
Testing the Feasibility of Running a Computationally  

 

Intensive Real-Time Traffic Simulation on a Multicore 

 

Programmable Graphics Processor 

 

A Thesis 

in STS 402 

 

Presented to 

 

The Faculty of the  

School of Engineering and Applied Science 

University of Virginia 

 

In Partial Fulfillment  

of the Requirements for the Degreee 

 

Bachelor of Science in Computer Engineering 

 

by 

 

Kevin Stammetti 

 

April 4, 2007 

 

 

 

On my honor as a University student, on this assignment I have neither given nor 

received unauthorized aid as defined by the Honor Guidelines for Papers in Science, 

Technology, and Society Courses. 

 

     Signed __________________________________ 

 

 

 

Approved ___________________________________  Date ____________ 

  Technical Advisor – Kevin Skadron 

 

 

Approved ___________________________________  Date ____________ 

  Science, Technology, and Society Advisor - 

  Benjamin Cohen 

 



 ii 

Table of Contents 

 
Chapter 1:  Introduction .......................................................................................................1 

Chapter 2:  Review of Related Literature ............................................................................7 

2.1  Past Traffic Simulation Research..............................................................................7 

2.2  Past GPU Programming Research ............................................................................9 

Chapter 3:  Social and Ethical Context ..............................................................................12 

Chapter 4:  Materials and Methods....................................................................................15 

4.1  CPU Implementation ..............................................................................................15 

4.2  GPU Implementation ..............................................................................................18 

Chapter 5:  Results .............................................................................................................23 

5.1  Experimental Timing Results .................................................................................23 

5.2  CUDA Software Development Methods ................................................................25 

Chapter 6:  Conclusions .....................................................................................................27 

Bibliography ......................................................................................................................30 

 

 

Table of Figures 

Figure 1:  Moore's Law in relation to CPUs [4]. ................................................................ 1 

Figure 2:  Typical Components of a CPU [1:2].................................................................. 3 

Figure 3: Typical Components of a GPU [1:2]................................................................... 3 

Figure 4:  2D data streaming through a GPU [13:668]..................................................... 10 

Figure 5:  High-Level view of VII architecture [15:7] ..................................................... 13 

Figure 6: Flowchart for the Advance Phase of        MITSIM [9:115] ........................... 16 

Figure 7: Flowchart for the Advance Phase of MITSIM [9:115] ..................................... 17 

Figure 8:  CUDA architecture memory structure [1:11]................................................... 19 

Figure 9:  Free spaces necessary to move a car.  As drawn by author.............................. 21 

Figure 10:  Time comparison of Synchronized GPU Implementation and CPU 

Implementation.  Created by author.......................................................................... 24 

Figure 11:  Time comparison of Unsynchronized GPU Implementation and CPU 

Implementation.  Created by author..................................................................... 25 

Figure 12: The speedup factors for the Unsynchronized GPU implementation vs. CPU 

implementation.  Created by author.......................................................................... 25 

 

 

 

 

 



 iii 

Glossary 

 

CPU Central Processing Unit 

 

Device Another term for GPU 

 

CUDA Compute Unified Driver Architecture.  CUDA is a software interface 

provided by Nvidia for issuing and managing computations on the GPU as 

a data-parallel computing device without the need of mapping them to a 

graphics API [1:1]. 

 

GPGPU  Stands for General-Purpose computation on GPUs. With the increasing 

programmability of commodity graphics processing units (GPUs), these 

chips are capable of performing more than the specific graphics 

computations for which they were designed [2:1]. 

 

GPU Graphics Processing Unit 

 

Host Another term for CPU.  

 

MITSIM  Open source microscopic traffic simulator produced by the Intelligent 

Transportation Systems Program at the Massachusetts Institute of 

Technology. 

 

Multicore Computer architecture design that places more than one computational 

unit on a single integrated circuit. 

 

Parallelism A situation in which the computer is able to simultaneously execute two or 

more processes [3:861]. 

 

SDK Software Development Kit.  An SDK allows a programmer to learn about 

the enabled features of a given architecture. 

 

Thread A unit of computation that contains the minimum internal state and 

resources [3:869]. 

 

 



 iv 

Abstract 

  

 In the 1960s, a semiconductor scientist named Gordon Moore theorized that the 

number of transistors would double each year on a single integrated circuit.  Through 

much effort, the semiconductor industry has been able to closely follow “Moore’s Law”, 

but new information shows this type of progress is not sustainable in the coming years. 

This realization has implications in both chip fabrication and software development.  

Instead of making chips with more transistors per unit area, industry now produces newer 

multicore chips.  These multicore chips, which have more than one traditional 

computational unit, have long been used for computer graphics, but now researchers are 

putting their improved throughput to use in computational simulation.  New research 

documents efforts to speed up traditional simulations on multicore graphics processing 

units (GPUs), both to help simulation efforts and to learn about multicore chip potential.  

In addition to this new research style, given the acronym GPGPU (Graphics Processor as 

a General Processing Unit), there is a social desire to produce improved automotive 

traffic safety systems.  It follows that research would follow in order to make a faster 

traffic simulation using state-of-the-art GPUs.  In fact, this document details a research 

project aimed at testing the feasibility of running a traffic simulation using the GPGPU 

paradigm. 

 



 1 

Chapter 1:  Introduction 

  

 In the 1960s, Intel co-founder Gordon Moore theorized that the number of transistors on 

an integrated circuit would double each year.  Though progress has slowed to doubling the 

number of transistors to every eighteen 

months to two years, his theory spawned a 

concerted effort to make chips faster.  

Despite such effort, current fabrication 

techniques can only sustain such progress for a 

few more years as fabricators get close to 

atomic limits.             Figure 1:  Moore's Law in relation to CPUs [4]. 

Knowing this, the computer architecture industry believes that multicore chips may be the key to 

increasing the speed of processors in the future.  Industry has traditionally used these multicore 

chips, which combine multiple traditional central processing units (CPUs) on one circuit board, 

solely in computationally intensive graphics processing units (GPUs).  Now, research is heading 

in the direction of utilizing these multicore chips, and specifically GPUs, to perform real-time 

analysis of non-graphical applications [5:41].  The computer architecture industry has dubbed 

this movement GPGPU, which stands for “Graphics Processor as a General Processing Unit” 

[2:1].  This thesis research project depicts the use of the GPGPU paradigm in order to adapt an 

automotive traffic simulation using a new Application Programming Interface (API) for a GPU.  

In doing this, the project shows how to make use of the potential of a multicore chip, as well as 

performs a feasibility study as to whether the GPU technology can support a time-stepped 

simulation. 



 2 

 Some researchers have already begun attempts in GPU simulation, but not many.  

Because there have not been many documented attempts, related literature has a distinct 

boundary in relation to the research presented here.  Most sources either deal strictly with traffic 

simulation research or with GPU programming; there are little to no sources that provide a 

crossover.  For example, a researcher named Stanimire Tomov, attempted to use a GPU to do 

probabilistic simulations.  Another research group, led by Weixiong Chen, attempted to produce 

a parallelized traffic simulation without using GPU technology. The lack of crossover 

demonstrates this project’s novelty in computer industry’s and traffic simulation’s future. 

 Traffic simulation is an important area of research because the Federal Highway 

Administration (FHWA) has made it a priority to reduce traffic accidents in the near future.  

Recent statistics attribute 43,000 fatalities to automobile accidents in 2003 – and the FHWA 

sponsors many projects to make cars safer [6:1].  Professor Brian Smith is perhaps doing the 

most relevant research related to traffic safety here at the University of Virginia.   His group is 

developing a simulation of a conceived technology set to revolutionize safety on the roads, called 

the Vehicle Infrastructure Integration (VII).  Smith’s research focuses on a proposed network of 

computer chips that reside in cars.  This hardware will be able to communicate with other cars on 

the road about road conditions, detours, and even relative speeds [15].  As of now, Smith’s group 

is developing a simulation network to be built on top of a microscopic traffic simulation.  

However, his new safety network has performance issues because of the underlying traffic 

simulation’s poor performance.  With a method for speeding up a traffic simulation, this project 

benefits his research specifically.  More generally, a faster traffic simulation allows researchers 

to do traffic pattern analysis quicker. 



 3 

 The other engine driving this research is industry’s desire for more computationally 

intense multicore chip applications.  Traditionally, the “uni-processor” CPU has been the main 

computational unit in a computer, with the arithmetic and logic unit (ALU) performing much of 

the mathematical computation.  Figure 2 shows the typical 

resource allocation of ALUs in a CPU.  The computer 

architecture industry is pursuing knowledge about 

multicore chip applications because it has a strong 

 

Figure 2:  Typical Components of a CPU [1:2] 

 

desire to make faster machines by increasing the number of computational cores per chip.  Figure 

3 demonstrates that GPUs contain many more computational cores than a general CPU (the same 

color scheme is used as in Figure 2, with green representing combinational cores).  The current 

paradigm for future chips seems to be in multicore chip design, as new processors such as the 

Sony Cell and Intel’s dual-core Duo have been 

released within the past year.  Still, industry 

must do research in order to identify the 

strengths and weaknesses of current multicore chip 

design.   

              Figure 3: Typical Components of a GPU 

[1:2] 

 

 Justin Rattner, the Chief Technical Officer at Intel, gave a speech in the summer of 2006 

about the concerns of the future of multicore development.  He outlined the need to optimize the 

size of each core, the number of cores, and whether it is better to have a larger cache memory or 



 4 

a larger, faster main memory.  The computer architecture industry is still looking for benchmark 

applications so that companies can “plan the technology of 2010 with the applications of 2006” 

[7].  Improved real-time simulations, such as the one provided in this project, give insight into 

how multicore chip technology can improve in the years to come. 

 Along with areas in hardware research, the software community should take interest in 

these results as well.  There are many different types of problems that can utilize the potential of 

parallelization, and in turn use multicore chips to increase throughput.  Using the newest APIs 

allows Kevin Skadron, this thesis’s technical advisor, to explore the newest programming 

methods.  Within his research group, students are working on multiple applications aiming to 

realize the potential of the GPGPU paradigm.  One application aims to simulate a neural network 

by modeling synapses across a computer network, an application looking for a faster way to 

traverse linked data structures to improve memory access, and applications dealing with 

biomedical images.  With parallelization on multicore chips, many simulations involving large 

amounts of data have been sped up.  The group’s goal for programming is to parallelize 

traditional algorithms and distribute the calculations over multiple cores, therefore reducing the 

time to run a simulation in hopes of enabling future research. 

 Within the framework of GPGPU simulation, this project spawned a traffic simulation 

that utilizes the basic components of an application called MITSIM.  MITSIM is a microscopic 

traffic simulation developed at the Massachusetts Institute of Technology.  The United States 

Department of Transportation defines a microscopic simulation as a program that simulates 

traffic on a car by car basis using developed car following and lane changing logic [8:8].  

MITSIM is an open source application; the source code and documentation is freely available on 

the internet.  MITSIM uses specific algorithms defining the ways cars move, follow, and change 



 5 

lanes.  This research borrowed these algorithms in order to produce two traffic simulations:  one 

“traditional” CPU implementation and one taking advantage of GPGPU technology.  These 

MITSIM based applications form the basis of this project. 

 This project relies on specific GPGPU paradigms in order to produce valid results in the 

traffic simulation and computer architecture industries.  Nvidia, a major graphics card producer, 

released an API named CUDA in the fall of 2006 to further its GPGPU efforts.  CUDA allows a 

programmer to take advantage of multicore potential of an Nvidia graphics chip.  Using CUDA, 

this project altered the MITSIM algorithm to take advantage of multiple threads so that this 

improved simulation could run on a machine with a multicore chip, specifically on an Nvidia 

GeForce8800 GPU.  Computer architect Henry Moreton agrees that programmers can improve 

simulations like this with multicore chip technology.  He has argued that “GPUs are well suited 

for large data parallel problems” [5:41].  A multicore chip has the possibility of greatly 

enhancing the performance of a large scale real-time simulation such as MITSIM. 

 At the beginning of research, this project hypothesized that the GPU technology would 

greatly speed up the MITSIM core algorithm.  There were two main reasons for this hypothesis.  

First, the algorithm does not require much memory transfer between the CPU and the graphics 

card itself.  The time it takes to load and unload memory from the graphics card was initially 

assumed to be negligible, and later discussion will back this claim.  The other emphasis for a 

parallelizable algorithm is little dependency between tasks.  The automotive traffic simulation 

follows this model because cars do not need to communicate with each other, just the 

surrounding environment.  From these two initial properties, this project guessed incorrectly that 

the GPU technology would greatly enhance the traffic simulation. 



 6 

 Although this project’s hypothesis turned out to be false, the project overall still 

demonstrates methods to be used in future applications to take advantage of parallelization in 

multicore chips.  The rest of this report justifies this project and also reports the methods, results, 

and conclusions that working in this GPGPU environment generated.  Chapter 2 is a literature 

review of related technical literature, showing past traffic simulation research as well as prior 

parallelization efforts.  After that, Chapter 3 places the work in a social and ethical framework 

using real world examples.  In Chapter 4, there are details concerning the experimental 

procedures that led up to the finished deliverable, which is a GPGPU implementation of a traffic 

simulation.  Chapter 5 provides the qualitative and quantitative analysis of the experiment itself.  

There is graphical analysis that generates the conclusions given in Chapter 6.  This final chapter 

not only provides the conclusions for this one experiment, but also suggests how future GPGPU 

research can help improve a traffic simulation.  These results and conclusions are not only 

important to computer chip designing companies but to the academic community as well.   



 7 

Chapter 2:  Review of Related Literature 

 

 Researchers from industry and academia alike have recently begun attempts to parallelize 

computationally intensive simulations in order to run them on GPUs.  Because there have not 

been many documented attempts, related literature has a distinct boundary in relation to the 

research presented here.  Most sources either deal strictly with traffic simulation research or with 

GPU programming; there are little to no sources that provide important discoveries in both.  This 

demonstrates this project’s novelty in computer industry’s future.  This chapter focuses on 

related past research – by both industry researchers as well as academics – in the fields of traffic 

simulation and parallelizable GPU simulations. 

2.1  Past Traffic Simulation Research 

 

 Initial research uncovered one fundamental source at the heart of this project:  the 

whitepaper associated with the development of the MITSIM application.  Written in 1996 by Qi 

Yang of the Massachusetts Institute of Technology and Haris N. Koutsopoulos of Carnegie 

Mellon University, the paper discusses the application’s internal structure and algorithm.  The 

detailed statistical calculations used to simulate driver decisions are not important to this project; 

the bits of analysis the authors provide show principal reasons as to why a traffic simulation must 

be sped up.  The paper states that running time “heavily depends…on the number of vehicles that 

exist simultaneously in the networks” [9:13].  Also, speeds of cars are only updated every 1/10 

second, a time unit visible to the naked eye.  Finally, the paper shows the flow chart of decisions 

made per time step (See Appendix A).  It seems that a traffic simulation is perfect for 

parallelization, as multiple cores can tackle the movement of many vehicles at one time.  The 



 8 

details Yang and Koutsopoulos provide have direct impact into the implementation strategy’s 

development to speed up this simulation. 

 Researchers have also shown that general traffic simulation has intrinsic value.  Over 

time, traffic simulation has played an important role into the development, analysis, and 

maintenance of real-life traffic systems [8:11].  Jim Clark, an engineer at the Federal Highway 

Administration, concluded his analysis of traffic patterns in Des Moines, Iowa and Fargo, North 

Dakota saved travelers “countless hours” and saved the cities “millions of dollars of right of way 

and construction costs” [10:8].  He used a government-sponsored microscopic traffic simulation 

called CORSIM, an application much like MITSIM.  Clark’s and his partner Gene Daigle’s 

research, and other research like it, have helped sustain an interest in microscopic traffic 

simulation because such analysis provides fiscal savings. 

 Improvements in traffic simulation will likely follow such monetary success seen by Jim 

Clark and Gene Daigle.  Weixiong Chen of the National Science Academy in China made initial 

attempts in parallelizing a simple traffic simulation algorithm.  By creating multiple compute 

nodes (much like a model of a GPU) and communicating amongst them, he was able to develop 

a distributed network on which to run his traffic simulation.  With his simple system, he 

concluded that four compute nodes could speed up the simulation up to 2.52 times over a single 

node system [11:5].  Multi-processor simulation has had success in the past. 

 

 



 9 

2.2  Past GPU Programming Research 

 

 Beyond traffic simulation, this project demonstrates methods for programming 

simulations in GPU environments.  An innovative idea has been published in the past few years 

that makes this process much easier.  Henry Moreton, a design engineer at Nvidia (a major 

graphics processor design firm), wrote in 2005 that traditional simulations were the next step in 

GPU programming because of their good parallel capabilities [5].  He also describes in detail the 

workings of a general GPU, and specifically the Nvidia GeForce 6800.  This chip is part of the 

CUDA hardware, so his research into the architecture and capabilities of traditional 

programming on the GPU is very relevant to this project.  Another leader in GPGPU research is 

ATI Technologies, one of Nvidia’s chief competitors.  In 2006 they developed an Application 

Programming Interface (API) that makes traditional programming much easier.  Traditional 

programming contrasts graphics programming, which requires the use of data sets involving 

more complicated data structures, such as vertices and line segments.  With this API, which is a 

Data Parallel Virtual Machine (DPVM), it is easier to program on a GPU without using an 

inappropriate API, such as OpenGL (the traditional graphics programming API).  Mark Segal, 

one of the authors of ATI’s whitepaper regarding the DPVM, concludes that “the DPVM 

provides a straightforward programming model for data parallel applications” [12:6].  ATI and 

Nvidia provide developments and research that are keystones to the GPGPU movement, and in 

turn make this project a possibility.  Without an API such as the DPVM (and similarly Nvidia’s 

CUDA), executing a traditional simulation on a GPU would be extremely difficult; now, it 

remains a daunting task but is a reality. 

 People outside of the GPU 

manufacturing industry are making 



 10 

headway in GPU programming as well.  In September 2005, a member of Germany’s Caesar 

Research Group, Robert Strodzka, published an article in the “Simulation Modeling Practice and 

Theory” technical journal.  Strodzka and his team of researchers offer strategies for distributing 

memory on graphics cards.  Figure 4, taken from Strodzka’s article, shows that data can be 

arranged in arrays, which GPUs process at very fast speeds.  They conclude that 

              Figure 4:  2D data streaming through a GPU 

[13:668]  

APIs (such as CUDA, which was unreleased at the time) will eventually make GPU 

programming more like programming on a traditional CPU [13:670]  Along the same lines, a 

team from Brookhaven National Laboratories in Upton, New York approached a similar 

problem.  Without an API such as DPVM, the team was able to successfully simulate a Monte 

Carlo algorithm on a GPU.  The Monte Carlo method sub-divides a circle into many small 

squares in order to approximate area.  The team states that a GPU-programmed “32-bit floating 

point performance can be 2–6 times faster than the CPU for certain applications” [14:79].  Along 

with Moreton and Segal’s work within the chip manufacturing, this research is very exciting.  

Strodzka’s and Tomov’s work, coupled with a desire to have a faster traffic simulation, lead 

directly to the research presented here. 

 Many areas of research directly relate to this project.  From an initial desire to do traffic 

simulation, and then a desire to make this traffic simulation go faster, comes this project.  Along 

with a request from Brian Smith’s VII team, speeding up an algorithm like MITSIM’s seems like 

a natural progression.  This GPU programming approach has been the recent topic of research, 

both within the GPU manufacturing industry as well as from sources outside of industry.  

Together, the potential speed-up of a general simulation using GPU programming and the 



 11 

necessity of making MITSIM faster combine to form the inspiration for this project.  The next 

chapter sets this project and its implications in a social and ethical context. 



 12 

Chapter 3:  Social and Ethical Context 

 

 The biggest contribution this research gives to society is in the area of traffic safety.  

Despite effort from researchers and government officials alike to improve traffic safety, the 

government released information showing that 43,000 deaths occurred on the road in 2003 [6:1].  

Brian Smith’s proposed VII system represents an attempt to increase traffic safety.  Using 

wireless Dedicated Short Range Communications (DSRC), the proposed VII system allows chips 

integrated within a vehicle to “talk” to a dedicated road infrastructure as well as other vehicles 

equipped with DSRCs [15:4].  This chapter describes the societal impact of such traffic safety 

improvements as well as impact of further exploring the GPGPU paradigm. 

 This thesis project describes strategies to make a traffic simulation take advantage of 

parallel resources in the GPGPU paradigm.  One has to question why industry needs to keep 

making faster computers; multiple factors help to answer these questions.  First, there are 

economic reasons.  If a competitive company does not produce faster hardware, consumers have 

no incentives to buy its new machines, and the company struggles to pay its employees.  Next, 

there are cultural reasons.  American society values everything moving faster.  One does not 

have to look much further than the widespread growth of high-speed internet to realize that 

Americans value speed and efficiency.  Finally, there are knowledge-seeking reasons.  

Researchers have the opportunity to speed up many computationally expensive simulations in 

order to do intensive research faster.  The more research that can be done in a given time 

increases the chance that the given problem will be solved sooner.  Multicore chip design 

provides one possible strategy to speed up simulation. 



 13 

A p p l i c a t i o n

T r a f f i c  

S i m u l a t o r

V I I  I n t e r f a c e

M o d u l e

 A fast-moving traffic simulation provides researchers and government officials alike 

more information about the next possible vehicle safety breakthrough:  a wireless 

communication infrastructure.  Over the past twenty years, the United States Department of 

Transportation has made a concerted effort to make driving safer for everyone.  The USDoT has 

mandated technological breakthroughs, ranging from seat belts to standard driver’s side airbags 

and eventually to an “advanced” – meaning computer based – technology like anti-lock brakes.  

Recently, lawmakers have been debating the proposal of a law requiring cars to have electronic 

stability control, which is a system that distributes braking in cases where a roll seems imminent, 

decreasing chances of that roll [16:1].  With technology proposed by Brian Smith’s research, the 

possibilities are endless as to what could be automated in driving.  In his initial investigation 

about VII architecture, he suggests examples such as “collision avoidance, intersection decision 

support systems, sensing using probe vehicles, route guidance systems, adaptive signal control 

systems, cooperative adaptive cruise control, as well as various other applications in commercial 

vehicle operations” [15:5].  Figure 5 shows just how 

dependent the VII system is on an underlying traffic 

simulation.  Allowing Smith to possibly simulate 

his VII 

               Figure 

5:  High-Level view of VII architecture [15:7] 

  

system in real time shows a tremendous technological leap into realizing a VII-type system and 

the safety enhancements that come along with it.  However, critics debate whether these types of 

safety enhancements will decrease the amount of traffic accidents. 



 14 

 A research faction interested in traffic safety research believes that increased technology 

in traffic safety devices actually have a negative impact on traffic safety statistics.  Proponents of 

the “offset hypothesis” include University of Purdue Civil Engineering faculty member Fred 

Mannering.  He defines the offset hypothesis as “consumers adapt[ing] to innovations that 

improve safety by becoming less vigilant about safety” [17:1].  Mannering and his team of 

researchers conclude that the purchasing of anti-lock brakes and driver’s side airbags in the early 

1990s led to greater “driver mobility”.  This mobility – faster driving and more frequent lane 

changes – mean that drivers get to their destinations quicker.  Unfortunately, with the same 

factors, the monetary value of insurance claims per accident went up for drivers with the 

advanced safety features [17:12].  It seems that increased safety technology does not solely have 

positive benefits to society.  

 The implications of a faster traffic simulation realized through multicore chip technology 

have both positive and negative effects on society.  First, introducing systematic methods that 

improve computer program efficiency seems to only have positive effects in the American 

economy.  A technologically advanced infrastructure such as Brian Smith’s VII has the ability to 

provide drivers with more safety features, possibly saving lives.  This thesis project, testing the 

feasibility of using the GPGPU paradigm to speed up a traffic simulation algorithm, helps to 

guide the future for VII’s implementation.  VII and other future safety advancements will 

continue to attempt to combat the effects of the “offset hypothesis”, and for these reasons, this 

research pursued its goals. 



 15 

Chapter 4:  Materials and Methods 

 

 The experiment this project details follows the simple scientific method taught 

throughout grade school.  First, Kevin Skadron and Brian Smith produced a problem:  to attempt 

to use the GPGPU paradigm to speed up a traffic simulation.  After initial research, this project 

hypothesized that the GPU parallelization has the possibility of supporting a traffic simulation 

and speeding it up.  The next logical step in the scientific method was to design an experiment. 

This experiment has two phases.  The ‘control’ phase is the CPU implementation of the MITSIM 

core algorithm.  The ‘experimental’ phase is the GPU implementation that takes advantage of a 

structured parallelization method named “Foster’s Design Methodology” described in Ian 

Foster’s book, “Designing and Building Parallel Programs: Concepts and Tools for Parallel 

Software Engineering” [18].  These implementations produce timing results that differentiate the 

two, allowing for analysis.  This chapter specifically discusses the technical elements of the two 

phases of the experiment, while the next chapter analyzes the graphical data.  

4.1  CPU Implementation 

 

 This research produced a CPU implementation modeled strictly following the flow of 

MITSIM’s execution.  It does not have many of the features of MITSIM, but does contain the 

most parallelizable portion of the MITSIM simulation loop.  This new implementation, 

nicknamed TrafficSim, uses the MITSIM logic to simulate cars moving down a two-way stretch 

of interstate, complete with exits every mile and the ability to switch lanes. 

 The implementation takes advantage of a data structure in order to simulate a vehicle.  

This structure, called Vehicle, stores important data about a virtual car.  The structure stores the 

vehicle’s speed, position, direction, lane, and destination exit.  TrafficSim instantiates one of 



 16 

these data members for each car using a random seed in order to approximate real-life 

conditions.  The structure also keeps a data member which is important in the comparison of the 

two implementations:  if each car successfully exits or not.  This data structure is necessary for 

simulating traffic. 

 TrafficSim uses simple assumptions in order to complete its execution.  If a car is more 

than five exits away from its intended exit, it either stays in or changes to the left lane.  If the car 

is within a quarter mile of its intended exit, it must get in the right lane to exit.  When changing 

lanes, the car must check in front, next to, and behind itself in the target lane.  If any other car 

occupies these spots, the program does not allow the car to change lanes.  Finally, if a car misses 

its intended target because it cannot change lanes, TrafficSim assumes the car exits the interstate 

at the next exit.  These simple approximations of real-world driving behavior help make 

TrafficSim credible as a traffic simulation. 

 TrafficSim’s program flow comes directly from Yang and Koutsopoulis’s initial MITSIM 

research paper.  The CPU 

implementation models two phases of their 

simulation: the Update Phase and the 

Advance Phase.  Figure 6 shows that  

      Figure 6: Flowchart for the Advance Phase of  

      MITSIM [9:115] 

the Update Phase checks to see if the car needs to accelerate or change lanes.  If the vehicle does 

need to change lanes, the update phase checks to make sure the lane change  

is safe.  If it is, the car changes lanes.  From here, the simulation enters the Advance Phase.  As 

Figure 7 points out, MITSIM’s original Advance Phase is more involved than TrafficSim’s 



 17 

Advance Phase.  TrafficSim lacks the traffic signals and sensors of       

  

  Figure 7: Flowchart for the Advance Phase of MITSIM [9:115] 

MITSIM’s more in depth implementation.  In TrafficSim’s Advance Phase, each vehicle updates 

its speed and checks its position.  If the car is at the desired location, TrafficSim removes the 

vehicle from its lane.  If not, it advances the position based on the speed.  After performing the 

Update Phase and the Advance Phase for each car in the network, the entire process starts over 

during the next time step.  The full MITSIM flow chart can be found in Appendix A. 

 TrafficSim is a program that required very few special materials.  Using standard C/C++ 

programming language properties and the Microsoft Visual Studio C++ compiler running on a 

Windows XP machine, this research project produced TrafficSim.  The more “bleeding edge” 

materials did not enter the experiment entered the GPU implementation phase. 



 18 

4.2  GPU Implementation 

 

 This project’s production of a parallelized simulation followed a strict analysis of the 

MITSIM algorithm.  The analysis using Foster’s design methodology for parallel programming 

showed an implicit parallel structure within the algorithm.  The final parallelized structure 

adheres to the methods set forth by Ian Foster and simulates each vehicle on its own thread using 

Nvidia’s GeForce 8800 multicore architecture. 

 There are four main tenets in Ian Foster’s design methodology for parallel programming.  

Algorithm analysis must produce methods of partitioning, communication, agglomeration, and 

mapping in relation to the program’s execution.  Partitioning simply means that the overall 

computation must be split into smaller pieces.  Having independent threads is an easy way to 

partition a parallel program.  In regards to communication, the design methodology suggests that 

both local and global communication must be strictly defined.  Each thread can communicate on 

a small scale with a small number of “neighbor” threads (local communication) and can 

communicate on a large scale with all threads (global communication).  The CUDA architecture, 

described in the following paragraph, makes these definitions quite simple.  Next, agglomeration 

forces the program design to “group tasks into larger tasks to improve performance or simplify 

programming”.  Finally, the design must take “mapping” into account, meaning that the 

algorithm must efficiently take advantage of the different processors of a multicore architecture 

[18].  The experiment characterizes the traffic simulation using Foster’s four tenets to produce a 

working implementation. 

 CUDA’s parallel architecture works well with Foster’s design methodology; together 

they helped spawn the GPU traffic simulation.  Within CUDA, a thread is the smallest unit of 

parallelization [19:4].  Threads are grouped together in blocks, which are in turn grouped 



 19 

together in grids.  Every level has its own memory with different access parameters.  Threads 

have access to thread memory, block memory, and global grid memory.  A thread can 

communicate with threads on its block through the shared block memory or through global 

memory, which all blocks have access to.  Figure 8 shows the properties of the different levels of 

memory architecture.  From this figure, it is easy to  

 

 

 

 

 

 

 

 

Figure 8:  CUDA architecture memory 

structure [1:11] 

see how Foster’s design methodology applies to the traffic simulation.  In the simulation, if each 

car receives its own thread, it has dedicated memory to store its own state.  A car communicates 

with threads on its block through shared memory and with all cars through the global memory, 

where the highway lanes reside.  These realizations complete the first two stages of the design 

methodology.  Using these threads also easily identifies agglomeration:  they simplify the 

programming model.  Each car thread executes the same program thread, making the overall 

design easier to program.  Finally, the CUDA architecture does the “mapping” for the 

programmer.  The defined grids, blocks, and threads automatically try to utilize the multiple 

processors efficiently while reducing the amount of inter-thread communication.  The TrafficSim 

GPU implementation utilizes these distinct features of the CUDA architecture. 



 20 

 The algorithm for the TrafficSim GPU implementation is not very different from the 

CPU implementation, but the source code differs because of the CUDA specific functionality.  

First, the program has to determine a block size.  This block size is the amount of threads that 

run per block.  From this number, the program defines the number of blocks, which is simply the 

number of cars divided by the block size.  Because the cars are stored in a one-dimensional 

array, it only makes sense that the program defines the blocks in a one-dimensional grid.  After 

defining grid and block dimensions, TrafficSim must allocate the memory to store the cars on the 

graphics card.  Once the program allocates and copies the memory, the GPU invokes its kernel 

function, which is very similar to the main function of the CPU algorithm.  This is the function 

that each thread runs to completion.  Once each thread exits the kernel function, the program 

copies the car memory from the GPU memory, stops the timer, and calculates the same statistic 

as in the CPU implementation:  the total time for all cars to finish their trip.  The overall program 

flow is very similar; the programming style of the most important function is quite different. 

 To be fully efficient, the kernel function needs to run the same code for all threads on the 

same block.  This makes the programming style non-intuitive for each thread.  At the end of each 

time step, one would think that if a car finishes, the thread should exit.  However, because of 

CUDA’s architecture, all threads on the block should exit at the same time.  The exit condition 

should be block-specific, not thread-specific.  TrafficSim accomplishes this using the shared 

block memory.  At the beginning of execution, the program defines a variable named “cars_left”.  

As a car exits, the thread decrements cars_left and proceeds as a “dummy” car.  A dummy car 

will execute all code within the thread but will not change the state of the highway lanes that 

reside in global memory.  The program runs this way so that all threads on a block run the same 

set of instructions. 



 21 

 The traffic simulation requires a high degree of synchronization on the GPU to avoid 

write-after-write errors.  Because it is a time-step simulation, TrafficSim needs for each thread to 

have the same global state at the start of each step.  Fortunately, Nvidia provides a standard 

method for doing this:  syncthreads().  When the simulation invokes this function, each thread 

waits until all threads get to the syncthreads() call.  Without this synchronization, one thread 

could access a portion of the highway at the same time as another, leading to two threads writing 

to the same memory location.  Every car also avoids these problems whenever it updates the 

position.  A car checks in front and to the side when moving forward or changing lanes.  Figure 9 

shows this property:  for the  

 

Figure 9:  Free spaces necessary to move a car.  As drawn by author. 

black car, each green oval must be clear to switch lanes and each blue oval must be clear in order 

for it to move forward.  Each thread on the block also has to synchronize access to the shared 

block memory.  Without synchronization, one thread could possibly overwrite the correct 

“cars_left” value with an incorrect value.  Syncthreads helps to ensure there are no write-after-

write errors, which in turn ensures correct global memory access. 

 After the initial experiment ended, the project produced a third implementation to help 

explain exactly why the GPU implementation was slower than the CPU implementation.  This 

new application did not use syncthreads, so is not viable as a true traffic simulation because it is 



 22 

not “time-stepped”.  However, its performance is important in demonstrating exactly why the 

CPU implementation outperforms the GPU simulation.  This new implementation will be 

described as the “unsynchronized” implementation. 

 This chapter details the high level implementation of the CPU and GPU implementations 

of TrafficSim.  The source code is listed in Appendix C.  Each simulation utilizes the same basic 

functionality on different hardware.  Because of this similarity, one can credibly compare the 

timing results between the two to see that the CUDA architecture may not be the ideal hardware 

to run a traffic simulation.  The next chapter discusses the results that lead to this conclusion. 



 23 

Chapter 5:  Results 

 To satisfy both motivations behind this work (traffic simulation and the GPGPU 

paradigm), this thesis project produced two sets of results.  The actual experimental results are in 

the form of timing data.  The CPU implementation of TrafficSim competed against two different 

sets of GPU implementations – a synchronized implementation and an unsynchronized 

implementation.  The first section of this chapter displays the timing results comparing the CPU 

implementation and GPU implementations in line graphs.  The section after details appropriate 

software development methods to take advantage of CUDA’s parallel architecture. 

5.1  Experimental Timing Results 

 

 This experiment produced data for different values of cars and lane lengths.  The values 

correspond to increases in orders of magnitude.  For example, the number of cars ranges from 

100 to 10,000.  All three implementations of TrafficSim executed each (number of cars, lane 

length) pair five times.  The graphs below display the average of these five runs for each 

implementation, comparing the CPU implementation to each of the GPU implementations. 

 Figure 10 displays the comparison between the synchronized GPU implementation and 

the CPU implementation.  The only data that the reader can see is from the GPU implementation 

simply because the CPU performs so much better than the GPU.  The amount of time for GPU 

execution dwarfs the amount of time for CPU execution; the CPU timing does not even fit the 

scale.  In the case of 10,000 cars on a lane length of 10,000, the GPU implementation is close to 

450 times slower.  Synchronization hurts the GPU performance dramatically. 



 24 

Synchronized GPU vs CPU

0

100

200

300

400

500

600

700

800

900

1000 5000 10000

Lane Length (units)

T
im

e
 (

s
)

CPU - 100

CPU - 1000

CPU - 5000

CPU - 1000

GPU - 100

GPU - 1000

GPU - 5000

GPU - 10000

 

Figure 10:  Time comparison of Synchronized GPU Implementation and CPU 

Implementation.  Created by author. 

 

 Figures 11 and 12 show the comparison between the unsynchronized GPU 

implementation and the CPU implementation.  Figure 11 depicts the timing differences while 

Figure 12 displays the speedup factor for each (number of cars, lane length) pair.  In Figure 11, 

the slowest performances come from the CPU implementation.  Figure 12 shows the speedup 

ranges from 1 to 25, depending on the length of the road and the number of cars.  The parallel 

performance manifests itself in this data; syncthread calls do not hinder the unsynchronized GPU 

implementation.  This project initially assumed these results would characterize the performance 

of the synchronized GPU implementation. 

 The experimental data can be found in Appendix B. 

 

 

 

 

 



 25 

Unsynchronized GPU vs. CPU

0

10

20

30

40

50

60

70

1000 5000 10000 100000

Lane Length (units)

ti
m

e
 (

s
e
c
o

n
d

s
)

CPU - 100

CPU - 1000

CPU - 5000

CPU - 10000

GPU - 100

GPU - 1000

GPU - 5000

GPU - 10000

 
 
Figure 11:  Time comparison of Unsynchronized GPU Implementation and CPU Implementation.  Created 

by author. 

 

Speedup of Unsynchronized GPU Implementation

0

5

10

15

20

25

30

1000 5000 10000 100000

Lane Length

S
p

e
e
d

u
p

 F
a
c
to

r

100

1000

5000

10000

 

Figure 12: The speedup factors for the Unsynchronized GPU implementation vs. CPU 

implementation.  Created by author. 

 

5.2  CUDA Software Development Methods 

  

 Programming efficiently on the CUDA architecture is a very subtle science.  To take 

advantage of the multicore technology, a program has to be structured in a very certain way so 

that it keeps all threads, blocks, and grids in use.  To be truly efficient, the CUDA architecture 

requires many concurrent threads and a high ratio of mathematical calculations to memory 

accesses [1: 6]. 



 26 

 One of the most important properties for a CUDA program is independence.  Each thread 

should have minimal contact with other threads.  This means minimal shared memory accesses 

and little to no shared data between threads [1: 6].  This complete independence does not require 

synchronization of any kind and truly takes advantage of the multicore potential of a GPU.  Not 

all algorithms have this property, and it seems as if a true traffic simulation requires too much 

synchronized memory access to take advantage of the CUDA architecture parallelism. 

 CUDA programs need to keep thread flow as similar as possible.  This keeps blocks very 

efficient; all threads on the block need to execute the same instructions.  Divergent branches lead 

to great inefficiencies, and the traffic simulation has many branches that can take the execution 

flow in many different directions.  Also, a block needs to have all of its threads running together 

to reduce inefficiency.  This is why each thread in the traffic simulation has an exit condition 

based on a shared block variable; all threads finish at the same time.  Unfortunately, this exit 

condition requires a great deal of synchronization, which hurts performance. 

 TrafficSim has very few properties that make it viable for good performance on the 

CUDA architecture.  While the time to transfer data between the host memory and the device 

memory is very small, the actual execution time is very large compared to the CPU 

implementation.  This is mainly because of the large amount of synchronization required among 

the many threads in the simulation.  Divergent branching also contributes to poor performance.  

A parallelizable algorithm needs thread independence in both time and data access. 

 



 27 

Chapter 6:  Conclusions 

  

 It has been this project’s goal to determine the feasibility of running an automotive traffic 

simulation on an Nvidia CUDA architecture graphics card.  While technically feasible, running a 

traffic simulation using the GPGPU paradigm might not be the ideal in terms of computer 

performance.  Through extensive research and experimentation, this project finds that, at the time 

of writing, a traffic simulation algorithm does not suit the CUDA architecture well.  

 This thesis project’s main experiment demonstrates the incompatibility between the 

MITSIM core algorithm and the CUDA architecture.  First, the experiment’s methods called for 

a CPU reproduction of MITSIM’s main flow.  From here, this project produced a duplicate of 

this implementation to run on an Nvidia GeForce 8800 graphics card.  The CPU implementation 

runs faster than the GPU implementation, much to this project’s surprise.  Once the experiment 

produced initial results, a new goal surfaced.  This project decided to explain exactly why the 

GPU performed so poorly when running the traffic simulation.  After creating a “non-

synchronized” (non-time stepped, negating any credibility as an actual traffic simulation) GPU 

implementation, this project determined that the level of synchronization that a traffic simulation 

requires is not ideal for GPU implementation.  The traffic simulation does not take advantage of 

the GPU’s parallel capabilities well enough to warrant full use of a GPGPU traffic simulation. 

 These findings are not without limitations, however.  The CPU implementation has very 

few bases in real world traffic behavior.  In fact, the CPU implementation only follows the flow 

chart described in the initial MITSIM research document.  While this may limit some of this 

research’s credibility in terms of a traffic simulation, the lack of real world basis does not limit 

the feasibility study.  TrafficSim’s algorithm exactly mirrors MITSIM’s core algorithm.  As a 

feasibility study, this thesis project remains credible because of this similarity.  Also, the 



 28 

experimental results lack a full test spectrum.  This is mainly because the small results sample 

held a large amount of information.  Any increases in either the number of cars or lane length 

would only have led to longer execution times in the GPU.  The small test sample characterizes 

the GPU’s poor performance without needing an exhaustive data set. 

 Although the project’s initial hypotheses proved incorrect, this research still holds 

importance in both traffic safety and multicore chip design.  This initial feasibility study shows 

that traffic simulation designers should not necessarily hold out for a GPGPU speedup; traffic 

researchers can look to other avenues for increased performance.  This project also shows 

multicore chip designers some of the limitations to algorithms that perform well on their newest 

hardware.  To be taken seriously in realistic simulations, industry needs to address limitations 

regarding synchronization and the execution flow of different threads.  This project presents 

relevant information and can help direct future research. 

 This project’s ultimate conclusion is that this type of research should not stop.  

Researchers can advance this project’s basis for a GPGPU traffic simulation.  TrafficSim’s GPU 

implementation can certainly be fine-tuned in order to remove some of the efficiency-killing 

conditional statements.  The simulation can certainly retain some of its realism with a more strict 

control flow rather than the many if-then-else situations that present themselves in the current 

version.  Furthermore, future researchers can extend this type of work to a more professional 

traffic simulation, specifically MITSIM.  Any results that a future GPGPU-MITSIM research 

effort could produce would have more credibility than this project’s results.  Such results could 

more easily influence academia and industry down a new research path.  In relation to hardware 

research, industry researchers can rework their hardware to make it more compatible with time-

step simulations.  This project’s technical advisor, Kevin Skadron, will be heading to Nvidia on 



 29 

sabbatical in order to present this and other projects’ findings.  He has stated that he wishes 

Nvidia to support divergent branching more efficiently.  This type of hardware change would 

most certainly improve the performance of TrafficSim and other simulations that do not have a 

predefined execution flow. 

 Through research and experimentation, this project has shown that it is certainly feasible 

to run a time-stepped simulation on a GPU.  The Nvidia CUDA hardware architecture makes it 

possible to run close to any algorithm on a GPU.  However, the multicore GPU does not 

necessarily improve the performance of all simulations.  In fact, the automotive traffic simulation 

that this project produced had a major performance decrease on the supposedly faster GPU.  In 

order to determine whether or not to create a GPGPU algorithm, it is important to determine the 

level of parallelism inherent in the original algorithm.  A traffic simulation does not meet the 

requirements for running an algorithm efficiently on a GPU.  While society needs improvements 

in traffic simulation, following the GPGPU paradigm does not seem to be the best course of 

action. 



 30 

Bibliography 

[1] “Nvidia Cuda:  Compute Unified Device Architecture Programming Guide”.  

 Internet:http://developer.download.nvidia.com/compute/cuda/0_8NVIDIA

 _CUDA_Programming_Guide_0.8.pdf, Feb. 12, 2007 [Mar. 26, 2007]. 

[2] “Introduction.”  Internet:  www.gpgpu.org, Mar. 13, 2007 [Mar. 26, 2007]. 

[3] Gary Nutt.  Operating Systems, Third Edition.  Boston, MA: Pearson Education,  Inc, 

2004, pp. 844-72. 

 

[4] “Moore’s Law for Intel CPUs”.  Internet:  www.physics.udel.edu/~watson/ 

  scen103/intel.html, Apr. 20, 2000 [Mar. 27, 2007]. 

[5] Henry Moreton.  “The GeForce 6800”.  IEEE Micro, vol. 25, pp. 41-5, Mar.-Apr.  2005.   

[6] “Road Fact Safety Sheet”.  Internet:  http://safety.fhwa.dot.gov/

 facts/road_factsheet.htm, Mar. 20, 2007 [26 September 2006]. 

[7] Justin Rattner.  “Cool Codes for Hot Chips:  A Quantitative Basis for Multicore 

 Design”.Intel, 2006.  http://www.hotchips.org/hc18/docs/ keynote1_hc18.pdf, 

Aug. 21, 2006 [Sep. 11, 2006]. 

[8] “Traffic Analysis Toolbox, Volume 1.” Internet: http://ops.fhwa.dot.gov/ 

  trafficanalysistools/tat_vol1/Vol1_Primer.pdf, Oct. 19, 2006 [Sep. 8,  2006]. 

 

[9] Qi Yang and Haris N. Koutsopoulos.  “A Microscopic Traffic Simulator for 

 Evaluation of Dynamic Traffic Management Systems.”  Transportation 

 Research, Part C, Emerging Technologies, vol. 3, pp. 113-129, 1996. 

[10] Jim Clark and Gene Daigle. “The Importance of Simulation Techniques in ITS 

 Research and Analysis”.  Winter Simulation Conference, Proceedings,  1997, 

pp. 1236-43.  

[11] Weixiong Chen. “A parallel model for traffic simulation.”  Intelligent 

 Transportation Systems, Proceedings, 2003, pp. 1595-9.  

[12] Mark Segal and Mark Peercy.  “A Performance-Oriented Data Parallel Virtual 

 Machine for GPUs”.  ACM Siggraph, Proceedings, 2006, pp. 1-6.  

[13] Robert Strodzka et al. “Scientific computation for simulations on programmable 

 graphics hardware”.  Simulation Modelling Practice and Theory, vol. 13,  pp. 

667-80, Nov. 2005.  



 31 

[14] Stanimire Tomov. “Benchmarking and implementation of probability-based 

 simulations on programmable graphics cards”. Computers & Graphics,  vol. 

29, pp. 71-80, Feb. 2005.  

[15] Brian Smith et al.  “Development of a Simulation Architecture and     

 Implementation to EvaluateVehicle Infrastructure Integration”.     

 Unpublished Report.  September 2006. 

[16] Tom Incantalupo. “New Car Safety Rule Expected.”  Internet:  

 http://www.newsday.com/business/nyzslug4890298sep14,0,4780562.story

 ?coll=ny-business-print, Sep. 14, 2006 [Sep. 27, 2006]. 

[17] Clifford Winston, Vikram Maheshri, and Fred Mannering. “An exploration of the  offset 

hypothesis using disaggregate data: The case of airbags and antilock  brakes”. 

Journal of Risk and Uncertainty, vol. 32, pp. 83-99, Mar. 2006.  

[18] Anthony A. Aaby.  “Design Methodology for Parallel Algorithms.”  Internet:    

 http://cs.wwc.edu/~aabyan/460/Design.html, Jun. 3, 2004 [Mar. 30, 2007]. 

 

[19] David Kirk and Wen Mei Hwu.  “Lecture 14-15:  CUDA Performance.”  Internet:   

 http://courses.ece.uiuc.edu/ece498/al/lectures/lecture14-15-CUDA-   

 performance.ppt, 2007, [Mar. 27, 2007].   

 

 

 

 




