
This is a preprint of an article submitted for consideration

in the INTERNATIONAL JOURNAL OF ELECTRONICS

Copyright c©2007 Taylor and Francis; INTERNATIONAL

JOURNAL OF ELECTRONICS is available online at:

http://journalsonline.tandf.co.uk/

Small-Scale Reconfigurability for Improved Performance and

Double-Precision in Graphics Hardware

Kevin Dale†, Jeremy W. Sheaffer†, Vinu Vijay Kumar†, David P. Luebke‡,
Greg Humphreys†, and Kevin Skadron†
(submitted for review on November 30, 2006)

We explore the application of Small-Scale Reconfigurability (SSR) to graphics hardware. SSR is
an architectural technique wherein functionality common to multiple subunits is reused rather than
replicated, yielding high-performance reconfigurable hardware with reduced area requirements (Vi-
jay Kumar and Lach 2003). We show that SSR can be used effectively in programmable graphics
architectures to allow double-precision computation without affecting the performance of single-
precision calculations and to increase fragment shader performance with a minimal impact on chip
area.

1 Introduction

Every hardware system makes a tradeoff between performance and flexibility.
At one end of the spectrum, general purpose processors provide maximum
flexibility at the expense of performance, area, power consumption, and price.
Custom ASICs are the other extreme, providing maximum performance at a
minimum cost, albeit for only a very narrow set of applications.

Modern graphics hardware requires both high performance and flexibility,
placing it somewhere between these two extremes. Traditional intermediate
hardware solutions like FPGAs are inappropriate for graphics processors be-
cause of their large size and low performance relative to their fixed-logic coun-
terparts. Small-scale reconfigurability (SSR) provides an attractive compro-
mise; systems that use SSR components can approach the high speed and small
size of ASICs while providing some specialized configurability (Vijay Kumar
and Lach 2003). In this paper, we explore the applicability of SSR to pro-
grammable graphics hardware.

The simplest example of a reconfigurable component is two fully functional
components connected with a multiplexer (see Fig. 1). Although these two

†University of Virginia, {kdale, jws9c, vv6v, humper, skadron}@virginia.edu
‡NVIDIA Research, david@luebke.us

2 SSR for Improved Performance and Double-Precision in Graphics Hardware

A B

C D

A B

E F

MUX

(a) Näıve reconfigurable hardware

A B

C D E F

MUX

(b) A more efficient solution

Figure 1. A näıve implementation of reconfigurable hardware can be built by simply multiplexing
between two distinct, unmodified units (a), but a more efficient design would reuse common

substructure to avoid replication (b).

components are disjoint, in typical usage they will contain substantially sim-
ilar redundant substructures, which is precisely the situation in which SSR
performs best. Rather than replicate all of the redundant structure, one can
instead reuse common substructure, and do so at a fine granularity within a
single component (Vijay Kumar and Lach 2003, Chiricescu et al. 2002).

A common SSR unit is the morphable multiplier. These multiplier-adders
can be reconfigured into a multiplier or an adder in a single cycle. When used
to create fixed-point units, morphable multipliers yield a nearly 17% reduc-
tion in total area when compared to the sum of the sizes of their constituent
parts (Chiricescu et al. 2002).

Graphics processors, like specialized multimedia processors and DSPs, are
a particularly suitable target for SSR due to their vector-processor like oper-
ations. When the same operation is performed repeatedly in SIMD fashion,
reconfiguration and its associated overhead is infrequently needed, and any
cost can be amortized over many instructions. Furthermore, SSR-based com-
ponents typically have lower static power requirements because less hardware
goes unused.

2 Related Work

Dynamically reconfigurable hardware has been a popular topic in recent com-
puter architecture literature, especially in the FPGA and reconfigurable com-
puting communities. The configurability of these systems serves myriad design

Dale et. al 3

goals, among them improved performance, power, area, and fault tolerance
characteristics.

Even et al. (1997) describe a dual mode IEEE multiplier—a pipelined unit
capable of producing one double-precision or two single-precision multiplica-
tions every clock cycle with a three cycle latency. The authors argue that
the reuse of substructure yields a cheap device that performs well for both
precisions. They further claim that the single precision mode is particularly
useful for SIMD applications, like graphics, because it is conducive to systems
on which the same operation is regularly repeated on large numbers of data
points.

Guerra et al. (1998) explore built-in-self-repair (BISR) and its application
to fault tolerance, manufacturability, and application-specific programmable
processor design. Previous work in the area of dynamic repair had made use of
specialized redundant units to replace damaged units; their paper describes the
synthesis of more general units that can replace any of several units on a chip
when damage is detected. The authors coin the term HBISR (heterogeneous
BISR) for the technique.

A morphable multiplier is a device capable of performing either a fixed point
multiply or add using the same hardware structure (Chiricescu et al. 2002).
Morphable multipliers require less area than the sum of the area needed for a
separate multiplier and adder (in fact, they require only slightly more than a
multiplier alone), while imposing negligible performance penalties.

Metrics like area, performance, and power are easily quantified, but it is less
obvious how to measure the increasingly important metric of hardware flexi-
bility. Compton and Hauck have defined a testing method and quantification
metric for flexibility of reconfigurable hardware (Compton and Hauck 2004).
Other examples of relevant research in reconfigurable hardware include Kim
et al. (1997), Chiou et al. (2005).

The work in this paper makes use of Brook (Buck et al. 2004), a stream-based
programming language which allows the programmer to write general-purpose
applications for a GPU without worrying about the sometimes byzantine de-
tails of GPU programming. Our experiments all use Chromium (Humphreys
et al. 2002) to intercept and analyze streams of graphics commands made by
real applications. The primary advantage of using Chromium is that we ensure
that our workloads are not contrived. Although we use Brook and Chromium
without modification, we have enhanced the Qsilver graphics architectural
simulator (Sheaffer et al. 2004, 2005) to model the necessary aspects of the
fragment pipeline. A detailed description of our modifications to Qsilver and
our experimental setup are presented in Sect. 3 and Sect. 4.

4 SSR for Improved Performance and Double-Precision in Graphics Hardware

Fragment processor

Stage 2

Stage 1 (+ Texture)

Branch Processor

Rasterizer

(a) Fragment processor

Crossbar

MULMULMULMUL

Texture Operations

SFU

(b) Stage 1

ADDADDADDADD

Crossbar

Crossbar

SFU

MULMULMULMUL

Crossbar

(c) Stage 2

Figure 2. Baseline fragment units used for comparison. Stage 2 can take up to three 4-channel
operands, one of which directly feeds the ADD units and whose data path is represented here by

dashed lines. Note the additional data paths that cascade the ADD units; these allow for a
single-pass dot product (Seifert 2004).

3 Simulation Setup

3.1 The Qsilver Simulator

Qsilver is a simulation framework for graphics architectures that can simu-
late low-level GPU activity for any existing OpenGL application (Sheaffer
et al. 2004). Qsilver uses Chromium (Humphreys et al. 2002) to intercept and
transform an OpenGL application’s API calls and create an annotated trace
that encapsulates geometry, timing, and state information. This trace serves
as input to the Qsilver simulator core, which performs an accurate timing
simulation of the graphics hardware and produces detailed statistics.

Qsilver is configured at runtime with a description of its pipeline. In these
experiments we simulate an NV4x-like architecture, with a pipeline configura-
tion similar to that of NVIDIA’s 6800 GT, so we configure Qsilver to model
a system with 6 vertex pipelines and 16 fragment pipelines. The fragments
are tiled in blocks of 2 × 2, so we effectively have 4 tile pipelines, each of
which can process 4 fragments simultaneously. NV4x GPUs use a similar tiled
configuration in the fragment engine (Kilgariff and Fernando 2005).

To account for modifications to the fragment pipeline, we enhanced Qsilver
to track fragment shader activity. Our modified Qsilver simulator stores a per-
triangle identifier which uniquely specifies which, if any, fragment shader was
bound when that triangle was being rendered. We also store the text of the
fragment shaders so that they can be analyzed by the Qsilver simulator core.

Dale et. al 5

3.2 Baseline Architecture

Both of the following experiments hold fixed the graphics pipeline described
above and focus on the programmable path of the fragment engine. While
the NV4x vertex engine follows a MIMD architecture, its fragment engine is
truly SIMD in nature. Additionally, in many modern games the majority of
fragments are shaded by fragment programs (see Fig. 3), so we focus our efforts
on the programmable path in the fragment engine.

Our baseline fragment pipeline, depicted in Fig. 2, is similar to that found in
NV4x GPUs1. A single fragment unit contains two stages; four-channel frag-
ments (RGBA) reach stage 1 from either the rasterizer or fragment pipeline
loopback. Stage 2 can execute instructions in parallel with stage 1 in dual-
issue mode as well sequentially, taking its operands from the output of stage
1. Crossbars route operands to the appropriate functional units, and Special
Function Units (SFUs) are used to perform special scalar operations like re-
ciprocal square root. The fragment units can also operate in co-issue mode,
whereby a single 4-channel data path functions as two distinct data paths,
with independent instructions executing in parallel, on the same unit, across
these two data paths—e.g., a 3-vector and a scalar, or two 2-vectors (Kilgariff
and Fernando 2005).
NVShaderPerf2—a utility that displays shader scheduling information for

NVIDIA hardware—is used to schedule programs for our baseline architec-
ture. While NV4x GPUs have dedicated hardware for performing common
half-precision operations in parallel with full-precision operations, none of the
fragment programs tested included any half-precision operations. However, to
be sure of a legitimate comparison of performance along the full-precision path,
NVShaderPerf is configured to schedule programs for our NV4x-like architec-
ture using the full-precision path only.

3.3 Benchmarks

For benchmarking, we use the recent game Doom III (see Fig. 3), as well as
four demo programs included with the Brook distribution. We use Chromium
to intercept the fragment programs used in each benchmark and to generate
traces for simulation under Qsilver. Each benchmark, along with its fragment
programs, is summarized below.

(i) doom3, a representative 50-frame demo from the game. Includes a shader
for general per–pixel lighting and a special effects shader.

1Based on those details that have been made available to the public or indirectly obtained via patents
and extensive benchmark tests (see Kilgariff and Fernando 2005, Seifert 2004, for additional details).
2Unified compiler version 77.80.

6 SSR for Improved Performance and Double-Precision in Graphics Hardware

(a) (b)

Figure 3. Screen captures from the doom3 benchmark. On the left, the color of each pixel is
modulated to indicate which fragment program generated it. The right image is the unmodified

rendering from the game. Notice that the majority of pixels are generated by programmable
fragment shaders.

(ii) bitonic sort, a parallel sorting network. Includes a main sorting kernel
and simple pass-thru kernel.

(iii) image proc(25,25), an image convolution shader. Includes a main con-
volution kernel and pass–thru kernel.

(iv) particle cloth(5,10,15), a cloth simulation. Includes six kernels that im-
plement the simulation.

(v) volume division(100), a volume isosurface extractor. Includes ten ker-
nels for various stages of the extraction.

4 Experiments and Results

In this section, we describe two experiments we performed to validate our hy-
pothesis that using SSR components in a modern GPU architecture can benefit
certain applications. We show improved performance across a set of test ap-
plications with only a minimal impact on GPU die area and also demonstrate
that double-precision floating point capabilities can be added to the fragment
pipeline without affecting the performance of single-precision applications.

4.1 Increased Throughput

We first compared the simulated performance of the NV4x-like fragment
pipeline to that of an SSR fragment pipeline architecture, whose fragment
units are depicted in Fig. 4.

Dale et. al 7

Crossbar

FACFACFACFAC

Texture Operations

SFU

(a) Stage 1

FACFACFACFAC

Crossbar

Crossbar

SFU

FACFACFACFAC

Crossbar

(b) Stage 2

Figure 4. Proposed SSR fragment units for the first experiment. FAC modules are Flexible
Arithmetic Units, and they replace each of the ADD and MUL units in our baseline architecture.

4.1.1 Target SSR architecture. The fragment units in our target SSR ar-
chitecture are similar to those in the baseline architecture; however, we replace
both the multipliers and adders in stages 1 and 2 with single-precision Flexible
Arithmetic Units (FACs). An FAC can be very quickly reconfigured to per-
form either a multiplication or an addition and uses only slightly more gates
than a multiplier. With current technology, these FACs can produce a result
every cycle and can be reconfigured between cycles, assuming a 400 MHz clock
and a two-stage pipeline (Vijay Kumar and Lach 2003). Finally, in the first
set of FACs in our SSR architecture, we duplicate the accumulate data paths
from the baseline architecture’s ADD units. These data paths require a trivial
amount of additional area overhead.

In addition to supporting all the existing functionality of our baseline units,
the modified SSR units provide new scheduling opportunities beyond those of
the baseline. First, the baseline fragment pipe is only capable of performing a
single full-precision 4-vector addition per pass in stage 2 (Seifert 2004), while
the SSR pipeline is capable of performing three in one pass—one in stage 1 and
two chained additions in stage 2 (see Fig. 5a). Moreover, there is more freedom
to schedule dot product and multiply-accumulate operations, both of which
are extremely common in fragment programs. For example, the SSR pipeline
can execute a 32-bit 3-channel dot product (DP3) and dependent scalar-vector
multiplication—e.g., the expression (~a ·~b)~c—in a single pass by computing the
per-channel multiply of ~a and ~b in stage 1, accumulating the channel products
to obtain ~a · ~b in the first set of FACs in stage 2, and performing a scalar-
vector multiply in its second set of FACs (Fig. 5b). Extending this scheduling
approach to co-issue configurations is straightforward.

8 SSR for Improved Performance and Double-Precision in Graphics Hardware

Stage 2

Stage 1 (+ Texture)

FAC x 4 (1)

FAC x 4 (3)

FAC x 4 (2)

+

+

+

(a) Single-pass configuration for multi-
ple 4-vector additions.

Stage 2

Stage 1 (+ Texture)

FAC x 4 (1)

FAC x 4 (3)

FAC x 4 (2)

x

x

+

(b) Single-pass configuration to com-

pute (~a ·~b)~c.

Figure 5. Two example configurations that provide additional scheduling opportunities for the
SSR fragment pipeline.

4.1.2 Shader analysis. Considering the additional scheduling opportunities
provided by the SSR architecture, as well as the known scheduling constraints
of NV4x GPUs, we hand-scheduled each fragment program for our SSR frag-
ment engine. As was done for the fragment program schedules on the baseline
architecture, we limited program schedules for the SSR architecture to the
full-precision path as well.

With 16 fragment pipelines and a 400Mz clock, both architectures have a
maximum throughput of 6 GP/s (gigapixels per second). This assumes a 1-
cycle texture lookup. Results for the benchmarks and their constituent shaders
are given in Table 1. For most of the shaders, the SSR architecture provides an
improvement over the baseline. The amount of improvement of course varies
from shader to shader, depending upon the mix of instructions and corre-
sponding scheduling advantages for the SSR architecture. Frequent dot prod-
uct and multiply-accumulate instructions across the benchmarks led to the
performance improvements for the SSR architecture seen in Table 1.

4.1.3 Full pipeline simulation. There are a number of possible bottlenecks
in the full graphics pipeline, however, that can prevent performance improve-
ments in the fragment engine core from being realized across the full pipeline.
First, available memory bandwidth and cache performance in the texture units
can prevent the pipeline from achieving maximum pixel throughput. GPUs
typically incorporate a high degree of multithreading to hide the latency in-
troduced by texture memory accesses. For example, when a shader unit arrives
at a texture memory instruction, the memory access is initialized and the frag-

Dale et. al 9

Table 1. Per-pixel execution time and pixel throughput, in megapixels per-second (MP/s), for the

baseline and target fragment units, assuming a 1-cycle texture lookup.

Benchmark Shader Execution time (cycles) Throughput (MP/s)

Baseline SSR Baseline SSR

bitonic sort 0 15 14 426.67 457.14

1 1 1 6400.00 6400.00

doom3 0 12 11 533.33 581.82

1 7 7 914.29 914.29

image proc 0 28 26 228.57 246.15

1 1 1 6400.00 6400.00

particle cloth 0 6 6 1066.67 1066.67

1 16 15 400.00 426.67

2 18 17 355.56 376.47

3 10 8 640.00 800.00

4 11 9 581.82 711.11

5 2 2 3200.00 3200.00

volume division 0 2 2 3200.00 3200.00

1 1 1 6400.00 6400.00

2 22 20 290.91 320.00

3 30 26 213.33 246.15

4 19 16 336.84 400.00

5 57 52 112.28 123.08

6 15 13 426.67 492.31

7 13 13 492.31 492.31

8 56 52 114.29 123.08

9 1 1 6400.00 6400.00

ment is temporarily banked until the memory operation is complete. A context
switch occurs immediately, at which point the shader unit can continue doing
useful work on another fragment’s thread. In a SIMD environment, the thread
pool is sufficiently large to effectively hide memory latency in this manner,
provided that there is also sufficient memory bandwidth and a large ratio of
arithmetic instructions to memory instructions. While texture access patterns
vary across the benchmarks included here, all of their shaders contain a large
percentage of arithmetic instructions, enabling effective latency-hiding. Qsil-
ver employs a simple probabilistic cache model that can reasonably capture
this phenomenon (Sheaffer et al. 2004) in the full pipeline simulation.

The vertex processor can also be a system bottleneck, particularly for scenes
with a large number of extremely small (in screen-space) polygons. However,
for many GPGPU applications, and for all of those included in the suite of
benchmarks here, the vertex processor is relatively inactive. A typical GPGPU
application only renders screen-filling quadrilaterals; this makes for an ex-
tremely low polygon-to-fragment ratio and a nearly-idle vertex processor.

Qsilver’s queue-based simulation architecture models the graphics pipeline
at a resolution sufficient to capture the relative amounts of activity between the
fragment and vertex engines. This is accomplished by aggregating architectural
performance counter data across the course of the simulation. Counters for pre-
transform-and-lighting vertex queues, as well as those for fragment creation,

10 SSR for Improved Performance and Double-Precision in Graphics Hardware

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

al
iz

ed
 F

u
n
ct

io
n
al

 U
n
it

 A
ct

iv
it

y

Tens of Thousands of Cycles

Vertex Processor
Fragment Processor

Figure 6. Traces of pre-transform-and-lighting vertex queue writes and fragments created during a
single frame of doom3, generated from Qsilver counter data. Fragment activity is at its maximum
for a substantial portion of the frame, while vertex activity reaches its peak only once. This frame

is representative of all frames across the doom3 benchmark, indicating that the benchmark is
predominantly fragment-bound.

are among Qsilver’s counters. Full queues block earlier stages in the pipeline
and so imply vertex- or fragment-bound behavior, respectively (Sheaffer et al.
2004). Fig. 6 was generated from these Qsilver counters and indicates that,
like the Brook benchmarks, the Doom III benchmark is also predominantly
fragment-bound.

For doom3, there is also the possibility that the fixed-function path in the
fragment engine is used almost exclusively, given that the benchmark only
uses two shaders across the entire 50-frame trace. However, the game per-
forms per-pixel lighting with a fragment shader for most objects in the game,
using OpenGL fixed-function lighting rarely. The 1-cycle improvement in this
heavily-used shader should likely show a significant performance increase over
the entire pipeline as well.

Fig. 7 shows performance results from full-pipeline simulations under Qsil-
ver, using the fragment program schedules discussed in the previous section.
For all benchmarks, speedup over the entire graphics pipeline for the SSR ar-
chitecture does indeed correspond with the fragment processor performance
results in Table 1. This indicates that all benchmarks are sufficiently frag-
ment processor-bound for the performance increase in the fragment units to
translate to a corresponding improvement over the full pipeline.

Equally as important, based on conservative inverter-equivalent gate count

Dale et. al 11

Benchmark

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

volume_divisionparticle_clothimage_procdoom3bitonic_sort

Fu
ll

pi
pe

lin
e

sp
ee

du
p

 1

Figure 7. Speedup for the target SSR architecture over the baseline for a full pipeline simulation
under Qsilver.

estimates1, each FAC requires 12,338 gates, only 710 more than a single-
precision multiplier (11,628 gates). Replacing the adders (7,782 gates) requires
4,556 additional gates. This additionally requires the small overhead of a mul-
tiplexer to configure the FACs. Given these gate estimates, with 16 fragment
pipelines, the cost of our proposed use of SSR is 382,464 gates, which is less
than 0.2% of the total area of NVIDIA’s 6800 GT (an estimated 222 million
transistors(Medvedev and Budankov 2004)).

4.2 Dual-Mode IEEE Adders and Multipliers

The GPGPU and scientific computing communities would like to have the
ability to perform double-precision calculations on the GPU. Unfortunately for
them, the gaming industry drives the graphics hardware industry, and games
do not currently require double-precision. We present a method here that can
satisfy the demands of the scientific community without compromising the
performance of the single-precision path so crucial to video game performance.

A dual-mode floating point unit is a small-scale reconfigurable unit capa-
ble of performing two simultaneous single-precision operations or one double-
precision operation. Dual-mode units can be fully pipelined to produce results
every cycle. Like other SSR units, dual-mode multipliers and adders require
internal multiplexers for path selection. Additionally, they require a rounding
unit capable of flexible rounding modes. The total additional structure for this
modification is insignificant (Even et al. 1997). These units are also capable
of operating at the modest 400 MHz clock speed of our baseline architecture.

1All area estimates are given in terms of inverter-equivalent gate area unless otherwise specified.

12 SSR for Improved Performance and Double-Precision in Graphics Hardware

4.2.1 Target SSR architecture. We simulate a pipeline in Qsilver that uses
dual-mode multipliers and adders in the fragment engine, where we replace
pairs of single-precision FPUs in the baseline architecture with a single corre-
sponding dual-mode FPU. This effectively gives us an 8-wide double-precision
fragment engine with approximately half the throughput of the single-precision
configuration. Double-precision configuration also requires that we retask pairs
of 32-bit registers as single 64-bit registers. With half as many fragment
pipelines, each double-precision pipe has the same number of available 64-bit
registers as each single-precision pipe has 32-bit registers (four 32-bit registers
per fragment in the case of NV4x GPUs (Kilgariff and Fernando 2005)). By
a similar argument, the bandwidth requirements for the memory and register
bus systems in 8-wide double-precision mode should not exceed those of the
original 16-wide single-precision configuration.

We have conservative area estimates for a double-precision adder and mul-
tiplier of 13,456 gates and 37,056 gates, respectively. The real overhead here
comes from replacing each pair of single-precision FPUs with one dual-mode
FPU, at an approximate cost of 815,744 gates over the entire fragment en-
gine, or 0.4% of the 6800 GT’s total area. Note that we have modified only
the multiplication and addition units, so additional precision is not available
for specialized operations such as logarithms or square roots. Although many
scientific applications would benefit greatly from high precision addition and
multiplication alone, a full double-precision arithmetic engine would be ideal.
Dual-mode reciprocal, square-root, logarithm, and other specialized units are
a topic for future exploration.

Table 2. Single- and double-precision GPGPU computations using SSR. Each application comes

with the Brook distribution. The 32-bit cycles row shows the GPU cycle count for our NV4x-like

architecture. Note that these timings are identical whether we are using a dual-mode unit configured in

single-precision mode or a dedicated single-precision unit. The 64-bit cycles row shows the cycles required

for double-precision after reconfiguration. As expected, none of the programs takes more than twice as

long with double-precision than with single-precision.

Benchmark bitonic sort image proc particle cloth volume division

32-bit cycles 620 1,252 19,504 254,923,418

64-bit cycles 1177 2,445 38,959 509,846,783

32→64-bit speedup .527 .512 .501 .500

4.2.2 Full pipeline simulation. To validate our SSR-based graphics archi-
tecture capable of both single- and double-precision, we traced the four Brook
benchmarks through Qsilver. Results are summarized in Table 2. This table
lists the cycle counts for each application in both single- and double-precision
modes. Note that the double-precision calculations never require more than
twice as long as the corresponding single-precision calculation. Because the

Dale et. al 13

timing results are identical for dual-mode units configured in single-precision
mode and dedicated single-precision units, we have shown that by using
SSR we can add double-precision addition and multiplication to the graph-
ics pipeline with only a modest increase in gate count and without affecting
the performance of the commonly-used single-precision path.

5 Conclusions

We have extended Qsilver to record information on fragment program state
in its annotated trace. Our modified Qsilver core then uses this new informa-
tion, along with fragment program listings and timing information, to model
the programmable fragment engine of an NV4x-like architecture. With this
framework in place, we have demonstrated the applicability of Small-Scale
Reconfigurability to graphics architectures. We have shown that it is possible
to increase the throughput of the fragment engine with only a small increase
in die area. In addition, we have demonstrated that dual-mode multipliers and
adders can provide double-precision in the fragment engine to support scien-
tific computing in the GPGPU community with no detriment to the gamers
who drive the market. The vector-like operations performed on GPUs make
them a particularly good target for such techniques, since need for reconfigu-
ration is rare in SIMD environments, and since the cost of reconfiguration is
amortized over many operations.

6 Future Work

The fragment engine is one of many elements of the graphics pipeline. Ap-
plications of SSR will likely yield similar performance improvements in other
units as well. Another area of exploration that is likely to be fruitful for SSR
is power consumption. Whenever portions of a chip are unused, they use no
dynamic power, but they leak static power. By their very nature, SSR com-
ponents are rarely idle, and should therefore leak a minimum of static power.
Power leakage is currently a major issue with GPUs, and reducing leakage be-
comes crucial as continuing improvements in chip manufacturing technology
exacerbate this problem (Sheaffer et al. 2004).

7 Acknowledgments

We would like to thank John Lach for his input on SSR and Peter Djeu for his
collaboration on Chromium extensions. This work was funded by NSF grants
CCF-0429765, CCR-0306404, and CCF-0205324.

14 REFERENCES

REFERENCES

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Han-
rahan, P. (2004), ‘Brook for GPUs: Stream computing on graphics hardware’,
ACM Transactions on Graphics .

Chiou, L.-Y., Bhunia, S. and Roy, K. (2005), ‘Synthesis of application-specific highly
efficient multi-mode cores for embedded systems’, ACM Transactions on Embed-
ded Computing Systems .

Chiricescu, S., Schuette, M., Glinton, R. and Schmit, H. (2002), Morphable multi-
pliers, in ‘Proceedings of the International Conference on Field Programmable
Logic and Applications’.

Compton, K. and Hauck, S. (2004), Flexibility measurement of domain-specific recon-
figurable hardware, in ‘Proceedings of the ACM/SIGDA Symposium on Field-
programmable Gate Arrays’.

Even, G., Mueller, S. M. and Seidel, P.-M. (1997), A dual mode IEEE multiplier, in
‘Proceedings of the International Conference on Innovative Systems in Silicon’.

Guerra, L. M., Potkonjak, M. and Rabaey, J. M. (1998), ‘Behavioral-level synthesis
of heterogeneous BISR reconfigurable ASIC’s’, IEEE Transactions on VLSI .

Humphreys, G., Houston, M., Ng, R., Ahern, S., Frank, R., Kirchner, P. and
Klosowski, J. T. (2002), ‘Chromium: A stream processing framework for in-
teractive graphics on clusters of workstations’, ACM Transactions on Graphics
21(3), 693–702.

Kilgariff, E. and Fernando, R. (2005), The GeForce 6 Series GPU Architecture,
Addison-Wesley Pub Co, pp. 471–491.

Kim, K., Karri, R. and Potkonjak, M. (1997), Synthesis of application specific pro-
grammable processors, in ‘Proceedings of Design Automation’.

Medvedev, A. and Budankov, K. (2004), ‘NVIDIA GeForce 6800 Ultra (NV40)’. http:
//www.digit-life.com/articles2/gffx/nv40-part1-a.html.

Seifert, A. (2004), ‘NV40 technology explained’. http://3dcenter.org/artikel/
nv40 pipeline/index3 e.php.

Sheaffer, J. W., Luebke, D. P. and Skadron, K. (2004), A flexible simulation frame-
work for graphics architectures, in ‘Proceedings of SIGGRAPH/Eurographics
Workshop on Graphics Hardware’.

Sheaffer, J. W., Skadron, K. and Luebke, D. P. (2005), Studying thermal management
for graphics-processor architectures, in ‘Proceedings of 2005 IEEE International
Symposium on Performance Analysis of Systems and Software’.

Vijay Kumar, V. and Lach, J. (2003), Designing, scheduling, and allocating flexible
arithmetic components, in ‘Proceedings of the International Conference on Field
Programmable Logic and Applications’.

