENT CACHING

Tournament caching, the cache technique developed and evaluated by thisthesis
projed, reduces power consumption in microprocessors by shutting down parts of the
cade. If the ache monserves power more than it hinders performance, then the entire
procesor will conserve energy. Tournament caching uses dynamic tournamentsin which

two cade organizations compete for a given length of time. Using performance
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statistics, the cade determines a winner and reconfigures itself into the more succes<ul
organization. In most instances the reconfiguration process $iuts down part of the cache,
thereby saving power. Because the small er configuration performs as well asthe larger
configuration, the cache mnsumes lessenergy. The cache stays in the new configuration
urtil it beginsto perform poaly. At this point, a new tournament occurs, and the cate
reconfiguresitself once again. Chapter 3 dscusses the detail s of tournament caching.

Thisthesis projed studied tournament caching in alevel 1 instruction cache (L1 I-
cade). Inamost every modern processor that has a ache, the L1 I-cache resides onthe
same dip asthe processor [2, 1(J. Thus, saving energy in the L1 I-cache will have a
large eff ect onthe overall energy consumption for the entire processor. Other researchers
can buld uponthisthesis projed and explore tournament caching in ather cading
structures such asthe level 1 data ache, level 2 cache, or level 3 cache.

1.3. OBJECTIVES

New designs evolve from attempting to improve uponthe shortcomings of
previous designs. Inthe field of computer architecture, researchers compare architedures
by simulating them ona cwmmon datform with common kenchmark programs. This
thesis projed accompli shed the foll owing objedives:

» Designed ahigh level cade architedure with the goal of improving high-
performance, low power computing;

» Compared the new design to existing designs throughsoftware simulation; and

» Concluded whether or not the design ouperformed existing cache designsin

regard to high-performance, low power computing.
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1.4. OVERVIEW OF THE TECHNICAL REPORT

This fdion oulines the rest of the technicd report. Chapter 2 gives a brief
history of cadiing structures and high-performance, low power design. The next chapter
discusses the high level design for the new caching structure. It also contains a
discusson d the mnsiderations made when designing the catie. Chapter 4 describes the
methoddogy used to simulate the new design, and Chapter 5 summarizes the results and
makes comparisons to existing caches. Finally, Chapter 6 concludes the technica report

with an analysis of the results and recommendations for future work
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2. HISTORY OF CACHES AND CACHE SIMULATION
In the 1940s, Alan Turing described a macdine that could perform all computable

functions, but he muld na build ore. Given enoughtime and memory, a general -
purpose, digital computer can emulate aTuring Machine[7]. Over the past few decades,
digital system designers have built faster processors and larger memoriesin an attempt to
creae Turing’s machine [7]. However, sometasks dill canna exeaute within a
reasonable anourt of time. For this reason, computer engineers continually develop new
tedhniques to improve processng performance. As the performance of processors began
to exceal the caabiliti es of memory structures, computer architeds developed a memory
hierarchy to improve performance

Traditionally, computers use amemory hierarchy to hide the latency of accessng
large memories [7]. The processor requests data from the memory hierarchy, and the
memory hierarchy attempts to respondwith the data as quickly as passhble. When the
procesor requests data from the memory hierarchy, it sends thisrequest to a cate
becaise the ache resides at the top level of the hierarchy. The remainder of this chapter
discusses the design of caches.

2.1. ORGANIZATION OF CACHES
When the procesor requests data from memory, the level 1 (L1) cacheisthefirst

structure to receive the request. If the @rrect data does not exist in the L1 cade, then the
cade requests the data from subsequent levels of cache. Each cadhe level houses more
data, bu needs more time to accessthe data. If the requested data does not exist in any of
the cade levels, main memory receives the request. If main memory has the data, then
the datais returned to the higher levels of the memory hierarchy and to the processor.

This hierarchy can continue to disc drives, CD-ROMSs, floppy disks, and tape drives.
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Idedly, the highest level of the memory hierarchy, the level 1 (L1) cache, will
always rvice the data requests of the procesor. In order to maximize this case, the L1
cade must have the gopropriate data before the procesor requests the data. Dedding
which datato keep and which datato evict poses a difficult problem in cache design.
Cadhe organizations generally vary between dred-mapped (DM) and n-way set
asciative. Direct mapping causes each data block to be placed into ore particular part
of the cache based onits address This allows for fast access N-way set asociative
permits a particular block of datato be placed in ore of n placesin the cache. Access
time for an n-way set asociative ache grows exporentially with n[13]. Depending on
the goplicaion,a computer archited might choaose to use adired-mapped cadhe, a 2-way
set asociative, or an 8-way set asociative cahe. The asociativity of the ache diredly
aff ects the implementation d the cache design and the size of the cadche.

Two aher important cache parameters are the number of sets andthe line size.
The line size designates the size of the data blocks dored in the cache. In adirect-
mapped cache, eat set has only one data block, or line. In an n-way set asociative
cade, each set containsn lines. The overall size of the cade isfoundby multi plying the
line size, the number of sets, and the asociativity [7].

2.2. REPLACEMENT POLICIES

When the procesor requests data or instructions from the cacdhe, the request either
hits or missesin the cade. Inthe cae of a cahe hit, the data existsin the catie and the
procesor can quickly accessthe data. Inthe cae of a ache miss the processor must
wait until the cabe forwards the request to lower levels of the memory hierarchy. When

the memory hierarchy returns with the gopropriate data, the cache must decide whether or
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not to store the data. The replacement padlicy determines how the cache will respondto a
cahemiss This edion dscusses the rationale behind replacement strategies.

Two main principles have dominated replacement palicy theory: temporal locdity
and spatial locdity. Temporal locality states that data aurrently being accessed will be
aacessd again in the nea future. Because of this principle, when a cache missocaurs,
the datais fetched from memory and stored in the cache [7]. An dternate gpproach
would fetch the data, feed it to the processor, and then abandonthe data rather than store
it inthe cate. Someinstructionsin Intel’s Pentium 4 processor all ow for this aternate
methodto occur, bu most schemes use the former palicy [2].

The other fundamental caching principle, spatial locdity, states the following:
when the procesor accesses data, it will accessnearby data in the immediate future. For
this reason, when a aache missoccurs for data, the cache requests ©me neaby datafrom
lower levels of the memory hierarchy. During subsequent memory accesses, the
procesor will presumably attempt to accessthe nearby data. The data dready residesin
the cade because of the previous cadhe miss Therefore, subsequent data requests will
hit in the cade rather than miss Using aline size greater than one forcesthe cate to
use the principle of spatial locdity.

A simple replacement palicy, least-recently-used (LRU), keeps tradk of when
every cadhe linewas last used. Whenever new data enters the cache, it evictsthe old data
from the same set that was least-recently used by the processor [7]. This pdlicy attempts
to maximize temporal locdity by evicting the data | east-recently requested by the
procesor. LRU does nat affed the performance of a dired-mapped cache, bu it affeds

how dataisreplaced in a set asociative scheme. LRU outperforms other strategies, such
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as nat most-recently used and randam [7]. For this reason, many cache designers
implement or approximate LRU as the cache replacement strategy.

2.3. RECONFIGURABLE CACHE ARCHITECTURES

Reseachersat MIT developed column caching, which adds complexity to the
LRU replacement palicy discussed in Sedion 2.2. With column cadiing, data evictions
can orly occur in certain columns, or partitions, of the cache. The hardware
implementation d column cading consists of asimple bit-vector to enable or disable
cade mlumns. For example, if the bit-vedor contains the value 0101, then the processor
can orly write datato columns one or three However, data can be read from any of the
columns. Depending on certain criteria (memory address instruction type, or instruction
addres9, the bit vector that controls the adive wlumns can change. Thistednique
shows sgnificant promise for scratchpad memory, multitasking, and stream processng
[5. g

Ranganathan’s groupalso studied reconfigurable caches and developed a model
similar to column cacing [12, 13. Their model addresses the following isues:
designing a mechanism to divide SRAM cdlsinto variable sized partiti ons, ensuring that
only relevant data existsin the cate dter reconfiguration, determining when to
reconfigure, and developing the granularity at which to reconfigure. To dvide the
SRAM cdls, they use atechnique cdl ed asociative-based partitioning, which isvery
similar to column cading. It also uses abit-vedor to control which cache partitions are
available. One of the main dfferences between the two modelsisin regardsto data
consistency. Column cading alowsfor al columnsto be accessed regardlessof the
current column configuration [5]. Associative-based partitioning uses a sophisticaed

technique, cache scrubhing, to ensure that after reconfiguration all valid dataresidesin
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the aurrent columns[13]. Therefore, the cade can orly retrieve data from the active
partitions. They believe that their technique provides hardware optimizations for lookup
tables, pre-fetches datawithou trashing the cache, and all ows for software-controll ed
memory [12, 13.

Both of the aforementioned designs built uponthe work of David Alboresi from
the University of Rochester. Alboresi argues that partitioning the ache into seledive
ways can deaease overall power consumption whil e maintaining high performance [1].
Column cading and associative-based partitioning only consider the performance
benefits associated with dividing the cadhe, while Albonesi considers cache partitioning
to deaease power consumption [1]. Modern procesors consume tremendous amourts of
power due to increasing clock rates and increasing transistor courts[11]. Alboresi’s
tedhnique, selective ache ways, partitions the cache into sub arrays. Using atechnique
similar to column cading and associative-based partitioning, Alboresi uses a bit-vedor
to control which partitions of the cache ae adive. In order to save power, he shuts down
the inadive ache partitions. Hisresearch proposes two techniques to preserve the data
in the inadive partitions: flushing cache ways and limited cache way accesshility.
Ranganathan’s groupfoll owed Albonesi’ sideaof flushing the cate ways, while the
MIT group bult upon hslimited cade way acesshility [5, 6,13].

Zhouand other researchers at NC State developed atechnique to save power by
shutting down parts of the cache with afiner granularity than column cading,
asciative-based partitioning, or selective ache ways. Zhou' s technique, adaptive mode
control, al ows the processor to shut down individual li nes of the cachein arder to save

power rather than shutting dovn large partitions. By monitoring accesss to ead line of

University of Virginia April 22, 2002



Undergraduate Thesis Projed Tedhnicd Report Spanberger 12

the cade, they can dynamicadly shut down the lines that have not been used for a
spedfied period [16]. Their approach shows large savingsin power consumption with
minimal degradation d performance However, their approach requires alineidle
courter (LIC) to monitor ead line of the cache. Adaptive mode cntrol also requires the
cadeto continuowsly check ead of these cunersto determine when to shut down each
cadeline. Boththe LIC andthelogic to check the courters require mnsiderable
overheal.

2.4. STRATEGIES TO DETECT WHEN TO RECONFIGURE

Regardlessof the replacement palicy or mechanism that all ows reconfiguration,
determining when to change the replacement palicy or when to reconfigure the cache
presents amore difficult problem. Alboresi proposed having special instructions inserted
in the ade that explicitly changes the cnfiguration. A static compiler or profili ng toal
would analyze the ade to determine when to recnfigure the ache. Using a
performance degradation threshold, he would determine whether to increase or decrease
the dfedive cache size[1]. If cade performancewould oy decrease nominally by
shutting down part of the cache, Alboresi’ s technique would shut down parts of the cache
in order to save power. In thistechnique, static reconfiguration dedsions dictate when to
reconfigure, but the processor shuts down the cate partitions dynamicdly. Similarly,
Ranganathan’s groupalso used a software-controll ed approadc to staticdly determine
when to recnfigure [12, 13.

Using adlightly different reconfiguration technique, the MIT group staticaly
determines tints for each page of memory. Thetint corresponds to a subset of columns
within the cade. During program exeaution, the cache uses the aurrent tint to determine

which columns of the cacheto use. Thetintsare rarely recdculated, bu apagein
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memory can receive anew tint after a dedicated re-tinting processoccurs. Therefore, the
MIT groupstaticaly determines when to reconfigure via asoftware routine. Alboresi
and Ranganathan also needed a compil er or profili ng toadl to change the configurations[1,
5,6,1213.

The groupfrom NC State uses the most dynamic gpproach to determine when to
reconfigure. By monitoring the behavior of each cache line, adaptive mode wntrol
determines when to reconfigure and shut down the cachelines[16]. This approach
requires the fewest changes to the overall architedure when compared to the other
techniques[1, 5, 6,16]. The other techniques require alditional instructions and
interface dhanges to the cache, while alaptive mode control only modifies the
implementation d the cateitself. However, the fine granularity at which they can shut
down parts of the cate requires considerable anount of overhead and consumes abou
10% of the maximum possble power savings|[16].

2.5. PROCESSOR SIMULATION

In order to fadlit ate the design process digital designers often simulate computer
architedures before they implement them. For example, Ranganathan’s group sed
RSIM to simulate their cache model. They also used the CACTI model to estimate the
eff ect on cache acesstimes due to their cache model [13]. Thetechnicd advisor for this
thesis projed, the MIT group,Albonresi, and the groupfrom NC State used a modified
version d the SimpleScdar tod set for their reseach [1, 4, 5, 6, 9, 1 This smulator
models an ou-of-order processor with atwo level cache hierarchy, similar to the Alpha
21264. The simulator consists of many open-source mmporents written in the C
programming language [4]. Many parameters, such as cache size, asociativity, and

replacement padlicy, can be easily changed. The researchers generaly use the sim-

University of Virginia April 22, 2002



Undergraduate Thesis Projed Tedhnicd Report Spanberger 14

outorder simulator from the SimpleScdar tod set becaise it provides the highest level of
detail .

The SimpleScdar toad set measures only performance of computer architedures.
Reseachers at Princeton creaed the Wattch todkit by modifying the SimpleScdar tod
set. The Wattch tod kit generates both performance and paver consumption statistics. It
uses the same simulators as SimpleScdar, bu adds a power analysis modue when

simulating computer architedures[3, 4.
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3. TOURNAMENT CACHING: A DYNAMICALLY RECONFIGURABLE CACHE
This chapter describes the tournament cacing technique developed and simulated

by thisthesis projed. Sedion 3.1explains the rationale behind the reconfigurable
mechanism. Sedion 3.2 ascribes the different modes of operation and hav these modes
interad. Finaly, sedion 3.3 discusses the different issues associated with implementing
thistechnique onarea processor.

3.1. THE RECONFIGURABLE MECHANISM
Chapter 2 dscussed the major design parameters of traditiona caching

tedniques. These parameters include the foll owing: line size, asociativity, and number
of sets. In existing cadiing techniques, designers st these parameters, and the
parameters remain static throughou the lifetime of the processor. In arder to recnfigure
a @ache, amedanism must exist to change one or all of these ache parameters during
program exeaution. In arder to determine the best cache parameter to reconfigure, each
parameter was analyticdly evaluated to determine the benefits of reconfiguring them.

Varying the line size poses afairly difficult problem. The line size aff ects the
number of necessary tag bits. Increasing the line size deaeases the number of tag bits,
whil e deaeasing the line size increases the number of tag bits[7]. The cadie must
compare one tag with ancther to determine if the proper dataresidesin the cache. The
complexity of the tag comparison modue would grow considerably to all ow the number
of tag bitsto change. For thisreason, thisthesis project used afixed 32byte line size.

A cade oould aso reanfigure its number of sets. For example, adired-mapped
cade with 1024sets, atwo-way set asociative cahe with 512sets, and afour-way set
asciative cadhe with 256sets use roughly the same anourt of area aad number of

transistors [7]. However, varying the number of sets, changes the number of tag bits
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needed for each cacheline. In abyte aldressable processor with 32bit addresses, a
cahewith aline size of 32 bytes and 1024sets would need 17tag bits. A similar cache
with 512setswould need 18tag bits. Thisvariable tag length creates a problem as it did
with variable line size. For thisreason, tournament cading does not reconfigure the
number of sets.

Using afixed line size and afixed number of sets, tournament caching utili zes a
variable asciativity. A bit-vector, containing as many bits as the maximum
asciativity, controls the arrent associativity of the cache. Essentialy, the bit-vedor
shuts down ways of the cache to adjust the associativity. A smaller associativity equates
to a small er cache because the number of sets and the line size remain constant. A
small er cache ansumes lesspower than alarger cache. Figure 3ill ustrates a
reconfigurable cache with a maximum asociativity of four. The bit-vedor shuts down
two of the ways 9 that the cache operates as a 2-way cache. The gray columns sgnify
ways of the cache that are shut down.

Bit-vedor: 1100

Tag | Data Tag | Data

.. N sets ... N sets

Figure 3: Four-way Cache Configured for Two-way Operation

To acommodate abit-vedor, the cache implementation must change only a small
amourt. Because of the plausible implementation, this thesis projed uses a bit-vedor to
reconfigure. Other reseachers have used similar bit-vectorsin ather computer

architedure structures as well asin cading structures[1, 5, 6, 11, 1213]. After deciding

University of Virginia April 22, 2002



Undergraduate Thesis Projed Tedhnicd Report Spanberger 17

on areoonfigurable mechanism, a scheme was developed to determine when to change
the cade configuration andto dedde the best cache wnfiguration for a particular phase
of the program.

3.2. MODES OF OPERATION

Tournament caching has threemodes of operation: normal mode, small
tournament mode, and large tournament mode. The different modes al ow the cache to
dynamically change its $ze to save power whil e maintaining performance. Figure 4
presents a state diagram for the new caching technique. Each circle represents a mode of
operation, and each arrow represents a transition between modes. Ead transition hesa
label, and the figure dso contains the meaning of the label. The transition oy occurs
after the condtion governing the transitionis met. The remainder of this sction
discusses the threedifferent modes of operation and haw they interact. In order to make

this dion more readable, underlined words signify aphysical structure, and italicized

words designate afixed quantity. Figure 5 summarizes the physicd structures,

and Figure 6 lists the fixed quantities discussed in this sdion.
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Small
Tournament
Mode

A: tournament accesscourter > accesses between tour naments

B: tournament hit courter > hits-to-win

C: tournament accesscourter > tournament length

D: tournament accesscourter > tournament length

E: miss sturation courter > max miss saturation

F: tournament hit courter > hits-to-win

Large
Tournament
Mode

G: aways
Figure 4: M odes of Operation
Structure Normal Large Tournament | Small Tournament
. Increases by 1 ona
miss cade miss deaeases
saturation ) None None
courter by 1 ona cache hit
E— (never goes below 0)
keeps track of tag hits | keepstrack of hitsto
tournament None in the partially shut LRU blocks of the
hit courter
down way of the ache cade
tournament | Keepstrack of accesses | Kegpstrack of accesses | kegps track of accesses
aaess sincethe last sincethe tournament sincethe tournament
courter tournament ended. began began
. controls which cache controls which cache controls which cache
bit-vedor

ways are shut down

ways are shut down

ways are shut down

Figure 5: Use of Each Physical Structurein Each Mode of Operation
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Quantity Normal Large Tournament | Small Tournament
If the miss sturation
max Miss courtgr exceals _the
. max miss saturation, None nore
saturation )
begin alarge
tournament.
If the tournament hit
If the tournament hit courter exceals the
hits to win None cou rtef exceeds_the hi.ts.to win, keep the
hits to win, reconfigure | existing configuration
to the larger cade. and return to namal
mode.
If the tournament If the tournament
aaesscouner exceals | aacesscouner exceals
the accesses between the accesses between
tournament
length None tournaments, keep .the tournaments,
existing configuration reconfigure to the
andreturn to namal smaller cache size and
mode. return to nama mode.
If the tournament
accesses aaesscounter exceeals
between the accesses between None nore
tournaments | tournaments, begin a

small tournament.

Figure 6: Meaning of Each Fixed Quantity in Each Mode of Operation

3.2.1. Normal Mode
In normal mode, the tournament cache operates as a traditional cache would

operate. The bit-vedor discussed in sedion 3.1controls the sssociativity of the cache. In

norma mode, the cache maintains amiss sturation courter to keep track of conseautive

misses. The courter increases by one on every cache miss and decreases by one on

every cadhe hit. If a catbe hit occurs when the @urter has reached zero, the courter

stays at zero. Consecutive misses s1ggest that the processor has entered a new phase of

the program and that alarger cache configuration might be needed. After a certain

number of conseautive misses, or the max miss saturation, the cabe enterslarge
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tournament mode. Conwversely, the ache begins gnall tournament mode if the cache
operatesin namal mode for a given number of accesses withou saturating the miss

saturation counter. The accesses between tournaments determines how long the cache

operates in namal mode before transitioning into small tournament mode, and the

tournament accesscourter keeps tradk of the number of accesses snce the last

tournament.

3.2.2. Large Tournament Mode

In large tournament mode, the cache compares the eisting cache wnfigurationto
alarger cache wnfiguration. Thisthesis projed considered a cnservative gproach of
comparing the &isting cache mnfigurationto a cache wnfigurationwith exadly one
more way of asciativity. For example, a ache configured for two-way asociativity
could orly hald alarge tournament with a caache cnfigured for threeway associativity.
A more aggressve gproach would compare the existing cacheto oretwiceits sze. The
cahe compares the two configurations using hit statisticsto determine the better
configuration. In order to monitor the number of hits for the larger configuration, the
cade must adivate the tag bits for one alditional way and maintain atournament hit
counter. The smaller cache andthe larger cache share dl but one of their ways.

Therefore, the tournament hit counter courts hitsin the differing way. Figure 6 ill ustrates

this concept. Intheway labeled C, only thetag bits are adive. Thisalows the cadhe to
determine whether or nat a hit would have occurred in alarger cache. In order for this
scheme to work with the traditional LRU replacement palicy, C must always contain the

least-recently used tag for each set.
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Bit-vedor: 1100000

.. N sets ... N sets ... N sets ... Bmore
columns
A B C

Figure 7: Large Tournament Mode

In large tournament mode, the tournament accesscourter keepstrac of the

number of accesses sncethe tournament began. If the tournament accesscourter

exceals the tournament length then the small er cache wins, and the bit-vedor does not

change. If the tournament hit courter exceeds the hitsto win quantity, then the larger

cade wins, and the cache reconfigures to the larger configuration by changing the bit-
vedor. Thelarger cache has ahigher associativity, which provides better performance,
but consumes more static power. After large tournament mode, the cache dways returns

to namal mode dter resetting the miss sturation counter, the tournament accesscourter,

and the tournament hit courter.

3.2.3. Small Tournament Mode
In small tournament mode, the cache maintains the tournament hit courter by

keeping tradk of the number of hitsto the least-recently used (LRU) block of ead set.
Eadh LRU hit signifiesthat a smaller asociativity cache would missonthat access At

the end d asmall tournament, if the tournament hit counter exceels the hits to win, then

the cade stays with its existing configuration. Because acertain number of LRU hits
occurred, asmaller cache would consume too much energy by missng too dten. If the

tournament accesscourter exceels the tournament length, then the cache will reconfigure

to an asciativity of one lessthan the existing asociativity and return to namal mode.
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In this case, the small er cache shoud maintain the same performance level of the larger
cade, bu consume lesspower because of its snaller size. Thispower savings equates to
overal energy savings over time.

3.3. ISSUES WITH HARDWARE IMPLEMENTATION

The eaiest structure to implement in adual hardware is the reconfigurable
mechanism. Other researchers have propased the use of bit-vectors to shut down parts of
the cabe[1, 5, 6, 11, 1213]. They al use atechnique simil ar to the Gated-Vdd
tedhnique described by Michael Powell and ahers[11]. Thistedhnique simply uses each
bit of the bit-vedor to control the Vdd, or power line, to a particular section d the cache.
By simply flipping abit, a section d the cache nolonger has current flowing through it.
When the procesor requests data, this ection d the cache will nat respond kecaiseit is
shut down. Powell and ahers used this technique when implementing DRI I-cache to
reduceledkage energy [11]. Because of their success tournament caching shoud have
simil ar benefits.

Tournament caching requires additional performance wurters. Many processors
arealy have cache performance statistics guch as misscourters, hit courters,

instructions-per-cycle (IPC) counters, and ahers[2, 1J. Adding amiss sturation

courter and tournament hit counter would na require tremendous effort or involve a

large anount of overhead. Updating these murtersin parall el with cache accesses will
mask any delay asociated with maintaining the counts. These murtersrequire a
relatively small number of transistors compared to the total size of the cade.

In small tournament mode, the cache must determine whether each accesshits the
LRU block of the set. Most LRU implementationsinvalve dtaching a wurter to each

block of each set [7]. In arder to determine whether the cache hits an LRU block, it must
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real the wuntersfor each block in the same set. Accessng the LRU cournters would
happen in parall el with the tag comparison qperations. If atag hit occurs, the ache can
quickly determineif the hit was an LRU hit. This approacd requires littl e overhead and
does nat add delay to accessng the cate because the cache dready accesses the tags for
eat block in parallel.

In large tournament mode, the cache must ensure that the LRU tag existsin the
partially shut down cache way. The actual implementation d this palicy requires
additional complexity, bu the concept is sSmple. On each replacement, the cache must
copy the tag of the replaced block into the tag of the partially shut down way. Because
this palicy guarantees that the partially shut down way will contain the LRU for the
larger cadhe, the cache nolonger needs to maintain the LRU counters for the partialy
shut down way. This pdlicy also guarantees afair tournament between the existing cache
andthe larger cache. Figure 8 gives an example of the replacement palicy for large
tournament mode. Before the request, the small er cache storestags A and B, while the
larger cache howsestags A, B, and C. In this example, the smaller cache dways contains

the 2 most recent tags, whil e the larger cache cntains the 3 most recent tags.

Set #5
Tag | Data LRU Tag | Data LRU Tag
A Foo 1 B bar 0 C

After servicing arequest for tag D with data “ca” that belongsin set #5.

Set #5
Tag |Data LRU Tag |Data LRU Tag
D ca 0 B Bar 1 A

Figure 8: Replacement Strategy for Large Tournament Mode
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4. SIMULATION METHODOLOGY
This dion dscusss the methoddogy used in completing this thesis projed and

the adivities acamplished duing the amurse of the project. The foll owing five tasks
were acomplished: chase a metric for comparison, simulated existing cades, modified a
simulator to acammodate the new cache model, simulated the new cache model, and
compared the results of existing cachesto the new model. This chapter discusses the
metric, the modificaions to the simulator, and the gproach used for simulation.
Chapters 5 and 6 dscussthe results of all simulations.

4.1. CHOOSING THE ENERGY-DELAY PRODUCT AS A METRIC
In order to prove that a new design improves upon gevious designs, ore must

compare the new design to existing ones. This thesis attempts to improve the
performance and paver consumption d modern microprocessors by modifying the L1
catedesign. The energy-delay product al ows reseachers to compare microprocessors
in regards to their performance and pover consumption charaderistics. Other reseachers
in the field have used the energy-delay product to compare procesor architedures as
well as cache architedures[3, 9, 11, 1516]. For thisreason, this thesis used the energy-
delay product as the metric to compare existing cadhe designs with tournament caching.
Calculating the energy-delay product (EDP) involves monitoring two statistics —
total energy consumed and total delay. Their product forms the energy-delay product.
Generally, smaller caches consume lesspower, but they creae huge delaysin procesor
performance Larger cadhes, however, tendto consume alot of power but all ow the
procesor to operate very quickly. The EDP captures this trade-off, therefore the optimal

low-power, high performance cabe minimizesthe EDP. If anew cade design produces
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asmaller EDP than conventional cache designs, then the new design improves low-
power, high performance mmputing.

4.2. SIMULATING EXISTING CACHES

Before implementing a new cache design, many existing cade designs were
simulated with several benchmark applications. The Wattch toadlkit version 1.02 freely
avail able on the Internet, served as the software simulator for this project [3]. This
toa kit includes open source software written in the C programming language. It
simulates a superscdar processor and monitors performance, delay, and power statistics
[3, 4. Spedficdly, the sim-outorder simulator keegpstradk of the number of clock cycles
and estimates the total power consumed whil e exeauting a benchmark program onthe
procesor [3]. Calculating the energy-delay product involves multi plying the number of
cycles by the total power consumed.

Primarily, thisthesis projed used the foll owing benchmarks from the SFEC
CPU2000 tkenchmark suite: gec, vpr, and gzip [15]. Other researchers use this
benchmark suite, and they are avail able for the Wattch toadlkit [1, 5, 6, 13, 1416]. Due
to time cnstraints and the number of simulations, orly certain portions of the
benchmarks were simulated. Simulating an entire benchmark could take weeks, and this
thesis projed needed to conduct about 100 simulations. Chapter 5 explains exadly which
simulations were run and hav many instructions were smulated. Appendix E provides a
detail ed description d all of the parameters used duing the simulations.

4.3. MODIFYING THE WATTCH SIMULATOR FOR TOURNAMENT CACHING
Modifying the cadhe modue of the Wattch simulator required a ansiderable

amourt of time. Themodue' sdesign dd na alow for dynamic reconfiguration. Other

researchersin the field of dynamic cache reconfiguration have modified SimpleScdar,
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which contains avery similar cache modueto Wattch [1, 3, 5,6]. Because of this,
tournament caching was implemented by modifying Wattch’s cache modue rather than
creaing one from scratch. The remainder of this dion dscusses the modifications the
Wattch simulator.

Tournament caching needed a cade structure in which the asciativity could
dynamically change. Wattch’'s original cache modue implemented a cache & an array of
sets. Ead set held alinked list of blocks. The number of blocks in the linked li st
corresporded to the associativity of the set. In all i nstances, each set has the same
asciativity as every other set. Consider afour-way associative cache with 128sets.
The original cache modue would implement this as an array with 128elements. Each
element would hdd alinked list containing four blocks. In arder to implement
tournament caching, the asociativity must dynamically change during the exeaution o
the simulator. Therefore, the cadie modue needed ato dynamicdly change the number
of blocks contained in each of the linked lists.

Determining when to reconfigure the cache produced the seaond major task
asciated with modifying the existing cadhe modue. As described in Chapter 3,
tournament caching has three main operating modes. normal, small tournament, and large
tournament. Ead of these modes required an implementation within the existing cade
model. The tournament cache needed four fixed values: accesses between tour naments,
max miss saturation, hits to win, and tournament length. To make these values easily
changeabl e to run many simulations withou re-compili ng the simulator, the parameters
were alded to the coommand line aguments needed to specify a catie. By daoing this,

numerous smulations could runwith dfferent parameters. Figure 9 ill ustrates the
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diff erences between the existing command line aguments and the aguments used to
spedfy atournament cache. As gated earlier, this thesis explored tournament caching for
the L1 I-cache. Therefore, the simulator all owed orly the L1 I-cache to be atournament
cade, whil e the other caching structures had to be cmnventional cades.

Original command line aguments for caches:
<name>:<nsets>:<bsize>:<assoc>:<repl>

Tournament cache cmmand line aguments:

<name>:<nsets>:<bsize>:t:<miss_sat>:

<tournament_length>:<accesses_bw_tournaments>:

<hits2win>

Figure 9: Changesto sim-outorder’s Cache Command Line Arguments

Maintaining accurate estimates for static and dynamic power consumption for the
cade posed ancther problem. Originally, Wattch used CACTI to generate power
estimates for a cetain size ache[3]. Thisvalue stayed constant throughou the
simulation becaise the ache never changed size. Therefore, each cache acessrequired
the same anourt of power consumption [3]. Because tournament caching requires a
dynamic cache size, the cache's power must dynamically vary with the reconfigurations
of the cache. Using CACTI to calculate the power consumptionfor all possble
configurations of the cate, the simulator would use the gpropriate power estimate
based onthe arrent configuration. This modification al owed Wattch to provide power
estimates for tournament caching.

Appendices A, B, C, and D contain the modifications to cache.h, cache.c,
power.c, and sim-outorder.c, respectively. Implementation d tournament caching

required modifications to orly these Wattch files. To save paper, these gppendices

include only the modifications to these fil es rather than the entirefil es.
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4.4, SIMULATING A TOURNAMENT CACHE

After modifying the cache modu e to acammodate tournament caching, many
simulations were runto compare the new design with existing cadiing structures. As
stated in Chapter 3, tournament caching requires four constant values: max miss
saturation, tournament length, hits-to-win, and accesses between tournaments. This
thesis projed studied the dfeds of varying the tournament length and the accesses
between tournaments on the energy-delay product. Thisthesis projed also evaluated
how the maximum associativity aff ected the energy-delay product of the entire processor.

Chapter 5 contains the results of the simulations.
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5. SIMULATION RESULTS

This chapter contains the results of the simulations condicted to evaluate
tournament caching. Appendix E has al of the simulation parameters and resultsin
tabular form. For each o the graphsin this chapter, the plots contain a normali zed
energy-delay product (EDP). In order to calculate the normalized EDP for the different
trials, conventional caches were simulated to determine baseline EDPs. A different
baseline EDP was used for each cade size, asociativity, simulation length, and
benchmark. Dividing atournament cache’s EDP by the baseline EDP creates a
normalized EDP for that tournament cache. Figure 10 explainsthiscdculationin an
equation. The normali zed value shows the relative increase or deaease in the EDP when
comparing tournament cades to traditional caches. A normalized EDP lessthan ore
signifiesadeaease in the EDP and an improvement in cade design.

Energy-Delay Product of Conventional Cache = Normali zed Energy-Delay Product
Energy-Delay Product of Tournament Cache

Figure 10: Equation for Normalized Energy-Delay Product

The first simulations sSmulated arelatively small number of instructions of the
benchmark. On average, each of these simulations took lessthan an hou to complete.
The shorter simulations helped to determine the optimal tournament cache parameters
before anducting longer simulations to determine whether tournament caching has a
lower energy-delay product than conventional caches. For al of the simulations, the L1
I-cache had 32byte lines and 1024sets. For the shorter simulations a256KB unified L2
cathewas used. For thelonger smulationsa IMB unified L2 cache was used. These ae
relatively large cache sizes, but they are not unreasonable for modern microprocessors.

The first short simulations determined the dfect of associativity onthe EDP.
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5.1. EFFECT OF ASSOCIATIVITY

To determine the dfect of the associativity on tournament caching, severa
simulations were run. For two-way, four-way, and eight-way associativiti es, a baseline
L1 I-cache mnfiguration d 1024sets and 32byte lines was smulated using three
benchmark applications. The simulations ead exeauted 10,000,000nstructions. The
tournament cache simulations also used 1024sets, 32byte lines, and 10,000,000
instructions. Figure 11 summarizes the results of these simulations by displaying the
normalized EDP. For each benchmark, higher associativity led to alower EDP. In
amost al cases, the normalized EDP was lessthan one. This means that tournament

cading had alower EDP than conventional cading techniques.

ogcc
gzip

B vpr

Energy-Delay Product for Several Associativities
1.02

1.00

0.98

0.96
0.94

0.92

0.90

0.88

Normalized Energy-Delay

0.86

0.84

Associativity

Figure 11: Effed of Asciativity on the Energy-Delay Product

5.2. EFFECT OF TOURNAMENT LENGTH

After determining that tournament caching works best with highly asociative
cades, smulations were runto determine the eff ect of the tournament length. These

simulations used a 256K B, eight-way associative tournament cache. The other
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tournament cache parameters — max miss saturation, accesses between tournaments, and

hits to win remained constant. By keeping these values constant and varying the

tournament length, these simulations reveded the dfead of tournament length onthe

EDP. Figure 12 summarizes the results by comparing the normalized EDP for

simulations using diff erent tournament lengths. The most effedive length was 8192

becaise it produced the lowest normalized EDP. Longer and shorter tournaments

produced higher EDPs, bu they still produced namalized EDPs lessthan ore. This

means that they still outperformed conventional caches in regards to energy-delay.
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Normalized Energy-Delay

0.88

Effect of Tournament Length on Energy-Delay
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]

—
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131072
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Figure 12: Effed of Tournament Length on the Energy-Delay Product

5.3. EFFECT OF ACCESSES BETWEEN TOURNAMENTS

Using a256 KB, eight-way associative L1 I-cache with a tournament length of

8192,simulations were runto determine how the accesses between tour naments

parameter affectsthe EDP. This number corresponds to the number of cache acesses

that must occur before the cate can attempt to get smaller. Because of this, this number

controls how aggressvely the cache gets snaller. Inthetrials with asmall accesses
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between tournaments the tournament cache tried to stay toosmall. This caused the
procesor to waste cycles and energy because of cache misses. Conversely, alarge
accesses between tournaments causes the cate to stay large for toolong. In this case,
parts of the cache ae merely consumed power withou improving performance. Figure 13

shows that the optimal accesses between tournaments for all benchmarks was 131072.
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Figure 13: Effed of Accesses Between Tournamentson the Energy-Delay Product

5.4. LONG SIMULATION RESULTS

The previous sctions merely establi shed the parameters for the tournament
cading techniqueto evaluate. The longer smulations were run wsing the foll owing
tournament cache configuration: 256 KB, eight-way, max miss saturation of 1, hitsto win
of 1, tournament length of 8192,and accesses between tournaments of 131072. Using a
max miss saturation d 1 and a hitsto win of 1 forcesthe ache to aggressvely read to
procesor behavior. This shoud provide the worst case performance of tournament

cading. Thelonger simulations determined whether tournament caching reduces the
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energy-delay product in dfferent benchmark appli cations over an extended time. For
eadt benchmark, the smulations ran for 1,000,000,00@nstructions after skipping the
first 1,000,0000,000nstructions. The benchmarks interesting behavior does nat occur at
the beginning of the program, so many researchers Kip the beginning of the program [1,
5, 6,16].

Figure 14 gives the results of al of these simulationsin tabular form. Figure 15
shows the normali zed energy consumption for six benchmarks, and Figure 16 shows the
normalized delay for the same six benchmarks. The energy consumption deaeased by an
average of 8.2% ranging from 2.6% to 9.8%, and the delay increased by an average of
0.25%% ranging from 0% to 0.93%. Because the normalized energy consumption was less
than ore, tournament caching conserved energy in al cases. Figure 17 showsthe
normali zed energy-delay (EDP) product for the benchmarks. The EDP deaease ranged
from 2.4% to 9.8% with an average of 7.9%. Because the EDP was below onefor all
benchmarks, tournament caching decreased energy consumption withou significantly

hindering performance.

Normalized Normalized Normalized
Benchmark
Cycles Energy Energy-Delay
gzip 1.0032 0.9094 0.9123
vpr 1.0093 0.9210 0.9296
gce 1.0021 0.9741 0.9761
art 1.0002 0.9018 0.9020
mcf 1.0000 0.9015 0.9015
bzip2 1.0000 0.9016 0.9016

Figure 14: Long Simulation Resultsfor Several Benchmarks
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Figure 15: Energy Consumption for Several Benchmarks

Normalized Delay
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Figure 16: Delay for Several Benchmarks
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Long Simulations for Several Benchmarks
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Figure 17: Energy-Delay Product for Several Benchmarks
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6. CONCLUSION
Thistedhnicd report described a new, dynamicaly reconfigurable cacing

technique call ed tournament caching. The description addressed the foll owing issues: the
reconfigurable mechanism, the methoddogy used to detect when to reconfigure, and the
tournament system that chooses the best configurationto use. Tournament caching
reduced power consumption by shutting down parts of the cache without degrading
performance. Simulation showed that tournament caching in the level 1 instruction cace
deaeased overall energy consumption by an average of 8.2% whil e increasing delay by
0.2%%. These energy savings would extend kettery life in mobile computers withou
degrading performance Quantitatively, anormal laptop kettery that lasts about 10 hous
would last for dmost 11 houswith adelay increase of only 1.5 minutes.

6.1. INTERPRETATION OF RESULTS
The resultsin Chapter 5 showed that tournament caching decreased energy

consumptionwithou significantly degrading performance when compared to
conventional caches. Tournament caching performed the best with highly assciative
cades. With smaller associativiti es, tournament cadiing did na always have alower
energy-delay product (EDP). This phenomenonoccurred becaise the potential power
savingsin highly associative cates exceals that of the potential power savingsin low
asciative cadhes. For example, afour-way tournament cade can shut down threeof its
four ways, which essentially conserves % o its datic power disspation. A two-way
tournament cache can shut down ore way, which ony saves. o its gatic power
disgpation. For thisreason, it makes snse that higher asociativiti es performed better
than tournament caches with lower associativities. To maximize the benefits of

tournament caching, the caches sroud have high associativiti es.
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The accesses between tournaments parameter affeded the results. Small accesses
between tournaments made the tournament cache get small er too quckly; whereas large
accesses between tournaments forced the ache to stay too kg and waste power withou
improving performance. Tournament length aso affected the EDP for tournament
cading. This parameter controlled how fast the cache dedded onanew configuration.
A small er value made the cacdhe quickly switch to new configurations, which caused the
EDPtorise. A larger valueinhibited the cache from quickly adapting to the benchmark’s
behavior, which resulted in alarger EDP.

Exeauting portions of benchmarks on a simulator has some limitations. Even
though research has dhown that the Wattch simulator acarately simulates red
procesors, testing a physical implementations provides more accurate results [3].
Therefore, a physicd implementation d tournament cading would improve the validity
of theresults. Seandy, the simulator exeauted ony portions of the benchmark
applicaions rather than the entire benchmark. Each simulation took approximately 10
hours to complete; whereas a complete simulation would take goproximately 104 days.
Conducting longer simulations would suppat the results more than shorter simulations.
Finally, the implementation d tournament caching might introduce slight delays within
the cade. Because the delays could na be measured from a physicd implementation,
they were estimated based onsimil ar structures. Although these nominal delays $ioud
not aff ect the results, amore accurate representation d the design would increase the
acaracy of the results.

In addition to the simulator, the benchmarks have limitations aswell. Using six

standard benchmarks produced pasiti ve results. However, these benchmarks do nd
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represent all possble behaviors of al passhble programs. Because of this, this research
can na conclude that tournament caching decreases energy consumptionin all cases.
Thistedhnicd report can support the daim that tournament caching reduced energy
consumption withou hindering performance on several benchmarks. Conducting longer
simulations on more benchmarks with more acarrate delay values would gredly increase
the validity of results.

6.2. RECOMMENDATIONS FOR FUTURE WORK

The results of thisthesis projed demonstrated that an L1 I-cache using
tournament caching decreased the overall energy-delay product for the processor.
However, simulating more instructions or different benchmarks might show that
tournament caching does naot work undcer all circumstances. Because of this, future
research shoud conduct longer simulations and use more benchmarks. Sewndy, this
thesis projed only considered using tournament caching in the L1 I-cache, which is
generally the small est cache in the memory hierarchy. Future researchers shoud explore
tournament caching in level 2 (L2) cades. L2 cadches arelarger than L1 cadhes,
therefore they have agreaer potential for power savings.

In thisthesis projed, a cnservative tournament approach compared the eisting
cadeto acadhe with an asociativity of one larger or one smaller. Future researchers
shoud simulate amore aygressve technique that compared the existing cacheto a cate
with twicethe asciativity or half the associativity. This might all ow the cache to
quickly adapt to the benchmark’s behavior. Future researchers shoud also study the
eff ects on varying the max miss saturation and hits to win parameters of the tournament

cade because this thesis projed did na explore them.
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Even if tournament caching eventually proves ineffective, research on dher
reconfigurable cading techniques must continue. Cadhes occupy approximately 50% of
the procesor, and their tremendouws $ze caises them to consume alarge percentage of
the overal energy consumed by the processor [11]. Because of this, researchers must
pursue new techniques to conserve power within the cache. Eventually, this research will

lead to more powerful and energy efficient processors.
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APPENDIX A: ABRIDGED SOURCE CODE FOR CACHE.H

In an attempt to conserve paper, only the modified pieces of code were included.

/*Omitted unchanged code*/

/* cache replacement policy */
enum cache_policy {
LRU, /* replace least recently used block (perfect LRU) */
Random, /* replace a random block */
FIFO, /* replace the oldest block in the set */
TournamentLRU /* -AJS LRU but with the ability to turn off a number of ways */

3

/*Added for TournamentLRU?*/
enum cache_tournaments {
T_LARGER,
T_SMALLER,
T_NONE
h

/* cache set definition (one or more blocks sharing the same set index) */
struct cache_set_t

{
struct cache_blk_t **hash; /* hash table: for fast access w/a ssoc, NULL
for low-assoc caches */
struct cache_blk_t *way_head; /* head of way list */
struct cache_blk_t *way _talil; /* tail of way list */
struct cache_blk_t *way_data_tail; /* tail of available data columns way list */
struct cache_blk_t *way_tag_tail; /* tail of available tags way list */
struct cache_blk_t *blks; /* cache blocks, allocated sequentially, so
this pointer can also be used for random
access to cache blocks */
h

/* cache definition */
struct cache_t
{
[* parameters */
char *name; /* cache name */
int nsets; /* number of sets */
int bsize; /* block size in bytes */
int balloc; /* maintain cache contents? */
int usize; /* user allocated data size */
intassoc;  /* cache associativit y */
enum cache_policy policy; [* cache replacement policy */
unsigned int hit_latency; /* cache hit latency */
int data_cols; /*Number of columns available to read/write data*/
int tag_cols; /*Number of columns available to read/write tags*/
int miss_saturation; /*Miss saturation counter to count consecutive misses*/
unsigned int accesses_since_tournament;
unsigned int tournament_accesses; /*Counts total tournamentLRU accesses*/
unsigned int tournament_hits; /*Counts hits f or tournamentLRU*/
unsigned int MAX_MISS_SATURATION;
unsigned int TOURNAMENT_HITS_FOR_WIN;
unsigned int ACCESSES_BW_TOURNAMENTS;
unsigned int TOURNAMENT_LENGTH,;
enum cache_tournaments tournament_status;

unsigned int  /* latency of block acc ess */
(*blk_access_fn)(enum mem_cmd cmd, /* block access command */
md_addr_t baddr,  /* program address to access */
int bsize, /* size of the cache block */
struct cache_blk_t *blk, [* ptr to cache block struct */
tick_t now); /* when fetch was initiated */

/* derived data, for fast decoding */
int hsize; /* cache set hash table size */
md_addr_t blk_mask;
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int set_shift;

md_addr_t set_mask;  /* use *after* shift */

int tag_shift;

md_addr_ttag_mask; /* use *after* shift */

md_addr_t tagset_mask; /* used for fast hit detection */

/* bus resource */

tick_t bus_free; /* time when bus to next level of cache is
free, NOTE: the bus model assumes only a
single, fully-pipelined port to the next

level of memory that requires the bus only
one cycle for cache line transfer (the
latency of the access to the lower level
may be more than one cycle, as specified
by the miss handler */

[* per-cache stats */

counter_t hits; /* total number of hits */

counter_t misses; /* total number of misses */

counter_t replacements; /* total number of replacements at misses */
counter_t writebacks; /* total number of writebacks at misses */
counter_t invalidations; /* total number of external invalidations */
counter_t tournaments;  /* -AJS total number of tournaments */
counter_t reconfigurations; /* -AJS total number of reconfigruations*/

/* last block to hit, used to optimize cache hit processing */
md_addr_t last_tagset; /* tag of last line accessed */
struct cache_blk_t *last_blk; /* cache block last accessed */

/* data blocks */
byte_t *data; /* pointer to data blocks allocation */

/* NOTE: this is a variable-size tail array, this must be the LAST field
defined in this structure! */
struct cache_set_t sets[1]; /* each entry is a set */

3

/* create and initialize a general cache structure */
struct cache_t * [* pointer to cache created */
cache_create(char *name, /* name  of the cache */
int nsets, /* total number of sets in cache */
int bsize, /* block (line) size of cache */
int balloc, /* allocate data space for blocks? */
int usize, /* size of user data to alloc w/blks */
intassoc, /* associativity of cache */
enum cache_policy policy,/* replacement policy w/in sets */
/* block access function, see description w/in struct cache def */
unsigned int (*blk_access_fn)(enum mem_cmd cmd,
md_addr_t baddr, int bsize,
struct cache_blk_t *blk,
tick_t now),
unsigned int hit_latency, /* latency in cycles for a hit */
unsigned int max_miss_saturation,
unsigned int tournament_length,
unsigned int accesses_bw_tournaments,
unsigned i nt hits_for_win);

[*reconfigure the cache by powering down particular columns */
void

cache_reconfigure(struct cache_t *cp, [*cache instance to change */

int data_columns, /*number of columns to enable for data */

int tag_columns); /*number of ¢ olumns to allow tag lookups */

void

cache_reconfigure_set(struct cache_t cp, / * cache instance to change*/
struct cache_set_t set ) ; / *set to update within the cache*/
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APPENDIX B: ABRIDGED SOURCE CODE FOR CACHE.C

In an attempt to conserve paper, only the modified pieces of code were included.

/* insert BLK into the order way chain in SET at location WHERE */

static void

update_way_list(struct cache_set_t *set, /* set contained way chain */
struct cache_blk_t *blk, /* block to insert */

enum list_loc_t where, [* insert location */

struct cache_t *cp) [* cache to update -AJS */

/* Omitted unchanged code*/
if (cp && TournamentLRU == cp->policy)
cache_reconfigure_set(cp,set);

}
[* create and initialize a general cache structure */
struct cache_t * /* pointer to cache created */
cache_create(char *name, /* name of the cache */
int nsets, /* total number of sets in cache */
int bsize, /* block (line) size of cache */
int balloc, /* allocate data s pace for blocks? */

int usize, /* size of user data to alloc w/blks */
intassoc,  /* associativity of cache */
enum cache_policy policy, /* replacement policy w/in sets */
/* block access function, see description w/in struct ca che def */
unsigned int (*blk_access_fn)(enum mem_cmd cmd,
md_addr_t baddr, int bsize,
struct cache_blk_t *blk,

tick_t now),
unsigned int hit_latency, /* latency in cycles for a hit */
unsigned int max_miss_saturat ion,

unsigned int tournament_length,
unsigned int accesses_bw_tournaments,
unsigned int hits_for_win)

struct cache_t *cp;
struct cache_blk_t *blk;
inti, j, bindex;

/* check all cache parameters */
if (nsets <= 0)
fatal("cache size (in sets) "%d' must be non-zero", nsets);
if ((nsets & (nsets-1)) |=0)
fatal("cache size (in sets) "%d' is not a power of two", nsets);
/* blocks must be at least one datum large, i.e., 8 bytes for SS */
if (bsize < 8)
fatal("cache block size (in bytes) "%d' must be 8 or greater", bsize);
if ((bsize & (bsize-1)) !=0)
fatal("cache block size (in bytes) "%d' must be a power of two", bsize);
if (usize < 0)
fatal("user data size (in bytes) "%d' must be a positive value", usize);
if (assoc <= 0)
fatal("cache associativity “%d' must be non-zero and positive", assoc);
/* -AJS: Removed power of two constraint
if ((assoc & (assoc-1)) 1= 0)
fatal("cache associativity "%d' must be a power of two", assoc);
*
if (Iblk_access_fn)
fatal("must specify miss/replacement functions");

/*Omitted unchanged code*/

cp->policy = policy;

cp->hit_latency = hit_latency;

[* -AJS Initialize new parameters*/

cp->data_cols = assoc;

cp->tag_cols = assoc;

cp->miss_saturation = 0;
cp->MAX_MISS_SATURATION = max_miss_saturation;
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cp->TOURNAMENT_LENGTH = tournament_length;

cp->ACCESSES_BW_TOURNAMENTS = accesses_bw_tournaments;

cp->TOURNAMENT_HITS_FOR_WIN = hits_for_win;
cp->accesses_since_tournament = 0;
cp->tournament_status = T_NONE;

/* miss/replacement functions */

cp->blk_access_fn = blk_access_fn;

/* compute derived parameters */
cp->hsize = CACHE_HIGHLY_ASSOC(cp) ? (assoc >> 2) : 0;
/* -AJS No hashing for TournamentLRU */
if (TournamentLRU == cp->policy)

cp->hsize = 0;
cp->blk_mask = bsize-1;
cp->set_shift = log_base2(bsize);
cp->set_mask = nsets-1;
cp->tag_shift = cp->set_shift + log_base2(nsets);
cp->tag_mask = (1 << (32 - cp->tag_shift))-1;
cp->tagset_mask = ~cp->blk_mask;
cp->bus_free = 0;

[* print derived parameters during debug */

debug("%s: cp->hsize = %d", cp->hsize);
debug("%s: cp->blk_mask = 0x%08x", cp->blk_mask);
debug("%s: cp->set_shift = %d", cp->set_shift);
debug("%s: cp->set_mask = 0x%08x", cp->set_mask);
debug("%s: cp->tag_shift = %d", cp->tag_shift);
debug("%s: cp->tag_mask = 0x%08x", cp->tag_mask);

/* initialize cache stats */
cp->hits = 0;

cp->misses = 0;
cp->replacements = 0;
cp->writebacks = 0;
cp->invalidations = 0O;
cp->tournaments = O;
cp->reconfigurations = 0;
/* blow away the last block accessed */
cp->last_tagset = 0O;
cp->last_blk = NULL;

/*Omitted unchanged code*/

/* link the data blocks into ordered way chain and hash table bucket

chains, if hash table exists */
for (j=0; j<assoc; j++)

/* locate next cache block */
blk = CACHE_BINDEX(cp, cp->data, bindex);
bindex++;

/* invalidate new cache block */
blk->status = 0;
blk->tag = 0;
blk->ready = 0;
blk->user_da ta = (usize !=0
? (byte_t *)calloc(usize, sizeof(byte_t)) : NULL);

/* insert cache block into set hash table */
if (cp->hsize)
link_htab_ent(cp, &cp->sets]i], blk);

/* insert into head of way list, order is arbitrary at this point *
blk->way_next = cp->sets[i].way_head;
blk->way_prev = NULL;
if (cp->sets]i].way_head)

cp->sets[il.way_head->way_prev = blk;
cp->sets[il.way_head = blk;
if (Icp->sets|i].way_tail)

cp->sets[i].way_tail = blk;
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/*-AJS */

cp->se ts[i].way_data_tail = cp->sets[i].way_tag_tail = cp->sets[i].way_tail;
}

}

return cp;
}

[* parse policy */
enum cache_policy  /* replacement policy enum */
cache_char2policy(char c) /* replacement policy as a char */
{

switch (c) {

case 'l' return LRU;

case 'r': return Random;

case 'f: return FIFO;

case 't": return TournamentLRU;

default: fatal("bogus replacement policy, “%c", c);

}
}
/* register cache stats */
void
cache_reg_stats(struct cache_t *cp, /* cache instance */
struct  stat_sdb_t *sdb) /* stats database */

/* -AJS added for tournament stats */
if (TournamentLRU == cp->policy)

sprintf(buf, "%s.reconfigurations”, name);
stat_reg_counter(sdb, buf, "total number of reconfigurations", &cp->reconfigurations,
0, NULL);
sprintf(buf, "%s.tournaments", name);
stat_reg_counter(sdb, buf, "total number of tournaments", &cp->tournaments, 0, NULL);

}
/*Omitted unchanged code*/
}

[* print cache stats */

void

cache_stats(struct cache_t *cp, /* cache instance */
FILE *stream)  /* output stream */

if (TournamentLRU == cp->policy)
fprintf(stream,
"cache: %s: %.0f hits %.0f misses %.0f repls %.0f invalidations %.0f tournaments %.0f
reconfigurations\n",
cp->name, (double)cp->hits, (double)cp->m isses, (double)cp->replacements,
(double)cp->invalidations, (double) cp->tournaments, (double)cp->reconfigurations);
else
fprintf(stream,
"cache: %s: %.0f hits %.0f misses %.0f repls %.0f invalidations\n",
cp->name, (double)cp->hits, (double )cp->misses,
(double)cp->replacements, (double)cp->invalidations);
fprintf(stream,
"cache: %s: miss rate=%f repl rate=%f invalidation rate=%f\n",
cp->name,
(double)cp->misses/sum, (double)(double)cp->replacements/sum,
(double)cp->invalid ations/sum);

}

unsigned int  /* latency of access in cycles */
cache_access(struct cache_t *cp, /* cache to access */
enum mem_cmd cmd, /* access type, Read or Write */
md_addr_taddr, /* address of access */
void *vp,  /* ptr to bu ffer for input/output */
int nbytes, /* number of bytes to access */
tick_t now, /* time of access */
byte_t **udata, [* for return of user data ptr */
md_addr_t *repl_addr) [* for address of replaced block */
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byte_t *p = vp;
md_addr_t tag = CACHE_TAG(cp, addr);
md_addr_t set = CACHE_SET(cp, addr);
md_addr_t bofs = CACHE_BLK(cp, addr);
struct cache_blk_t *blk, *repl,*repl2;
int lat = 0;

/*new tournament scheme*/

if(1)

if(TournamentLRU == cp->policy)

{
cp->accesses_since_tournament++;
cp->tournament_accesses++;
switch(cp->tournament_status)

case T_LARGER:
if(cp->tournament_accesses > cp->TOURNAMENT_LENGTH
|| cp->TOURNAMENT_HITS_FOR_WIN < cp->tournament_hits )

if(cp->TOURNAMENT_ HITS_FOR_WIN < cp->tournament_hits )

cache_reconfigure(cp,cp->tag_cols, cp->tag_cols);
cp->reconfigurations++;
}
else
cache_reconfigure(cp,cp->data_cols, cp->data_cols);
cp->accesses_since_tournament = O;
cp->t ournament_status = T_NONE;
fprintf(stderr,"larger tournament %u outcome, insn %u, accesses %u, hits %u, config %d
-way\n",
(unsigned int)cp->tournaments, (unsigned int)sim_num_insn,
cp->tournament_accesses, cp->tournament_hits, cp->data_cols);
}
break;
case T_SMALLER:
if(cp->tournament_accesses > cp->TOURNAMENT_LENGTH
|| cp->TOURNAMENT_HITS_FOR_WIN < cp->tournament_hits)

if( cp->TOURNAMENT_HITS_FOR_WIN >= cp->tournament_hits)
{
cache_reconfigure(cp,cp->data_cols - 1, cp->data_cols - 1);
cp->reconfigurations++;
}
cp->accesses_since_tournament = 0;
cp->tournament_status = T_NONE;
fprintf(stderr,"smaller tournament %u outcome, insn % u, accesses %u, hits %u,
config %d -way\n",
(unsigned int)cp->tournaments, (unsigned int)sim_num_insn, cp->tournament_accesses, cp-
>tournament_hits, cp->data_cols);
}
break;
default:
if(cp->miss_saturation > cp->MAX_MISS_SA TURATION)

if(cp->data_cols < cp->assoc)

cp->tournaments++;
cp->tournament_status = T_LARGER,
cp->tournament_hits = cp->tournament_accesses = 0;
cache_reconfigure(cp,cp->data_co Is,cp->data_cols+1);
fprintf(stderr,"larger tournament %u, insn %u, accesses_since_last %u,
miss_sat %d, miss_rat %f\n",
(unsigned int)cp->tournaments,(unsigned int)sim_num_insn,cp-
>accesses_since_tournament,cp->miss_saturation
,((double)  cp->misses)/((double)cp->hits+(double)cp->misses));

}
else if (cp->accesses_since_tournament > cp->ACCESSES_BW_TOURNAMENTS)

if(cp->data_cols > 1)
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cp->tournaments++;

cp->tou rnament_status = T_SMALLER;

cp->tournament_hits = cp->tournament_accesses = 0;

fprintf(stderr,"smaller tournament %u, insn %u, accesses_since_last %u,
miss_sat %d, miss_rat %f\n",
(unsigned int)cp->tournaments,(unsigned int)sim_n um_insn,cp-
>accesses_since_tournament,cp->miss_saturation
,((double)cp->misses)/((double)cp->hits+(double)cp->misses));

}
}
break;
}
}
}
/* default replacement address */
if (repl_addr)
*repl_addr = 0;

/* check alignments */
if ((nbytes & (nbytes-1)) = 0 || (addr & (nbytes-1)) != 0)
fatal("cache: access error: bad size or alignment, addr 0x%08x", addr);

/* access must fit in cache block */
if ((addr + nbytes) > ((addr & ~cp->blk_mask) + cp->bsize))
fatal("cache: access error: access spans block, addr 0x%08x", addr);

/* permissions are checked on cache misses */

/* check for a fast hit: access to same block */
if (CACHE_TAGSET(cp, addr) == cp->last_tagset)

/* hit in the same block */
blk = cp->last_blk;
goto cache_fast_hit;

}

if (TournamentLRU != cp->policy && cp->hsize) /*-AJS disabled hashing*/

/* higly-associativity cache, access through the per-set hash tables */
int hindex = CACHE_HASH(cp, tag);

for (blk=cp->sets[set].hash[hindex];
blk;
blk=blk->hash_next)

if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
goto cache_hit;

}

else

/* low-associativity cache, linear search the way list */
if (TournamentLRU == cp->policy)

repl2 = cp->sets[set].way_tail;

for (blk=cp->sets[set].way_head;
blk && (blk->way_prev != cp->sets[set].way_data_tail);
blk=blk->way_next)

if (blk->tag == tag &&. (blk->status & CACHE_BLK_ VALID))

if(T_SMALLER == cp->tournament_status &&
blk == cp->sets[set].way_data_tail)
cp->tournament_hits++;
goto cache_hit;

}

/* -AJS added for tournament */
for(blk=cp->sets[set].way_data_tail;
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blk && (blk->way_prev 1= cp->sets[set].way_tag_tail);
blk=blk->way_next)

if (blk->tag ==tag)

repl2 = blk;/* repl2 will eventually move to head of way list.*/
if(T_LARGER == cp->tournament_status)
cp->tournament_hits++;
goto cache_miss;
}

}
}

else
for (blk=cp->sets[set].way_head;
blk=blk->way_next)

if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
goto cache_hit;

}
}

cache_miss:/* -AJS added label*/
/* cache block not found */
/* **MISS** */
Cp->misses++;

/* select the appropriate block to replace, and re-link this entry to
the appropriate place in the way list */

switch (cp->policy) {

case LRU:

case FIFO:
repl = cp->sets[set].way_tail;
update_way_list(&cp->sets[set], repl, Head,cp);
break;

case TournamentLRU:/* -AJS */
Cp->miss_saturation++;
repl = cp->sets[set].way_data_tail;
update_way _list(&cp->sets[set], repl2, Head,cp);
break;

case Random:

int bindex = myrand() & (cp->assoc - 1);
repl = CACHE_BINDEX(cp, cp->sets[set].blks, bindex);
}
break;
default:
panic("bogus replacement policy");

/* remove this block from the hash bucket chain, if hash exists */
if (cp->hsize)
unlink_htab_ent(cp, &cp->sets[set], repl);

/* blow away the last block to hit */
cp->last_tagset = 0;
cp->last_blk = NULL;

/* write back replaced block data */
if (repl->status & CACHE_BLK_VALID)

cp->replacements++;

if (repl_addr)
*repl_addr = CACHE_MK_BADDR(cp, repl->tag, set);

/* don't replace the block until outstanding misses are satisfied */

lat += BOUND_POS(repl->ready - now);
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/* stall until the bus to next level of memory is available */
lat += BOUND_POS(cp->bus_free - (now + lat));

/* track bus resource usage */
cp->bus_free = MAX(cp->bus_free, (now + lat)) + 1;

if (repl->status & CACHE_BLK_DIRTY)

/* write back the cache block */
cp->writebacks++;
| at += cp->blk_access_fn(Write,
CACHE_MK_BADDR(cp, repl->tag, set),
cp->bsize, repl, now+lat);

/*-AJS Overwrite the new head.*/
if (TournamentLRU == cp->policy)
repl = repl2;

/* update block tags */
repl->tag = tag;
repl->status = CACHE_BLK_VALID; [* dirty bit set on update */

/* read data block */
lat += cp->blk_access_fn(Read, CACHE_BADDR(cp, addr), cp->bsize,
repl, now+lat);

[* copy data out of cache block */
if (cp->balloc)

CACHE_BCOPY(cmd, repl, bofs, p, nbytes);
}

/* update dirty status */
if (cmd == Write)
repl->status |= CACHE_BLK_DIRTY;

/* get user block data, if requested and it exists */
if (udata)
*udata = repl->user_data;

/* update block status */
repl->ready = now+lat;

/* link this entry back into the hash table */
if (cp->hsize)
link_htab_ent(cp, &cp->sets|[set], repl);

[* return latency of the operation */
return lat;

cache_hit: /* slow hit handler */

/* **HIT** */

cp->hits++;

/*-AJS Added for TournamentLRU*/

cp->miss_saturation--;

if (cp->miss_saturation < 0)
cp->miss_saturation=0;

/* copy data out of cache block, if block exists */
if (cp->balloc)
{

CACHE_BCOPY(cmd, blk, bofs, p, nbytes);
}

[* update dirty status */
if (cmd == Write)
blk->status |= CACHE_BLK_DIRTY;
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/* if LRU replacement and this is not the first element of list, reorder */
if (blk->way_prev && (cp->policy == LRU || cp->policy == TournamentLRU))

/* move this block to head of the way (MRU) list */
update_way_list(&cp->sets[set], blk, Head,cp);
}

/* tag is unchanged, so hash links (if they exist) are still valid */

/* record the last block to hit */
cp->last_tagset = CACHE_TAGSET(cp, addr);
cp->last_blk = blk;

/* get user block data, if requested and it exists */
if (udata)
*udata = blk->user_data;

[* return first cycle data is available to access */
return (int) MAX(cp->hit_latency, (blk->ready - now));

cache_fast_hit: /* fast hit handler */

[* **EAST HIT** ¥/
cp->hits++;

/*-AJS Added for TournamentLRU*/
cp->miss_saturation--;
if (cp->miss_saturation<0)
cp->miss_saturation=0;

/* copy data out of cache block, if block exists */
if (cp->balloc)
{

CACHE_BCOPY(cmd, blk, bofs, p, nbytes);
}

/* update dirty status */
if (cmd == Write)
blk->status |= CACHE_BLK_DIRTY;

/* this block hit last, no change in the way list */
/* tag is unchanged, so hash links (if they exist) are still valid */

/* get user block data, if requested and it exists */
if (udata)
*udata = blk->user_data;

/* record the last block to hit */
cp->last_tagset = CACHE_TAGSET(cp, addr);
cp->last_blk = blk;

[* return first cycle data is available to access */
return (int) MAX(cp->hit_latency, (blk->ready - now));
}

/* -AJS reconfigure the cache by powering down particular columns */
void
cache_reconfigure(struct cache_t *cp, /*cache instance to change */
int data_columns, [*number of columns to enable for data */
int tag_columns) [*number of columns to allow tag lookups */
{
int set_count = 0;
if(cp->assoc < data_columns)
fatal("Cache only has '%d' columns. '%d' is not a valid number of data columns for
this cache",cp->assoc,data_columns);
if(cp->assoc < tag_columns)
fatal("Cache only has '%d' columns. '%d' is not a valid number of tag columns for
this cache",cp->assoc,tag_columns);
if(data_columns > tag_columns)
fatal("The number of tag columns must be greater than or equal to the number of data
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columns");

cp->data_cols = data_columns;
cp->tag_cols = tag_columns;

I* reset the way_data_tail and way_tag_tail for the entire cache */
for(set_count=0;set_count<cp->nsets;set_count++)

{

}
}

void
cache_reconfigure_set(struct cache_t *cp,
struct cache_set_t *set)
t
inti=0;

set->way_tag_tail = set->way_tail;
for(i = cp->assoc; i > cp->tag_cols;i--)
set->way_tag_tail = set->way_tag_tail->way_prev;

cache_reconfigure_set(cp,&cp->sets[set_count]);

set->way_data_tail = set->way_tag_tail;
for(i=cp->tag_cols; i > cp->data_cols;i--)
set->way_data_tail = set->way_data_tail->way_prev;
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APPENDIX C: ABRIDGED SOURCE CODE FOR POWER.C
/*Omitted unchanged code*/

static double icache_way_power[15];

/*Omitted unchanged code*/

void update_power_stats()

/*Omitted unchanged code*/
[*-AJS */
if (TournamentLRU == cache_il1->policy)
power.icache_power = icache_way_power[cache_il1->data_cols -1];
else
power.icache_power = icache_way_power[cache_il1->assoc -1];

rename_power+=power.rename_power;
bpred_power+=power.bpred_power;
window_power+=power.window_power;
Isq_power+=power.Isq_power;
regfile_power+=power.regdfile_power;
icache_power+=power.icache_power+power.itlb;
dcache_power+=power.dcache_power+power.dtlb;
dcache2_power+=power.dcache2_power;
alu_power+=power.ialu_power + power.falu_power;
falu_power+=power.falu_power;
resultbus_power+=power.resultbus;
clock_power+=power.clock_power;

/*Omitted unchanged code*/
}

void calculate_power(power)
power_result_type *power;
{

/*Omitted unchanged code*/

cache=1;

for(a=1 ; a<=cache_ill->assoc; a++)

{
time_parameters.cache_size = cache_ill->nsets * cache_il1->bsize * a;
time_parameters.block_size = cache_ill->bsize; /* B */
time_parameters.associativity = cache_ill->assoc; /* A */
time_parameters.number_of_sets = cache_ill->nsets; /* C/(B*A) */

calculate_time(&time_result,&time_parameters);
output_data(&time_result,&time_parameters);

ndwl=time_result.best_Ndwl;
ndbl=time_result.best_Ndbl;
nspd=time_result.best_Nspd;
ntwi=time_result.best_Ntwl;
ntbl=time_result.best_Ntbl;
ntspd=time_result.best_Ntspd;

b = time_parameters.block_size;
¢ = time_parameters.cache_size;
rowsb = c/(b*a*ndbl*nspd);

colsb = 8*b*a*nspd/ndwl;

tagsize = va_size - ((int)logtwo(cache_ill->nsets) + (int)logtwo(cache_il1l->bsize));
trowsb = c/(b*a*ntbl*ntspd);
tcolsb = a * (tagsize + 1 + 6) * ntspd/ntwl;

if(verbose) {
fprintf(stderr,"%d KB %d-way cache (%d-byte block size):\n",c,a,b);
fprintf(stderr,"ndwl == %d, ndbl == %d, nspd == %d\n",ndwl,ndbl,nspd);

University of Virginia April 22, 2002



Undergraduate Thesis Projed Tedhnicd Report

Spanberger 56

}

fprintf(stderr,"%d sets of %d rows x %d cols\n",ndwl*ndbl,rowsb,colsb);
fprintf(stderr,"tagsize == %d\n",tagsize);

}

predeclength = rowsb * (RegCellHeight + WordlineSpacing);
wordlinelength = colsb * (RegCellWidth + BitlineSpacing);
bitlinelength = rowsb * (RegCellHeight + WordlineSpacing);

if(verbose)
fprintf(stderr,"icache power stats\n");
power->icache_decoder =
ndwl*ndbl*array_decoder_power(rowsb,colsb,predeclength,1,1,cache);
power->icache_wordline =
ndwl*ndbl*array_wordline_power(rowsb,colsb,wordlinelength,1,1,cache);
power->icache_bitline =
ndwl*ndbl*array_bitline_power(rowsb,colsb,bitlinelength,1,1,cache);
power->icache_senseamp = ndwl*ndbl*senseamp_power(colsb);
power->icache_tagarray = ntwl*ntbl*(simple_array_power(trowsb,tcolsb,1,1,cache));
icache_way_power[a-1] = power->icache_decoder + power->icache_wordline
+ power->icache_bitline + power->icache_senseamp + power->icache_tagarray;
icache_way_power[a-1] *= crossover_scaling;
fprintf(stderr,"icache %d-way %f\n",a,(float)icache_way_power[a-1]);

power->icache_power = icache_way_power[cache_ill->assoc - 1];

/*Omitted unchanged code*/

/*-AJS removed see above
power->icache_power *= crossover_scaling;*/

/*Omitted unchanged code*/

}
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APPENDIX D: ABRIDGED SOURCE CODE FOR SIM-OUTORDER.C
/*Omitted unchanged code*/

[*-AJS */
if (TournamentLRU == cache_char2policy(c))

if (sscanf(cache_il1_opt, "%][":]:%d:%d:%d:%c:%d:%d:%d:%d",
name, &nsets, &bsize, &assoc, &c,

&miss_sat,&tournament_length,&accesses_bw_tournaments,&hits2win) != 9)
fatal("bad I1 I-cache params:

<name>:<nsets>:<bsize>:t:<repl>:<miss_sat>:<tournament_lengt
h>:<accesses_bw_tournaments>:<hits2win>");

{cache_il1 = cache_create(name, nsets, bsize, /* balloc */FALSE,
[* usize */0, assoc, cache_char2policy(c),
iI1_access_fn, /* hit lat */cache_ill_lat,
miss_sat, tournam ent_length,

accesses_bw_tournaments,hits2win);
}
else

cache_ill = cache_create(name, nsets, bsize, /* balloc */FALSE,
[* usize */0, assoc, cache_char2policy(c),
il1l_access_fn, /* hit lat */

cache_il1_lat,0,0,0,0);
}

/*Omitted unchanged code*/
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T m_.l‘_ I-Cach w _ml.‘_ D-Cach Fast nstructionsl  cveles PC ICache ICache DCache DCache L2 Pawer Total Power | Energy-Delay
In& iz& #of Sets In& iz& #of Setg Forward ¥ Miss Rate Power | Miss Rate Power (Energy) | (CyclesEnergy)
(Bytes) (Bytes)
3 1024 8 3 1024 4 0 1.0E405 588E+404 17015 00035 1.09E406 0.1423 127E+06 2GBE+05 7.16E+1G 4. 21E+11
32 1024 8 32 1024 4 0 1.0E406 7.49E405  1.3350 00006 1.39E47 01280 1B2E+07 3.42E+406  9.13E+07 B.84E+13
32 1024 3 32 1024 4 0 1.0E+07 643E+06  1.8418 00001 1.00E408 00278  1.17E+0B 24B8E+07 B.62E+18 3.H9E+16
32 1024 8 32 1024 4 ] 1.0E+08 &82E407  1.8131 00000 1.02E409 0.0194 1.19E+09 252E+03 G.72E+09 3T1E+T
3 1024 8 3 1024 4 0 1.0E+09 540E+408  1.8506 00000 1.00E+10 00163  1.17E+I0 500E+03 B.B4E+10 3.70E+19
32 1024 2 32 1024 4 0 1.0E+07 6FBE+06  1.7983 00001 4436407 00339 120E+08 2R4E+07  6.30E+08 2.95E+16
32 1024 4 32 1024 4 ] 1.0E+07 S8BE+406  1.7983 00001 590E+07 00339 120E+08 254E+07 A6.63E+08 3.13E+15
3 1024 8 3 1024 4 0 1.0E408 552E407  1.8131 00000 1.02E409 0.0194 1.19E+409 252E+408 B6.72E+09 ITIEHT
GZIP input.compressed
L1l-C L1 DCache Tatal Marmalized
. . | Accesses . . Fast ICache ICache DCache Energy-Delay
Line Size Associ|  Miss Toumarment Line Size Instructions|  Cycles IPC B Miss L2 Power |  Power . Decrease in
{Bytes) #of Sets ativity | Saturation Length ?wﬂwhwﬂa (Bytes) Forward Miss Rate|  Power Rate Power (Energy) | (CYCIESTEREaY) | 2o Delay
32 1024 8 1 1 8192 131072 32 1024 4 1] 10E+H}5 588E+)4 17015 00038 109E+06 01423 127EH6 2BBE+D5 7.16E+D6 4 21E+11 1.000
32 1024 a8 1 1 8192 131072 32 1024 4 o 10E+06 7 49E+05 13350 00006 996E+06 01230 1B62E+)7 342E+06 B 74E+07 B.55E+13 0957
32 1024 a8 1 1 8192 131072 32 1024 4 i) 1.0E+7 S43E406 18417 00001 455E407 00278 117E+08 248E407 G.OVE+IS 3.30E+15 0917
32 1024 G 1 1 8192 131072 32 1024 4 o 1.0EHIE 552E+07 18126 00000 364EHE 00194 119E+09 252E+08 B.O7E+HI9 3.35E+17 0,903
32 1024 8 1 1 8192 131072 32 1024 4 1] 10E+H3 541E+)8 18492 00001 353E+08 00163 1.17EH0 S00E+09 B.20E+10 3.35E+19 0.907
32 1024 2 1 1 8192 131072 32 1024 4 o 1.0E407 5 56E41G 1.7980 0.0001 JASE4D7 00339 1.20E+08 254E407 520E+03 2E89EH+5 0982
32 1024 4 1 1 8192 131072 32 1024 4 0 10EH)Y BA5EE+)E 17980 00001  370EHD7 00339 1 20EHE 254E+7 541E+HS J0E+S 0,961
32 1024 8 1 1 8192 131072 32 1024 4 1] 10E+8 552E+)7 18126 00000 3B4E+DE 00194 1.19EHI9 252E+08 GO7TE+D9 3.35E+17 0403
32 1024 8 1 1 1024 131072 32 1024 4 o 1.0E407 5 56EHIG 1.7980 0,000 4. 15E407 00339 1.20E+38 254E+07 G.A7E+DS J43EHE 0,954
32 1024 g 1 1 8192 131072 32 1024 4 1] 1.0EH)Y 543E+06 18417 00001 455EHF 00278 1.17E+E 248E+07 B.O7E+IS 3.30E+15 097
32 1024 8 1 1 32768 131072 32 1024 4 i) 10E+)7 556E+06 17980 00001 429E+07 00339 1.20EH08 254E+07 G.18E+03 JAE+S 0.956
32 1024 a8 1 1 131072 131072 32 1024 4 i) 1.0E+07 S5G6E406 17981 00001 4BBE+D7 00339 120E+08 254E407 B22E+08 34EE+15 0962
32 1024 8 1 1 8192 1024 32 1024 4 1] 1.0EH)Y 556E+06 17979 00001 365EHY 00339 1.20E+HE 254E+07 B.12E+13 JA0E+S 0.947
32 1024 8 1 1 8192 8192 32 1024 4 i) 10E+)7 556E+06 17980 00001 370E+07 00339 1.20E+08 254E+07 G.12E+03 JA0E+1S 0947
32 1024 a8 1 1 8192 131072 32 1024 4 i) 1.0E+07 S5GE406 17980 00001 418E+07 00339 120E+08 254E407 GATE+IS 343E+15 0955
32 1024 g 1 1 8192 1048576 32 1024 4 o 1.0E+H7 5.56E+H1G 1.7983 0,000 T7AEHD7 00339 1.20E+38 254E+07 EB.52E+03 3E3EHS 1,009
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T m.m_lww I-Cache Time W“m Uunﬂﬁjwmmoo Fast Instructions|  Cycles PC ICache ICache DCache DCache L9 Power Total Power | Energy-Delay
1 1 - -
Forward Iiss Rate Power | Mizs Fate P owear Ener Cycles™Ene
(Bytes) #0of Sets (Bytss) #of Sets | hity (Energy) |(Cy rgy)
32 1024 8 32 1024 4 ] 1.0E405 BE7E+04 14999 00032 123E+406 00172 1.44E+05 304E+05  B.13E+406 5_42E+11
32 1024 8 32 1024 4 0 1.0E+06 6.53E405  1.5302 0.0037 1216407 00122 1.41E+07 298E+06 7.97E+07 5.21E+13
32 1024 8 32 1024 4 0 1.0E407 G58E405  1.5187 0.0008 1226408 00044  1.42E408 300407 S.03E+08 £.28E+15
32 1024 8 32 1024 4 ] 1.0E408  B94E407  1.4404 00003 1286408 00083 150E+08 3.17E+408  5.46E+09 5.87E+7
32 1024 8 32 1024 4 3E+408 25E408 154E408 16251 0.0006 285E+09 00065 3326409 1.42E+09 1.95E+10 3.00E+18
32 1024 2 32 1024 4 0 1.0E407 7.73E+08  1.2940 0.0193 B.15E+07 00044 1B7E+08 352E+407  7.37E408 £ BOE+15
32 1024 4 32 1024 4 ] 1.0EH07 B77E+06 14772 00029 7.9E+07 00044  1.46E+05 309E+07  6.65E+05 4 B4E+15
32 1024 8 32 1024 4 0 1.0E407 G.50E+06  1.5197 0.0008 1.226E+08 00044 1426408 3.00E+07 ©.03E+08 5.26E+15
GCC ccep.i -funioltloops -farce-mem -fese-follaw jumps -fose-skip-blocks -fexpensive-optimizations -fstrength-reduce -fpeephole fschedule-insns finline-functions fschedule-insns -gquiet
L1 I-Cache L1D-Cache DCache Total Mormalized
Line Size Associl  Miss . | Toumament Accesses Line Size Associ| F _umm_z”_ Instructions|  Cycles IPC _.._.__._umnmrm» _Wmn:m Miss U%mnrm L2 Power | Power om:m_ﬁﬁmcm_mu_ Decrease in
(Bytes) #of Sets Saturation Hits to win Length ._.o”wsﬂf_w_._ﬂﬂa (Bytes) #of Sets ativity o 188 Rate e Rate e (Energy) (Cycles"Energy) Energy-Delay
32 1024 i 1 8192 131072 32 1024 4 a 1.0E+15 EBE7E+D4 14999 DO0032 {123EH0E 00§72 1.44E+06 304E+05 B.13E+D6 5.42E+11 1.000
32 1024 1 1 8152 131072 32 1024 4 1] 1.0EHE C.54E402  1,5208 0,007 1.06EH07 00122 1.ME+07 298E+06 7 G62E+07 5 1EHZ 0.932
32 1024 i 1 8192 131072 32 1024 4 u] 10E+07 BBIEHE 15124 0001 1.02EH0B 00044 1.43E+408 302E+07 7.86E+03 5 20E+1S 0.933
32 1024 1 1 8192 131072 32 1024 4 a 1.0E+5 GO6E+D7  1.4364 0.0011 1.04E+08 00053 1.50E+09 3.18E+03 8§.23E+09 5.73EHT 0.576
32 1024 1 1 8192 131072 32 1024 4 SE+08 25E+08 154E+08 16223 00008 192E#08 0005 333E+09 1.43E+08 1.8BE+10 2 8RE+18 0.856
32 1024 2 1 1 8192 13072 32 1024 4 1] 10E+07 773E+06 1.2939 00193 G4EHV 00044 167E+08 352E407 7.36E-+03 5.B9E+S 1.000
32 1024 4 1 1 8192 131072 32 1024 4 i} 10E)7 G78E+5  1.4755 00031 7.1MEH7 00044 145E+08 309E+07 B.85E+00 4 B4EHS 1.0
32 1024 g i 1 2192 131072 32 1024 4 a 1.0E+07 EBRIE+0E 15124 00041 1.02E408 00044 1.43E+08 302E+407 7.86E403 520E+15 0.933
32 1024 a i 1 1024 131072 32 1024 4 a 1.0E+07 EB5E+05 15029 0O00ME 950EH07 00044 1.44E408 303E407 7.83E408 52ME+S 0935
32 1024 & i 1 3192 131072 32 1024 4 1] T0EH)7 GEIEHE 15124 00011 1.02EH06 00044 1.43E+083 3J02E+D7 7.66E+13 5.20EHS 0.933
32 1024 a 1 1 32768 13072 32 1024 4 1] 10E407 ERIE4E 15139 00010 1.05EHE8 00044 1.43E408 30ME407 7.8BE403 EMEHE 0835
32 1024 5] i 1 131072 131072 32 1024 4 o 10EH)7 GA9E+IE 1.59175 00008 1.12EHDB 00044 1.42E+08 301E+D7 7.593E+08 5.23E+15 0.989
32 1024 5] i 1 8152 1024 32 1024 4 o 10E+H)Y GB7ZE+5 1.4874 00023 ©.20EH7 00044 1.45E+08 30O7E+D7 7.77E+03 522E+HS 0.939
32 1024 a 1 1 a162 8192 32 1024 4 a 1.0E+07 E70E+05 1.4920 00020 BS45EH7 00044 1.45E+08 30BE407 7.77E+08 £21EHS 0.986
32 1024 g i 1 8192 131072 32 1024 4 1] 10E+7 BBIEHE 15124 0DO004F  1.02EH0B 00044 1.43E+08 302E+07 7.86E+03 5.20E+HS 0.983
32 1024 a 1 1 2162 1048576 32 1024 4 a 1.0E+07 GA9E+05 15176 00008 1.14EHE 00044 1.42E408 3JMME+4D7 7 96E+08 5 24EHS 0.9a2
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VPR net.in arch.in place.in -nodisp -route_only -route_chan_width 15 -pres_fac_mult 2 -acc_fac 1 -first_iter_pres_fac 4 -initial_pres_fac &

|I o =
G mr._ ! Oﬂlﬂ—.:i} G —mu._ D QWAU—._M Fast Instruction Cvel PC ICache ICache DCache DCache L2 Power Total Power | Energy-Delay
€ SIZ8 ) 4 of Sets |00 [HN® 2128 | 4 o Sets |20 Forward structions yeles Miss Rate Power |Miss Rate| Power owe (Energy) [{Cycles*Energy)
(Bytes) jativity| (Bytes) iativity
32 1024 8 32 1024 4 0 1.0E+05 O9.74E+04  1.0268 0.0151  1.60E+06 00303 2.10E+06 4.44E+05 1.19E+07 1.16E+12
32 1024 8 32 1024 4 0 10E+06 566E+05  1.7683 0.0024 1.05E+07 00063  1.22E+07 2.58E+06  5.89E+07 3.90E+13
32 1024 8 32 1024 4 ] 10E+07 485E+06  2.0616 0.0003 B898E+07 00009 1.05E+08 2.21E+07 5.91E+08 2.87E+15
32 1024 8 32 1024 4 0 1.0E408 4.77E+07  2.0968 0.0000 B8.63E+08 00004 1.03E+09 2.18E+408 5.81E+09 277EH7
32 1024 8 32 1024 4 0 10E+09 582E+08  1.7176 0.0000 1.08E+10 00026 1.26E+10 538E+09 7.37E+10 4.29E+19
32 1024 2 32 1024 4 0 10E+07 48BE+06  2.0596 0.0003 367E+07 00009 1.05E+08 2.21E+07 4.B3E+08 225E+15
32 1024 4 32 1024 4 0 10E+07 485E+06  2.0817 0.0003 5156407 00009 1.05E+08 221E+07 4.91E+08 2.38E+15
32 1024 8 32 1024 4 0 1.0E+07 4.85E+406 20616 0.0003 8.98E+07 00003 1056408 221E+07 5.91E+08 287E+15
VPR net.in arch.in _u_ﬂﬂm.m_.. -nodisp -route_only -route_chan_width 15 -pres_fac_mult 2 -acc_fac 1 -first_iter_pres_fac 4 -initial_pres_fac §
L1 I-Cache L1 D-Cache '
Line Size Associ]  Miss |, N roumament| 2525 [ {ine size Assoc mmmm_n_ Instructions]  Cycles IPC ?,__.Omn%M _Wmn:m DN__WME D_n__um.}m L2 Power _uﬂn_w._mm_ﬂ omsm_émwcw_& W_M_Hq“”””m_ﬂ
(Bytes) #of Sets ativity | Saturation Fiits to win Length qo”whuhwﬂﬁm (Bytes) #of Sets ativity o e e e Rate e (Energy) (CyclesEneray) Energy-Delay
32 1024 a 1 1 8192 131072 3z 1024 4 u} 10E+05 974E+04 10268 00151 180E+06 00303 210E+06 4 44E405 1.19E+07 1.1BE+12 1.000
32 1024 g 1 1 8192 131072 32 1024 4 0 1.0E+06 SE6E+05 17683 00024 92BEH6 00063 1.22E407 258E+06 6.77E+07 383EH3 09583
32 1024 51 1 1 8192 131072 32 1024 4 o 1.0E+)7 485E+H)6 20614 00003 448EH)7 00009 1.05E+08 221EHI7 5.46E+HIG 2B5E+HS 0,924
32 1024 a8 1 1 8192 131072 32 1024 4 o 1.0E+3 477E+)7 20966 00000 397E+)3 00004 1.03E+08 218E+08 533E+19 254EH17 0917
32 1024 a 1 1 8192 131072 a3z 1024 4 o 10E+)2 SE7E+)3 17035 00009 4E65E+09 00026 1.27E+10 S543E+09 B.81E+10 4 D0E+19 0932
32 1024 2 1 1 8192 131072 32 1024 4 0 10E407 486E+06 20596 (00003 386E+07 00009 1.05E408 221E+407 4.63E408 2.25EH5 1,000
32 1024 4 1 1 8192 131072 32 1024 4 o 1.0E+)7 485E+H)6 20614 00003 4 11EH7 00009 1.05E+08 221E+HI7 4.81E+IG 2.33EH15 0,979
32 1024 a8 1 1 8192 131072 32 1024 4 ul 1.0E+07 485E+)6 206814 00003 448E+07 00002 1.05E+08 2 21E+I7 5 46E+IE 2B5E+15 0,924
32 1024 a8 1 1 1024 131072 32 1024 4 i} 1.0E+07 500E+06 20004 00031  397E+07 00002 1.08E+08 228E407 557E+0E 278EH5 0,970
32 1024 g 1 1 8192 131072 32 1024 4 0 10E+07 485E+06 20614 00003 448E+07 00009 1.05E406 221E+07 5.46E+08 2.65EHS 0.924
32 1024 g 1 1 32768 131072 32 1024 4 o 1.0E+)7 485E+)6 206814 00003 452EH)7 00009 1.05E+08 221E+HI7 S547E+HIG 2B5E+1S 0,925
32 1024 a8 1 1 131072 131072 32 1024 4 ul 1.0E+07 485E+)6 206815 00003 467E+07 00002 1.05E+08 2 21E+07 5 48E+08 2 BEE+15 0927
32 1024 8 1 1 8192 1024 32 1024 4 0 1.0E+07 488E+06 20475 00009 394E+07 00009 1.06E+08 223E407 5.44E408 2BEEHS 0927
32 1024 g 1 1 192 192 32 1024 4 0 10E+07 468E+06 20430 00009 400E+07 00009 1.06E40C 223E+07 5.45E+408 26EEHS 0928
32 1024 g 1 1 8192 131072 32 1024 4 o 1.0E+)7 485E+)6 206814 00003 448E+7 00009 1.05E+08 2 21E+HI7 5.46E+IG 2B5E+15 0,924
32 1024 a8 1 1 8192 1048576 3z 1024 4 o 1.0E+07 485E+)6 206816 00003 594E+07 00002 1.05E+08 221E+07 SB1E+IB 272E+15 0,949
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