
A Microprocessor Survey Course for Learning Advanced
Computer Architecture

Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA 22904
skadron@cs.virginia.edu

Abstract
A course that surveys state-of-the-art microprocessors

offers an excellent forum for students to see how computer
architecture techniques are employed in practice and for
them to gain a detailed knowledge of the state of the art in
microprocessor design. The University of Virginia has devel-
oped such a course, organized around student presentations
and a substantial research project. The course can accom-
modate a range of students, from advanced undergraduates
to senior graduate students. The course can also be easily
adapted to a survey of embedded processors or DSPs. This
paper describes the course and lessons learned.

1 Introduction
An important component of studying computer architecture
is seeing how concepts are applied in practice. Although
textbooks often present excellent case studies, they typically
break computer architecture down into discrete topics, the
case studies often illustrate only the concepts from a given
chapter, and textbooks are limited in the extent to which they
can explore a number of microprocessors in detail. Text-
books also often have difficulty exposing interrelationships
among different aspects of the processor, and they typically
omit the manufacturing and economic factors that influence
processor designs. In practice, decisions about the design of
one processor component frequently influence the design of
the rest of the processor, and manufacturing and economic
factors often weigh heavily in design decisions.

The University of Virginia has developed a course that
explores advanced computer architecture concepts by com-
paring and contrasting a number of state-of-the art micropro-
cessors. The course also affords students the opportunity to
practice public speaking, the opportunity to gain experience
in finding and interpreting technical documentation, and the
opportunity to conduct research. The course can accommo-
date a variety of levels of knowledge; for example, the Vir-
ginia version accommodates a mixture of undergraduate and
graduate students without overtaxing less advanced students

To appear in the SIGCSE 2002 Symposium, Feb. 27–Mar. 3, 2002, Northern Kentucky, USA.

Permission to make digital or hard copies of part of all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

or providing a diluted experience for those who are more ad-
vanced. While undergraduates participate less than the more
knowledgeable graduate students and pursue less aggressive
research projects, they gain immensely by obtaining early
exposure to advanced concepts and building interest in the
area of computer architecture. Graduate students take a more
active role in leading the discussion, mentor the undergrad-
uates, and pursue more aggressive research projects. This
course works well for both computer-science and computer-
engineering majors, but an advanced, undergraduate-level
architecture class should be a prerequisite (e.g., ECE 435
at Virginia), so that students have studied pipelining in de-
tail and have at least been exposed to concepts like caches,
branch predictors, and instruction scheduling. Finally, it is
important to note that the course serves as rich source of re-
search ideas, and it is therefore useful to include a substantial
research project.

This course grew out of a seminar first taught by Douglas
W. Clark at Princeton University. This paper, which updates
the experiences reported in [10], describes how the course
has been structured at Virginia, presents lessons learned after
teaching this course twice, and evaluates how well the course
meets its goals.

2 Course Overview

The course opens with a sequence of lectures by the instruc-
tor to provide background on modern processor architec-
tures. This in turn sets the stage for the bulk of the course,
which comprises two sequences of presentations organized
around the matrix shown in Figure 1. The first sequence,
comprising most of the first half of the course, consists of
detailed student presentations of four or five state-of-the-art
microprocessors and corresponds to the rows in the matrix.
The second sequence, corresponding to the columns, com-
prises the latter half of the course and consists of further stu-
dent presentations that explore cross-cutting design themes.
Students sign up for a processor and a theme (i.e., a position
in the matrix) at the beginning of the course. Teams—both
processor and theme—should be balanced according to stu-
dents’ interests and experience. This format permits each
student to leverage the research from the first presentation
to prepare for the second presentation. Yet the two presen-
tations’ very different focuses push the student to become
an expert not only on one microprocessor, but also on one
cross-cutting theme and its impact on different processors.

ISA I-stream D-stream . . .
Alpha 21264 A B C D
Pentium III E F . . .
Athlon . . .
.

Figure 1: Student-team matrix. The students (A, B, C, etc.) choose a processor and a “cross-cutting” design theme for which
they are responsible in their team presentations.

The last segment of the class is a sequence of lectures
by the instructor on papers from the research literature that
cover the most interesting cutting-edge topics that arose dur-
ing the students presentations and research.

The course’s four phases are next described in more de-
tail.

2.1 Introductory Material
To help bring all students in the class to a common level
and prepare them for studying modern architectures, the in-
structor spends the first part of the course lecturing. The
purpose of these lectures is to introduce or review the orga-
nization of modern microprocessors; describe cutting-edge
features seen in today’s processors, such as out-of-order exe-
cution, advanced branch prediction, and trace cache; and ex-
plain economic and manufacturing considerations that may
influence microprocessor design. This is especially true if a
test is required. We did not use a textbook, but a text of the
instructor’s choosing can certainly be used effectively. Be-
cause some material in these lectures does not appear in cur-
rent texts, students are likely to ask for handouts that cover
the new concepts.

A test should be offered at the end of this introductory
phase. A test helps the students cement the material from
these lectures, and provides an additional component for the
overall class grade, which is otherwise based on presenta-
tions, participation, and the research project. This course has
been taught twice at Virginia, once without and once with
the test. Giving a test seemed to make a small difference
in student attentiveness but made a substantial difference in
the instructor’s ability to identify which concepts were giv-
ing the students, and especially the less advanced students,
difficulty. These topics can then be reviewed before student
presentations begin.

2.2 Microprocessor Presentations
The class is divided into teams, one per processor. These
teams consist of the rows in Figure 1 above. Each team
spends a week (about 2.5 class hours) presenting in detail
the instruction set and design of their assigned processors.
Students should include any available performance data,
like SPECcpu (http://www.specbench.org) scores, branch-
prediction accuracies, and cache hit rates.

In the class, we surveyed four processors—in its most
recent version, we covered the Compaq Alpha 21264 [7], the
Intel Pentium III [3], the AMD Athlon [2], the Pentium 4 [5],
and the Intel Itanium [4]. A set of embedded processors or
digital signal processors (DSPs) could be substituted for a
course emphasizing issues in embedded-systems design.

Each team member is responsible for one major area
of the microprocessor’s organization—the cross-cutting

themes. Their preparation in this area then serves as a foun-
dation for their work on their next presentation that focuses
on their cross-cutting theme of choice. The themes we cov-
ered are:

Instruction set architecture. Material to cover includes
novel instructions, new instructions, unusual or absent ad-
dressing modes, branch delay slots, and so forth.

Instruction stream. Material to cover includes instruction-
cache and branch-predictor organization and effective-
ness, and instruction-prefetch facilities.

Data stream. Material to cover includes data-cache organi-
zation and effectiveness, write-buffer and TLB organiza-
tion, prefetching facilities, load-store ordering constraints,
and so forth.

Register renaming and instruction issue. Mate-
rial to cover includes renaming structures, reservation-
station and instruction-window organization, functional-
unit topology, instruction wake-up, selection, and issue
policies, the instruction-commit procedure, and any note-
worthy exception handling.

Memory management. Material to cover includes support
for memory consistency, cache coherency, inter-process
communication, and context switching, as well as page-
table organization and paging policies.

For smaller classes, “memory management” can be mostly
omitted, and “register renaming and instruction issue” can
be folded into the other topics. Although students are re-
sponsible for only one aspect of the processor, preparing for
the group presentation leads them to become well-versed in
most other aspects as well.

Presentations are interactive, with the class encouraged
to ask questions, and comment or speculate on design
choices. Participation by the audience is an important com-
ponent of the grade. Fortunately, the experience at Virginia is
that students rapidly become comfortable and pursue a lively
back-and-forth dialogue. The instructor serves chiefly as a
moderator.

In preparing for their presentation, students gather rele-
vant source material from the published literature, the web,
and inquiries made to manufacturers. Students might find,
for example, a hardware manual, a whitepaper describing
the rationale behind some choices, articles from the trade
press discussing the merits of different processors, and pa-
pers from the research literature describing advanced mi-
croarchitectural techniques employed by this processor.

The teams assemble the most useful material into a book,
which can be spiral- or velo-bound, and distribute it to class
members before the presentation. The book should include
a table of contents, an index of other literature that might

be useful, and copies of the overheads used in the team pre-
sentations. These books are outstanding references: we find
ourselves consulting them regularly for details on these pro-
cessors, and copies have been in hot demand by other mem-
bers of the faculty and graduate-student body.

The students also assemble a web page with links to all
relevant online documents as well as their own presentation
overheads and any summaries they have written. To ensure
that the students take the website seriously, experience has
shown that it must be a small part of the grade.

2.3 Cross-Cutting Theme Presentations
After the microprocessors have been presented, students re-
assemble into new teams based on their chosen theme—
these teams represent the columns from the matrix in Fig-
ure 1. In this phase, the students produce additional book-
lets, tracking down any additional research literature that
describes the techniques used by the different processors.
They should also seek further literature that describes rel-
evant, recently-proposed techniques not yet seen in any mi-
croprocessor. In their presentations, they explore the techni-
cal, manufacturing, and economic factors that led designers
to make the often widely disparate choices embodied in the
different processors. The design factors that generated the
most discussion have been:

� The choice of explicitly parallel, in-order issue by Intel for
the Itanium, when the other processors we studied, and in-
deed most high-performance microprocessors, have cho-
sen out-of-order implementations.

� The different processors’ widely varying instruction-issue
capabilities. The Pentium III, for example, has just five
instruction-issue ports, and three are dedicated to process-
ing loads and stores. In contrast, the Athlon has nine ports.
Nevertheless, the two processors achieve remarkably sim-
ilar performance.

� The benefit of architected branch-delay slots. Many stu-
dents were puzzled by the existence of delay slots, since
they create difficulties for multi-issue architectures.

� The merits of small vs. large first-level caches. Some
processors like the Alpha 21264 use large, 64 KB caches,
while others like the Pentium 4 use small, 8 KB caches.

To help ground the cross-cutting discussions in facts
rather than hand-waving, experience has shown that students
must bolster their analysis with data obtained either from
publications and the web, or through a quantitative evalua-
tion of their own, perhaps using a simulation package like
SimpleScalar [1]. The quantitative evaluation can be made a
separate requirement and constitute an additional portion of
the assigned grade. Evaluations might include a performance
comparison of different branch-predictor, cache-hierarchy,
or functional-unit-topology organizations, a comparison of
in-order vs. out-of-order issue, or a comparison of different
instruction-window sizes or organizations. More ambitious
projects might explore the tradeoffs among better caching
schemes, better compiler optimizations, and larger instruc-
tion windows; or the impact of the instruction set on the
compiler’s ability to generate efficient code schedules.

2.4 Advanced Material
After the student presentations, the remaining weeks can be
used to read and discuss papers from the research literature
that either explain issues that were not resolved during the
presentations, or that extend current techniques with new
ideas. About one paper per class seems to be the best rate
at which to cover research papers.

These discussions were led by the instructor, with a loose
lecture format that encouraged frequent student comments
and discussion. To help students assimilate the papers, they
were required to submit a one-page synopsis of each paper
in which they identify the key idea, the most important con-
tribution and most important flaw, and in which they pose
any questions they had about the paper. These questions can
be used to ensure that the students understood the paper and
can serve as additional talking points during class.

2.5 Research Project
As the course proceeds, students choose a topic for a fi-
nal research project. They may work independently or in
teams. The topic should be tractable in the space of a sin-
gle semester, should be adapted to the student’s level (un-
dergraduates vs. senior graduate students), and should be
a topic that can provide the basis for future, publication-
quality research. Students find their projects useful for dif-
ferent reasons. While some students may not in fact com-
plete enough work for publication, the orientation toward
publication helps generate a challenging project on topics of
current interest and serves as a valuable experience in several
ways. Undergraduates find it useful as a first experience with
the sort of research they might conduct in graduate school.
Beginning graduate students find it useful as an opportunity
to explore whether research in computer architecture inter-
ested them, and more advanced graduate students find it a
way to explore a new research idea.

In the first year this course was taught, the students did
work that led to two conference papers, two workshop pa-
pers, and one technical report. The most recent year led
to once conference publication, two abstracts at a work-in-
progress session, and served as the genesis of two projects
that are still in progress. The most novel projects, both pro-
posed mainly by the students themselves, were:

� A paper exploring differential multithreading [6], a tech-
nique for switching among multiple instruction streams in
response to pipeline stall conditions. By relying on the
pipeline organization of an in-order, single-issue proces-
sor as might be found in many embedded-processing en-
vironments, differential multithreading provides an inex-
pensive way to improve processor throughput at low cost.
The student author says that this idea grew directly out of
the in-class discussions.

� A paper describing a new software architecture for byte-
code interpreters [9]. This paper explores how to take the
techniques used by CPUs to exploit ILP processors and
translate them to the bytecode execution engine embod-
ied in the interpreter software. By using multithreading
techniques, the bytecode interpreter can exploit bytecode-
level parallelism or BLP. (This technique has since been
superseded by hardware support for Java translation.)

� A paper studying power issues related to branch predic-
tion [8].

If research projects are not desired, they can be replaced
with simpler exercises—perhaps like those mentioned in
Section 2.3—or with a final paper in which students describe
how they would design a processor and justify their choices
with findings from the published literature and with the out-
come of the class discussions.

2.6 Grading
In assigning the overall grade, the course emphasizes the fi-
nal paper and presentations, as these comprised the bulk of
the students’ work. A significant portion of the grade was
also assigned to class participation, to encouraging active
classroom discussion and debate. The most recent grad-
ing scheme used was the following: project proposal (5%),
midterm progress report (10%), final paper (30%), presenta-
tions (25%), participation (10%), initial test (10%), quanti-
tative evaluation of cross-cutting theme (5%), website (5%).

3 Benefits
The course has been very well received. Students enjoyed it,
and faculty felt it makes a significant contribution to both the
graduate and undergraduate curricula. In particular, students
felt that they benefited from:

� Seeing the diversity of design decisions embodied in dif-
ferent processors (see Section 2.3 for examples).

� Gaining a detailed knowledge of most of the major state-
of-the art microprocessors. This becomes especially valu-
able in the long run, in choosing how to conduct various
future research projects; and when writing papers, in re-
lating research choices to the current state of the art.

� Learning advanced concepts not covered in the core com-
puter architecture courses, and seeing them put into prac-
tice (e.g., various branch-prediction and caching tech-
niques).

� Seeing the impact of different instruction-set architectures
on design decisions. One example is the need for IA-32
processors to decode the CISC instructions into RISC in-
structions; the consequent penalties (extra pipeline stages,
longer branch misprediction penalties); and how this
makes a trace cache beneficial. The decision by Alpha ar-
chitects to add sub-word load and store instructions after
the first generation of the 21164 is another example.

Undergraduates also benefited from the exposure to ad-
vanced computer architecture concepts and from the oppor-
tunity to conduct research for their project, opportunities that
many undergraduate courses do not have time to provide. In
our experience, the undergraduates who have taken this sem-
inar do excellent, quite sophisticated projects. This not only
helps them establish credentials for acceptance into top grad-
uate schools or for interviewing with top companies, but also
helps prepare them for graduate-level research.

In addition, the books assembled by the student teams
serve as extremely useful references for years after the
course has been taught, the students get the opportunity to
pursue research in computer architecture, and some students
produce publication-quality results.

4 Lessons Learned

A number of lessons were learned during the first year in
which this course was taught. As mentioned earlier, we
found that a test after the first round of lectures is helpful
for several reasons; that the website must be a small part of
the grade in order to ensure compliance; and that quantitative
analysis must be part of the discussions. In addition, incor-
porating the following suggestions made the second year run
more smoothly.

Start the research project early. For some students, this
project will be their first substantial research project. Many
if not most projects also require using a simulation package
like SimpleScalar [1]. In order to have time to produce useful
work, it is vital to select a topic within the first month and
begin work right away.

Give students a menu of research projects. Less ad-
vanced students require substantial guidance in their choice
of project. Giving them carte blanche leads to many rounds
of discussion before a topic can be found that is suitable as
well as feasible in one semester, and many of the resulting
projects end up being similar to what would have appeared
on the menu to begin with. Students who wish to pursue top-
ics not on the menu can negotiate their topic as necessary.

Require milestones. Students taking other classes have a
natural tendency to postpone long-range projects in favor of
more immediate homework. Indeed, without a forcing func-
tion, some students delay starting their project too long, and
turn in projects that are weak and/or late. Problems have also
been encountered when students misunderstand their project
and the misunderstanding is not exposed until too late.

To combat these problems, students should write a
project proposal and also turn in at least one interim report.
Weekly reports are even better. These documents can be
quite short. The goal is to create milestones that require stu-
dents to make steady progress.

Most of our students used SimpleScalar [1], and we
found it useful to provide concrete familiarization exercises
designed to acquaint them with modifying the code to ob-
tain various measurements. These exercises take the stu-
dents on a tour of the code, require them to use a variety
of the configuration and statistics-gathering tools provided
by SimpleScalar, and require them to understand the code
well enough to learn where to instrument it to obtain various
kinds of statistics.

Give immediate feedback on presentations. Promptly
returning a grade and a critique of each student’s presenta-
tion permits the students to do a better job with their second
presentation. More importantly, it helps them develop better
presentation skills. The entire team can be assigned a single
grade, or each student can receive an individual grade.

Everybody must participate. Students can also audit the
course, but it is best to require everyone attending the sem-
inar to participate in the student presentation teams. This
ensures widespread participation. At the beginning of the
sequence of presentations, it helps for the instructor to ask
questions, make observations, and aggressively pick up on
student comments and turn them into discussions. This
seems effective at provoking broad class participation.

Some students are shy. While class participation was ex-
cellent overall, some students are shy or feel intimidated by
students who are more knowledgeable or more outspoken.
One-on-one conversations outside of class seem helpful in
reassuring students that it is safe to speak up and in making
them feel supported. Naturally, it also helps for the instructor
to treat naive questions with patience, in order to establish an
environment of trust.

Keep the class small. Group sizes of more than four stu-
dents does not give each student enough presentation time
and makes it too easy for a subset of the group to do most
of the work. This places on upper limit on the class size that
depends on the number of processors covered.

Provide tools and base configurations. In order to max-
imize the students’ productivity, the instructor needs to pro-
vide infrastructure. This includes:

� Installing the simulation package used by most students—
we used SimpleScalar [1].

� Installing benchmarks and explaining their use.
� Providing instructions on proper simulation (fast-forward

intervals, appropriate inputs, appropriate measurement
methodology) [11].

� Finding adequate computer time for all the students. (We
also required all simulations to be “niced”.)

� Providing graphing tools. Many students are familiar with
Excel, but are not familiar with how to assemble suitable
graphs, so templates are useful.

� Providing template web pages. This helps the pages that
the students produce look reasonably uniform. Some help
with web-authoring tools may also be necessary.

5 Evaluation
The goals of the course were to provide students with knowl-
edge about advanced computer-architecture techniques, a
working knowledge of the architecture of current micropro-
cessors, and an understanding of the tradeoffs that lead to
different design decisions in different processors.

The best indicator of whether the course met its goals
was the sophistication of the synopses the students wrote
and their questions and discussion during the last phase of
the course (“Advanced Material,” Sec. 2.4). Most students
were able to write about and discuss nuanced issues that re-
lated material from the research papers and the design of the
microprocessors we studied. The difference in the students’
sophistication in the latter stages of the course was a marked
improvement compared to the level of discussion in the first
round of presentations. Direct feedback also confirmed that
the students felt they were meeting all three goals.

6 Conclusions
This paper has described a microprocessor survey course that
can accommodate a range of students, including advanced
undergraduates and senior graduate students. The seminar is
centered around student presentations and a research project.
During the first phase of presentations, the organization of
four or five high-performance microprocessors are described
in detail. In the second phase, major cross-cutting design is-
sues are explored. The class examines the rationale behind
diverse design choices, the tradeoffs that drive these choices,

and new research that will affect these cross-cutting issues.
A number of detailed suggestions on how to best implement
such a seminar have also been described. An interesting
possibility is that the same general format used here might
also be applied to pedagogical advantage in other courses
and topic areas—operating systems, for example. We also
have not tried the course as an undergraduate-only course.
This might be equally successful, as long as the students are
sufficiently motivated and participate actively in discussion;
but the research project might be better replaced with more
concrete measurement exercises or with a term paper.

The most recent course materials can be found online at
http://www.cs.virginia.edu/˜skadron/cs854 uproc survey/

Acknowledgments

I would like to thank Doug Clark for his helpful comments
and for his assistance when I prepared this course. I would
also like to thank the reviewers for their helpful comments.
This work was supported in part by the National Science
Foundation under grant no. CCR-0082671.

References
[1] D. C. Burger and T. M. Austin. The SimpleScalar tool set,

version 2.0. Computer Architecture News, 25(3):13–25, June
1997.

[2] K. Diefendorff. Athlon outruns Pentium III. Microprocessor
Report, Aug. 23 1999.

[3] K. Diefendorff. Pentium III = Pentium II + SSE. Micropro-
cessor Report, Mar. 8 1999.

[4] K. Diefendorff. HP, Intel complete IA-64 rollout. Micropro-
cessor Report, Apr. 2000.

[5] P. N. Glaskowsky. Pentium 4 (partially) previewed. Micro-
processor Report, Aug. 2000.

[6] J. W. Haskins, Jr. and K. Skadron. Inexpensive throughput
enhancement in small-scale embedded microprocessors with
block multithreading: Extensions, characterization, and trade-
offs. In Proceedings of the 20th IEEE International Perfor-
mance, Computing, and Communications Conference, pages
319–28, Apr. 2001.

[7] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 microprocessor architecture. In Proceedings of the
1998 International Conference on Computer Design, pages
90–95, Oct. 1998.

[8] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan.
Power issues related to branch prediction. In Proceedings
of the Eighth International Symposium on High-Performance
Computer Architecture, Feb. 2002. To appear.

[9] K. Scott and K. Skadron. BLP: Applying ILP techniques to
bytecode execution. In Proceedings of the 2nd Annual Work-
shop on Hardware Support for Objects and Microarchitec-
tures for Java, Sep. 2000.

[10] K. Skadron. A microprocessor survey course: Exploring ad-
vanced computer architecture in practice. In Proceedings
of the Workshop on Computer Architecture Education, June
2000.

[11] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Branch prediction, instruction-window size, and cache size:
Performance tradeoffs and simulation techniques. IEEE
Transactions on Computers, 48(11):1260–81, Nov. 1999.

