1

[footnoteRef:1] [1:
]

[bookmark: _GoBack]Evaluating the Overheads of Soft Error Protection Mechanisms in the Context of Multi-bit Errors at the Scope of a Processor Core

	Lukasz G. Szafaryn+
	Brett H. Meyer++
	Kevin Skadron+

	+University of Virginia
{lgs9a, skadron}@virginia.edu
	++McGill University
{brett.meyer}@mcgill.ca

[bookmark: PointTmp]Abstract—As circuit feature sizes shrink, multi-bit errors become more significant, while previously unprotected combinational logic becomes more vulnerable, requiring a reevaluation of the resiliency design space within a processor core.
We present Svalinn, a framework that provides comprehensive analysis of multi-bit error protection overheads, to facilitate better architecture-level design choices. Supported protection techniques include hardening, parity, ECC, parity prediction, residue codes, as well as spatial and temporal redundancy. The overheads of these are characterized via synthesis and, as a case study, presented here in the context of a simple OpenRISC core.
The analysis provided by Svalinn shows the difference in protection overheads per component and circuit category in terms of area, delay and energy. We show that the contribution of logic components to the area of a simple core increases from 35% to as much as 54% with comprehensive multi-bit error protection. We also observe that the overhead of protection could increase from 29% to as much as 97% when transitioning from single-bit to multi-bit protection.
Svalinn analysis also suggests that storage components will continue benefiting from the use of ECC, while products requiring comprehensive coverage of logic components might use redundancy and potentially residue codes. Optimal core-level protection will require novel combinations of these.
INTRODUCTION
As circuit feature sizes shrink, their capacitance and operating voltage become smaller, making it easier for a particle strike to influence circuit behavior. Technologies such as Silicon on Insulator (SOI) [] and FinFET [] significantly counteract this effect by decreasing the sensitive area in the transistor. However, the resulting SEU rate is still nontrivial for common low-power designs or those that use Dynamic Voltage and Frequency Scaling (DVFS), especially in the context of increasing process variation []. Most importantly, as a result of shrinking device sizes, the particle “blast area” covers a larger part of a circuit, potentially causing a single-event-multiple-upset (SEMU) within the same or across neighboring cells or logic components []. These upsets can adversely affect dynamic and static charge in combinational and sequential circuits, respectively.
SRAM circuits (such as those in the register file, cache, TLB) and sequential logic (latches/flip-flops) have always been considered vulnerable to soft errors and therefore protected in high-reliability products. However, combinational logic and data paths have been regarded as resilient for most purposes (except for those in safety-critical systems) due to sufficient error mitigation via different types of masking: (1) electrical; signals are constantly driven by their inputs, (2) logical; if a circuit is not sensitized to a signal, an error will not propagate, and (3) temporal; if an error does not appear at an output at the clock edge, it is not latched. However, as feature sizes decrease and masking becomes less effective, errors in combinational logic increase their contribution to the overall SER and therefore become a concern even for commodity processors today [] [].
With the higher risk of multi-bit upsets and the increased vulnerability of combinational logic, more sophisticated soft error protection techniques and more comprehensive circuit coverage are now required to maintain the same level of resiliency in the processor. This requirement changes the design tradeoffs compared to those faced when protecting only against single-event-single-upset (SEU) phenomena in SRAM and sequential circuits. The applicability and costs of existing protection mechanisms, such as hardening, parity, error-correcting codes (ECC), and spatial/temporal redundancy vary depending on the type of protected core components and the granularity of protection. As a result, the landscape of soft error protection techniques needs to be reevaluated in the context of current technology trends, with the focus on SEMUs and the need for coverage of combinational circuits.
Our Approach
To meet this need, we have developed Svalinn[footnoteRef:2], a framework that provides analysis of area, delay and power/energy overheads of several common soft error protection techniques at the scope of a processor core. Svalinn assists architects with design-time architecture-level decisions by providing a clear picture of the relative upper-bound overhead estimates of protection per component as well as exploring area, delay, power/energy and general SEMU coverage tradeoffs. Svalinn allows architects to observe differences in needs for and cost of protection of storage and logic components depending on their proportions in a given core configuration. Despite extensive prior work on efficient hardware resilience, we are not aware of any prior work that compares the characteristics and tradeoffs of different SEU/SEMU protection techniques across core components. [2: In Norse mythology, Svalinn is a shield that stands before the sun. Similarly, techniques evaluated by our tool protect circuits from soft errors due to radiation. The tool will be released under a BSD open-source license.]

Svalinn uses synthesized hardware implementations of protection mechanisms to obtain estimates of area, delay and energy overheads in the context of a given core. By design, Svalinn can be used to perform this analysis for any core; this paper presents a case study of a simple OpenRISC core. Simple cores are becoming important for throughput-oriented, power-aware and embedded systems. Due to its availability, we use a 90nm bulk technology library for synthesis. Although future designs are likely to employ SOI technology (due to improved soft-error immunity as well as reduced area, delay and power overheads) the relative protection overheads are expected to be similar.
Due to limited space, we only present Svalinn analysis of the most common groups of protection mechanisms: (1) latch/SRAM hardening, (2) parity and ECC, (3) parity prediction and residue codes, and (4) spatial and temporal redundancy. We also explore several protection scenarios for the core that include combinations of these techniques. We do not consider the many proposed variations of these techniques, nor feature upsizing [], delayed outputs [], control/data path checking [], write-through cache [] or selecting cells according to their vulnerability, or to most efficiently achieve a target coverage or Failures in Time (FIT) rate []. In this paper, we analyze protection for entire circuits (upper-bound overhead).
[bookmark: _Ref342347932][bookmark: _Ref346753184]Background
Types of Circuits and Core Components
We categorize core components as (a) storage (consisting mostly of storage circuits with SRAM) and (b) logic (consisting mostly of combinational and sequential logic) to reflect the difference in the nature of protection needs. The former includes the register file, caches and the MMU (which also include some combinational logic). The latter includes the control unit, pipeline stages and arithmetic units. In each component, both storage and logic circuits are protected with applicable techniques.
Considered Protection Techniques
Hardening
Hardening provides soft-error protection for storage circuits (SRAM) and sequential logic. It involves adding redundant transistors to provide a feedback path that reinforces the logic state in the event of an upset, and to ensure that upsets do not propagate [] [] []. However, in most cases, the feedback path is not strong enough to protect against SEMUs; this would be prohibitive in area and power. We adopt the methodology in [] and [] for latch and SRAM hardening, respectively.
Parity and ECC
Both parity and error-correcting-codes (ECC) protect storage circuits and sequential logic against soft errors []. Parity provides single-bit error detection whereas single-error-correct-dual-error-detect (SECDED) provides detection of double-bit errors or correction of a single bit. Interleaved or 2D parity/ECC [] and dual-error-correct-triple-error-detect (DECTED) codes are alternatives with improved protection capability, but not considered here because of high costs, limited applicability or difficulty in estimating wiring overhead.
Parity Prediction and Residue Codes
Parity prediction detects single-bit errors in the results of some arithmetic operations by comparing parity of the operands against that of the result []. Residue codes, on the other hand, detect errors that translate to any number of bit flips in the result, for a larger set of arithmetic operations, by comparing the residue of the operands to that of the result []. Due to the varying protection overheads for different types of operations and arithmetic units, both parity prediction and residue codes are typically used to protect only select operations in the integer ALU and the FPU, respectively. We apply them in this fashion (according to [] and []) and leave further exploration for future work.
Spatial Redundancy
Spatial redundancy offers protection against soft and hard errors for all types of circuits. We apply redundancy at the component level. Each copy executes the same operation(s) in parallel, in lock-step; their results are compared each cycle and a fault is signaled upon a discrepancy []. This technique can recover from any number of transient faults within the replicated component, as long as both copies are not affected (not likely to occur with SEMUs due to the physical separation of the replicas). Variations of this technique include application at the core granularity, relaxation of lockstep operation, and comparison at the frequency of multiple cycles []. The last two require taking checkpoints and buffering, similar to those in temporal redundancy.
Temporal Redundancy
Temporal redundancy is a core-level technique that provides protection against soft errors for all types of circuits. Individual instructions are executed redundantly in time in the same components while their results are saved into a buffer in a compressed form [] at single or multiple-cycle intervals. For sufficiently long intervals (such as 100 cycles), checkpoints and comparisons can be performed off the critical path and overlapped with computation. Data written during execution is kept in a store buffer that is committed when no faults are detected. All buffers are protected by SECDED. Temporal redundancy protects against any number of transient faults within the duration of repeated execution. Variations of this technique include thread-level execution in an SMT core that allows partial amortization of the repeated execution []. For our work, we assume methodology from [].
Recovery from Errors
In this paper, we focus on techniques that recover from soft errors dynamically. In all of the evaluated methods, except for Hardening (no detection needed) and ECC (detection and recovery within a cycle), errors are detected over some finite evaluation period; correction is implemented by restoring state from a micro-architectural checkpoint, and re-executing. We do not evaluate recovery delay since, under the anticipated SER, it will constitute a small fraction of an application's execution time. We do not consider real-time systems here, which need to schedule for recovery.
[bookmark: _Ref342348006]Methodology
Hardware Models and Analysis
To represent protection overheads in Svalinn, we develop hardware (RTL) models of candidate protection techniques, with the exception of hardening, parity prediction and residue codes, for which we obtain overheads from publications, and [], [], [] and []. We apply relevant hardware models to components in the OpenRISC core and synthesize them using Cadence tools to determine the area, delay and average power. CACTI is used to model SRAM arrays []. We obtain energy by characterizing average activity over regions of interest in a set of SPEC2000 benchmarks (using gem5 []). Svalinn uses this data to determine area, delay, average power and energy for a desired core-level protection scenario.
OpenRISC Platform
OpenRISC 1200 is a simple 32-bit processor that features a scalar, in-order, pipeline and a relatively large FPU implementation. In order to more accurately illustrate the anticipated future impact of protection overhead on relative component sizes, we configure OpenRISC with a very small cache size and downscale the FPU area so that their relative sizes resemble those in typical current throughput-oriented and embedded cores. Our energy estimates account for the impact of a smaller cache.
The relative distribution of area, delay and energy across core components is important when considering which techniques or combinations of techniques to employ. We have observed from our synthesis that caches, control unit (includes exception and pipeline freeze logic), FPU and the ALU are the largest contributors to the core area – 40%, 15%, 10% and 8%, respectively (Figure 1). Logic circuits (latches and gates) contribute more than half (56%) of the overall core area, of which 27% are latches. The control unit and the FPU have the largest number of latches. Arithmetic units (ALU and FPU) have the longest critical path delay. Moreover, instruction cache/MMU, control unit, register file, fetch unit (includes PC generator) and decode unit are more active than the rest of the components, such the memory stage (load-store unit), hence they consume more energy per unit area.
[image:]
[bookmark: _Ref345513007]Figure 1. Relative area, delay and energy per core component. Caches and the control unit have the largest areas. More active components consume more energy per unit area. ALU has the longest critical path.
[bookmark: _Ref347356551]Protection Mechanisms Per Core Component
Area
Svalinn shows that hardening has about 20% higher area overhead for SRAM than latches across the core. Since almost every cell must be hardened for complete coverage, this technique incurs a high area overhead for storage components (62%) compared to that in logic components (20%) (Figure 2). Moreover, logic circuits that use larger transistors for improved drive current (such as the control unit) incur even higher overhead.
In the case of storage components, the area overheads of parity and SECDED are 10% and 50% when applied everywhere possible across the core. The cost of these techniques can be generally amortized in storage units over wide (32-bit in this case) words and a shared encoder/decoder per array. The opposite holds for logic circuits, where these techniques incur 35% and 166% overheads, due to narrow words (usually 16-32 bits), each evaluated at every cycle with its own encoder/decoder. The total area of encoders/decoders always dominates the overhead for logic circuits, which makes ECC techniques such as SECDED prohibitive for small components, favoring parity. This effect is exaggerated in the case of the simple OpenRISC core, where the encoder/decoder implementation becomes relatively large (Figure 3). In the case of SRAM, the less prominent encoder/decoder overhead is proportional to the number of read/write ports.
While spatial redundancy can protect both storage and logic components, the latter incur a slightly larger overhead across the core due to a larger number of signals compared (108% and 135%, respectively). Parity prediction and residue codes remain the most area-effective for the ALU (15%) and the FPU (18%), respectively. As expected, the overhead of redundancy is unnecessarily high for storage components, where more affordable SECDED can be used to provide comparable coverage. The overhead of SECDED, on the other hand, is unreasonably high for logic/datapath circuits where spatial redundancy can provide higher overall protection (for both sequential and combinational circuits) at a lower cost.
[image:]
[bookmark: _Ref345523655]Figure 2. Relative area per core component. Error correction/detection codes incur more are overhead when applied to combinational logic, especially with a large number of latches (control , decode, FPU).
[image:]
[bookmark: _Ref356936976]Figure 3. Detailed area overhead of select protection techniques per core component. Total area of encoders/decoders always dominates for logic circuits where multiple instances are used. The effect is exaggerated by a relatively large implementation of the unit in the context of OpenRISC.
Critical Path Delay
Svalinn shows that cell-level changes introduced by hardening translate to a negligible 2% delay increment, on average, for both storage and logic circuits across the core, since there is usually only a single hardened cell in the critical path of each logic component. Parity, parity prediction, residue codes and spatial redundancy, on the other hand, contribute significant delays (7%, 11%, 13% and 4% on average across the core, respectively) due to additional circuitry, such as encoders, decoders, residue generators and checkers, in the critical path. Finally, SECDED incurs the highest delay (16% on average across the core) due to the more complex structure of the encoder/decoder. Although parity and SECDED encoding for most of the protected bits is done in parallel with the critical path, Svalinn assumes comprehensive protection and reports delay overheads incurred due to protecting bits in the critical path. The delay overheads are relatively more pronounced in components with short critical paths. This effect is exaggerated in the context of the simple OpenRISC that has relatively short critical paths.
Energy
With the results obtained from Svalinn, we find, as expected, that the average power is roughly proportional to the area for a given type of a circuit. The high activity of pipeline stages and the ALU translates to high energy consumed by these units and their protection (Figure 4). This effect is the most prominent in the case of SECDED, where the effect of the high area/power overhead for logic circuits was further exaggerated by the high activity of these units to yield the total energy overhead of 115% across the core (both storage and logic circuits). The opposite is true for spatial redundancy and less active cache units and, as a result, the corresponding overall energy overhead is 123%. Similarly, encoder/decoder circuits have a relatively large energy contribution in the context of a simple OpenRISC core (Figure 3).
[image:]
[bookmark: _Ref345943541]Figure 4. Relative average energy per core component. More active components such as the instruction cache and some of the pipeline stages incur the highest energy easily exacerbated by expensive protection.
[bookmark: _Ref347356567]Protection Scenarios For The Core
Individual Protection Techniques
In order to determine the relative overhead of individual resiliency techniques, we use Svalinn to evaluate several protection scenarios that apply each technique to all relevant components (note that coverage varies) in the core (Scenarios 2-9 in Figure 5). While impractical, these establish a baseline for evaluating combined techniques in Scenarios 10-11. All of the presented scenarios (except for hardening) incur about 7% overhead in the checkpoint circuitry and buffer. Scenario 1 corresponds to the original design with no soft-error protection implemented.
Individual techniques in Scenarios 2-4 protect only storage and combinational logic circuits. Due to the large contribution of storage circuits, hardening increases the overall core area more than parity (by 43% and 21%, respectively). However, hardening contributes a shorter delay to the core than parity (2% and 7%, respectively) while the overall increase in the core energy consumption is similar for the two (22% and 24%, respectively). When protected entirely by SECDED, the core suffers from high area, delay and energy overhead (102%, 16% and 115%) contributed mostly by the protection of the state elements in logic circuits, where SECDEC is both suboptimal and does not protect combinational logic. SECDED significantly increases cycle length for the core (it imposes too much delay in the ALU, the slowest component), and affects overall energy consumption due to the high activity of pipeline stages. If a lower resiliency is acceptable, parity is a more practical alternative for some of the smaller logic components, because it incurs lower overheads.
In Scenario 5, only select operations in arithmetic units (ALU and FPU) are protected by parity prediction and residue codes, respectively. The core-level area, delay and energy overheads of this combination are 3%, 12% and 3%, respectively.
In contrast to previous scenarios, Scenario 6 represents protection of all storage and logic circuits with spatial redundancy. This scenario suffers from high area and energy overhead (120% and 123%, respectively, across the core), largely due to replicated storage circuits. Similarly to SECDED, spatial redundancy is not the optimal choice for all components in this scenario. Spatial redundancy decreases the critical path delay for the core to 4%. Scenario 7 represents a variation of this technique where the delay is further reduced to 1% via periodic (every 100 cycles) evaluations done off the critical path, at the higher area (136%) and energy (139%) cost due to checkpoint circuitry and buffering.
Scenario 8 protects the entire core with temporal redundancy by repeating execution in time in the same core, at the granularity of a single instruction. While this scenario offers protection at moderate additional area (25%), it incurs a drastic performance and energy cost due to the repeated execution. This can be partially reclaimed when using multithreaded cores, where redundant threads can share state []. Similarly to Scenario 7, evaluation of results at the frequency of 100 cycles in Scenario 9 improves delay at a slightly higher area (41%) and energy cost.
Combinations of Multi-bit Protection Techniques
Exclusive use of a single resiliency technique results in unnecessary overhead. Therefore we use Svalinn to evaluate further protection scenarios that apply different multi-bit resiliency mechanisms to relevant core components (note that coverage varies) where they are the best fit as to minimize the overall area (Scenarios 10-11 in Figure 5).
Since SECDED provides double-bit coverage for storage circuits, it could be used for cache, MMU and the register file. Redundancy, on the other hand, is an attractive choice for logic components, such as the pipeline and arithmetic units, where it protects both combinational and sequential circuits, with less overhead and better coverage than SECDED. Assuming that this combination (Scenario 10) provides the desired level of coverage, it minimizes the overall area, delay and energy overhead for the core (97%, 4% and 98%, respectively). Scenario 11 illustrates that the area overhead can be even further reduced to 67% by using a combination of parity prediction and residue codes for arithmetic units while sacrificing coverage for unsupported operations there.
[image:]
[bookmark: _Ref345965537]Figure 5. Relative core area per protection scenario. Core area and energy are minimized when using SECDED for storage circuits, parity prediction and residue codes for arithmetic units and spatial redundancy for the remaining units.
[bookmark: _Ref342348109]Discussion
Protecting Storage, Combinational and Sequential Circuits
The increasing contribution of errors in combinational logic to the overall SER is expected to necessitate additional protection. The relative overheads of different techniques, and various combinations, have not previously been explored in this context. Svalinn allows us to observe that, for the simple core used in our studies, the previously unprotected logic components could increase their contribution to the overall core area from 35% to as much as 54% when comprehensively applying multi-bit error protection techniques there (Scenario 10). The critical path delay varies depending on the protection method and the number of compared outputs, while the energy overhead is proportional to component utilization.
Protecting Against Multi-bit Errors
As SEMUs get more severe, techniques that can recover from multi-bit errors in storage, such as SECDED, or those that can tolerate multiple SEU/SEMUs within the protected logic component, such as redundancy, might be required. Svalinn results show that, for the OpenRISC core, this resiliency improvement would increase the area overhead from 29% (Scenario 3) to as much as 97% (Scenario 10). This is mostly due to logic components, where the area cost of protection is 2.2 times higher than in storage components. While SECDED has a relatively high delay, both SECDED and spatial redundancy significantly impact energy consumption. Efficient residue codes could be employed for comprehensive ALU/FPU protection if they were extended to all arithmetic operations. Truly complete coverage should cover protection circuitry (to avoid false negative detections), but this adds significant extra cost for minimal coverage benefit.
Future Protection Trends
For most protection techniques, overheads depend on the proportion of different types of protected circuits in the core, the number of protected bits, and the fixed cost of encoders/decoders and checkers. In spite of the significant effect of the fixed-cost structures in the OpenRISC core, the relative protection overheads per component/circuit type should be illustrative for those in more complex architectures.
When addressing multi-bit errors, storage (SRAM) components are expected to continue benefitting from comprehensive protection via ECC (SECDED). While ECC area and energy overheads will be somewhat lower in the case of complex cores with larger structures, those for the OpenRISC core could be as high as 28% and 17% (SRAM protection in Scenario 10, compared to no protection). Comprehensive protection of combinational and sequential circuits in logic components could necessitate using spatial redundancy. While, similarly, the area and energy overheads will be somewhat lower in more complex cores, those for our example core could be as high as 69% and 82% (logic protection in Scenario 10, compared to no protection). Temporal redundancy and residue codes are also potential options.
In some cases it might be more effective to use core-level spatial or temporal redundancy. The former can achieve comprehensive coverage at a cost that is slightly lower than that of combined component-level redundancies, since a similar amount of internal state needs to be compared. However, core-level spatial redundancy could potentially result in increased dead space and separation of components that increase the critical path delay. Temporal redundancy can be used as an alternative in an area-constrained environment at the cost of performance.
[bookmark: _Ref342348141]Conclusions
The current trend of increasing multi-bit error rates and vulnerability of combinational logic requires more sophisticated error coverage across a larger number of components to maintain the same level of resiliency. This in turn changes the landscape of design options for soft error mitigation.
We therefore developed Svalinn, a framework that supports evaluation of area, delay and energy tradeoffs that emerge when considering combinations of single and multi-bit protection techniques. Svalinn is intended to help in making architecture-level decisions by providing estimates of these overheads at component and core levels. While Svalinn framework and modeling could be extended to any core, this paper focuses on a case study that uses the OpenRISC core.
Results obtained with Svalinn illustrate that the contribution of logic components to the core area could increase from 35% to 54% for comprehensive multi-bit error protection in a simple core such as OpenRISC. We also observe that the overhead of protection could increase from 29% to as much as 97% when transitioning from a single-bit to a multi-bit comprehensive core protection, mostly due to logic components, where the relative protection overhead is 2.2 times higher than in storage components.
The analysis of protection methods at the component level, provided by Svalinn, suggests that, in the context of SEMUs, storage components will continue to benefit from ECC, which can be effectively amortized over large SRAM arrays. However, comprehensive coverage of both combinational and sequential circuits in logic components will require the use of redundancy and potentially residue codes.
Acknowledgements
We thank Liang Wang and Saad Arrabi for their contributions to our modeling framework as well as Subhasish Mitra and Mastooreh Salajegheh for their input and suggestions. . This work was supported by the SRC under contract 2009-HJ-2042.
References
x
[1]	E. H. Cannon et al., "SRAM SER in 90, 130 and 180 nm Bulk and SOI Technologies," in Proceedings of IRPSP, 2004.
[2]	N. Seifert et al., "Soft Error Susceptibilities of 22 nm Tri-Gate Devices," IEEE Transactions on Nuclear Science, 2012.
[3]	N. George et al., "Bit-slice Logic Interleaving for Spatial Multi-bit Soft-error Tolerance," in Proceedings of DSN, 2010.
[4]	P. Shivakumar et al., "Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logic," in Proceedings of DSN, 2002.
[5]	Q. Zhou et al., "Cost-Effective Radiation Hardening Technique for Combinational Logic," in Proceedings of ICCAD, 2004.
[6]	S. Mitra et al., "Combinational Logic Soft Error Correction," in Proceedings of ITC, 2006.
[7]	A. Meixner et al., "Argus: Low-Cost, Comprehensive Error Detection in Simple Cores," in MICRO, 2007.
[8]	D. Yoon et al., "Memory Mapped ECC: Low-Cost Error Protection for Last Level Caches," in Proceedings of ISCA, 2009.
[9]	M. Zhang et al., "Sequential Element Design With Built-In Soft Error Resilience," IEEE Transactions on VLSI Systems, 2006.
[10]	T. Calin et al., "Upset Hardened Memory Design for Submicron CMOS Technology," IEEE Transactions on Nuclear Science, 1996.
[11]	P. Hazucha et al., "Measurements and Analysis of SER-Tolerant Latch in a 90-nm Dual-Vt CMOS Process," IEEE Journal of Solid-State Circuits, 2004.
[12]	S. Mukherjee, Architecture Design for Soft Errors.: Morgan Kaufmann, 2008.
[13]	J. Kim et al., "Multi-bit Error Tolerant Caches Using Two-Dimensional Error Coding," in Proceedings of MICRO, 2007.
[14]	M. Nicolaidis, "Carry Checking/Parity Prediction Adders and ALUs," IEEE Transactions on VLSI Systems, 2003.
[15]	D. Lipetz et al., "Self Checking in Current Floating-Point Units," in Proceedings of the 20th IEEE Symposium on Computer Architecture, 2011.
[16]	S. Mukherjee et al., "Detailed Design and Evaliation of Redundant Multithreading Alternatives," in Proceedings of ISCA, 2002.
[17]	J. Smolens et al., "Fingerprinting: Bounding Soft-Error Detection Latency and Bandwidth," in Proceedings of ASPLOS, 2004.
[18]	B. Meyer et al., "Cost-effective Safety and Fault Localization using Distributed Temporal Redundancy," in Proceedings of CASES, 2011.
[19]	S. Wilton et al., "CACTI: An Enhanced Cache Access and Cycle Time Model," IEEE Journal of Solid-state Circuits, May 1996.
[20]	N. Binkert et al., "The gem5 Simulator," Computer Architecture News, 2011.
[21]	(2011, Oct.) OpenCores. [Online]. http://opencores.org/or1k/OR1200_OpenRISC_Processor
[22]	J. Rivers et al., "Error Tolerance in Server Class Processors," IEEE Transactions on CAD of IC Systems, July 2011.

x

image2.png

image3.png

image4.png

image5.png

image1.png

