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To reduce the cost of cycle-accurate software simulation of microarchitectures, many researchers
use statistical sampling: by simulating only a small, representative subset of the end-to-end dy-
namic instruction stream in cycle-accurate detail, simulation results complete in much less time
than simulating the cycle-by-cycle progress of an entire benchmark. In order for sampled simula-
tion results to accurately reflect the nature the full dynamic instruction stream, however, state in
the simulated cache and branch predictor must match or closely approximate state as it would have
appeared had cycle-accurate simulation been used for the entire simulation. Researchers typically
address this issue by prefixing a period of warmup—in which cache and branch predictor state
are modeled in addition to programmer-visible architected state—to each cluster of contiguous
instructions in the sample.

One conservative, but slow approach is to always simulate cache and branch predictor state,
whether among the cycle-accurate clusters, or among the instructions preceding each cluster. To
save time, warmup heuristics have been proposed, but there is no one-size-fits-all heuristic for
any benchmark. More rigorous, analytical warmup approaches are necessary in order to bal-
ance the requirements of high accuracy and rapidity from sampled simulations. This paper ex-
plores this issue and in particular demonstrates the merits of memory reference reuse latency
(MRRL).

Relative to the IPC measured by modeling all precluster cache and branch predictor activity,
MRRL generated an average error in IPC of less than 1% and simultaneously reduced simulation
running times by an average of approximately 50% (or 95% of the maximum potential speedup).
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1. INTRODUCTION

Highly detailed, cycle-by-cycle simulation of a microprocessor in software is
prohibitively slow. On the fastest hardware, simulation commonly proceeds
several orders of magnitude slower than native execution. KleinOsowski et al.
[2000] show that modeling SPEC CPU2000 [Standard Performance Evaluation
Corporation 1999] benchmarks in cycle-accurate detail on reference inputs can
take many weeks. Still, software simulation is fundamental to all computer
architecture research. To make cycle-accurate simulation a more tractable
alternative, KleinOsowski and Lilja [2002] propose MinneSPEC: a novel
workload of reduced inputs for the SPEC CPU2000 benchmarks that simulate
to completion in significantly less time than original reference inputs, thereby
allowing researchers to explore a larger space of simulator configurations in
a reasonable amount of time. For several of the benchmarks, the MinneSPEC
workload also mimics execution behaviors (e.g., function-level execution
pattern, instruction mix) seen with the reference inputs.

Another approach to make simulation-driven research tractable used by
many studies is to employ sampling: taking measurements from a small, repre-
sentative subset of the end-to-end dynamic instruction stream. The remainder
of this paper specifically concerns acceleration of simulation that uses sampling.
Since it is precisely the software simulation of the cycle-by-cycle progression of
individual instructions through the pipeline that produces the overwhelming
slowdowns, in sampled simulation only the subset of instructions which consti-
tutes the sample are modeled in cycle-accurate detail. Fortunately, measuring
the instruction throughput (i.e., instructions per cycle, IPC) of only a subset
of the instructions can—for a properly chosen subset—yield information about
the instruction throughput of a benchmark’s entire end-to-end execution. Conte
et al. [1996], Sherwood et al. [2001, 2002], Skadron et al. [1999], Perelman et al.
[2003], and Wunderlich et al. [2003] propose strategies for choosing represen-
tative samples that yield good approximations to the true end-to-end IPC; all
of these will be discussed in Section 2.

To ensure the integrity of sampled measurements, the simulated processor
state must be accurately established prior to the cycle-accurate simulation of
each cluster. In other words, accuracy is predicated upon successfully defeating
the so-called cold-start bias; because cache and branch predictor performance
are critical to microprocessor performance, if the state of the cache (at all levels
of the hierarchy) and branch predictor do not appear at least approximately as
they would have had the entire simulation been performed in cycle-accurate
detail as cycle-accurate simulation of a cluster begins, the simulation results
may be inaccurate.

One straightforward technique to guarantee the accuracy of cache and
branch predictor state is to model the interaction of each memory reference—
instructions and data—with the cache hierarchy and every control-flow in-
struction with the branch predictor while the simulator is executing precluster
instructions. (All cache and branch predictor interactions are already modeled
within the cycle-accurate clusters.) Though its accuracy is sound in terms of
cache and branch predictor state, this FULLWARMUP method is heavy handed.
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While not as expensive (in terms of simulation running time) as cycle-accurate
simulation, modeling all cache and branch predictor interactions is still costly.

To accelerate sampled simulation even further, one can avoid FULL-
WARMUP by only modeling those interactions that occur within a certain
number of instructions prior to each sample cluster [Conte et al. 1996; Crowley
and Baer 1999; Eeckhout et al. 2003; Haskins, Jr. and Skadron 2001, 2003;
Kessler et al. 1991; Nguyen et al. 1997]. This approach exploits temporal local-
ity [Hennessy and Patterson 1995]: the propensity of programs to demonstrate
a strong correlation between recency of use and next use, for example, of cache
blocks. In other words, of those references that precede each sample cluster, ref-
erences that occur nearest to the cluster are the most likely to be necessary for the
accurate simulation of the cluster itself. Hence, by modeling cache and branch
predictor activity for only a subset of these precluster warmup instructions, the
simulated cache and branch predictor state can still approximate the state that
would have resulted had cycle-accurate simulation or FULLWARMUP been
used.

Heuristic methods for determining the number of warmup instructions pro-
pose warming up a fixed number of instructions preceding each sample clus-
ter [Conte et al. 1996], a fixed percentage of preceding instructions [Crowley and
Baer 1999; Kessler et al. 1991], and/or simply recycling cache and branch pre-
dictor state as it existed at the conclusion of the previous cluster [Crowley and
Baer 1999]. Haskins, Jr. and Skadron [2001] showed, however, that fixed-length
warmup, such as the 7000-instruction duration proposed in Conte et al. [1996],
for branch-predictor warmup1 does not warmup cache state as effectively as the
more rigorous, adaptive MSE. While 7000-instruction warmup produced an er-
ror of less than 4% relative to FULLWARMUP on average, such a technique
cannot be reliably applied to caches because the results are not “trustworthy.”
This becomes apparent when one considers that the worst-case relative error
produced by 7000-instruction warmup was almost 10%—more than five times
worse than MSE’s worst-case relative error. This result suggests that there is no
one-size-fits-all fixed-length warmup duration: Some fixed-length approaches
would fail to warmup enough references to ensure precise cycle-accurate sim-
ulation, while others will fail to optimally accelerate simulation by warming
up too many instructions. An analogous argument can be made of warmup
techniques that propose warming up some fixed percentage of instructions that
precede each cycle-accurate cluster; this is corroborated by Crowley and Baer
[1999], which claims that warming up 50% of references does not reliably elim-
inate bias for large caches. On the contrary, our research specifically compares
warmup techniques that—according to some analytical model—ensure accu-
rate warmup with high probability and produce as much speedup as possible
within that analytical framework. Neither of these requirements is met by
warmup techniques that specify an arbitrary amount of warmup. Hence, since
the superiority of analytical methods has already been established we do not
experiment with fixed-number or fixed-percentage warmup techniques in this
paper.

1Conte et al. [1996] assume perfect cache warmup.
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This paper compares minimal subset evaluation (MSE) and memory refer-
ence reuse latency (MRRL—MSE’s progeny): two rigorous techniques proposed
by the authors for accelerating sampled microarchitecture simulations by re-
ducing the amount of cache and branch predictor warmup prior to each sam-
ple cluster. MSE determines the number of warmup instructions based on the
number of unique memory references that would have to be modeled in order to
touch a certain fraction of cache blocks with user-chosen probability p. MRRL
determines when to engage cache and branch predictor warmup by exploiting
memory reference reuse latencies (MRRL)—a count of the number of instructions
that elapse between successive references to the same address.

In this paper, our objective is not to explore tactics for effective sampling;
our experiments in this paper use random cluster sampling for ease of deploy-
ment, precedent [Conte et al. 1996; Haskins, Jr. 2003; Haskins, Jr. and Skadron
2003], and amenability to rigorous statistical analysis. Rather, having argued
and cited the deficiencies of heuristic methods, our objective is to demonstrate
definitively the superiority of MRRL over its predecessors in term of flexibility,
applicability, and amount of speedup achieved. It should be noted, however,
that while our experiments for this paper use random cluster sampling, one of
the chief goals in the development of MSE and MRRL was to develop warmup
methodologies that are, to the extent possible, independent of, and therefore
useful with, other sampling techniques [Perelman et al. 2003; Sherwood et al.
2001, 2002; Skadron et al. 1999; Wunderlich et al. 2003].

Another significant contribution of this research has been the development
of software that implements the techniques described in this paper; we have
additionally implemented significant modifications to the sim-outorder compo-
nent of the SimpleScalar [Austin and Burger 1998; Burger and Austin 1997]
tool set which facilitate sampled simulation, and MRRL-based warmup. These
tools are linked to from the Web site for the Laboratory for Computer Architec-
ture and Virginia (LAVA) at http://lava.cs.virginia.edu/. Our chief contribution
has been the development of two techniques that preserve simulation accuracy
while significantly accelerating sampled simulation, thus rendering software
simulation a more attractive technique for microarchitecture research.

The rest of this paper is organized as follows. We discuss related work in
Section 2. Section 3 briefly reviews the MSE and MRRL acceleration techniques
and discusses their application to sampled simulation. Section 4 contrasts MSE
and MRRL and describes why MRRL is superior to its predecessor. Finally,
we explain our experimental methodology in Section 5, present our results in
Section 6, and conclude in Section 7.

2. RELATED WORK

Several studies examine ways to reduce overall simulation running times by ex-
ecuting only a small subset of the benchmark in cycle-accurate detail. Skadron
et al. [1999] identify short, representative simulation windows of 50 million
instructions for the SPECInt95 benchmarks. The key insight which guides
their approach is to observe code segment execution frequencies to distin-
guish and bypass unrepresentative start-up (e.g., data structure setup and
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initialization) behavior; cycle-accurate simulation begins after fast-forwarding
beyond a benchmark’s start-up phase.

Ochoa et al. [1996] and Conte et al. [1996] take a different approach and
instead simulate multiple fixed-sized clusters of contiguous instructions from
the complete dynamic instruction stream. The former opts for uniformly dis-
tributed sample clusters, whereas the latter opts for randomly distributed sam-
ple clusters. In spite of warming up all noncluster instructions, by modeling
only a small fraction of the end-to-end instruction stream in cycle-accurate
detail Ochoa et al. achieve a significant speedup while accurately estimating
instruction latency within a simulated pipeline. Conte et al. realize further
speedup by recycling stale predictor state from the previous cluster and prefix-
ing a short warmup interval of at least 7000 instructions prior to each cluster,
and achieve very small errors of a few percent in the observed mean IPC. In
the experiments conducted for this research we used random cluster sampling
and similar to Conte et al. [1996], break the precluster instructions into two
segments with the latter segment composing the warmup interval determined
by MSE/MRRL and recycling stale cache and branch predictor state.

Sherwood et al. [2001] propose basic block distribution analysis (BBDA).
Their technique profiles the execution frequency of a benchmark’s basic blocks
in order to isolate a contiguous subset of the dynamic instruction stream whose
execution characteristics closely mimic the complete, end-to-end execution of
the benchmark. BBDA’s key insight is that periodic basic block execution fre-
quency behavior reflects the periodicity of various architectural metrics such
as IPC, cache miss rate, and branch predictor accuracy in cycle-accurate simu-
lation. In Sherwood et al. [2002], Sherwood et al. build upon the BBDA concept
to create a technique that automatically isolates multiple contiguous subsets
of the dynamic instruction stream since some benchmarks’ behavior is too com-
plex to be characterized by a single instruction stream slice. As a continuation
of this research, Perelman et al. [2003] analyze algorithms that target the early
dynamic instruction stream to find simulation points that closely approximate
the end-to-end execution; because these simulation points occur close to the be-
ginning of a benchmark’s dynamic instruction stream, less simulation time is
required to arrive at the sample clusters. In all three cases their aim is to reduce
simulation times by only executing in cycle-accurate detail, a small represen-
tative subset of the dynamic instruction stream. MSE and MRRL are sampling
regime agnostic; therefore, as is hypothesized in Perelman et al. [2003] (which
states that their research uses “perfect warmup”), both should be well suited to
the task of accelerating warmup prior to cycle-accurate modeling of their sim-
ulation points. Haskins, Jr. validates this hypothesis for MRRL in Haskins, Jr.
[2003] by demonstrating that MRRL achieves well over 90% of the maximum
potential speedup while diverging from the IPC measured by FULLWARMUP
by much less than 1% on average for the automatically chosen simulation points
published in Sherwood et al. [2002].

The SMARTS framework, by Wunderlich et al. [2003], proposes a rigorous
statistical foundation for microarchitecture simulation built upon sampling
theory to analytically determine a subset of the population of a benchmark’s
dynamic instruction stream to simulate in cycle-accurate detail. Their work
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also explores the importance of warming up simulated hardware state, per-
forming warmup in two stages: functional and detailed. “Functional warming”
models cache and branch predictor activity in addition to functional simulation
of programmer-visible hardware state; “detailed warming” models the microar-
chitecture in cycle-accurate detail, but does not gather performance statistics.
Their research prepends a period of detailed warming to each simulation
cluster; functional warming is performed prior to each period of detailed
warming. MSE and MRRL specifically address minimizing the amount of what
Wunderlich et al. refer to as functional warming, and is potentially useful
for achieving further speedup of SMARTS simulations without compromising
accuracy of the results. MSE and MRRL will only reduce the amount of func-
tional warming, however, if doing so will not jeopardize simulation accuracy.
Hence, for MSE or MRRL to reduce simulation times, there must be sufficient
instructions between the conclusion of a sample cluster and the commencement
of the subsequent period of detailed warming to justify exorcising some fraction
of the inter-cluster warmup. In their paper, Wunderlich et al. determine the
number of sample clusters to simulate, n, based (among other parameters) on
a recommended sample cluster size of U = 1000 instructions apiece, starting
with n = 10, 000 and adjusting as necessary to achieve the desired level of con-
fidence in the measured instruction latency (i.e., cycles per instruction or CPI).
With so many small clusters, MRRL and MSE in particular, may not be able
to reduce warmup time, degenerating instead to FULLWARMUP to preserve
simulation accuracy. (The impact of intercluster distance upon MSE is demon-
strated in Section 6.) This may be alleviated, however, by selecting fewer, larger
samples; for example, let U = 100,000 and n = 100. This is a topic for future
research.

Heuristics for reducing cold-start bias are studied by Kessler et al. [1991].
They consider using half of a sample’s references for warmup purposes; tracking
only entries that are known to contain good state, recycling stale state, and
flushing state but estimating how much error this introduces. This method,
however, of branch predictor warmup described in Conte et al. [1996] and the
method of cache warmup described in Crowley and Baer [1999] may compromise
accuracy if used to warm up cache sate. If, for instance, a fixed number (e.g.,
7000) or fixed percentage (e.g., 50%) of warmup instructions is insufficient to
accurately establish cache state, then simulation accuracy will be compromised.
On the other hand, if a fixed number or fixed percentage of warmup instructions
accurately warms up cache state when a smaller amount of warmup would have
established accurate state in less time, then the heuristic has wasted time. It is
impossible to state for all possible benchmark programs and input sets, some
fixed quantity of warmup that will yield accurate, efficient warmup for cache
and branch predictor state. For this reason, these static warmup methods are
not included in our study. (Application of the fixed, 7000-instruction warmup to
cache state was demonstrated to be untrustworthy in Haskins, Jr. and Skadron
[2001].)

Nguyen et al. [1997], on the other hand, approach the problem of warmup
analytically as a part of the trace-driven PARSIM parallel microprocessor sim-
ulation system. Their formula calculates a function of the cache block width,
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associativity, the average population density of memory references within the
instruction stream, and the average steady-state cache miss ratio. This solu-
tion is a substantial improvement over previous techniques; by approaching the
problem analytically, their technique is able to achieve rapid warmup without
compromising accuracy. MSE similarly uses probabilistic calculations to esti-
mate a minimal warmup duration. MSE and MRRL are more flexible, however,
in that neither imposes the cumbersome requirement of a priori knowledge of
the steady-state cache miss ratio; the only straightforward way to determine
this quantity would be to measure it directly (e.g., via FULLWARMUP) for each
cache configuration under investigation. MSE and MRRL, on the other hand,
incur a onetime profiling cost for any sample drawn from a benchmark’s end-to-
end execution that can be used to warmup any cache configuration (and, in the
case of MRRL, any branch predictor configuration). For this reason, the warmup
technique employed by the PARSIM research is not entirely comparable to MSE
or MRRL, and is therefore not included among the warmup techniques mea-
sured in this paper.

Eeckhout et al. [2003] address the problem of accurately warming up cache
state for sampled trace-driven cache research. Their approach defeats cold-
start bias by initializing warmup according to those unique reference addresses
that are touched during the sample clusters, capitalizing upon the insight that
only as many precluster instructions as contain those references need to be
warmed up to establish accurate state. This strategy can also be tuned by
opting to warmup according to some user-chosen percentage of the unique
references that are touched during the clusters. When measuring the sam-
pled trace miss rate, they achieve results very close to the miss rate mea-
sured by simulating the whole trace by warming up a precluster interval con-
taining at least 70% of the unique memory addresses touched in the cluster
and recycling stale cache state from the previously simulated cluster. Appli-
cation of their technique to the accurate establishment of branch predictor
state, and for accurate sampled pipeline simulations is a subject for future
research.

Phalke and Gopinath [1995] model interreference gaps (which are equiv-
alent to memory reference reuse latencies) as kth-order Markov chains. By
modeling peraddress temporal locality in this way, they were able to develop
improved algorithms for page replacement, dynamic memory management,
and trace compression. A possible topic for future research is to determine
whether reuse latencies thus modeled (rather than measured directly as with
MRRL) yield warmup windows that reduce simulation running time while
warming up cache and branch predictor state accurately. Thiébaut [1989]
draws an analogy between memory access patterns and fractal random walks
on the one-dimensional lattice (where a large memory address space mim-
ics the countably infinite lattice). From this framework, Thiébaut describes
a method for accurately predicting the miss ratio of fully associative caches.
Wood et al. [1991] establish the concept of cache generations. Each cache gen-
eration begins immediately after a new line is brought into the cache and ends
when the line is evicted and replaced. Their notion of cache generations es-
tablishes a framework for analytically estimating the unknown or cold-start
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reference miss ratio, µ. They further establish that µ is substantially higher
than the miss ratio of references chosen at random. Armed with reliable µ̂—
estimated unknown reference miss ratio—they were able to accurately es-
timate cache miss ratios in sampled trace-driven simulations. While these
works do not treat warmup in execution-driven simulation, they were instruc-
tive in their analytical assessment of temporal locality in memory reference
streams.

In their cache decay research, Kaxiras et al. [2001] use the notion of cache
generations to propose a technique of cutting power to (heuristically presumed)
dead cache lines, thereby reducing leakage power. For the SPEC CPU2000
benchmarks, their measurements show that for a 32 KB L1 data-cache, a cache
line’s dead time can range from 45% to as much as 99% of the total time since
being loaded. Their work shows that most cache lines’ active lifetime is signifi-
cantly longer than their useful lifetime, which confirms the MRRL hypothesis
that references occurring many instructions before a cluster are unlikely to
have any relevance within the cluster and can therefore be safely omitted from
warmup.

Girbal et al. [2003] describe a novel technique for accelerating simulation
by distributing the job across a number of independently executing CPUs. If,
for instance, S CPUs are available, then a benchmark’s end-to-end dynamic
instruction stream can be broken into S mutually exclusive subsets and si-
multaneously simulated. Key to their research is synchronizing the simulated
state as it appears at the beginning of subset R, with the simulated state as it
appears at the conclusion of subset R − 1. To ensure this synchrony, the CPU
handling subset R −1 is allowed to continue simulating instructions beyond its
allotted instruction count, concurrent with the simulation of subset R. When
the difference between the measurement of some parameter (e.g., instruction
throughput) falls below a user-specified threshold value for R − 1 and R, the
two are said to be synchronized; hence, subset R may safely proceed, accurately
warmed up.

3. ACCELERATING WARMUP

As in prior research, we achieve efficient execution by breaking the simula-
tion into three separate phases as illustrated in Figure 1. The first, aggressive
fast-forward phase can be considered the “cold” phase; this is followed by the
“warm” phase, where cache and branch predictor interactions are modeled; and
concluded by the “hot” phase where cycle-accurate simulation of the processor
pipeline takes place. The hot phase contains sample cluster instructions and
preceding cold and warm phases contain the precluster instructions. Hence,
for each precluster–cluster pair, the aim of our research is to preserve simu-
lation accuracy as we increase the duration of the cold phase while reducing
the duration of the warm phase, always leaving the hot phase unchanged. Ad
hoc warmup methods that guess a warmup amount (e.g., X % of all precluster
instructions) may yield inaccurate results (if warming up only X % of preclus-
ter instructions is too few) or fall short of the potential speedup (if warming
up fewer than X % of precluster instructions would have still yielded accurate
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Fig. 1. Precluster–cluster pair subdivided into cold, warm, and hot phases. Cold phase models
only architected state; warm phase models architected state, plus cache hierarchy, plus branch
predictor; hot phase models pipeline in cycle-accurate detail.

results). Our techniques eschew these heuristics in favor of a more analytical
approach and preserve accuracy by determining which references are likely to
be germane to each cycle-accurate cluster.

3.1 Minimal Subset Evaluation

Minimal subset evaluation (MSE) [Haskins, Jr. 2003; Haskins, Jr. and Skadron
2001; Haskins, Jr. et al. 2002] computes the probability p of touching some
fraction of cache blocks after accesses to m unique memory reference addresses.
This probability is computed as a function of the number of cache sets and the
degrees of associativity per set. Acceleration is achieved by warming up only
the probabilistically minimal subset of precluster instructions as contain the
m unique references. Following this warmup period, the given fraction of cache
blocks will have been touched at least once with probability p.

To thoroughly discuss MSE it is helpful to define several more variables. Let
N be the number of sets in the cache and a be its associativity. (For a direct-
mapped cache therefore, a = 1.) In its most basic form, the MSE formula is used
to calculate m: the number of unique reference addresses that must be handled
within the cache to touch all Na cache blocks with probability p; that is, m =
MSE(N , a, p). To compute the m necessary to touch only a fraction of the sets,
and fraction of the blocks within each set, the basic MSE formula is adapted
by adding two “tuning” variables, α, β ∈ (0, 1], thus: m = MSE(αN , βa, p). (The
task of choosing good α and β a priori is discussed in Section 4.)

It is interesting to note that the MSE formula does not compute m directly,
but rather can be used to iteratively determine m based on the user-chosen p:

p =
∑[( m

x1,x2,...,xN−1

)s.t. at least �αN� x j ≥ �βa�
]

∑ ( m
x1,x2,...,xN−1

) .

We have not derived a closed-form solution for m, but have written software
that avoids the intractable computation of the pure MSE formula, and rapidly
converges to m for any given p [Haskins, Jr. 2003], using the direct-mapped
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Fig. 2. Precluster–cluster pair as the discrete interval [1, L] partitioned into n mutually exclu-
sive buckets to form the δinsn histogram; here wN �→ i bucket3, therefore warmup begins wN
instructions prior to instruction s which borders the cluster.

MSE approximation:

p = 1 −
∑�αN�−1

k=1

(N
k

)
km

∑�αN�
k=1

(N
k

)
km

.

To compensate for the fact that the approximation assumes a direct-mapped
cache (a = 1), the MSE approximation becomes m = a · MSEapprox(N , p),
which approximates the quotient of the number of ways to select fewer than N
cache sets, and the number of ways to select at most N cache sets.

Prior to simulation, we use custom-made software to profile each bench-
mark’s precluster–cluster pairs, to measure the number of unique memory
reference addresses that are accessed prior to each cluster. From this, t—the
number of instructions preceding a sample cluster that contains m unique ref-
erence addresses—was determined. This profiling step is a onetime cost per set
of precluster–cluster pairs. Only m must be recomputed for a different cache
configuration; from this, t can be determined from previously gathered profile
data.

3.2 Memory Reference Reuse Latency

Memory reference reuse latency (MRRL) [Haskins, Jr. 2003; Haskins, Jr. and
Skadron 2003] refers to the number of completed instructions between a refer-
ence to some memory address M[A] and the next reference to M[A]. To facilitate
a rigorous discussion of MRRL, we must establish a relationship between the
L instructions in a single precluster–cluster pair and the elements of the dis-
crete interval [1, L]; let instructioni �→ i, for i ∈ {1, 2, . . . , L}. Imagine further,
that [1, L] is partitioned into n � L mutually exclusive buckets whose union is
exactly [1, L], as pictured in Figure 2.

For our research, we developed software for profiling MRRLs for each
precluster–cluster pair. The profiling software maintains several associative
arrays of memory reference addresses—one for the instruction stream, one for
the data stream, and one for the stream of branch instructions. Elements in the
array are ordered pairs containing a memory address and a logical timestamp.
As a precluster–cluster pair simulates, the array element corresponding to the
currently accessed memory address is timestamped with the number of simu-
lated instructions since the beginning of the current precluster–cluster pair; if
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a previously encountered address is re-accessed, the difference of the previous
timestamp and the current number of completed instructions is temporarily
stored as δinsn. These δinsn are used to concurrently build a reuse latency his-
togram by incrementing the count of the bucket, [a, b], for which δinsn ∈ [a, b].
When a precluster–cluster section concludes, the profiler outputs its δinsn
histogram.

A precluster–cluster histogram gives the number of references whose reuse
latencies fall within the n disjoint length intervals of [1, L]. In other words,
each histogram gives the count of references for which the number of elapsed
instructions between successive accesses to the same address lies within the in-
terval subset bucket j , where j ∈ {1, 2, . . . , n} for all n buckets. Not surprisingly,
the histograms invariably tell the same story when plotted: an overwhelming
majority of references are revisited a small number of instructions after their
most recent access (i.e., the histogram bucket with the largest population was
always bucket1). Thus, the more instructions that complete after an access to
M[A], the less likely M[A] is to be accessed again. This is exactly as we had
expected, in light of concepts pioneered in Wood et al. [1991] and subsequent
work in Kaxiras et al. [2001].

From the histograms, we calculated the reuse distance corresponding to
any desired percentile N , that is, the bucket j for which at least N% of ref-
erences are contained in

∑ j
k=1 #refs(bucketk). Let wN �→ bucket j mean that

the j th bucket of the [1, L] interval is upper-bounded at L − wN instruc-
tions into the precluster–cluster pair. In other words, of all the references in
the current precluster–cluster pair, N% have reuse latencies of less than wN
instructions.

By engaging warmup wN instructions prior to the current precluster–cluster
boundary for large enough2 N , we know that the overwhelming majority of
addresses that will be accessed during the simulation cluster will have been
initialized. We argue that if N% of references require only wN instructions
between successive accesses, then it is pointless to attempt to initialize the
minority ((100 − N )%) of precluster cache and branch predictor interactions
that occur more than wN instructions before the cluster, since these references
would require disproportionately long to warm up, and probably not be relevant
to the cluster’s precision.

3.3 Sampled Simulation Acceleration

The steps of MSE/MRRL warmup acceleration are enumerated below:

(1) First, the user selects the locations of the cycle-accurate clusters within the
benchmark; by corollary noncluster regions are selected simultaneously.
Each cluster is paired with its own preceding noncluster (i.e., precluster)
region.

(2) The user next profiles the benchmark to characterize, for each precluster–
cluster pair, the occurrences of unique addresses (MSE) or reuse latencies
(MRRL) among all references that occur. As this profile data is valid for

2A discussion of “large enough” N appears in Section 6.
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any cache and branch predictor configuration, this is a onetime cost for
each benchmark sample.

(3) Simulations can then be run in an aggressive fast-forward mode, updating
only architected state. At the designated number of instructions prior to
each cluster (as determined by either MSE or MRRL), the simulator shifts
into warmup mode where cache hierarchy and branch predictor activity are
modeled. Once the cluster is reached, the cache(s) and branch predictor will
contain accurate state, and cycle-accurate, simulation begins. This last step
repeats for each precluster–cluster pair.

Contrast this approach to the more conservative technique of modeling all
precluster cache and branch predictor interactions, that is, FULLWARMUP.
Obviously, modeling all precluster cache and branch predictor interactions will
maintain perfect state throughout all levels of the cache hierarchy and in
the branch predictor, rendering the simulation data impervious to inaccura-
cies that arise from cold-start bias; only sampling error remains. Reciprocally,
STALEWARMUP—as the name implies—does not model any precluster cache
or branch predictor interactions, but merely recycles state as it appeared at
the conclusion of the previous cluster. While fast—in fact, the fastest warmup
strategy—failing to model any cache and branch predictor state prior to each
cluster, makes STALEWARMUP susceptible to cold-start bias, as will be shown
in Section 6.

Our strategy is to decide in advance of actual simulation, a reduced amount
of warmup that will not sacrifice accuracy. This separate profiling step is a
key component of our warmup acceleration strategy. Measuring critical infor-
mation beforehand saves time by rescuing the simulator from having to make
these measurements as it simulates; instead, these data can be passed to the
simulator as command-line parameters or within a file read by the simulator.
While we did not measure profiling time as precisely as simulation running
times, it appears in general, that the time cost of profiling a benchmark is
generally less than the time required to simulate the same benchmark using
FULLWARMUP. The small, onetime profiling cost is then amortized over the
set of simulator configurations a researcher experiments with, resulting in a
substantial time saving since, as will be shown in Section 6, MRRL is capable of
achieving nearly 95% on average, of the speedup achieved by FULLWARMUP.

4. MSE VERSUS MRRL

As stated in Section 1 and demonstrated in Haskins, Jr. [2003], MRRL super-
sedes MSE completely as a technique for warmup acceleration. The reasons for
this include:

(1) No probability calculations. MSE determines a reduced subset of precluster
instructions to use for warmup by facilitating a probabilistic assessment of
cache capacity based on the number of unique references that the cache han-
dles. While we have derived a tractable approximation to the MSE formula,
the probability calculations to compute the minimum number of unique ref-
erences are still time-consuming due to the lack of a closed-form solution
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for m which forces us to iterate to the correct value. MRRL makes no such
calculations and eliminates this overhead altogether.

(2) Directly applicable to all levels of the cache hierarchy. The correctness of the
MSE formula is based upon the assumed uniform distribution of unique
reference addresses among the N sets of a cache. This spacial uniformity
assumption has been rigorously demonstrated [Haskins, Jr. 2003; Haskins,
Jr. and Skadron 2001] by using χ2 analysis of the unique reference distribu-
tion pattern to disprove the null hypothesis that unique memory references
are not uniformly distributed. However, while this uniformity was easily
demonstrated for relatively small (e.g., N ∈ {512,1024}) first-level caches,
this uniformity assumption may not necessarily hold for larger secondary
and tertiary caches. Another, more subtle assumption underlying the cor-
rectness of MSE is that it is being applied to a stream containing one type
of references: instruction fetches or data loads and stores. Deeper levels of
the cache hierarchy tend to be unified, hosting both instructions and data.
MRRL imposes none of these assumptions.

(3) Applicable to warming up branch predictors. Before discussing MSE’s short-
comings, it is important to lay a framework for discussing branch prediction.
Hennessy and Patterson [1995] describe the canonical branch prediction
buffer3 (BPB) as a tagless cache of 2n saturating counters indexed by n
bits from each branch’s instruction pointer. Predictions are based there-
fore, on perbranch local history. This canonical BPB is the basis for all
discussions concerning MRRL’s usefulness for accelerating branch predic-
tor warmup. Given p = 99.9% a good direct-mapped estimate for m is
16N [Haskins, Jr. 2003]. Hence, for even a modest, say, 1K-entry (e.g., Al-
pha 21264 [Kessler et al. 1996]) local-history BPB, if N = 210 a user would
have to warm up enough precluster instructions to witness m = 16(210) =
16,384 unique branches. However, since programs tend to spend a con-
siderable amount of their execution in loops, revisiting the same regions of
code repeatedly before moving to new regions [Thiébaut 1989], it is possible
that any single precluster region may not include 16,384 unique instruc-
tions, much less unique branches. While this would not cause MSE to yield
inaccurate warmup, the inability of the precluster region to fulfill the MSE-
prescribed m unique branch instructions will cause MSE to degenerate into
FULLWARMUP, completely trading away speed for accuracy. MRRL’s ac-
celeration ability does not depend on a dense population of unique con-
trol flow instructions, and therefore does not normally degenerate to
FULLWARMUP to achieve accurate branch predictor state.

3A popular variation on the BPB is a two-level branch prediction buffer (2LBPB) that utilizes the
same 2n-entry tagless cache of saturating counters, that is instead indexed by an n-bit shift register
that records the taken–not-taken history of the n most recent branches, thereby rendering predic-
tions based on global branch history. Even though the 2LBPB’s global history-based prediction
scheme largely divorces branch prediction from perbranch temporal locality, in our experiments
we have not noticed any appreciable degradation in accuracy that can be traced to improper branch
predictor warmup when a 2LBPB- or hybrid BPB–2LBPB-based predictor is simulated with MSE
or MRRL warmup.
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Fig. 3. Front-loaded precluster contains a burst of references to unique addresses very early during
the precluster period, followed by a sparse population of uniques; t therefore, encapsulates most of
the precluster period.

Fig. 4. Flat-loaded precluster contains sparse, but steady appearance of unique reference ad-
dresses throughout the precluster period; t therefore, encapsulates most of the precluster period.

(4) Independence from temporal unique reference distribution. Equally as
important as the quantity of unique references, and their spacial distribu-
tion among the cache sets, is their temporal distribution throughout the
precluster instruction stream. Consider the case where the overwhelming
majority of unique memory references are accessed during an intense
burst of start-up activity very early during the precluster instructions.
Immediately ensuing is a steady-state period where these references are
reaccessed repeatedly. Assuming that there are m unique references among
the precluster instructions, this temporally front-loaded distribution of
unique references diminishes MSE’s ability to accelerate warmup because
in order to successfully encapsulate these m unique references, warmup
must begin long before the cycle-accurate cluster commences, yielding a
high value for t; this phenomenon is illustrated in Figure 3. A similar
problem occurs when unique references are sparsely distributed during the
precluster instruction stream; this scenario is depicted in Figure 4. Thus,
while MSE yields accurate warmup regardless of the temporal distribution
of unique references, maximum warmup acceleration occurs when unique
references are located near the start of the cluster as illustrated in Figure 5.
Unlike MSE, MRRL’s ability to accelerate warmup does not depend on the
temporal distribution of unique references; hence, MRRL naturally avoids
complications due to front-loading and flat-loading altogether.

(5) Does not require α or β. The large capacity of second-level and third-level
caches may preclude their being completely filled, leaving many cache
blocks untouched. To accommodate this, MSE utilizes the variables α,
β ∈ (0, 1], which specify that only a certain fraction of the sets, and a certain
fraction of blocks per set need to be touched since it would be inefficient to
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Fig. 5. Back-loaded precluster contains a burst of first references to unique addresses very late
during the precluster period; t therefore, requires only a small portion of the precluster period.

determine the MSE-prescribed m unique references to touch all Na cache
blocks when only αNβa blocks will be touched during the precluster instruc-
tions. Unfortunately, we were unable to determine a technique for determin-
ing α and β without running the simulation using FULLWARMUP to make
this determination. This forces us to either guess (violating our quest to con-
struct a rigorous, formal warmup technique) or to let α = β = 1. The former
may result in inaccurate warmup; the latter may be overkill which, due to a
dearth of unique references, reverts to FULLWARMUP preserving accuracy
while failing to accelerate warmup. Thus, while MSE is still a useful tool for
reasoning about cache capacity based only on the occurrence of unique ref-
erences and the dimensions of the cache, its usefulness for yielding actual
warmup acceleration in realistic, multilevel cache simulations is limited.

5. METHODOLOGY

The data discussed in Section 6 were gathered using random cluster sampling
as described by Conte et al. [1996]. Random cluster sampling is attractive be-
cause its results are amenable to rigorous statistical analysis; we exploit this
to demonstrate quantitatively, the merits of MRRL and its predecessor, MSE.

In each experiment, clusters containing 1 million contiguous instructions
apiece were chosen at random from the end-to-end dynamic instruction stream
of each benchmark. Conte et al. use clusters of 100,000 instructions apiece,
Wunderlich et al. [2003] use clusters of 1000 instruction apiece, Sherwood et al.
[2001, 2002] use clusters with instruction counts that are integer multiples of
100 million, and Perelman et al. [2003] show results for clusters of 1-, 10-, and
100 million instructions apiece. Our hypothesis was that medium-sized clusters
would cumulatively estimate the true, end-to-end IPC with good accuracy and
avail plentiful opportunities for acceleration. For sufficiently large samples,
the experimental data show that this hypothesis is correct. A possible avenue
for future research would be to experiment with MRRL using random cluster
sampling with varying cluster sizes.

To select the clusters, benchmarks were first executed by sim-fast—the rapid
instruction-level simulator from the SimpleScalar [Austin; Burger and Austin
1997] toolset—to obtain the end-to-end dynamic instruction count, L. Next,
a simple Perl script was used to select the 1-million-instruction clusters at
random from the discrete interval [1, L]. The locations of the clusters (as the
number of completed instructions relative to the start of execution) were saved
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to a file, and subsequently used to drive the multiple cluster profiling and
simulation steps enumerated in Section 3.3. For each benchmark, the same
set of sample clusters was used to experiment with four warmup techniques:
FULLWARMUP, MRRL, MSE, and STALEWARMUP.

Sampling (whether random, systematic, stratified, cluster, or multi-
stage [Henry 1990]) always produces error because only a subset of a population
is measured rather than the entire population. Hence, by sampling, one can only
estimate the characteristics of an entire population. Random cluster sampling
allows one to rigorously gauge the amount of error and the probability that
the amount is significant, based upon the assumption that all members of the
population had uniform probability of being included in the sample. Increas-
ing the size of a sample increases the accuracy of the estimation by reducing
the sampling error and bringing the estimation value asymptotically nearer to
the true value.4 A key consideration therefore was to determine the number
of clusters to draw from each benchmark. For most benchmarks, 50 clusters
were sufficient to estimate5 the end-to-end IPC (i.e., IPCtrue) when simulated
with FULLWARMUP. For the benchmarks applu and galgel, however, a larger
sample had to be drawn to obtain good accuracy; for these, we used samples of
500 clusters.

For the MRRL simulations, the warm phase was engaged wN instructions
prior to each cluster for N ∈ {0.990, 0.999}. N = 0.999 has shown good perfor-
mance in mimicking the accuracy of FULLWARMUP [Haskins, Jr. and Skadron
2003]. N = 0.990 was chosen to test whether the same performance could be
demonstrated for a lower value of N . If a lower value for N performs as well
as N = 0.999 (i.e., does not deviate from FULLWARMUP by a statistically sig-
nificant amount), then this lower value of N establishes a tighter lower bound
on the minimal necessary N to achieve accurate simulation. If not, then the
threshold minimal N can be said to exist somewhere in the interval (0.990,
0.999]. We do not experiment with lower values for N since, as will be shown in
Section 6, MRRL0.990 achieves well over 90% of the maximum potential speedup
on average, and deviates from the FULLWARMUP IPC by only 3.88% in the
worst case, and less than 1% on average.

Recall that MRRL’s profiling step makes MRRL measurements separately
for instruction-, data-, and branch addresses. This yields three wN : wNi , wNd ,
and wNb, respectively. While instruction- and data reference reuse latencies
are measured separately, the cache hierarchy we used for our experiments
(Table I) specifies a unified second-level cache, hosting both instructions and
data. Therefore, instruction cache modeling and data cache modeling must be
engaged simultaneously, since engaging warmup of one reference stream before
the other does not accurately mimic the potentially tumultuous relationship
between instructions and data for space in the common L2. This would give the
first reference stream an unfair, unrealistic opportunity to become established

4In this context “true value” refers to the value that would be obtained by measuring the complete,
end-to-end average instruction throughput, IPCtrue.
5Our threshold for a good estimate was to deviate from the end-to-end IPC by less than 5% when
the sample is simulated with FULLWARMUP.
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Table I. Configuration of Simulated Microarchitecture

Pipeline
Issue Width 8 instructions/cycle
Decode Width 8 instructions/cycle
Register Update Unit 128 entries
Load–Store Queue 32 entries
Commit Width 8 instructions/cycle

Cache Hierarchy
L1 Data 16 KB; 4-way assoc., 32 B lines, 2-cycle hit
L1 Instruction 8 KB; 2-way assoc., 32 B lines, 2-cycle hit
L2 Unified 1 MB; 4-way assoc., 64 B lines, 20-cycle hit
Memory Access Latency 151 cycles

Combined Branch Predictor
Bimodal 8192 entries
PAg 8192 entries
Return Address Stack 64 entries
Branch Target Buffer 2048 entries; 4-way assoc.
Mispredict Latency 14 cycles

in the L2 and may lead to unrepresentative cache state that adversely im-
pacts the respective miss rates of references to instructions or data during the
cycle-accurate hot simulation phases. Accordingly, to capture the prescribed
warmup duration, instruction cache simulation and data cache simulation be-
gin at the larger of wNi and wNd instructions prior to the hot phase of simulation.
Branch predictor simulation, on the other hand, is independent of cache state
at all levels of the hierarchy and is engaged wNb instructions prior to the sample
cluster, independently of instruction- and data cache simulation.

Haskins, Jr. and Skadron [2001] show that using MSE, all blocks of a simu-
lated direct-mapped cache were touched as predicted with p = 99.9%; progres-
sively more blocks were left untouched after reducing p to 99.0% and 95.0%.
Hence, for the MSE experiments, we tested p ∈ {95.0%, 99.9%} as the proba-
bilities of accurate warmup to measure the effect on simulation accuracy un-
der random cluster sampling at these two extremes. The other MSE parame-
ters were dictated by the first-level cache, shown in Table I. While the block
width of both the L1 data cache and the L1 instruction cache are identical
(32 bytes), the data cache has twice the capacity of the instruction cache. Since
the data cache is larger, its dimensions guided the MSE calculation thus: m = 4 ·
MSEapprox(N , p) ≈ MSE(128, 4, p). Hence, warmup for the MSE experiments
was driven entirely by the data cache. MSE is not well suited to warming up very
large structures or branch predictors, because the size of the warmup window
necessary to achieve probability p of accurate warmup grows rapidly, yielding
virtually 0 acceleration over FULLWARMUP [Haskins, Jr. 2003]. Thus, branch
prediction defaulted to FULLWARMUP for these experiments, assuring accu-
rate warmup of the branch predictor.

Once each benchmark’s sample was selected, the next step was to profile to
gather MSE/MRRL data for each benchmark. A Perl script was then used to ex-
tract the MSE t and MRRL wN for each benchmark’s precluster–cluster pairs.
When fed to the multiple cluster simulator, these data were used to demarcate
the boundary between the precluster cold phase and warm phase; the previously
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chosen hot phases (clusters) remained fixed just as they were during the
profile.

The metrics used to measure MSE’s and MRRL’s merit are percent-error
IPC deviation from FULLWARMUP, accuracy with respect to the true IPC,
statistical significance of deviation by matched-pairs t-test, running time as
a percentage of FULLWARMUP, and percentage achieved of the maximum
potential speedup.

All benchmarks come from the SPEC CPU2000 suite [Standard Perfor-
mance Evaluation Corporation 1999]; the binaries were compiled into the Alpha
AXP instruction set and statically linked so that the simulations see all user-
space program behavior, including library routines. The MRRL profiler and the
multiple cluster simulator were adapted from sim-safe and sim-outorder, re-
spectively, from SimpleScalar. To measure simulation time data as accurately
as possible, sim-outorder was further modified to use the UNIX system call
getrusage() to monitor the CPU time of each simulation regardless of other
activity on the host system. (All the scripts and software developed for this
research are available for download from the MRRL Web site which is linked
to from the Web site for the Laboratory for Computer Architecture at Virginia
(LAVA) at http://lava.cs.virginia.edu/.)

6. EVALUATION

Before developing a more formal framework for MSE and MRRL accuracy anal-
ysis, it is important to define the components of error and their relationship to
microprocessor simulation. Henry [1990] separates error into two components:
sampling and nonsampling. Sampling error is an unavoidable consequence of
the fact that a sample can only approximately capture characteristics of an en-
tire population. Nonsampling error arises from a failure to ensure the represen-
tativeness of the environment in which the sample measurements are taken. In
other words, if the environment of the sample does not at least approximate the
environment of the population, the measurements taken by sampling will tend
to be skewed. In a microprocessor pipeline, the state of the cache and the branch
predictor heavily influence instruction throughput [Hennessy and Patterson
1995] and their state constitutes a major component of the instruction stream
execution environment. Failure to accurately initialize state within the sim-
ulated cache and branch predictor may adversely affect measurements taken
during cycle-accurate simulation of the sample clusters; this is the cold-start
effect. By modeling all precluster cache and branch predictor interactions, how-
ever FULLWARMUP simulation is impervious to nonsampling error; hence, the
chief objective for each of MSE and MRRL was to develop a warmup strategy
that accelerates warmup without adding additional nonsampling error (i.e., to
develop a warmup strategy whose estimated IPC does not deviate from the esti-
mated IPC generated by FULLWARMUP by a statistically significant amount).

We begin by intuitively demonstrating (1) that MSE and MRRL reliably ap-
proximate FULLWARMUP, and (2) the importance of adequate warmup. Since,
by definition, FULLWARMUP is invulnerable against nonsampling error, if the
estimated IPCs generated by MSE and MRRL deviate only slightly from IPCs
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generated by FULLWARMUP, then MSE and MRRL add negligible additional
nonsampling error. On the other hand, STALEWARMUP, which merely recy-
cles cache and branch predictor state between sample clusters, will be shown
to be capable of increasing nonsampling error substantially.

Recall that our research objective is not to describe techniques for choosing
good samples, but to compare warmup strategies that are capable of accelerat-
ing warmup while maintaining the accuracy of simulation results. We chose to
employ random cluster sampling for ease of use, precedent [Conte et al. 1996;
Haskins, Jr. 2003; Haskins, Jr. and Skadron 2003], and amenability to rig-
orous statistical analysis. Additionally, random cluster sampling is immune
to systematic error [Taylor 1982] which may arise, for example, if uniform
separation of sample clusters—the distinguishing characteristic of systematic
sampling—overlays some periodic behavior embedded within the dynamic in-
struction stream. If the periodic behavior captured is exclusive of other be-
haviors, then the simulation results will be skewed accordingly, biasing the
outcome. On the other hand, if the variance within the systematic sample is
greater than the variance of the entire population (i.e., among all possible clus-
ters within the end-to-end instruction stream), then the systematic sample will
be more precise than a random sample of clusters [Cochran 1977]. It would
be unduly cumbersome, however, to attempt to measure the population-wide
variance of instruction throughput measurements to prove this superior accu-
racy if it exists for the chosen sample. While previous research indicates that
systematic error is a relatively minor concern for accurate microarchitecture
simulation [Wunderlich et al. 2003] and trace-driven evaluation of memory
systems [Crowley and Baer 1999], random cluster sampling is a conservative
alternative that freed us from concerns over systematic error as we performed
our statistical analysis.

As a target accuracy we decided that the sampled results generated by
FULLWARMUP (i.e., IPCFULLWARMUP) should deviate from the true, end-to-
end mean IPC (i.e., IPCtrue) by less than 5%. Except for two benchmarks, applu
and galgel, this was easily accomplished by simulating a randomly selected
set of 50 1-million-instruction cycle-accurate sample clusters. A sample of 500
1-million-instruction cycle-accurate sample clusters was necessary for facerec
and galgel to conform to this threshold.

As a first step, we begin by validating random cluster sampling under
FULLWARMUP. This validation is critical because it justifies our comparisons
of MSE, MRRL, and STALEWARMUP to FULLWARMUP. As Table II shows, for
suitably chosen samples, FULLWARMUP does well at eliminating nonsampling
error due to cold-start bias by approximating the true end-to-end IPC6 with less

6Most of these IPCs come from the SimPoint [Sherwood et al. ] Web site; this was a very substantial
benefit to our research, sparing us the irony of performing expensive end-to-end simulations to
demonstrate the benefits of warmup techniques tasked with obviating precisely this. Each of the
SimPoint IPCs were generated for a specific configuration of sim-outorder (linked to from the site).
MSE, MRRL, FULLWARMUP, and STALEWARMUP experiments compared against these IPCs
use the same sim-outorder configuration and the same benchmark binaries. The few other true
IPCs were gathered by brute-force simulation on our own compute servers, also using the same
SimPoint configuration file.
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Table II. IPCFULLWARMUP Percent-Error Relative to IPCtrue

(100% · IPCFULLWARMUP−IPCtrue
IPCtrue

); and IPCSTALEWARMUP %-error relative to

IPCFULLWARMUP (100% · IPCSTALEWARMUP−IPCFULLWARMUP
IPCFULLWARMUP

). MEAN Calculations
Based on the Absolute Value of Errors

Benchmark IPCtrue IPCFULLWARMUP (%) IPCSTALEWARMUP (%)
applu 0.831 −0.36 −1.09
apsi 1.008 3.12 −2.23
art 110 0.598 −0.57 0.34
crafty 0.569 −3.64 −0.80
equake 0.310 0.42 2.22
facerec 1.446 −4.87 −10.46
fma3d 0.535 −0.37 1.57
galgel 1.334 −0.60 −11.61
gcc integrate 1.431 −1.86 −7.26
gzip graphic 1.365 −3.28 −0.52
lucas 0.774 2.25 0.23
mcf 0.092 3.04 0.84
mgrid 0.987 4.72 −1.87
twolf 0.636 −1.08 −1.76
vortex lendian2 1.057 −3.18 −0.63
vpr route 1.023 0.18 −1.16
Mean 2.10 2.79

than 5% deviation in all cases. Table II furthermore compares STALEWARMUP
IPC (i.e., IPCSTALEWARMUP) percent-error deviation relative to FULLWARMUP
IPC. That is, Table II first compares the end-to-end mean IPCtrue to the sam-
ple mean IPCFULLWARMUP, and compares IPCFULLWARMUP to the sample mean
IPCSTALEWARMUP. This positions FULLWARMUP as the warmup gold standard:
since, for enough sample clusters, FULLWARMUP is demonstrably able to
achieve our target deviation of less than 5% relative to IPCtrue, the ability of all
the other warmup techniques (STALEWARMUP, MSE, MRRL) to defeat non-
sampling error will be judged by their mean IPCs’ relative error to the sample
mean IPC generated by FULLWARMUP.

Notice the STALEWARMUP percent-error deviation from IPCFULLWARMUP
for the benchmarks facerec and galgel of −10.46% and −11.61%, respectively.
These deviations—substantially larger than those of the other benchmarks—
are qualitative evidence that inadequate warmup can compromise simulation
accuracy by failing to mitigate nonsampling error; although this only happens
for two of the benchmarks, it evidences the devastating impact of rampant
nonsampling error resulting from a failure to establish accurate cache and
branch predictor state.

Having intuitively established the unreliability of STALEWARMUP, we
sketch first-pass evidence of MSE’s and MRRL’s reliability in Section 6.1; more
rigorous, quantitative evidence of the reliability of MSE and MRRL, and the
unreliability of STALEWARMUP will be given in Sections 6.2 and 6.3. In
Section 6.4, we will show that although MSE and MRRL are roughly identically
successful at reducing nonsampling error (both deviating from FULLWARMUP
by less than 1% on average), MRRL has a large speedup advantage over
MSE.
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Table III. IPC %-Error Relative to IPCFULLWARMUP (100% · IPCX−IPCFULLWARMUP
IPCFULLWARMUP

). MEAN
Calculations Based on the Absolute Value of Errors

IPCMRRL0.999 IPCMRRL0.990 IPCMSE99.9% IPCMSE95.0%
Benchmark IPCFULLWARMUP (%) (%) (%) (%)
applu 0.828 0.01 0.29 0.00 0.00
apsi 1.039 −0.01 −0.04 0.03 0.03
art 110 0.595 0.00 0.00 0.00 0.00
crafty 0.548 −0.02 −0.04 0.09 0.09
equake 0.311 0.00 0.00 0.00 0.00
facerec 1.376 0.18 0.36 0.63 0.98
fma3d 0.533 3.90 3.88 3.94 3.94
galgel 1.326 −0.20 −0.62 0.02 0.02
gcc integrate 1.404 0.13 −0.42 −0.15 0.00
gzip graphic 1.320 −0.09 −0.01 0.01 0.01
lucas 0.791 −0.04 −0.13 −0.28 −0.28
mcf 0.095 0.00 0.00 0.00 0.00
mgrid 1.034 −0.01 −0.01 −0.01 −0.09
twolf 0.629 0.13 0.14 0.19 0.19
vortex lendian2 1.023 0.06 0.07 0.31 0.13
vpr route 1.025 0.00 0.00 0.00 0.00
Mean 0.55 0.38 0.35 0.36

6.1 IPC Accuracy Compared to IPCFULLWARMUP

Table II qualitatively demonstrates that inadequate warmup (IPCSTALEWARMUP)
generated substantial additional nonsampling error for facerec and galgel.
Table III, on the other hand, indicates that MSE and MRRL do not gener-
ate a large amount of nonsampling error. Table III lists the FULLWARMUP
IPCs, and percent-error deviations therefrom for MRRL at N = 0.999 and
N = 0.990 (i.e., IPCMRRL0.999 and IPCMRRL0.990 ), and for MSE at p = 99.9%
and p = 95.0% (i.e., IPCMSE99.9% and IPCMSE95.0%). For all benchmarks except
fma3d, the magnitude of the percent difference deviation from FULLWARMUP
is much less than 1%. fma3d’s seemingly drastic nonconformance, however,
is due to the small numbers involved in the percent-error calculation. Take
for example the largest deviation of 3.94%, due to MSE at p = 95.0% and
p = 99.9%; IPCFULLWARMUP = 0.533, IPCMSE95.0%,99.9% = 0.554. The relative error,
100% · ( 0.554−0.533

0.533

) = 3.94% makes the deviation look much worse than it really
is when one considers that the absolute error is so small: 0.554–0.533 = 0.021,
or 21 thousands of an instruction per cycle. This assertion is further corrob-
orated by Table IV, which shows that fma3d falls within the 95% confidence
interval in all four cases.

6.2 IPC Accuracy Compared to IPCtrue

While MRRL0.999, MRRL0.990, MSE99.9%, and MSE95.0% are apparently sound
warmup strategies, and STALEWARMUP apparently unsound, we will now
rigorously demonstrate these hypotheses. For each benchmark, the mean in-
struction throughput was measured by counting the number of cycles consumed
in executing the sample clusters. Dividing the total number of executed instruc-
tions by this amount yielded the overall sample IPC (i.e., IPC). For a well-chosen
sample, this sample IPC will be a good estimate of the end-to-end IPC. The
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Table IV. IPC 95% Confidence Intervals Centered Around IPC (the Overall Sample
IPC), for MRRL0.999, MRRL0.990, MSE99.9%, and MSE95.0%. Bold Entries Fail to

Accurately Predict the Amount of Sampling Error

Benchmark IPCtrue IPCMRRL0.999 IPCMRRL0.990 IPCMSE99.9% IPCMSE95.0%
applu 0.831 0.829 ± 0.053 0.831 ± 0.053 0.828 ± 0.053 0.828 ± 0.053
apsi 1.008 1.039 ± 0.063 1.039 ± 0.064 1.040 ± 0.064 1.040 ± 0.064
art 110 0.597 0.595 ± 0.029 0.595 ± 0.029 0.595 ± 0.029 0.595 ± 0.029
crafty 0.569 0.548 ± 0.014 0.548 ± 0.014 0.549 ± 0.014 0.549 ± 0.014
equake 0.310 0.311 ± 0.104 0.311 ± 0.104 0.311 ± 0.104 0.311 ± 0.104
facerec 1.446 1.378 ± 0.460 1.381 ± 0.460 1.384 ± 0.458 1.389 ± 0.458
fma3d 0.535 0.554 ± 0.058 0.554 ± 0.058 0.554 ± 0.061 0.554 ± 0.058
galgel 1.334 1.323 ± 0.112 1.317 ± 0.112 1.326 ± 0.112 1.326 ± 0.112
gcc integrate 1.431 1.406 ± 0.159 1.399 ± 0.159 1.402 ± 0.159 1.404 ± 0.159
gzip graphic 1.365 1.319 ± 0.094 1.320 ± 0.094 1.320 ± 0.094 1.320 ± 0.094
lucas 0.774 0.791 ± 0.157 0.790 ± 0.156 0.789 ± 0.157 0.789 ± 0.157
mcf 0.092 0.095 ± 0.052 0.095 ± 0.052 0.095 ± 0.052 0.095 ± 0.052
mgrid 0.987 1.034 ± 0.106 1.034 ± 0.106 1.034 ± 0.106 1.033 ± 0.106
twolf 0.636 0.629 ± 0.004 0.630 ± 0.004 0.630 ± 0.004 0.630± 0.004
vortex lendian2 1.057 1.024 ± 0.040 1.024 ± 0.040 1.027 ± 0.040 1.025 ± 0.040
vpr route 1.023 1.025 ± 0.038 1.025 ± 0.038 1.025 ± 0.038 1.025 ± 0.038

standard error is a useful tool to analyze the goodness of a sample estimate [Fre-
und 1971; Sternstein 1996]. The standard error is computed as the quotient of
the percluster sample standard deviation in IPC and the square root of the
number of clusters:

sIPC = σ√
#cluster

We assume that error is normally distributed7 [Conte et al. 1996; Kendall and
Stuart 1968]; hence, the 95% confidence interval is IPC ± 1.96sIPC. In other
words, for a well-chosen sample, one can assume IPCtrue ∈ [IPC − sIPC, IPC +
sIPC] with 95% certainty.

Furthermore, let e = |IPCtrue − IPC|; if [IPCtrue − e, IPCtrue + e] ⊂
[IPC−1.96sIPC, IPC + 1.96sIPC], then the relative error between IPCtrue and IPC
was accurately predicted by the 95% confidence interval. Table IV shows that
the relative error between IPCMRRL0.999 and IPCtrue, IPCMRRL0.990 and IPCtrue,
IPCMSE99.9% and IPCtrue, and IPCMSE95.0% and IPCtrue was predicted by every
benchmark’s respective 95% confidence intervals except for crafty, and twolf (in
bold typeface). Table V shows, however, that the 95% confidence interval failed
to predict the relative error between IPCFULLWARMUP and IPCtrue for these same
two benchmarks! Since FULLWARMUP models all precluster cache and branch
predictor interactions, it impervious to nonsampling error; hence, its failure to
predict the relative error for these benchmarks is attributable to sampling er-
ror. Perfectly mimicking FULLWARMUP in this way is further evidence that
MRRL at N = 0.999 and N = 0.990, and MSE at p = 99.9% and p = 95.0% do
well at approximating FULLWARMUP. In other words, MRRL0.999, MRRL0.990,
MSE99.9%, and MSE95.0% do well at eliminating nonsampling error. Notice also,

7The assumption of normality is safe since the samples contain 50 clusters apiece. Samples of 30
or fewer elements would use the Student’s t-distribution [Sternstein 1996] with #cluster − 1 degrees
of freedom.
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Table V. 95% IPC Confidence Intervals Centered Around IPC (the Overall Sample IPC), for
FULLWARMUP, and STALEWARMUP. Successful Simulations Contain IPCtrue within Their

Confidence Interval. Bold Entries Fail to Predict the Amount of Sampling Error

Benchmark IPCtrue IPCFULLWARMUP IPCSTALEWARMUP
applu 0.831 0.828 ± 0.053 0.819 ± 0.053
apsi 1.008 1.039 ± 0.063 1.039 ± 0.064
art 110 0.597 0.595 ± 0.029 0.597 ± 0.029
crafty 0.569 0.548 ± 0.014 0.544 ± 0.014
equake 0.310 0.311 ± 0.104 0.318 ± 0.110
facerec 1.446 1.376 ± 0.460 1.232 ± 0.135
fma3d 0.535 0.533 ± 0.061 0.542 ± 0.055
galgel 1.334 1.326 ± 0.112 1.172 ± 0.104
gcc integrate 1.431 1.404 ± 0.159 1.302 ± 0.142
gzip graphic 1.365 1.320 ± 0.094 1.313 ± 0.094
lucas 0.774 0.791 ± 0.157 0.793 ± 0.144
mcf 0.092 0.095 ± 0.052 0.096 ± 0.050
mgrid 0.987 1.034 ± 0.106 1.014 ± 0.080
twolf 0.636 0.629 ± 0.004 0.618 ± 0.009
vortex lendian2 1.057 1.023 ± 0.040 1.017 ± 0.040
vpr route 1.023 1.025 ± 0.038 1.013 ± 0.036

as alluded to in Section 6.1, that the 95% confidence interval for fma3d does
bound its true IPC, further supporting our claim that MRRL0.999, MRRL0.990,
MSE99.9%, and MSE95.0% impose negligible error in spite of their relatively large,
nearly 4% deviation from IPCFULLWARMUP for fma3d.

In contrast, consider the IPCSTALEWARMUP sample means of facerec and gal-
gel. As Table V shows, the STALEWARMUP result does not successfully predict
their relative error deviation from IPCtrue. This evidence rigorously and quan-
titatively confirms the hypothesis that their respective −10.46% and −11.61%
percent-error deviations from the IPCFULLWARMUP sample means are statisti-
cally significant.

6.3 IPC Accuracy According to Matched-Pairs t-Test

Statistical hypothesis testing can also be used to demonstrate the significance
of the difference between IPC generated by FULLWARMUP and IPC gen-
erated by another warmup technique. In this way, hypothesis testing builds
a case against the null hypothesis, which for our research is that simula-
tions using FULLWARMUP yield a different mean IPC from simulations using
MRRL0.999, MRRL0.990, MSE99.9%, MSE95.0%, and STALEWARMUP. (In our ex-
periments this hypothesis was usually rejected for MRRL and MSE, but rarely
for STALEWARMUP, providing further rigorous evidence in support of the ne-
cessity of adequate warmup prior to cycle-accurate simulation.) In particular,
we used the matched-pairs t-test to compare each benchmark’s FULLWARMUP
percluster IPCs against the percluster IPCs generated by the other warmup
techniques. In this test, the IPC of the ith FULLWARMUP cluster is paired
with its counterpart ith, MRRLN or MSEp cluster IPC. From this set of pairs,
the set of cluster IPC differences is calculated and used to compute a t-score
based on the difference of the means, the standard error of the means, and
their Pearson product-moment correlation coefficient [Underwood et al. 1954].
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If, for example, one wishes to compute a t-score for the matched-pairs difference
between FULLWARMUP and MRRLN , t is computed, thus:

t = µX − µY√
σ 2

X + σ 2
Y − 2rX Y σ X σ Y

where µX − µY is the difference of the FULLWARMUP and MRRLN cluster
means σ X and σY are the standard errors among the FULLWARMUP and
MRRLN cluster IPCs,8 and rX Y is the Pearson product-moment correlation
coefficient between the FULLWARMUP and MRRLN cluster IPCs. When com-
puting t-scores for matched samples, it is necessary to compensate for the likely
positive correlation that exists between the paired elements, since the differ-
ence between the means of a pair of positively correlated matched samples
tends to be lower than the difference between the means of randomly paired
(i.e., uncorrelated) samples. (In fact, when rX Y = 0, the denominator of the
matched-pairs t-score formula degenerates to the denominator of the formula
for computing the t-score of randomly paired samples.) The higher9 the rX Y ,
the higher the t-score. In essence, the Pearson product-moment correlation co-
efficient protects against understating the case that a statistically significant
difference exists between paired samples that are positively correlated.

Our experiments measure the effects of each warmup strategy as different
“treatments” of the same sample population [Underwood et al. 1954], which
obviously demonstrates a very high correlation between the paired sample
elements from one warmup technique to the next. This process was used to
compare FULLWARMUP to MRRL0.999, MRRL0.990, MSE99.9%, MSE95.0%, and
STALEWARMUP.

At the 5% level of significance, the critical t-score10 for 50-cluster samples
is 2.0096, and the critical t-score for the 500-cluster samples (applu and gal-
gel) is 1.9647. We converted the t-score generated by each experiment into its
equivalent p-value which is a probabilistic measurement of the likelihood of ob-
taining the given t-score. Table VI lists the p-values of the benchmarks whose
t-scores were calculated by pairing the cluster IPCs of MRRL0.999, MRRL0.990,
MSE99.9%, MSE95.0%, and STALEWARMUP with the FULLWARMUP cluster
IPCs. A p-value greater than 5% indicates an outcome that rejects the null
hypothesis. Notice that STALEWARMUP rejects the null hypothesis for only
five benchmarks (equake, fma3d, lucas, mcf, and mgrid). Among a preponder-
ance of these experiments, however, there is a statistically significant difference
at the 5% level which is to say that there is insufficient evidence to reject the
null hypothesis that IPC measured via STALEWARMUP differs from IPC mea-
sured via FULLWARMUP. We conclude the same to be true of STALEWARMUP
in general. This, combined with the large (and statistically proven significant

8For the matched pairs t-test, µX and µY are computed differently from the sample IPC (IPC)
mentioned in Section 6.2; rather, they are computed as the mean of individual cluster IPCs. σ X
and σY are computed using µX and µY , respectively, and are therefore also different from the σ

used in Section 6.2.
9Reciprocally, for lower, negative values of rX Y , it does not even make sense to use matched samples
since there is little similarity between the elements in each sample pair.
10According to the Student’s t-distribution for 49 degrees of freedom and 499 degrees of freedom.
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Table VI. Matched-Pairs t-test p-Values Measuring the Statistical Significance of Cluster
Differences between FULLWARMUP and, MRRL0.999, MRRL0.990, MSE99.9%, MSE95.0% and

STALEWARMUP

p-Value
MRRL0.999 MRRL0.990 MSE99.9% MSE95.0%

Benchmark (%) (%) (%) (%) STALEWARMUP(%)
applu 36.22 15.73 11.31 38.57 0.00
apsi 36.96 49.40 45.73 45.54 0.64
art 110 30.01 100.0 0.68 0.68 0.01
crafty 17.41 3.01 0.00 0.00 0.00
equake 11.70 53.25 26.10 56.77 17.89
facerec 17.18 8.93 6.80 8.84 0.02
fma3d 22.03 22.67 20.69 20.72 45.85
galgel 55.80 26.09 5.67 6.51 0.00
gcc integrate 57.20 4.73 38.53 37.63 0.04
gzip graphic 5.57 19.13 12.40 12.40 4.36
lucas 26.84 32.36 85.88 86.02 52.16
mcf 55.39 26.10 7.79 17.25 15.01
mgrid 18.58 20.05 27.00 67.20 9.08
twolf 0.01 0.00 0.00 0.00 3.36
vortex lendian2 0.00 0.00 0.00 0.00 0.16
vpr route 35.13 35.13 35.13 35.13 0.00

At the 5% level of significance, 11 of 16 benchmarks’ t-scores showed insufficient evidence to reject the
null hypothesis which states that IPC as measured by FULLWARMUP differs from IPC as measured by
STALEWARMUP. For a strong majority of the benchmarks that were warmed up by the other warmup
strategies, on the other hand, sufficient evidence does exist to reject this hypothesis.
Entries in bold typeface fail to reject the null hypothesis at the 5% level of significance.

[Section 6.2, Table V]) deviations from FULLWARMUP for the benchmarks fac-
erec and galgel are firm evidence that adequate warmup is essential if sampled
simulation results are to be trustworthy.

Recall fma3d’s relatively large percent-error deviation from FULLWARMUP
for MRRL0.999, MRRL0.990, MSE99.9% and MSE95.0% (Section 6.1, Table III).
We qualitatively drew the conclusion that although the percent-error devia-
tion was 3.94%, because the absolute error was so small—0.021 instructions
per cycle—the deviation was insignificant. Table VI quantitatively confirms
this conclusion since the fma3d t-scores are less than the critical t-score for
MRRL0.999, MRRL0.990, MSE99.9%, and MSE95.0%. In other words, the differences
between the IPCs generated by these techniques and FULLWARMUP are sta-
tistically insignificant at the 5% level. MRRL0.999, MRRL0.990, MSE99.9%, and
MSE95.0% reject the null hypothesis for twolf, and vortex lendian2; MRRL0.990,
MSE99.9%, and MSE95.0% additionally reject the null hypothesis for crafty;
and MSE99.9% and MSE95.0% reject the null hypothesis for art 110. While ini-
tially alarming, further inspection reveals that although their t-scores im-
ply statistically significant deviation at the 5% level, the absolute differences
(IPCFULLWARMUP − IPCMRRL{0.990, 0.999},MSE{95.0%, 99.9%} ) for twolf and vortex lendian2
are all 0.001. That is, the MRRL0.999, MRRL0.990, MSE99.9%, and MSE95.0% esti-
mates of the FULLWARMUP IPC for the benchmarks twolf and vortex lendian2
are off by 1 one-thousandth of an instruction per cycle—an amount that we
safely, albeit qualitatively assume to be insignificant. The absolute error be-
tween MRRL0.990, MSE99.9% and MSE95.0% and FULLWARMUP for crafty, and
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Table VII. Random Cluster Sampling Acceleration Relative to FULLWARMUP as a
Percentage: 100% · t

tFULLWARMUP

%tMRRL0.999 %tMRRL0.990 %tMSE99.9% %tMSE95.0%
Benchmark tFULLWARMUP (s) (%) (%) (%) (%)
applu 80,887 64.30 63.79 100.0 100.0
apsi 120,925 59.56 59.46 97.19 96.88
art 110 19,613 36.94 37.22 98.82 98.91
crafty 78,906 48.20 48.71 87.01 86.24
equake 54,675 57.11 57.80 91.25 91.87
facerec 70,587 51.98 51.16 95.40 95.64
fma3d 96,462 61.38 61.25 96.66 96.47
galgel 162,606 55.45 55.70 95.69 96.27
gcc integrate 5569 75.83 68.56 100.0 100.0
gzip graphic 26,643 34.58 34.89 97.81 97.39
lucas 46,730 50.67 50.79 100.0 99.21
mcf 36,014 46.45 46.79 89.09 89.17
mgrid 142,334 60.50 60.41 100.0 100.0
twolf 133,069 44.04 44.35 98.91 98.82
vortex lendian2 64,839 38.06 37.83 96.72 98.78
vpr route 28,358 39.75 39.79 98.63 98.27
Mean 51.55 51.16 98.03 96.70

between MSE99.9% and MSE95.0% and FULLWARMUP is (to three decimal
places) 0.000—again, a qualitatively insignificant amount.

While the raw statistical evidence provided by the t-tests implies that
MRRL0.990, MSE95.0%, and MSE99.9% are less reliable than MRRL0.999 (by ex-
ceeding the critical p-value for two extra benchmarks), putting these results
into perspective, vis-á-vis their absolute difference deviation from the FULL-
WARMUP IPC shows that all perform about as well as MRRL0.999 at eliminating
nonsampling error.

6.4 Simulation Acceleration

Table VII shows the speedup results relative to FULLWARMUP for the random
cluster sampling experiments. (All timing data for MSE and MRRL experiments
represent the sum of the time spent in all three phases of simulation: cold,
warm, and hot. FULLWARMUP timing data, on the other hand, by definition
represent the sum of the time spent in warm and hot simulation exclusively;
STALEWARMUP timing data used to compute the quantities in Table VIII,
by definition represent the sum of the time spent in cold and hot simulation
exclusively.) Notice the high percentage of FULLWARMUP running times re-
quired by benchmarks for MSE99.9% and MSE95.0%, relative to the more drastic
reductions for MRRL0.999 and MRRL0.990. In all cases, the MSE experiments
required greater than 85% of the running times required by FULLWARMUP,
while MRRL generally required less than 70%. This is one of MRRL’s more sig-
nificant strengths over its predecessor: the ability to maintain a high level of
accuracy in much less time than MSE.

Table VIII gives the running time for STALEWARMUP relative to
FULLWARMUP, which we claim represents the maximum potential speedup
for each benchmark for its set of sample clusters. Consider the three-stage
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Table VIII. Maximum Potential (%STALEWARMUP) Acceleration (100% · tSTALEWARMUP
tFULLWARMUP

) and
Achieved Percentage of Potential (%MRRLN ) Running Time Speedup

(100% · (1 − tMRRLN
−tSTALEWARMUP

tSTALEWARMUP
))

Benchmark tFULLWARMUP(s) %STALEWARMUP(%) %MRRL0.999 (%) %MRRL0.990 (%)
applu 80,887 60.54 93.79 94.64
apsi 120,925 58.11 97.51 97.68
art 110 19,613 35.52 96.00 95.23
crafty 78,906 46.52 96.41 95.31
equake 54,675 55.49 97.07 95.83
facerec 70,587 47.88 91.44 93.16
fma3d 96,462 59.84 97.43 97.65
galgel 162,606 53.15 95.67 95.20
gcc integrate 5569 65.49 84.12 95.31
gzip graphic 26,643 32.31 92.98 92.03
lucas 46,730 48.55 95.65 95.39
mcf 36,014 44.55 95.74 94.99
mgrid 142,334 58.57 96.71 96.86
twolf 133,069 42.36 96.04 95.32
vortex lendian2 64,839 36.71 96.95 96.32
vpr route 28,358 35.66 88.55 88.42
Mean 94.47 94.99

cold–warm–hot simulation loop discussed in Section 3. Since the complexity
of the simulation performed by the cold phase is less than the complexity of
the simulation performed by the warm phase, whose complexity is less than
the hot phase, perinstruction simulation time within the cold phase is less
than that for the warm phase, which is less than that for the hot phase (i.e.,
O(cold) < O(warm) < O(hot)). MSE, MRRL, and STALEWARMUP reduce sim-
ulation running times by modifying the simulation of the precluster instructions
to increase the number of cold phase instructions while reducing the number
of warm phase instructions. (Recall that for a precluster–cluster pair, the cold
phase and warm phase instructions compose the precluster set of instructions,
while the hot phase is the set of cluster instructions.) Hence, the maximum
running time reduction for a precluster–cluster pair eliminates all warm phase
simulation, rendering the precluster–cluster pair a cold phase followed imme-
diately by a cycle-accurate hot phase; this is precisely what STALEWARMUP
does.

Table VIII gives the maximum potential speedup for each benchmark as a
percentage of FULLWARMUP running time, and the percentage of the maxi-
mum potential actually achieved for MRRL0.999 and MRRL0.990. The percentage
of the maximum potential speedup is calculated as a ratio of the difference of
MRRLN and STALEWARMUP running times and the STALEWARMUP run-
ning time, thus:

100% ·
(

1 − tMRRLN − tSTALEWARMUP

tSTALEWARMUP

)
.

MSE99.9% and MSE95.0% are omitted because, as Table VII demonstrates, MSE
cannot accelerate running times as well as MRRL. (The scarcity of unique
references made it difficult for MSE to model the prescribed m uniques
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during the precluster regions. Thus, for precluster warmup, MSE degener-
ated, or nearly so, to FULLWARMUP and completely traded away simula-
tion speed for accuracy.) In our experiments, MRRL0.999 and MRRL0.990 achieve
nearly identical11 amounts of the maximum potential speedup: roughly 95% on
average.

7. CONCLUSIONS AND FUTURE WORK

Minimal subset evaluation and memory reference reuse latency are two tech-
niques that can reduce the running times of sampled simulations by reducing
the amount of time spent warming up simulated cache and branch predictor
state prior to each sample cluster. MSE computes a minimal number of unique
references that must be handled within a cache in order to touch a certain frac-
tion of cache blocks at least once; warmup commences at a point prior to cycle-
accurate simulation such that the MSE-prescribed number of unique references
will be encountered. MRRL works by profiling the reuse latency (in number of
completed instructions) between consecutive accesses to each memory address
or control-flow instruction; warmup commences at a point coincident with a
user-chosen percentile of reuse latency measurements.

Both warmup acceleration methodologies speed up simulation by perform-
ing simulation in three phases: cold, warm, and hot. Hot phase simulation
models microarchitectural activity in cycle-accurate detail; this is the level
of modeling done during the sample clusters. The warm phase and the cold
phase jointly compose the precluster instruction stream. Whereas the cold
phase models only the programmer-visible architected state, the warm phase
additionally models cache and branch predictor activity. Hence, hot phase sim-
ulation is more time-consuming per simulated instruction than warm phase
simulation, which is more time-consuming per simulated instruction than cold
phase simulation. Both acceleration methodologies reduce simulation running
times by simultaneously maximizing the duration of the cold phase and min-
imizing the duration of the warm phase. This is in contrast to other sim-
ulation research which only implement, (coarsely speaking) a warm phase
and a hot phase of simulation [Perelman et al. 2003; Sherwood et al. 2001,
2002, Wunderlich et al. 2003]. While the experiments presented in this pa-
per utilize random cluster sampling, a key research goal of MSE and MRRL
was to develop a warmup acceleration methodology that is as independent
as possible from the sampling regime. Both can offer even further acceler-
ation to previously discussed sampling techniques, but both prioritize sim-
ulation accuracy above acceleration, and (as was discussed in conjunction

11As described in Section 5, we used the UNIX system call getrusage() to accurately measure actual
CPU running time, regardless of additional load placed upon the host CPU by other processes. To
gauge walk-clock running time for sim-outorder, we summed the user-space CPU time and the
kernel-space CPU running time. Since kernel-space timing on the host system (Linux/×86) was
nondeterministic (e.g., page faults, disk seek/access, higher priority threads, variable scheduling
time), there is mild variation between the MRRL running times, and in some instances, MRRL0.999
completes in less time than MRRL0.990 for the same benchmark. Indeed, the mean percentage of
realized maximum potential speedup is greater for MRRL0.999. The amount of variation is so slight,
however, that this is almost certainly the result of nondeterminism in the host system kernel.
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with Wunderlich et al. [2003] in Section 2, and demonstrated for MSE in
Section 6) will completely trade away speedup to preserve accuracy if there
are insufficient intercluster instructions to justify shortening the warmup
period.

Critically important to both acceleration methodologies is that neither MSE
nor MRRL contributes significantly to nonsampling error due to cold-start bias.
Whereas cache and branch predictor activity are always modeled during cycle-
accurate cluster simulation, MSE and MRRL only model a subset of the cache
and branch predictor activity immediately preceding each sample cluster. For
both, the percent-error deviation from FULLWARMUP was less than 1% on
average. This was shown to be statistically insignificant in that all but two
benchmarks’ 95% confidence intervals predicted the observed deviation from
the true, end-to-end IPC; furthermore, FULLWARMUP simulations of the same
two benchmarks also failed to predict the observed error. FULLWARMUP’s re-
sistance to cold-start nonsampling error implies that the failure of MSE, MRRL,
and FULLWARMUP to predict the observed error is attributable to sampling
error: the inevitable consequence of measuring only a subset of any population.
Hence, both MSE, and MRRL accomplish the objective of maintaining small
nonsampling error, and mimic FULLWARMUP well. Merely recycling cache and
branch predictor state between successive clusters (as with STALEWARMUP)
on the other hand, introduced large, statistically significant increases in the
nonsampling bias.

While both MSE and MRRL perform very well at abating nonsampling bias,
the clear victor at realizing the maximum potential speedup (i.e., the speedup
achieved by STALEWARMUP) is MRRL cutting simulation running times by
approximately 50% on average, which is roughly 95% of the maximum potential
speedup. Thus, we have established MRRL, the successor and replacement to
MSE, for accelerating warmup in sampled simulation.

With the growing interest in rigorous and accelerated simulation tech-
niques, a major area for future work is to find the optimal combination
of sampling and reduced-warmup techniques and parameters. Other inter-
esting avenues of future research include determining whether statistical
measurements of reference reuse latencies such as explored in Phalke and
Gopinath [1995] (who model reuse latencies as kth order Markov chains)
can be successfully applied to quantify temporal locality with sufficient ac-
curacy to enable accurate, accelerated MRRL simulation, and whether single-
pass methods can be used to facilitate accurate accelerated branch predictor
warmup.

The MRRL profiler software and modified version of sim-outorder are linked
to from the Laboratory for Computer Architecture at Virginia Web site at
http://lava.cs.virginia.edu/.
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